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Abstract: After a brief summary of the four main veins in the treatment of decoherence and quantum
to classical transition in cosmology since the 1980s, we focus on one of these veins in the study
of quantum decoherence of cosmological perturbations in inflationary universe, the case when it
does not rely on any environment. This is what ‘intrinsic’ in the title refers to—a closed quantum
system, consisting of a quantum field which drives inflation. The question is whether its quantum
perturbations, which interact with the density contrast giving rise to structures in the universe,
decohere with an inflationary expansion of the universe. A dominant view which had propagated
for a quarter of a century asserts yes, based on the belief that the large squeezing of a quantum state
after a duration of inflation renders the system effectively classical. This paper debunks this view
by identifying the technical fault-lines in its derivations and revealing the pitfalls in its arguments
which drew earlier authors to this wrong conclusion. We use a few simple quantum mechanical
models to expound where the fallacy originated: The highly squeezed ellipse quadrature in phase
space cannot be simplified to a line, and the Wigner function cannot be replaced by a delta function.
These measures amount to taking only the leading order in the relevant parameters in seeking the
semiclassical limit and ignoring the subdominant contributions where quantum features reside. Doing
so violates the bounds of the Wigner function, and its wave functions possess negative eigenvalues.
Moreover, the Robertson-Schrödinger uncertainty relation for a pure state is violated. For inflationary
cosmological perturbations, in addition to these features, entanglement exists between the created
pairs. This uniquely quantum feature cannot be easily argued away. Indeed, it could be our best
hope to retroduce the quantum nature of cosmological perturbations and the trace of an inflation
field. All this points to the invariant fact that a closed quantum system, even when highly squeezed,
evolves unitarily without loss of coherence; quantum cosmological perturbations do not decohere
by themselves.

Keywords: intrinsic decoherence; classicalization; cosmological perturbations

1. Introduction

Long before the 1996 popular paper [1] by Polarski and Starobinsky (PS) on cosmolog-
ical decoherence which commanded the attention of the cosmology community, there had
already been intense activities on the issue of quantum decoherence: two major paradigms
of consistent/decoherent histories [2–9] and the environment-induced decoherence [10–14]
programs had been formulated, and the emergence of classical spacetime in quantum
cosmology [15] investigated. The theoretical foundation for quantum decoherence, laid
down from the early 1980s to the early 1990s, is essential for understanding the corre-
sponding issues of cosmological perturbations in inflationary cosmology. Even the first
step in the analysis, e.g., whether to take a closed quantum system, such as pursued by
Hartle [16,17] or an open quantum system [18–20] viewpoint, makes a big difference. For a
closed system we can just do quantum mechanics the usual way, as had been done earlier.
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What is different as presented in this paper is, we shall identify the fault-lines and pitfalls
which caused some earlier authors to jump to wrong conclusions. From an open system
perspective, it is a welcoming sign that in recent years nonequilibrium quantum field
theory [21–24] developed in the 1980s–90s are increasingly recognized to be essential for
a rigorous treatments of cosmological decoherence issues. To ensure that inexperienced
researchers do not overlook the complexity of this issue arduously worked out by authors
of that earlier period, and take an overly lighthearted attitude to this issue, we give an
overview of the four stages and the four veins of quantum decoherence research in gravita-
tion and cosmology in the 1980s and 90s, up to PS. Because of its pedagogical emphasis,
we place it in a separate section, Section 2, with a remark that readers familiar with this
historical development can skip over.

The main goal of this paper is to focus on one of these veins in the study of quantum
decoherence of cosmological perturbations in inflationary universe, the case when one does
not rely on an environment. This is what ‘intrinsic’ in the title refers to—a closed system.
Namely, a quantum field which drives inflation by itself, the inflation, not the environment.
In fact, a free field1 The cases of an interacting field, where one divides the high frequency
modes from the low frequency modes, and examines how the former sector decoheres the
latter, has been studied in detail before [25–27] and is gathering increasing momentum in
recent papers (see, e.g., [28–30] and references therein). Despite its simplicity, the issue of
decoherence for a free field is perhaps conceptually more challenging, not unlike defining
the ‘intrinsic’ entropy of a quantum field (see, e.g., [31] and earlier references cited therein).
This is because, if one adheres to the basic principles, a closed quantum system should
evolve unitarily—there is no loss of quantum coherence. What makes this an issue is that
there are papers by respectable authors which claim there is decoherence in this closed
quantum system at late times, due to the inflationary expansion. Because PS offered an easy,
simple, even faulty philosophically sophisticated explanation of decoherence (‘decoherence
without decoherence’), it has attracted large numbers of followers. We want to show in this
paper that this claim is ill-founded and this simplistic view is misleading2. We do this by
working out in detail the three cases which had been studied before—a free particle [32], an
inverted harmonic oscillator [33] and the inflationary universe [1]— pointing out the exact
places where illegitimate jumps were made, which prompted these claims and promulgated
this erroneous view.

With a simple quantum harmonic oscillator example, using both the Wigner func-
tion and the wave function, and an operator Heisenberg equation, we examine several
commonly-used criteria of classicalization, including the commonplace h̄ → 0, and the
somewhat more sophisticated large n approximation. On the other hand, for a free particle,
and inverted oscillator, we focus on the late time, highly squeezed, limit when the system
is taken to behave classically by many authors. The squeezing under time evolution turns
a quadrature ellipse in phase space into a very narrow and elongated shape. This is where
many authors made a leap of faith and claim that the ellipse is like a line, replace it by a
delta function in the expression of the corresponding Wigner function, which perfects a
trajectory in phase space and proclaim classicalization is consummated. We point out that
this act is illegitimate, because if they are treated in this way, negative eigenvalues and
unphysical states arise.

For the inflationary universe, we follow the evolution of the squeezed quantum field,
the inflation perturbation, with nonequilibrium quantum field theory treatment in terms of
the Bogoliubov coefficients, and demonstrated that entanglement persists between the pair
of particles that are created. Entanglement is a uniquely quantum feature absent in classical
physics, there is unequivocal evidence that the system does not turn classical even at late
times under severe inflation. An important criterion for all four examples we invoked is
the Robertson-Schrödinger uncertainty relation (not the Schrödinger uncertainty as used
in [33]), which is an invariant throughout the unitary evolution. Other criteria we have
used include the non-commutativity of operators, boundedness of the Wigner function,
and semi-positivity of the density matrix.
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The contrast with PS is even clearer: while PS asserted that there is decoherence with
a clever twist, we show that there is no decoherence, and no twist.

1.1. Gravitational and Quantum Field Perturbations—Some Clarifying Remarks

Because quantum cosmological perturbations involve both classical gravitational
perturbations and quantum field fluctuations, some clarification remarks may be needed
on a few basic issues related to the role of quantum field fluctuations in cosmological
perturbations. This subsection provides the background for, and can be read as a preamble
of, Section 5.

There are three parties involved in inflationary cosmological perturbations: (i) classical
gravitation theory, based on general relativity, which governs cosmological evolution, (ii)
a quantum field, the inflation, which drives the universe to inflationary expansion, and
(iii) their perturbations/fluctuations: the scalar sector of gravitational perturbations is
coupled to the quantum scalar field fluctuations, together governing the density contrasts
which seed the structures in the universe, like galaxies.

Classical theories of cosmological structure formation are based on gravitational
perturbation theory [34–37] where the density contrasts, the isocurvature perturbations,
the vorticity and the primordial gravitational waves are described by the scalar, vector and
tensor perturbations of the background spacetime. The gravity sector based on general
relativity is classical throughout. We will comment on tensor perturbations and graviton
physics separately.

The scalar (inflation) field Φ̂(x, t) is intrinsically quantum in nature. Often, a back-
ground field expansion Φ̂(x, t) = φ̄(x, t) + δϕ̂(x, t) is performed, where the background
field φ̄(x, t) is a mean field3 and δϕ̂(x, t) are the quantum fluctuations (N.B. strictly speak-
ing, quantum perturbations—see Section 1.1.3 below). To get compact equations of motion
for the density contrasts, mixed metric perturbations + quantum scalar field variables
are used, such as the gauge invariant Mukhanov-Sasaki variable. Now, with a mixed
variable coming from classical gravity and quantum field, what do quantum cosmological
perturbations refer to, and which variables are we targeting in their decoherence, or, which
quantum variables become classical at late times—or do they?

1.1.1. Which Quantities in Cosmological Perturbations Are Intrinsically Quantum?

The mixed gravity + inflation variables can come in many shades depending on which
gauge one chooses to use in the gravity sector and the apportioned weight of each sector.
Regardless, the gravitational perturbations remain of classical origin. The scalar sector of
the metric perturbations related to the Newtonian potential is a constraint, not a dynamical
degree of freedom (the tensor modes are). Its nature is determined by (or ‘slaved’ [39,40]
to) the matter source. In general relativity when the matter source is classical, this scalar
sector of the metric perturbation is classical.

