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Abstract: Using a semiempirical approach, we show that modified gravity affects the internal properties
of terrestrial planets, such as their physical characteristics of a core, mantle, and core–mantle boundary. We
also apply these findings for modeling a two-layer exoplanet in Palatini f (R) gravity.

Keywords: modified gravity; Ricci-based gravity; Palatini gravity; exoplanets; planet’s interior

1. Introduction

Discoveries of exoplanets in the Milky Way Galaxy [1,2] and in the Whirlpool Galaxy [3], as
well as growing observational datasets of those objects provided by the current and future
missions [4–8], have increased the need for theoretical tools which allow us to describe the
planets’ interiors and eventual habitable properties on the basis of those data. A common
approach is to extrapolate the Preliminary Reference Earth Model (PREM) [9] and its later
improvements [10–12] (see more at [13]). Therefore, although an Earth-like planet should
have at least six differently composed layers, one usually considers two [14]: iron core and
silicate mantle, as they have the biggest impact on the observed properties, such as the
planet’s mass, radius, and polar moment of inertia. However, a very different composition
of the rocky planets may also be possible, as argued in [15], such as quartz-rich mantles, in
comparison to the Solar System ones, whose mantles are mainly made of silicates. Clearly,
such findings call for more research in planetary physics, not only from an observational
point of view, but also in theoretical modeling.

Regarding the planet’s modeling based on PREM, we are still improving our knowl-
edge on the deepest zones of the Earth, as well as the instrumentation and methods used
becoming ameliorated, allowing us to obtain more accurate data regarding the planet’s
interior. For instance, recent seismic observation [16] has revealed the existence of a liq-
uid/mushy region of the inner core instead of the solid one, as has been believed so far.
On the other hand, a new generation of the neutrino telescopes will be settled to provide
information on matter density inside the planet, and on characteristics and abundances
of light elements in the outer core [17–20]. In addition, in laboratories, with the use of
lasers [21], the high pressures and temperatures, that is, the extreme conditions of the
Earth’s core, are recreated in order to understand the properties and behavior of iron, which
is the main element of planets’ cores. All those revelations make the research regarding
planets’ modeling relevant, especially agreeing with the fact that various models of gravity
predict different layers’ structure in comparison to the Newtonian model [22], commonly
used in planetary science. Therefore, knowing the planet’s profile with high accuracy, that
is, the number of differently composed layers and their thicknesses, might be another tool
to test theories of gravity (see the details on the method in [23]).

As already mentioned, some extensions of Einstein’s theory of gravity may impact
the internal structure of the rocky planets, as well as their properties [22–24]. This is so, as
such theories modify the nonrelativistic hydrostatic equilibrium equations [25] and others,
crucial for stellar and planetary modeling. For instance, in the Schwarzschild criterion,
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which is used to constitute a type of the energy transport through an astrophysical object,
there appears an additional term making the star more or less stable with respect to
convective processes [26]; energy production in a stellar core is also affected [27–30], as
well as stars’ evolution [31], or cooling processes of substellar objects [32]. Therefore,
modified gravity theories proposed to provide some explanations of dark matter and
dark energy phenomena [33–38], spacetime singularities [39], extreme masses of compact
objects [40–45], or to unify all four interactions into a single theory [46,47], also impact
modeling of gravitational systems for which full relativistic description is not necessary.

One of such theories we are interested in is a subclass of the so-called Ricci-based
theories [48], that is, Palatini f (R) gravity. The main geometric property of these theories
is that the metric and connection are considered as independent objects in comparison
to most extensions of Einstein’s theory. In Ricci-based gravities, the connection is not
coupled to the matter fields, assuming that we are dealing with metric theories, that is,
the particles are moving along geodesics distinguished by the metric; moreover, in such a
formulation, the connection is not dynamical. However, their most important feature is
related to their vacuum dynamics, as it provides the same dynamical equations as general
relativity ones with a cosmological constant [49–51], providing that those proposals pass
the Solar System tests [52] and gravitational waves’ observations as the waves are moving
with the speed of light in those theories. However, the difference is clear when one deals
with matter fields—Ricci-based gravities then introduce terms which depend on energy
density, modifying the structural equations [53].