In an extreme case, one may conjure up situations where the quantum fluctuations
of the scalar field are made to vanish, such as “choosing a (co-moving) gauge which for
scalar perturbations makes the velocity perturbation vanish. For single field inflation, this
means that the time coordinate is defined so that at any given time the scalar field equals its
unperturbed value” (one is riding up and down with the scalar field’s fluctuations), “with
all perturbations relegated to components of the metric” ([41], Sec. 5.3D). This does not
mean that gravity has become quantum, only that the scalar perturbations now acquire a
quantum nature by virtue of the presence of the inflation field. When there is no inflation,
one returns to purely classical gravity. The Newtonian force is slaved to the source which is
classical. There is no way for the gravitational perturbations to become quantum in this
way, and there are no decoherence issues.

1.1.2. Tensor Perturbations: Gravitational Waves. Quantized Tensor Perturbations: Gravitons

The tensor sector of gravitational perturbations are not linked to the quantum field
which drives inflation and thus there is no issue of quantumness by proxy with the inflation.
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They are intrinsically classical and carry gravity’s dynamical (or propagating) degrees of
freedom. Primordial gravitational waves are described by the tensor sector of the gravitational
metric perturbations. They have been studied at the classical level since 1946 by Lifshitz
and others. One can consider quantizing the linearized tensor perturbations, whence they
become the gravitons, like photons for QED4. Primordial gravitons created from the vacuum
fluctuations in the early universe have been studied by many authors since the 70s [43,44].
The two polarizations (+,×) each obey an equation of motion of the same form as a massless
minimally-coupled scalar field. The normal mode amplitudes of each polarization obey an
equation of motion of the same form as that of a parametric oscillator with time-dependent
frequency determined by the expansion of the universe, as studied here and earlier (e.g., [31]
and references therein). Decoherence of primordial gravitons and decoherence due to gravi-
tons are important current subjects which we hope to return in conjunction with graviton
detection [45–47] and gravitational decoherence [48–50] issues.

1.1.3. Perturbations: Deterministic Variables. Fluctuations: Stochastic Variables

It is of theoretical significance to make the distinction between quantized linear perturba-
tions, which are believed to be the progenitors of galaxies and structures we see today, and
vacuum fluctuations of a quantum field, which engender spontaneous creation of particle pairs,
a subject fundamental in quantum field theory in curved spacetime. Note the former is a
deterministic variable whereas the latter is a stochastic variable. What is customarily called
quantum ‘fluctuations’ of the inflation field: the δϕ above should strictly speaking be called
perturbations, because they are deterministic variable, obeying deterministic equations
of motion It is important to make this distinction especially when people try to replace
quantum field-theoretical variables by classical stochastic variables. The relation between a
quantum variable and a classical stochastic variable is a nontrivial one. A lot depends on
what constitutes the noise, how it is introduced and how it acts on a system. See, e.g., [9].
Some features of the former can be captured by the latter, but not all. For Gaussian systems
it is easier to bridge the two, but still there remain differences. See discussions in, e.g., the
last section of [31].

Fluctuations in (linear) quantum matter fields can be represented by the noise kernels
(vacuum expectation values of the stress energy bitensor). When these fluctuations are
included in addition to the expectation values of the stress-energy tensor (the mean) as
sources driving the Einstein equation, they induce metric fluctuations (‘spacetime foam’).
There, fluctuations are of the main concern, and the Einstein-Langevin equation is the
centerpiece of semiclassical stochastic gravity.

1.2. Model Studies, Key Findings and Organization

Of the four veins of decoherence studies described in more detail in the next section
we shall focus on one of these veins, the evolution of closed quantum systems. Two
representative works are, the 1985 paper by Guth and Pi (GP) [33] which contains great
detail, and the 1996 paper by Polarski and Starobinsky [1] which we mentioned earlier,
together with subsequent joint papers with Kiefer along the same thread [51]. This vein
does not require any environmental field to decohere the inflation perturbations, but focuses
on the late time behavior in the evolution of the inflation field perturbations. Since both sets
of papers use simple quantum mechanical models to illustrate their findings, the inverted
harmonic oscillator (IHO) of GP, and the free particle of Kiefer et al.„ we shall do the same,
so direct comparisons can be made to see the differences.

Before we delve into the details of the model systems studied in Section 4, we first
use the simple harmonic oscillator model to point out relevant subtleties in taking the
semi-classical limit. In particular, we (1) address whether/how the regions, in which the
Wigner function assumes negative values, vary when the small h̄ limit is taken, (2) address
the (in)compatibility between the different protocols of taking the semi-classical limits such
as taking the large n (excitation) limit vs the small h̄ limit. This is especially pertinent to
our subsequent analysis, warning against treating large squeezing as the classical limit,
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and (3) offer a pedagogical derivation to show how classical dynamics in phase space can
indeed emerge, but only upon taking the proper semi-classical limit.

The model systems we investigate in this paper have a common feature that the ellipse
in phase space formed by the dispersion of the canonical variables of the model system
becomes exceedingly squashed in one quadrature but extremely stretched in another.
Prior authors made the observation that for the leading order of the large squeezing
parameter in their states, the ellipse reduces to a one-dimensional path in phase space.
From this, they argue that an apparent classicality emerges from the quantum systems of
these models. They also showed that the accompanying Wigner function is proportional
to a delta function, and used this as a heuristic support for their claims. However, as
we shall show in this paper, their claims are invalid. It is dangerous to keep only the
dominant contributions in treating the semiclassical limit. Doing so will have the following
unfortunate consequences:

1. Such a Wigner function does not correspond to a physical state

(a) it violates the bound of the Wigner function when h̄ 6= 0,
(b) if the system started in a pure state, the final state is no longer pure even though

the evolution is unitary,
(c) the purity of the state is greater than unity,
(d) this implies that the corresponding density matrix has negative eigenvalues,

2. The Robertson-Schrödinger uncertainty relation for a pure state is violated,
3. The commutator of the canonical operator, like x̂, at different times becomes commutative,
4. The equal-time commutation relation of the canonical variables vanishes so the canon-

ical pair commutes.

These behaviors are contradictory to our understanding of how a closed quantum system
undergoes unitary evolution. These fallacies could have been avoided if the sub-dominant
contributions had been included in one’s consideration. Even though these subdominant
terms are likely to be very small compared to the dominant ones, they are just what we need to
keep things right. Coherence, which carries the quantum essence of the closed system, resides
in these sub-dominant contributions. In addition, in the case of cosmological perturbations
treated in Section 5, an irrefutable support that such a system remains quantum comes from
the existence of quantum entanglement between the particle pairs produced in the process of
parametric amplification due to the expansion of the universe.

In Section 2, we give a short review of the study of decoherence and quantum to
classical transition in cosmology, in five stages of development, featuring four main veins
of approach. This is the quantum backdrop necessary for the investigation of decoherence
in inflationary cosmological perturbations. In Section 3, we start with an overview of the
quantum mechanical tools used in the Gaussian dynamics of closed linear systems, and
stress the unique role of the Robertson-Schrödinger uncertainty principle for pure quantum
states. We then turn to the relevant properties of the Wigner function in the context of
the quantum-to-classical transition, and show that the aforementioned pitfalls are quite
generic when the limiting cases are taken without mindful discretion. In Section 4 we
first use the harmonic oscillator model to shed light on the elusive points in taking the
semi-classical limits. Then we use the free particle and the inverted harmonic oscillator
models by previous authors to pinpoint where their seemingly plausible assumptions lead
to adverse pitfalls in drawing conclusions regarding the emergence of classicality in these
closed quantum systems under unitary evolution, and show how judicious measures lead to
correct conclusions. Section 5 is dedicated to the quantum perturbations of the inflation field.
In addition to the features of the quantum mechanical models studied in Sections 3 and 4,
a new feature pertaining to quantum fields arises, namely, quantum entanglement among
particle pairs produced out of the field quanta by the expanding universe. This is an
unmistakable signifier of the quantumness of the inflation field perturbations which cannot
be erased by the simplistic arguments used by prior authors. We summarize the major
findings of this paper in the Conclusion section. In Appendix A we show that the squeeze
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transformation does not modify the bound in the generalized uncertainty relation for the
free, linear quantum scalar field. In Appendix B, we show the proper limits to take in a
harmonic oscillator model to reach the correct semiclassical limit.

2. Decoherence in Cosmology: Highlights of Past Four Decades

Before one delves into a study of the decoherence for quantum inflationary perturba-
tions it is useful to be conversant of the ways how decoherence is addressed in simpler
settings in quantum mechanics and in more complex settings in quantum cosmology. There
are about four decades of work on decoherence (counting from Zurek’s early papers [13,52])
and many approaches with very different emphasis. In this section, we shall outline the
four main veins of decoherence, so inexperienced researchers can appreciate the complexity
of the issues involved and become aware of the variety of methodologies used. It can also
serve as a coordinate system for experienced practitioners to compare notes, to identify
different set-ups, to define the issues they want to address and the approaches they wish to
take. Readers already familiar with this subject can skip over this section and proceed to
Section 3.

Background (5 Stages) and Methodology (4 Veins)

O. 1980s. The theoretical foundations were laid down in the 1980s. (A) Environment-
induced decoherence, in the work of Zurek [13] and Joos and Zeh [14], aided by the 1983
Caldeira-Leggett master equation [53] for quantum Brownian motion for Markovian quan-
tum processes. (B) Consistent histories of Griffiths [2] and Omnes [4].

I. 1985–1988, the first period of work on decoherence in inflationary cosmology, we
mention two relevant papers: (1) Guth and Pi 1985 (GP) [33] used an uncertainty relation
to demarcate between quantum and classical. We refer to this approach as the First Vein:
closed quantum system to this issue, the vein pursued in this paper. (2) Starobinsky’s
1986 stochastic inflation [54] (see also Sakagami [55]) as a representative of the Second
Vein: closed with partition (or with this symbol (> | <) where a noninteracting scalar
field is partitioned into a long wavelength (<, division according to wavevector k: low k
refers to long wavelength modes) segment and a short wavelength segment (>). The latter
is assumed to be a white noise in a Langevin equation which drives inflation. The long
wavelength segment is assumed to be classical. Outstanding issues in this model include:
(a) Does a sharp cutoff indeed generate white noise [56]; (b) with a shifting partition in k
space a proper treatment requires quantum field theory of half space with time-dependent
Hilbert spaces, which is amiss; (c) Decoherence of the long wavelength sector. We shall
continue this discussion along the Fourth Vein in the same spirit but with interacting
quantum fields.

II. 1988–1992. Quantum cosmology, where decoherence is considered for the emergence
of classical spacetimes. Decoherence in quantum cosmology was a major focus in the work
of many authors in the late 1980s and early 1990s, notably, Gell-Mann and Hartle [7,8],
Halliwell [15], Habib and Laflamme [57], Kiefer [58], Singh and Padmanabhan [59–61] , Paz
and Sinha [62,63] and others. Many papers invoke the Born-Oppenheimer approximation,
in light of the discrepancy between the massive gravity sector and the lighter matter field
sector, and introduce a WKB time in the Wheeler-DeWitt equation [64,65], enabling the wave
functions of the universe to enter the semiclassical realm. Strictly speaking, the assumption is
not decoherence. It is more in line with the slow variables of van Hove in statistical mechanics.
The division between fast-slow variables, heavy-light masses, high-low energy sectors and
treating them differently is the beginning step in an open quantum systems approach. Such a
view is applied to the minisuperspace approximation in, e.g., [66–68].

III. 1990–96.
A. The consistent histories vein of the 1980s is continued in the decoherent histories of

Gell-Mann and Hartle [7–9,69]. Of particular interest is how these authors use the existent
conditions of cosmology as a closed system to construct a new interpretation of quantum
physics, and then apply it to understand the quantum mechanics of spacetime [16,17].
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Its value goes beyond the decoherence issues, probing deeper into the relations between
quantum and gravitation.

B. Likewise, the Environment-induced decoherence program has seen significant devel-
opments with the derivation of a non-Markovian master equation for quantum Brownian
motion [70,71] and applications to decoherence of model quantum systems [72]. For example,
Zurek, Habib, and Paz [73] explained why the coherent state has the most ‘classical’ features,
Hu and Zhang [74,75] derived an uncertainty relation at finite temperatures and use it to
understand the quantum-classical demarcation. We shall invoke a generalized (Robertson-
Schrödinger) uncertainty relation in this work. In 1994, Hu and Matacz [76] derived the HPZ
equations for a parametric Brownian oscillator in a parametric oscillator bath—parametric
refers to oscillators with time-dependent frequencies in their normal modes. This is useful for
treating squeezed states in quantum optics and for cosmology. As we shall see, cosmological
perturbations obey equations with a time-dependent effective mass, and cosmological particle
creation can be seen as a manifestation of the quantum field being squeezed [77–80] by the
expansion of the universe. With this connection one can investigate the entropy, decoher-
ence and entanglement issues related to quantum cosmological perturbations. (For a brief
description, see, e.g., [31] and the references therein).

C. For issues in inflationary cosmology, we mention three groups of papers in that
period which exemplify the second vein and introduce two additional veins in the ap-
proaches to cosmological decoherence. As background on cosmological perturbations,
decoherence and entropy issues, read the papers of Brandenberger, Laflamme, Mukhanov,
Prokopec, Gasperini and Giovannini, et al. [81–86], and the recent mini-review [31] where
many references can be found.

Third Vein: two-fields – non-Markovian master equation with colored noise. (1) The first
serious study of cosmological decoherence based on non-Markovian master equations for a
system quantum field and a bath quantum fields is in the 1992 paper by Hu, Paz and Zhang
(HPZ) [87]. These authors consider two independent self-interacting φ4 scalar fields in de
Sitter spacetime: λφφ4 depicting the system, and λψψ4 depicting the bath, and an interaction
between them in the biquadratic form λφψφ2ψ2. (Note that a system interacting with an
environment with an interaction action of the bilinear form φψ such as used in Cornwall
and Bruisma [88] would not decohere5.) These authors used this model to address two basic
issues in the theory of galaxy formation from the fluctuations of quantum fields: (a) the
nature and origin of noise and fluctuations and (b) the conditions which need to be met for
using a classical stochastic equation for their description. Whether the stochastic inflation
proposal [54] can fly depends critically on a satisfactory resolution of these two issues.

On the first issue, HPZ derived the influence functional for a λφ4 field in a zero-
temperature bath in de Sitter universe and obtained the correlators for the colored noises
of vacuum fluctuations. This exemplifies a new mechanism for colored noise generation
which can act as seeding for galaxy formation with non-Gaussian distributions. For the
second issue, HPZ presented a (functional) master equation for the inflation field in de
Sitter universe. By examining the form of the noise kernel they studied the decoherence
of the long-wavelength sector and the conditions for it to behave classically. The more
general case of the system field and bath field interacting with the form λφψ f [φ(x)]ψk was
deal with by Zhang in his thesis work [89], as reported in [90], based on the functional
perturbative methods they used for the study of nonlinear QBM [71].

Fourth Vein: nonlinear fields – (2a) Decoherence of the mean field by quantum fluctua-
tions. Instead of using a rather ad hoc splitting of a quantum field in stochastic inflation [54]
into long and short wavelength segments, with the latter providing the noise which de-
coheres the former, Calzetta Hu in 1995 [25] treated a nonlinear field and examined the
decoherence of the mean field by the interacting field’s own quantum fluctuations, or that
of other fields it interacts with. Note, in spirit, this shares with the first vein for a closed
quantum system. The quantum field by itself is a closed system. The decomposition of an
interacting quantum field into a mean field and the fluctuation field is not enough to turn
the mean field classical (which is commonly assumed in a background field expansion).
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One needs to specify the conditions when, the ways how, and how likely a mean field will
be decohered. Interaction with its quantum fluctuations is one way this may happen.

(2b) Partitioning one interacting field into high and low frequency sectors. Starobinsky
proposed this for a free field in his 1986 stochastic inflation model (See also Matacz [91]).
We mentioned earlier the difficulties this model encounters as it is based on the partitioning
of a free field, how the high frequency segment acts on the low frequency segment is not
clear, and a proper quantum field theory treatment is not easy. Instead, for an interacting
quantum field with (> | <) partition, there are no such conceptual issues. Technically it
may seem more challenging, but there are well-developed methods to handle it, known as
the coarse-grained effective action [92–94], the closed-time-path or in-in [95–98] version of
it is akin to the influence action [53,99,100]. This was carried out neatly by Lombardo and
Mazzitelli [26] and applied to cosmological decoherence by Lombardo and Lopez-Nacir [27].
A natural partition is the horizon scale, in which case one can talk about entanglement
entropy between the sub and super-horizon sectors. See, e.g., [28].

We see that the conceptual and technical foundation for the study of cosmological
decoherence were quite well established from 1982 to 1996. They form the theoretical
frameworks for continued investigations in the following 25 years.

IV. 1996–2008. Selected representative works include:
A. The 1996 paper by Polarski and Starobinsky (PS) [1]. It belongs to the first vein,

similar to Guth and Pi, in that the authors assert that decoherence comes by naturally
without any environment assistance (we shall refer to this as ‘intrinsic’). After Kiefer joined
the collaboration [51,101,102] arguments were made more rigorous and connection with
other work derived from theories with solid foundations was extended, such as for the
entropy of gravitons with quantum open squeezed system [103].