In this work, we focus on a gravitational model which introduces a quadratic Ricci
scalar term, and it is considered in the Palatini approach. Since those terms contribute to the
structural equations of spherical symmetric low-temperature spheres, such a modification
will have an influence on internal properties of the planet. Therefore, using an analytical
method allowing us to obtain the core and core–mantle boundary values of pressure from
given masses and radii of transiting exoplanets, we demonstrate that those values will
differ in modified gravity. Moreover, we also use them to model an exoplanet interior.

2. Simple Model of Small Rocky Planets in Palatini Gravity

In this section, we recall the hydrostatic equilibrium equations for a cold, low-mass
spherical symmetric object. Our terrestrial planets, with masses from the range
Mp ∈ (0.1− 10)M⊕, where M⊕ is the Earth’s mass, and core mass fraction (CMF), de-
fined as

CMF =
Mcore

Mp
, (1)

not exceeding ∼0.4 of the total planet’s mass1, will be modeled as a two-layer planet, that
is, consisting of an iron core and a silicate mantle. Then, using the semiempirical expression
relating the CMF with the radius and mass of a transiting exoplanet, we derive the planet’s
internal characteristics, such as core pressure and density, their boundary values between
the core and mantle, and the mantle’s ones.

2.1. Planets’ Structure Equations

Nonrelativistic hydrostatic equilibrium equations for the quadratic Starobinski model2

f (R) = R+ βR2 (2)

considered in the Palatini approach are given by [53,56]

p′(r) = −Gmρ

r2

(
1− βc2κ2(5ρ− 2rρ′)

)
, (3)

m(r) =
∫ r

0
4πr̃2ρ(r̃)dr̃, (4)
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where prime denotes the derivative with respect to the radial coordinate. The matter
part of the full relativistic field equation is described as a perfect fluid in this approach,
Tµν = (ρ + p)uµuν + pgµν, where p = p(r) and ρ = ρ(r) are pressure and energy density,
respectively, while uµ is a normalized 4-vector, representing an observer comoving with
the fluid. Let us notice that the different numerical factors appearing in the modification
term in Equation (3) are the results of the considered assumptions; for example, in [56], the
equations were obtained by assuming the conformal invariance of the standard polytropic
equation of state for the quadratic model demonstrated in [57], while the equations derived
in [53] are more general, without adopting any equation of state. In this work, we also use
some polytropic equations of state, however it differs slightly with respect to the common
one, as explained later in the text.

Our small rocky exoplanet is modeled as a cold sphere consisting of two different
layers. As already mentioned, the material they are made of is iron in the core and silicate
in the mantle, whose equations of state are given by the Birch equation of state [58,59],
working well when temperatures can be considered uniform but less than 2000 K, and
when pressure is below 200 GPa. However, in order to be able to consider more massive
objects than the terrestrial planets of the Solar System, one has to take into account the
electron degeneracy, as the internal pressure can be p & 104 GPa. The usual procedure
is to match this equation of state with the Thomas–Fermi–Dirac one [60–63], which also
qualifies to describe density-dependent correlation energy [64] which appears because
of the interactions between electrons when they obey the Pauli exclusion principle and
move in the Coulomb field of the nuclei. Such a hybrid equation of state is very well
approximated by a modified polytropic equation of state (SKHM) of the form [14]

ρ(p) = ρ0 + cpn, (5)

whose best-fit parameters ρ0, c, and n for iron and silicate (Mg, Fe)SiO3 are provided in
Table 1. Because solids and liquids are incompressible at the low-pressure regimes, the
additional term ρ0 is present to include this effect. Equation of state constructed in such a
way is valid up to p = 107 GPa, giving the maximal value of the central pressure possible
in our analysis.

Table 1. Best-fit parameters for the SKHM equation of state (Equation (5)) obtained in [14].

Material ρ0 (kg m−3) c (kg m−3 Pa−n) n

Fe(α) 8300 0.00349 0.528
(Mg, Fe)SiO3 4260 0.00127 0.549

Moreover, to explore the model with the described features, one needs to establish the
initial and boundary conditions. In previous works, we have used the shooting method
in order to find the initial values of the core’s densities as well as between the layers’
ones [22,23]. This demonstrated that modified gravity can have a significant impact on
those values, and this is a result of different physical assumptions to, for example, Newto-
nian physics. Therefore, even slight modification to the standard hydrostatic equilibrium
equation will have an effect on the internal structure. Keeping this in mind, we have
restudied a simple but reasonable method [65] used to obtain the internal characteristic of
a distant planet, whose mass and radius can be found by the use of the transit observation
techniques [66]. Therefore, for the given total mass of the planet and its radius, we derive
the central pressure, its value on the core–mantle boundary (CMB), and the mantle one.
This will show that modified gravity indeed affects them.