B. Anderson et al. [104]. This paper can be read as the continuation of [105], which
expounded the ideas of [106], a good representative of the First Vein. These authors showed
that with respect to a second order adiabatic vacuum there is no decoherence in the setup
of Polarski and Starobinsky.

C. Martineau and Brandenberger 2005 [107] investigated the gravitational backreac-
tion of long wavelength (super-Hubble) scalar metric fluctuations on the perturbations
themselves, due to the nonlinearity in the Einstein equations, for a large class of inflationary
models. Martineau [108] considered gravitational backreaction and interactions due to
nonlinearities in the matter evolution equation in the φ4 chaotic inflation model. Prokopec
and Rigopoulos [109] used two decoupled massive fields to study the decoherence of
curvature perturbations during inflation.

D. Campo and Parentani 2008 [110] begins with an interacting quantum field, but
quickly truncate the correlation hierarchy at the Gaussian level, thus effectively acting like
a free field. Their result of the entropy of cosmological perturbations in a closed system
agrees with other approaches, such as in [31,103,111]. In the second paper [112], they use
an open-quantum system approach, and obtain results which independent of the choice
of gauge or basis, thus “pointer states appear not to be relevant to the discussion”, which
seems counter to the claims in [101] .

V. 2008–2020. A welcoming trend in the recent decade is a broader recognition that the
concepts and methods of open quantum systems, effective field theory and nonequilibrium
quantum field theory are essential to a more rigorous and thorough treatment which can
provide a deeper and better understanding of cosmological quantum processes related to
entropy, decoherence and entanglement. Representative papers are: Boyanovsky 2015 [113]
employing techniques from nonequilibrium quantum field theory [21,114]. Working with two
field models (Third Vein) he obtained a master equation from which he derived the corrections
to the power spectrum, and drew implications for dark matter. Hollowood and McDonald [30]
followed Boyanovksy’s pathway and studied the evolution of decoherence and the onset
of classical stochastic behavior as modes exit the horizon. Burgess et al., 2015 [115], using
effective field theory explored stochastic inflation via the Lindblad equation for Markovian
processes. Nelson 2016 [29] considered the effect of gravitational nonlinearity from expanding
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the Einstein-Hilbert action to third order in the fluctuations and show that they provide a
minimal mechanism for generating classical stochastic perturbations from inflation. This
is in a similar spirit as [25] of the Fourth Vein. Allowing for changes in the partitioning
of the frequency sectors separating the system from its bath, Shandera et al. [116] derived
the evolution equation for the density matrix of a UV- and IR-limited band of comoving
momentum modes of the canonically normalized scalar degree of freedom in two examples
of nearly de Sitter universes. Finally, Brahma et al. [28] studied the entanglement entropy in
cosmology with the super- and sub-horizon partition. It also contains a comprehensive list of
references for work on these topics up to 2020.

3. Quantum States in a Closed System Do Not Turn Classical

In this section we ask the generic question whether and when a quantum state behaves
classically in a closed system. We first give a short overview about the mathematical tools
useful in the context of Gaussian states, discuss some important and often overlooked
subtleties we will meet in the semi-classical limit.

Let (x, p) be the pair of canonical variables of a closed Gaussian system, where p is
the momentum conjugated to the position x. The system is assumed in a Gaussian state. In
quantum mechanics, this canonical pair will be promoted to operators (x̂, p̂).

3.1. Heisenberg Equation

The Heisenberg picture offers insights into the non-commutativity of operators. The
Heisenberg equations of operators offer a very intuitive way to investigate the quantum
dynamics of linear (interacting) systems. For a Gaussian system, the evolution of its
canonical-variable operators can be written as

x̂(t) = d1(t) x̂(0) +
d2(t)

m
p̂(0) , p̂(t) = mḋ1(t) x̂(0) + ḋ2(t) p̂(0) , (1)

in terms of their initial values, x̂(0) and p̂(0) at the initial time t = 0. The parameter m
denotes mass if the system is a linear (harmonic/inverted) oscillator, or it is set to unity if the
system describes the modes of a linear field. Here d1,2(t) are a special set of homogeneous
solutions to the equation of motion, called the fundamental solutions, satisfying

d1(0) = 1 , ḋ1(0) = 0 , d2(0) = 0 , ḋ2(0) = 1 . (2)

This allows us to readily write down various moments of the Gaussian system

〈x̂(t)〉 = d1(t) 〈x̂(0)〉+
d2(t)

m
〈 p̂(0)〉 , 〈 p̂(t)〉 = mḋ1(t) 〈x̂(0)〉+ ḋ2(t) 〈 p̂(0)〉 , (3)

and then

〈x̂2(t)〉 = d2
1(t) 〈x̂2(0)〉+ 2

m
d1(t)d2(t)

1
2
〈
{

x̂(0), p̂(0)
}
〉+

d2
2(t)
m2 〈 p̂

2(0)〉 , (4)

〈 p̂2(t)〉 = m2ḋ2
1(t) 〈x̂2(0)〉+ 2mḋ1(t)ḋ2(t)

1
2
〈
{

x̂(0), p̂(0)
}
〉+ ḋ2

2(t) 〈 p̂2(0)〉 , (5)

1
2
〈
{

x̂(t), p̂(t)
}
〉 = md1(t)ḋ1(t) 〈x̂2(0)〉+

[
d1(t)ḋ2(t) + ḋ1(t)d2(t)

] 1
2
〈
{

x̂(0), p̂(0)
}
〉

+
1
m

d2(t)ḋ2(t) 〈 p̂2(0)〉 . (6)

The dispersions follow similar structure with, for example, 〈x̂2(0)〉 replaced by 〈∆x̂2(0)〉,
where ∆x̂(t) = x̂(t)− 〈x̂(t)〉. We observer that

[
x̂(t), x̂(t′)

]
=

1
m

[
d1(t)d2(t′)− d1(t′)d2(t)

]
×
[
x̂(0), p̂(0)

]
. (7)
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In general (7) does not vanish. That is, the operator x̂ at different times does not
commute. Similarly we can show the equal-time canonical commutation relation is obeyed
for all times[

x̂(t), p̂(t)
]
=
[
d1(t)ḋ2(t)− ḋ1(t)d2(t)

]
×
[
x̂(0), p̂(0)

]
=
[
x̂(0), p̂(0)

]
= i , (8)

due to the Wronskian conditions of the fundamental solutions.

3.2. Gaussian Pure State

Now we go to the Schrödinger picture, and the dynamical evolution of the linear
system is fully accounted for by the wave function. Consider a general time-dependent
Gaussian pure state

ψ(x, t) = a(t) exp
[
−b(t) x2 + i c(t) x

]
. (9)

The normalization condition enables us to write the wavefunction into the form

ψ(x, t) =
(2 Re b

π

) 1
4 a

|a| exp
[
−b x2 + i c x− (Im c)2

4 Re b

]
. (10)

We see that a(t) only contributes to an overall spatially independent, but time-dependent
phase, so it will not enter the calculations of the covariance matrix elements. We then find

X = 〈x̂〉 = − Im c

2 Re b
, 〈x̂2〉 = 1

4 Re b
+

(Im c)2

4(Re b)2 , b = 〈∆x̂2〉 = 1
4 Re b

, (11)

P = 〈 p̂〉 = Re c+
Im b Im c

Re b
, 〈 p̂2〉 = |b|

2

Re b
+
(

Re c+
Im b Im c

Re b

)2
, a = 〈∆ p̂2〉 = |b|

2

Re b
, (12)

and

1
2
〈
{

x̂, p̂
}
〉 = − Im b(Im c)2

2(Re b)2 − Im b

2 Re b
− Re c Im c

2 Re b
, c =

1
2
〈
{

∆x̂, ∆ p̂
}
〉 = − Im b

2 Re b
. (13)

The expressions of the coefficients a, b and c can be determined by the Schrödinger equation.
Note that the cross correlation between the canonical variables does not vanish unless
Im b = 0.

If we use the pure state (10) to construct the density matrix elements, we have

ρ(x, x′; t) =
(2 Re b

π

) 1
2

exp
[
−b x2 − b∗ x′2 + i c x− i c∗ x′ − (Im c)2

2 Re b

]
. (14)

Note that there is no xx′ term in the exponent. However this condition may not serve as a
criterion that the state is pure. This is basis dependent. For example, if we change to the
(Σ, ∆) bases, Equation (14) becomes

ρ(Σ, ∆; t) (15)

=
(2 Re b

π

) 1
2

exp
[
−2 Re bΣ2 − 1

2
Re b∆2 − i 2 Im bΣ∆− 2 Im cΣ + i Re c∆− (Im c)2

2 Re b

]
.

The coefficient of the Σ∆ term is nonzero, but obviously it still describes a pure state.

3.3. Wigner Function and Density Matrix Elements

The covariance matrix C turns out to be an convenient building blocks of the Gaussian
system, and for a one-dimensional system it is defined as

C =

(
b c
c a

)
= 〈R̂ · R̂T〉 , R =

(
x
p

)
. (16)
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Here R̂ is the operator counterpart of R, and we have assumed that 〈R̂〉 = 0. If not, we
simply replace R̂ in (16) by R̂− 〈R̂〉. The elements of the covariance matrix have specific
meanings. Since they are

b = 〈∆x̂2〉 , a = 〈∆ p̂2〉 , c =
1
2
〈
{

∆x̂, ∆ p̂
}
〉 , (17)

we see that b gives the position dispersion, a the momentum dispersion, and c is the
correlation between the x and p quadratures. In general, they are time-dependent functions
and in general c 6= 0. In terms of these elements, the Robertson-Schrödinger uncertainty
relation is

ab− c2 ≥ h̄2

4
. (18)

Hereafter we will choose the units such that c = h̄ = 1, but will put back h̄ if necessary. The
unitary evolution of the quantum system will not change the value of the lefthand side of (18).

The density matrix elements of a Gaussian state takes the form

〈x|ρ̂(t)|x′〉 = ρ(x, x′; t) =
1√
2πb

exp
[
− 1

2b
Σ2 + i

c
b

Σ∆− ab− c2

2b
∆2
]

, (19)

with the simplification that the mean position and momentum are zero, and

Σ =
x + x′

2
, ∆ = x− x , ⇒ x = Σ +

∆
2

, x′ = Σ− ∆
2

. (20)

The variable ∆ gives a measure regarding the width of the off-diagonal elements perpen-
dicular to the diagonal. In the absence of c, the parameter a−1 gives the width of the
off-diagonal elements. However when c 6= 0, the interpretation becomes less transparent,

ρ(x, x′; t) =
1√
2πb

exp
[
− 1

2b
(
Σ2 − i c ∆

)
− a

2
∆2
]

. (21)

The variable a−1 still gives the width of the spread along the ∆ direction, but the other
orthogonal quadrature veers off the diagonal to Σ− ic ∆, whose physical meaning is not
transparent in this picture but will be better seen in terms of the Wigner function. Often we
are interested in a quantity call purity, defined by 〈x|ρ̂2(t)|x′〉. From (19), we find

〈x|ρ̂2(t)|x′〉 =
∫

dz ρ(x, z; t)ρ(z, x′; t)

= 1√
4πb(ab−c2+1/4)

exp
{
− 4(ab−c2)

4b(ab−c2+1/4) Σ2 + i c
b Σ∆− ab−c2+1/4

4b ∆2
}

.
(22)

Thus, when ab− c2 = 1/4, we have 〈x|ρ̂2(t)|x′〉 = 〈x|ρ̂(t)|x′〉. It indicates that the density
matrix describes a pure state6. The trace of (22) gives

Tr ρ̂2(t) =
1

2
√

ab− c2
. (23)

For a pure state, we find Tr ρ̂2(t) = 1, while for a mixed state, we have ab− c2 > 1/4, so
we find Tr ρ̂2(t) < 1. This mixed state can be the reduced density matrix of a bi-partite pure
entangled state.

The Wigner functionW(x, p; t) of a Gaussian system is given by

W(x, p; t) =
1

2π

∫
d∆ e−ip∆ρ(Σ +

∆
2

, Σ− ∆
2

; t) =
1

2π
√

det C
exp

[
−1

2
RT ·C−1 ·R

]
, (24)
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with

C−1 =
1

det C

(
a −c
−c b

)
. (25)

It can be shown that

〈x̂2〉 =
∫

dx
∫

dp x2W(x, p; t) = b , 〈 p̂2〉 =
∫

dx
∫

dp p2W(x, p; t) = a , (26)

1
2
〈
{

x̂, p̂
}
〉 =

∫
dx
∫

dp xpW(x, p; t) = c . (27)

In particular we note that (27) shows a correspondence between operator in Weyl ordering
and its classical expression. The Wigner function provides an alternative formulation of
quantum mechanics in terms of the phase space variables. In (24), the Wigner function
is positive definite in phase space. Thus it is often chosen as the candidate of a classical
probability distribution, according to this observation. In fact, in general, it is not a positive
definite, and can have negative values over regions, the area of each of which is of order h̄
in a two-dimensional phase space [117–119]. We will provide a few examples at the end of
this section.

When we write (24) explicitly in terms of covariance matrix elements,

W(x, p; t) =
1

2π
√

ab− c2
exp

[
− a

2(ab− c2)
x2 +

c
(ab− c2)

xp− b
2(ab− c2)

p2
]

, (28)

we observe that if c = 0, the exponent describes an ellipse whose semi-axes are x and p
axes, and have lengths proportional to

√
b =

√
〈∆x̂2〉 and

√
a =

√
〈∆ p̂2〉. Thus the c 6= 0

case corresponds to a rotated ellipse.
When we investigate the distortion of quadratures, that is, squeezing or stretching,

due to evolution, it is not easy to see the extent of distortion when c 6= 0 because a and b
do not tell the lengths of semi-axes. It proves convenient to co-rotate with the quadrature
ellipse, that is, using the axes defined by the eigenvectors of the covariance matrix elements.
The eigenvalues of the covariance matrix elements are given by

λ± =
1
2

[(
a + b

)
±
√(

a− b
)2

+ 4c2
]
=

1
2

[(
a + b

)
±
√(

a + b
)2 − 1

]
, (29)

if ab− c2 = 1/4, and the eigenvectors are

v− =
(
1 +z

)
, v+ =

(
−z 1

)
, and z =

(
a− b

)
−
√(

a− b
)2

+ 4c2

2c
. (30)

Note that since the elements of the covariance matrix do not carry the same dimension, it is
customary to append appropriate dimensional parameters to make expressions in (29) and
(30) dimensionally consistent.

The covariance matrix can be diagonalized by the matrix formed from the eigenvectors

M =
1√

1 + z2

(
1 −z
+z 1

)
, or MT =

1√
1 + z2

(
1 +z
−z 1

)
, (31)

such that

D = MT ·C ·M =

(
λ− 0
0 λ+

)
. (32)

It means the covariance matrix formed by a new canonical operator pair, R̂ = MT · R̂,

x̂ =
1√

1 + z2
x̂ +

z√
1 + z2

p̂ , p̂ = − z√
1 + z2

x̂ +
1√

1 + z2
p̂ , (33)
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is automatically diagonal, i.e., c′ = 0. By means of R, the Wigner function (24) becomes

W(x, p; t) =W(x, p; t) =
1

2π
√

a′b′
exp

[
− x2

2b′
− p2

2a′
]

, (34)

with

a′ = 〈∆p̂2〉 , b′ = 〈∆x̂2〉 , c′ = 0 . (35)

The new canonical operator pair R̂ is rotated from R̂ by an angle ϕ

ϕ = tan−1 z . (36)

in phase space such that [x̂, p̂] = [x̂, p̂] = i. Thus b′ and a′ give us information about
the semi-axes of the ellipse, and in turns, the extent of squeezing and stretching of the
quadrature ellipse during the evolution.

Let us take a special case b′ → 0. We can use the formula

δ(x) = lim
ε→0

1√
2πε

e−
x2
2ε , (37)

to write the Wigner function into

W(x, p; t) =
1√

2πa′
exp

[
− (p− P)2

2a′
]

δ(x− X) , (38)

where we have put back the mean values 〈R̂〉 = (X, P)T . In this limit we find

lim
b′→0

λ−
λ+

= 0 , (39)

as shown in Figure 1
If we take the limit according to (37) literally, then (39) describes an ellipse which is

extremely squeezed in one quadrature but extremely stretched in another. In particular
the Wigner function (38) has an extremely sharp peak about x = X(t) and thus is often
interpreted as a (quasi-)probability distribution along the one-dimensional path defined by
the delta function, instead of over two-dimensional phase space. It is often claimed that in this
case the Wigner function gives a classical probability description of a Gaussian state along
a well-defined classical trajectory. Nonetheless, it does not meet our expectation that in the
(semi-)classical limit, the system, averagely speaking, should follow the trajectory described
by the mean position X(t), the expectation value of the canonical coordinate operator X̂. The
classical trajectory in phase space is a straight line parallel to the x axis, different from the line
defined by one of the semi-axes of the rotated ellipse, inferred by (38).