2.2. Internal Structure of Palatini Planets

There is only one planet whose interior structure and materials, that is, equations
of state, are known: Earth3. The many-layers structure, their thickness, and equations
of state are given by seismic data, that is, PREM [9]. Since some planets of our Solar
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System and exoplanets are alike dense and possess similar other characteristics, one usually
extrapolates the Earth’s model to describe them. Therefore, extrapolating the Earth’s model,
one may derive the semiempirical expression for the core mass fraction (CMF) which carries
the information on the core–mantle boundary, often used in numerical procedures and
simulations of very distant planets, whose mass Mp and radius Rp are given by the transit.
Such a relation between CMF and observed radius and mass was given in [68]:

CMF =
1

0.21

[
1.07−

(
Rp

R⊕

)
/
(

Mp

M⊕

)0.27
]

, (6)

where R⊕ and M⊕ are Earth’s radius and mass, respectively. Furthermore, CMF can be
also used to obtain the approximated value for the core radius fraction (CRF), defined as

CRF =
Rcore

Rp
, (7)

which is also suitable for numerical analysis [65]:

CRF ≈
√

CMF. (8)

Using these two values, that is, CMF and CRF, we derive the core’s and mantle’s pressure,
as well as its boundary value, for an exoplanet of the mass Mp and radius Rp.

Let us firstly use the definition of local gravity, usually defined as

g =
Gm(r)

r2 , (9)

to rewrite Equation (3) in a more suitable form for further purposes:

p′(r) = −gρ

(
1− α

[
14g + g′r− 2g′′r2

4πGr

])
, (10)

where we have defined a new parameter α = κ2c2β for the further convenience. Using the
mass equation (Equation (4)), together with the expression for the local gravity (9), it can be
transformed into

dp
dm

= − g2

4πG
d ln(m)

dm
σ, (11)

where σ = 1− α
[

14g+g′r−2g′′r2

4πGr

]
while ln(m) is the natural logarithm of m. Assuming that

the surface pressure is zero, we integrate the above equation from the surface inward,
such that ∫ interior

surface
dp = − 1

4πG

∫ mass enclosed inside

Mp
g2dln(m)σ. (12)

Before proceeding further, let us define the surface gravity gs as a local gravity on the
planet’s surface with mass Mp and radius Rp

gs :=
GMp

R2
p

, (13)

while the so-called typical pressure ptyp is defined as

ptyp :=
g2

s
4πG

=
GM2

p

4πR4
p

. (14)
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As the local gravity of the mantle can be assumed to be a constant [65], we may
integrate Equation (12) to obtain the pressure of the mantle:

pmantle = 2ptypln
(

Rp

r

)[
1 + α

7gs

πG
Mp

Rp

(
1√
Mp
− 1√

m

)]
, (15)

where we use the planet’s characteristics defined before. In particular, the pressure on
the core–mass boundary (CMB) can be obtained by inserting r → Rcore and m → Mcore
such that

pCMB = ptypln
(

1
CMF

)[
1 + α

7gs
√

Mp

πGRp

(
1− 1√

CMF

)]
, (16)

where we have used Equations (7) and (8).
On the other hand, since in our model the core density ρcore can be assumed to be a

constant value, the core mass is given as Mcore = 4
3 πR3

coreρcore. Therefore, the hydrostatic
equilibrium Equation (3) can be written with the use of Equation (4) as

dpcore

dr
= −gρcore

(
1− α

[
9m′

4πr2 −
m′′

2πr

])
= −

3rptyp

R2
core

[
1− α

15gs

4πGRcore

]
. (17)

Integrating the above equation results in

pcore(r) = p0 −
3
2

ptyp

(
r

Rcore

)2(
1− 15α

gs

4πGRcore

)
, (18)

where p0 is the central pressure which can be determined by matching the above pcore at
CMB with the pressure on the boundary (Equation (16)):

p0 = pCMB +
3
2

ptyp

(
1− 15α

gs

4πGRcore

)
(19)

= ptyp

(
3
2

[
1− 15α

gs

4πGRcore

]
+ ln

(
1

CMF

)[
1 + α

7gs
√

Mp

πGRp

(
1− 1√

CMF

)])
.