It is also interesting to observe that if we use the Wigner function (34) to construct the
density matrix elements, we find

ρ(Σ′, ∆′; t) =
1√

2πb′
exp

[
− 1

2b′
Σ′2 − a′

2
∆′2
]
=

1√
2πb′

exp
[
− 1

2b′
(
x2 + x′2

)]
. (40)
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Figure 1. The time variation of the ratio of the eigenvalues of the covariance matrix. it shows the
squeezing and stretching of the quadratures. In this case, the position dispersion is highly squeezed
but the momentum is stretched. For a free particle of mass m and initial position dispersion σ,
the ratio is asymptotically given by 4m4σ4

t4 , and for the inverted harmonic oscillator, it behaves like
λ−
λ+

=
16β2 sin4 2θ

[4β2+1+(4β2−1) cos 2θ]2
e−4ωt, where the notations are explained in Section 4.

The limit b′ → 0 implies that a′ → ∞ or a′−1 → 0. We then find that the density matrix
elements in terms of these rotated variables Σ′ = (x+ x′)/2 and ∆′ = x− x′ depict a highly
localized, delta-function-like packet on the Σ′–∆′ plane or x–x′ plane,

lim
b′→0

1√
2πb′

exp
[
− 1

2b′
(
x2 + x′2

)]
= δ(

√
x2 + x′2) , (41)

even though the cross section of the quadrature profile in phase space is still an ellipse with
the same area πa′b′ = π/4, a consequence of invariance of the symplectic eigenvalues of
the covariance matrix. This does not imply that the wavepacket is also localized in the x–x′

plane because in the b′ → 0 limit the dispersion 〈∆p2〉 is essentially infinite. Note that so
far we do not take h̄→ 0, and the limit b′ → 0 is purely dynamical. Thus, obtaining a result
like (41) sounds odd. In fact, it has been shown [120] that the Wigner function is bounded
for a finite value of h̄

− 2
2πh̄

≤W(x, p) ≤ +
2

2πh̄
, (42)

so using (37) too literally introduces the artefacts to the Wigner function (38), and makes it
violate the bounds.

Another observation is made in [121]. The Gaussian Winger function (28) can be
written as

W(x, p; t) =
1

2π
√

ab− c2
exp

[
− b

2(ab− c2)

(
p− c

b
x
)2]

exp
[
− 1

2b
x2
]

. (43)

In the limit b→ ∞, we obtain

lim
b→∞

W(x, p; t) =
1√
2πb

δ(p− c
b

x) exp
[
− 1

2b
x2
]

, (44)

with the help of (37). This also shows the violation of (42), and if we compute the density
matrix elements, denoted by $(x, x′; t), from (44), then we find

$(x, x′; t) = ρ(x, x′; t) exp
[ ab− c2

2b
(

x− x′
)2
]

, (45)
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where ρ(x, x′; t) is given in (19). Three observations [121] are made on (45): a) the density
matrix elements do not satisfy∫

dx′′ $(x, x′′; t)$(x′′, x′; t) = $(x, x′; t) , (46)

for ab− c2 = 1/4. That is, $(x, x′; t) does not describe a pure state, and not only that, b) the
purity diverges ∫

dxdx′ $2(x, x′; t) = ∞ , (47)

in contradiction to the fact that for a generic quantum state ρ̂, its purity satisfies the bound

Tr ρ̂2 ≤ 1 . (48)

The purity of the pure state is equal to 1, while the mixed state has purity less than unity.
Recall that we do not take h̄→ 0 yet. c) It is further argued in [121] that since

Tr $̂ = 1 , Tr $̂2 = ∞ , (49)

some of the eigenvalues of $̂ must be negative. It renders the von Neumann entropy
associated with $̂ ill defined. Thus the state corresponds to the form of the Wigner function
in (44) is unphysical. This example points out the subtleties in treating the limiting form of
the Wigner function.

4. Quantum Mechanical Examples

The Planck constant h̄, a hallmark of quantum physics, does not reside in the classical
descriptions of physical, chemical or the biological processes, so the limit h̄ → 0 in the
formalism offers an unambiguous reduction from the quantum regime to the classical regime.
However, in the operational sense, since h̄ is a constant, taking this limit is not practically
useful. We often turn to other parameters that are tunable and may be qualified for describing
the quantum to classical transition of the system of our interest. One relevant to the discussion
in this paper is the large n limit, where n can be the number of the constituents in the system,
or represents the highly excited state of the system, such as an Rydberg atom [122]. This limit
seems consistent with our mundane experience that a macroscopic system behaves classically.
However here, as an appetizer, we will first use a simple example of quantum harmonic
oscillator to illustrate the inequivalence of two limits.

4.1. Harmonic Oscillator: Semiclassical Limit

Consider the excited states of the harmonic oscillator, whose Hamiltonian is given by

H =
p2

2m
+

mω2

2
x2, (50)

in which m is the mass and ω is the oscillating frequency. The wavefunction of the nth
excited state is

ψn(x) =
1√
2nn!

(
α2

π

) 1
4

e−
α2x2

2 Hn(αx) , α2 =
mω

h̄
. (51)

The probability density Pn(x) of finding the oscillator in this excited state is

Pn(x) = |ψn(x)|2 =
1

2nn!

(
α2

π

) 1
2

e−α2x2
[

Hn(αx)
]

2 , (52)

where Hn is the Hermite polynomial of the nth order. The probability distribution Pn
is always non-negative. In the classically allowed region, the probability function is
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oscillatory and the number of nodes is equal to n, but into the classically forbidden region,
the probability exponentially decays, as shown in Figure 2.
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Figure 2. (a) shows the probability distribution P0(x) and the Wigner function W0(x) of the ground
state of a harmonic oscillator. Both are positive definite. (b) For the excited state n = 20. It is clearly
seen that the Wigner function becomes indefinite in sign. The Wigner function is evaluated at p = 0.

The Wigner function of nth excited state of the harmonic oscillator is given by

Wn(x, p) =
1

2πh̄
1

2nn!

(
α2

π

) 1
2

exp
[
−α2x2 − p2

α2h̄2

]
×
∫

dy exp
[
−α2

4

(
y + i

2p
α2h̄

)2]
Hn(α(x− y

2
))Hn(α(x +

y
2
)) . (53)

Introduce new variables

z =
α

2

(
y + i

2p
α2h̄

)
=

α

2
y + i

p
αh̄

, β = i
p

αh̄
, (54)

and the Wigner function reduces to

Wn(x, p) =
(−1)n

π
3
2 h̄

1
2nn!

e−α2x2+β2
∫

dz e−z2
Hn(z− β− αx)Hn(z− β + αx) . (55)

With the help of the identity [123]∫ ∞

−∞
dx e−x2

Hm(x + y)Hn(x + z) = 2nπ
1
2 m! zn−mLn−m

m (−2yz) , (56)

for m ≤ n, where La
n(z) is the generalized Laguerre polynomial, we obtain∫

dz e−z2
Hn(z− β− αx)Hn(z− β + αx) = 2nπ

1
2 n! Ln(2(α2x2 − β2)) , (57)

and then the Wigner function of nth excited state of the harmonic oscillator becomes

Wn(x, p) =
(−1)n

πh̄
exp

[
−2H

h̄ω

]
Ln(

4H
h̄ω

) , (58)

where

α2x2 − β2 =
2H
h̄ω

, H =
p2

2m
+

mω2

2
x2 . (59)

The ratio H/ω is related to action variable and is an adiabatic invariant in classical
mechanics. In quantum physics, the relation

H = (n + 1/2)h̄ω , (60)

roughly defines the boundary between the classically allowed and forbidden regions for the
nth excited state. That is, the phase-space point (q, p) such thatH > (n + 1/2)h̄ω will fall
in the classically forbidden region. The Wigner function Wn can be negative when n ≥ 1, in
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contrast to the probability density Pn, which in fact is related to the Wigner function by an
integral relation

Pn(x) =
∫

dp Wn(x, p) . (61)

Qualitatively speaking, from Figure 3, the Wigner function of the nth excited state
of the harmonic oscillator will have negative values in the regions that form n among
(2n + 1) concentric annuli centered at the origin of the phase space. Each annulus has
an area roughly order of πh̄, so that the total area of negative-value region is of order
nπh̄. This has a few interesting implications. First in the limit h̄→ 0, the areas where the
Wigner function takes on negative values have measure zero. Hence essentially the Wigner
function becomes non-negative. This seems consistent with the interpretation of identifying
the Wigner function as a probability distribution. On the other hand, as n � 1, the total
area of the regions the Wigner function takes on negative values increases with n, so the
Wigner function still keeps the quantum features, and it can never serve as a probability
distribution. Hence here we see an example that the large n limit does not always lead to a
classical description. In this case, the disparity can be seen from (58) that n and h̄ do not
always appear together as a ratio of the form, say, h̄/n.

Quantitatively in the limit n� 1, the Wigner function is approximately give by

lim
n→∞

Wn(q, p) ' (−1)n

2π
3
2 h̄

(
h̄ω

nH

) 1
4
[

cos 4

√
nH
h̄ω

+ sin 4

√
nH
h̄ω

]
+O(n−

3
4 ) , (62)

for a highly excited state, as long as q, p are not too close to the boundary defined by (60),
which is related to the turning points of the harmonic potential. Again, it shows that the
Winger function remains oscillatory between the positive and negative values within the
classically allowed region, even in the n� 1 limit. In comparison, we check the large H
limit, that is, the large energy limit

lim
H→∞

Wn(q, p) ' 1
πh̄n!

(
4H
h̄ω

)n

e−
2H
h̄ω +O(Hn−1) . (63)

This consistently describes the behavior of the Wigner function in the classically forbidden
region. The probability is exponentially suppressed.

The semi-classical limit h̄→ 0 is rather tricky, and the rigorous treatment of the Wigner
function in the semi-classical limit can be found in [124,125]. Here we merely discuss a few
subtlety in taking the semi-classical limit. Although the total area of the regions where the
Wigner function is negative approaches zero in this limit, the transition is rather extreme.
From the functional form of (58), we observe that when h̄ is shrunk by a factor κ > 1, the
lateral dimension, as seen in Figure 2b, will be squeezed into 1/

√
κ of what it was, but the

oscillation amplitude is blown up by a factor κ. For a fixed n, the number of oscillations
does not change with varying h̄.

Naïvely expanding the Wigner function with respect to small h̄ will yield an expression
like (62), which is already positive. Then taking h̄ → 0 leads to a limiting form that is
proportional to δ(x)δ(p), with the sign of the proportionality constant independent of n.
This is rather perplexing because we know Wn(0) = (−1)n/(πh̄). Either the intermediate
Taylor expansion (62) or the final h̄ → 0 limiting form of the Wigner function do not
correctly describe the aforementioned scaling behavior of the Wigner function. Physically,
we would expect that if the Wigner function were indeed to give a consistent (semi-)classical
description of the quantum harmonic oscillator in phase space when h̄ → 0, it would
sharply peak at the ellipse, defined by (60). Clearly, the aforementioned scaling behavior
does not signal that either. In fact, an implicit feature hints that way. Since the Wigner
function is normalized to unity, it means there will be an excess of positive part of the
Wigner function over its negative part. The surplus resides on the positive ridge, which
is independent of n, roughly along the boundary of the classically allowed/forbidden
regimes, as seen in Figure 3. In addition, it has been raised that the more satisfactory
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way to take the semi-classical limit is to simultaneously require that n → ∞, h̄ → 0 but
En = (n + 1

2 )h̄ω should be fixed. It has been shown [126] that in such a limit the Wigner
function (58) does reduce to

Wn(x, p) =
1

2π
δ(H− En) , (64)

consistent with the classical expectation. To be thorough, we include the derivation of (64)
in Appendix B. Here we have used the harmonic oscillator to illustrate the subtleties in and
the inequivalence between different approaches of taking the classical limit. Next we will
move on to the models that have been used in the context of classicality of cosmological
perturbations. In contrast to the harmonic oscillator, they do not have a confining potential,
so their canonical coordinate or momentum dispersion tends to grow indefinitely.
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Figure 3. Comparison of the probability distribution Pn(x) and the Wigner function Wn(x, p = 0) of a
harmonic oscillator from the ground state up to 5th excited state. A few distinguished features of the
Wigner function can be easily identified, such as Wn(0) =

(−1)n

πh̄ and the number of the regions where
the Wigner function is negative. Both exhibit exponential decay into the classically forbidden regimes.

4.2. Free Particle

The free particle is used in [32] to highlight features of cosmological perturbation in
inflationary spacetime.

Suppose we have a free particle of mass m and it has an initial momentum p(0) = p0
at t = 0, and we further assume that initially its wave function is described by a Gaussian
wavepacket such that

〈x̂(0)〉 = x0 , 〈 p̂(0)〉 = p0 , (65)

〈∆x̂2(0)〉 = σ2
0 , 〈∆ p̂2(0)〉 = 1

4σ2
0

,
1
2
〈
{

∆x̂(0), ∆ p̂(0)
}
〉 = 0 . (66)

The parameter σ0 denotes the initial width of the state. Then in the Heisenberg picture, By
solving the Heisenberg equation

¨̂x(t) = 0 , (67)

the position and the momentum operators evolve with time according to

x̂(t) = d1(t) x̂(0) +
d2(t)

m
p̂(0) , p̂(t) = mḋ1(t) x̂(0) + ḋ2(t) p̂(0) , (68)
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where

d1(t) = 1 , d2(t) = t . (69)

Then from (5), we readily find

X(t) = 〈x̂(t)〉 = x0 +
t
m

p0 , P(t) = 〈 p̂(t)〉 = p0 , (70)

and

b(t) = 〈∆x̂2(t)〉 = σ2
0 +

t2

4m2σ2
0

, a(t) = 〈∆ p̂2(t)〉 = 1
4σ2

0
, (71)

c(t) =
1
2
〈
{

∆x̂(t), ∆ p̂(t)
}
〉 = t

4mσ2
0

. (72)

Together we can explicitly show that the Robertson-Schrödinger uncertainty relation is
invariant with time

S(t) = S(0) , (73)

a necessary requirement of a pure quantum state under unitary evolution, where S(t) =
ab− c2,

a(t) = 〈∆ p̂2(t)〉 , b(t) = 〈∆x̂2(t)〉 , c(t) =
1
2
〈
{

∆x̂(t) , ∆ p̂(t)
}
〉 . (74)

This is of particular importance because it stresses that nothing is lost about the quantum-
ness of the system during the evolution.

The mean position follows the trajectory of the classical free particle and the mean
momentum is a constant. They are all consistent with the classical theory. On the other hand,
The wavepacket spreads out rapidly in space, which is a very quantum mechanical feature.
The position uncertainty grows quadratically indefinitely with time, but the momentum
uncertainty remains constant. They, together with the correlation between x̂ and p̂, ensure
that the uncertainty function S(t) remains independent of time. It is important to have this
correlation involved. Without it, the product 〈∆x̂2(t)〉〈∆ p̂2(t)〉 grows without bounds.

We also observe that the wavepacket becomes increasingly more squeezed in ∆ p̂ with
time because the ratio 〈∆ p̂2(t)〉/〈∆x̂2(t)〉 rapidly diminishes in time even though 〈∆ p̂2(t)〉
remains a constant. Strictly speaking, here we have c 6= 0, so ∆x̂ and ∆ p̂ are not orthogonal
and they are correlated, so to better describe the deformation of the wavepacket we will find
two orthogonal quadratures. They can be determined by the eigenvectors of the covariance
matrix for the canonical variables (x̂, p̂). Following the procedures outlined in (29)–(36)
and using the new set of canonical operator pair (x̂, p̂), we find that c′ = 0 always but in
the large time limit

b′ = 〈∆x̂2〉 =
m2σ2

0
t2 +O( 1

t3 ) , a′ = 〈∆p̂2〉 = t2

4m2σ2
0
+O(t0) , (75)

while in the short-time limit, we have

〈∆x̂2〉 = σ2
0 +O(t2) , 〈∆p̂2〉 = 1

4σ2
0
+O(t2) . (76)

Thus the wavepacket, according to the Wigner function in phase space, is squeezed in
the x̂ quadrature but stretched in the p̂ quadrature. It peaks at (X, P), and in particular

X(t) = 〈x̂(t)〉 = x0 +
p0

m
t. On the other hand, since the ellipse defined by these quadratures

becomes extremely thin in the x̂ direction but strung out in the p̂ direction. The ellipse
seems morphed into a well defined path. However, it does not coincide with the bona fide
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classical path C(t) = (x0 +
p0

m
t, p0) of a free particle in phase space. Alternatively, since

the Wigner function of a free particle can be given by (43), with a, b, and c in (72), at late
times we have b → ∞, and we can apply the limit in (44). Nonetheless, we note that the
path defined by the delta function7

p− P =
c
b
(
x− X

)
, (77)

again in general is not equal to the phase-space path C(t) of the free particle, with an
exception of x = X and p = P. This special case identically satisfies (77). Finally, according
the discussion following (44), we learn that the resulting Wigner function is not physical
because (1) the pure state is not pure any more after we take the b→ ∞ limit, (2) the purity
of the state is greater than unity, and (3) the corresponding von Neumann entropy is ill
defined. Thus the assumed emergence of a well-defined path in phase space at late times
does not lead to a description consistent with the known classical dynamics. What is worse
is that the corresponding Wigner function does not even describe a legitimate physical state
of a quantum-mechanical system.