The above result allows us to find an approximated value of the central pressure for a given
terrestrial exoplanet whose mass and radius are provided by the transit observations. The
effect of modified gravity is clearly present; therefore, in the next section, we numerically
solve the structural equations with the use of those findings.

3. Numerical Solutions

In order to compare models of different values of the Starobinsky parameter β, we
have introduced earlier a dimension-full parameter α = c2κ2β, which allows one to
write the formulas in a more convenient way. We chose four values of the parameter,
α ∈ {0, 10−15, 10−14, 10−13} ×m3/kg, that is, β ∈ {0, 1011, 1012, 1013} ×m2, neglecting the
possibility of negative values of the parameter4. Let us comment that with the current
experiments performed in the Solar System, one is not able to distinguish between Palatini
f (R) gravity and GR [52]. Upper bounds on the absolute value of the parameter β in
the Palatini approach have been determined to be β ∼ 1012 cm2, when one investigates
weak-field limit of the theory [69], or β ∼ 109 cm2, if gravitational forces become as strong
as electric forces [70]. It must be noted that the absolute bounds differ from the ones
obtained for metric counterpart of the theory [69]. Another issue concerns the critical value
of the parameter. It can be shown that, when β takes negative values, there also exists an
upper bound on the value of the parameter depending on the energy density of matter; any
values above the critical one lead to unphysical results [23].

Having established the range of the parameter, we focus on numerically solving
Equations (3) and (4), supplemented with the equation of state, Equation (5). In order to
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determine the exact density profile for a planet of given mass and radius, and chemical
composition, one needs to use the shooting method, i.e., find a value of internal density such
that, at the surface of the planet, the radius and the mass coincide with the desired values
(the surface, if defined by p(Rp) = 0). The fact that the masses and radii of the planets we
examine are fixed by the transit observations provides the possibility to determine the core
density and core size with its mass, as well as to plot the density profiles. As one can see
in Figure 1, all curves denoting solutions for different values of α end at the same point;
what changes is the size of the core. This allows us to compare CMFs and CRFs obtained
from the quasi-empirical Formula (6) (which is constant once the mass and the radius of
the planet are given) to the numerical findings.

As far as the pressure is concerned, we simply calculate it for one planet, Kepler-78 b5,
using Formulas (15) and (18), as well as the exact value of Rcore determined in the previous
numerical step. The results are shown in Figure 2, illustrating the effects of modified
gravity on pressure within the exoplanet. The analytical solutions are then compared with
numerical ones, to determine how good the approximations are. The results are shown in
Figure 3 for two values of α.

(a) K2-36 b, M = 3.9M⊕, R = 1.43R⊕ (b) Kepler-10 b, M = 4.6M⊕, R = 1.48R⊕

(c) Kepler-20 b, M = 9.7M⊕, R = 1.87R⊕ (d) Kepler-78 b, M = 1.97M⊕, R = 1.12R⊕

Figure 1. Density profiles for four different Earth-like exoplanets, for different values of the parameter
α = c2κ2β. The planets are assumed to be composed of two layers: iron core, and mantle made of (Fe,
Mg)SiO3.
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Figure 2. Relation between pressure and radius for Kepler-78 b exoplanet calculated analytically
using the formulas derived in this work. The curves are plotted for four different values of the
parameter α = c2κ2β. The planet is assumed to be composed of two layers.

Figure 3. Relation between pressure and radius for Kepler-78 b exoplanet calculated analytically and
numerically. The dashed line represents the numerical solution, whereas the solid line—analytical
one. The curves are plotted for two different values of the parameter α = c2κ2β.

4. Conclusions

Previous studies regarding terrestrial planets in modified gravity [22] revealed that
extensions of Einstein’s gravity alter the internal structure of those objects, providing a
possibility to test such theories with the use of seismic data [23]. Therefore, the physical
quantities, such as core pressure and energy density, as well as their boundary values
between layers, should also be affected, which would have an impact on the way we model
distant planets, where seismology cannot be applied. This fact forces us to look for methods
allowing us to find those values, when only the observed characteristics, such as mass and
radius of a transiting exoplanet, are available. In this work, we wanted to check if such
methods are model-independent.

As clearly demonstrated, the methods can indeed depend on the applied theory of
gravity. For this analysis, we considered quadratic modification to the general relativity’s
Lagrangian Equation (2), considered in the Palatini approach; however, our conclusions
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are valid for other theories of gravity which modify the nonrelativistic limits of their
field equations.

• Density profiles, as already noticed in our previous works, can significantly differ in
modified gravity with respect to the Newtonian model. We observe not only lower
values of central density and on the core–mantle boundary, but also the cores of the
given exoplanets are bigger; that is, the cores are less dense in the case of Palatini grav-
ity. Therefore, the observed transiting planets can have different structure for the same
masses and radii than the one predicted in the usual way, and can affect the planet’s
polar moment of inertia. The fact that internal structure of planets is affected by
modifications of gravitational interaction is to be expected, since Equations (3) and (4),
allowing one to compute the density profiles, change. This entails the fact that modifi-
cations of gravity introduce additional degeneracy when trying to determine planets’
internal composition by looking at the mass–radius relationship [23]. The values of
internal pressure and core radius, giving the same total mass and radius, depend on
the parameter α. Therefore, this fact alone does not allow us to constrain alternative
gravity models. What actually could help in distinguishing between different models
would be collecting seismic data from Solar System planets, and investigating their
density profiles. For example, Earth’s mass and radius are well known, as well as its
internal composition, so, after having developed a more realistic model taking into
account modifications of gravity, it will be possible to place a stringent constraint on
values of α.

• A similar situation happens when we plot the pressure curves obtained in this work:
its central values decrease in modified gravity; however, when we approach the
planet’s surface, the mantles do not differ much. This result derives from the fact that
the additional term in Equation (15) for the pressure in the mantle is small, and smaller
than the extra term appearing in the analogous equation for the core (Equation (18)).

• We also compared the numerical solutions for the pressure obtained from Equations (3)
and (4) to the ones resulting from the analytical approach (which are approximated
solutions). As one can see, the pressure drops roughly, similar to −r2 in the core,
and then changes in a linear way in the mantle in the case of both numerical and
analytical solution (although it is less pronounced for larger values of the parameter α).
One notices that in the case of Newtonian gravity (α = 0), analytical (approximated)
solution tends to provide smaller values than the numerical one. However, in the
case of modified gravity, the effect is the reverse—approximated analytical solution
provides larger values than the numerical one. This can be explained in the following
way: the analytical approximation does not take into account the effect of modification
of gravity in the CMF Formula (6), so it stays constant for various values of the
parameter α (as it depends of the mass and radius of the planet only, and these
values do not change). On the other hand, the numerical method suggests that the
size of the core and its mass grow in modified gravity, and hence the CMF must
change. This combined effect of change in α and CMF/CRF results in a bigger drop in
internal pressure.

• Moreover, as already mentioned in the previous point, our numerical analysis revealed
that the equation for the semiempirical CMF used in that work also depends on
modified gravity. This is not a surprise, remembering the fact that for finding that
relation, one uses the PREM model, which is based on Newtonian gravity.

Although our studies presented in this paper are based on crude methods and as-
sumptions, such as spherical symmetric, nonrotating planets, their two-layers structure,
and constant values for the mantle’s characteristics, it is evident that alternative theories of
gravity do impact the planets’ descriptions and modeling. Improving our analytical and
numerical methods, that is, taking into account the missing ingredients mainly related to
more realistic planet’s geometry, should also manifest similar results. The work along these
lines is currently underway.
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Notes
1 The exoplanets of Mercury’s type, having cores with masses ∼0.7 of the total mass [14], are excluded from such an analysis.
2 For full relativistic equations in Palatini gravity, see [54,55].
3 However, we will be equipped with the Mars ones, too, thanks to the Seismic Experiment for Interior Structure from NASA’s

MARS InSight Mission’s seismometer [67].
4 We do so in order to avoid reaching nonphysical solutions being a fact of the conformal transformation, for which there exists a

singular value of α < 0. To learn more about that feature, see [55,56].
5 But the results are similar for the other ones, too, with the more significant differences for larger planet’s masses with respect to

the Newtonian solutions.
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