The ratio of the square root of the position uncertainty and the mean position gives
a measure about the strength of the quantum fluctuations. This is clearly seen from the
definition of the position uncertainty. For the free particle, it is given by

√
〈∆x̂2(t)〉
|〈x̂(t)〉| =

√
σ2

0 + t2

4m2σ2
0

|x0 +
t
m

p0|
. (78)

At large times, the ratio reaches to a nonzero constant

lim
t�1

√
〈∆x̂2(t)〉
|〈x̂(t)〉| =

1
2p0σ0

+O(1
t
) . (79)

so the system still possesses a quantum-fluctuation feature. Since this measure works
also for the non-Gaussian state, it cannot be fully accounted for by assuming the Wigner
function as a classical probability distribution.

Equation (68) offers an intuitive way to examine the non-commutativity of, say x̂, at
different times. In the free-particle case, we have

[
x̂(t), x̂(t′)

]
=

1
m

[
d1(t)d2(t′)− d1(t′)d2(t)

][
x̂(0), p̂(0)

]
= −i

t− t′

m
, (80)

from (7). The righthand side is far from being zero, so x̂ at different times are strongly
non-commuting. From the aforementioned Together with the equal-time commutation
relation [

x̂(t), p̂(t)
]
= i , (81)

for all times, we find that the free-particle system remains quantum mechanical throughout
the unitary evolution, and the assertion that transition to its classical counterpart at late
times cannot be fully justified.

Oftentimes one might resort to the arguments that since d2(t) � d1(t) at late times,
one might write

x̂(t) ' d2(t)
m

p̂(0) , (82)

at late times, such that one would conclude

[
x̂(t), x̂(t′)

]
'
[d2(t)

m
p̂(0),

d2(t′)
m

p̂(0)
]
= 0 , (83)
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and claim that the operators becomes commuting. A more careful analysis based on
(80) plainly shows that the approximation used in (82) is misleading and the subsequent
conclusion is then illusory.

Next we will examine the quantum inverted oscillator used in [33], which in some
sense mimics the runaway behavior of the cosmological perturbations in the de Sitter space.

4.3. Inverted Linear Oscillator

The inverted oscillator’s potential has an opposite sign to the harmonic potential, so
the Heisenberg equation takes the form

¨̂x(t)−ω2 x̂(t) = 0 . (84)

Strictly speaking, its motion is not oscillatory, so the parameter ω > 0 does not bear
the meaning of oscillation frequency. In general, the classical inverted oscillator has
unstable, runaway dynamics, except for the occasion that the initial conditions satisfy
ẋ(0) + ω x(0) = 0. An example is the case when the system initially rests at the top of the
potential. The quantum inverted oscillator is susceptible to its own quantum fluctuations,
so its dynamics are more prone to run away.

The fundamental solutions to (84) are

d1(t) = cosh ωt , d2(t) =
1
ω

sinh ωt . (85)

Suppose the initial conditions are given by

〈x̂(0)〉 = 0 , 〈 p̂(0)〉 = 0 , 〈x̂2(0)〉 = 1
4β

, 〈 p̂2(0)〉 = β ,
1
2
〈
{

x̂(0), p̂(0)
}
〉 = 0 . (86)

Then from (5), we immediately have

b = 〈∆x̂2(t)〉 = cosh 2ωt + cos 2θ

8β cos2 θ
, and as t� ω−1 〈∆x̂2(t)〉 = 1

16β cos2 θ
e2ωt , (87)

a = 〈∆ p̂2(t)〉 = β

2
cosh 2ωt− cos 2θ

sin2 θ
, and as t� ω−1 〈∆ p̂2(t)〉 = β

4 sin2 θ
e2ωt , (88)

and their cross correlation

c =
1
2
〈
{

∆x̂(t), ∆p(t)
}
〉 = sinh 2ωt

4 sin θ cos θ
, and as t� ω−1 1

2
〈
{

∆x̂(t), ∆p(t)
}
〉 = 1

8 sin θ cos θ
e2ωt , (89)

with the mean values given by

〈x̂(t)〉 = 0, 〈 p̂(t)〉 = 0 . (90)

The parameters β, θ are chosen such that [33]

β =
mω

2
tan θ > 0 . (91)

The former is associated with the width of the initial wavefunction, and comparing with
(66), we may identify β = 1/(4σ2

0 ). The mean energy of the system is conserved and is
given by

〈Ĥ(t)〉 = 〈 p̂
2(t)〉
2m

− mω2

2
〈x̂2(t)〉 = −ω

2
cot 2θ , (92)

in which the kinetic energy Ek and the potential energy Ep are
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Ek(t) =
〈 p̂2(t)〉

2m
=

cosh 2ωt− cos θ

8 sin θ cos θ
ω , (93)

Ep(t) = −
mω2

2
〈x̂2(t)〉 = −cosh 2ωt + cos θ

8 sin θ cos θ
ω . (94)

Since the potential is unbounded below, we expect the kinetic energy of the inverted
oscillator will also increase without bound.

Thus although averagely speaking, the mean position of the quantum inverted oscilla-
tor remains at the top of the potential, its position dispersion spreads exponentially fast.
This means that, when we try to measure the coordinate operator x̂, it is more than often
that we will obtain a nonzero value, and with increasing time, the typical measured value
grows indefinitely, rolling down under either side of the inverted potential. Therefore, in
the coordinate representation, the wavefunction is widely spread about the mean trajectory.
The same conclusion applies to the measurement of the canonical momentum operator p̂.
These also hold true even when the initial conditions are such that the system rolls downs
that potential. From (3) and (85), we see that the mean position will increase exponentially,
but the position dispersion

√
〈∆x̂2(t)〉 grows equally fast. Even the system has such a

runaway behavior, its uncertainty function S remains a constant value

S(t) = 〈∆x̂2(t)〉〈∆ p̂2(t)〉 −
[

1
2
〈
{

∆x̂(t), ∆p(t)
}
〉
]2

=
1
4

. (95)

Again we emphasize that this reveals that the quantum nature of the system never loses
and decoherence does not happen, even though the system may seem to show classical
behavior in some partial measures. In contrast, if one uses the approximated forms of the
covariance matrix elements in (87)–(89), one will obtain a zero value for the uncertainty
function, which violates unitarity. It would be misleading if one uses this as the criterion to
claim the emergence of classicality due to a loss of quantum coherence. This example also
tells us that one should be mindful of the contributions of the subdominant contributions
in the covariant matrix elements.

The Wigner function takes the standard form for the Gaussian state we used,

W(x, p; t) =
1
π

exp
[
−2ax2 + 4c xp− 2bp2

]
, (96)

with ab− c2 = 1/4. However, in contrast to the free-particle case; here, the momentum
uncertainty also increases indefinitely with time. Thus, it is interesting to examine the
behavior of the Wigner function to see whether it will define a highly squeezed ellipse at
late times. Discussions in the previous sections indicate that the ratio of the two orthogonal
quadratures can provide the information about the extent of squeezing of the ellipse during
the course of evolution. From (29), we find the ratio given by

lim
t→∞

λ−
λ+

=
16β2 sin4 2θ

[4β2 + 1 + (4β2 − 1) cos 2θ]2
e−4ωt + · · · , (97)

at late times. It falls to zero extremely fast, so we end up with a highly stretched and highly
squeezed ellipse. As a reminder, even the ratio takes on such an extreme value, the product
λ+λ− remains 1/4, a rephrasing of the Robertson-Schrödinger uncertainty relation for the
orthogonal quadratures. Since from (44), if we take the limit b→ ∞ too literally, the Wigner
function contains a delta function that defined a path in phase space8,

p− c
b

x = 0 . (98)
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Putting the values of b and c for the inverted oscillator in (87) and (89), we obtain

p = mω
sinh 2ωt

cosh 2ωt + cos θ
x ' mω x , as t� ω−1 . (99)

This, in the current case when 〈x̂〉 = 0, 〈 p̂〉 = 0, clearly does not match the classical
counterpart even in the limit t → ∞. One may find this example too atypical, so let us
consider the initial conditions of the inverted oscillator such that its classical counterpart
does roll down that potential. The mean position and momentum are given by

X(t) = cosh ωt X(0) +
1

mω
sinh ωt P(0) , P(t) = mω sinh ωt X(0) + cosh ωt P(0) .

(100)

Equation (99) becomes

p =
c
b

x +
[

P(t)− c
b

X(t)
]

. (101)

This does not resemble the classical path (X(t), P(t)) in phase space. Following our dis-
cussions in the free-particle case in treating a highly squeezed ellipse, one should not fall
into the trap of misinterpreting this as the emergence of classicality of the quantum system.
Here we would like to stress again that no matter how one deforms the quadrature ellipse
in phase space by squeezing and stretching, it is always a two-dimensional geometric object,
having an invariant area πh̄/4, a dictum of the quantum uncertainty principle and unitary
evolution of a closed system. Nonetheless, when one jumps to reducing the ellipse to a line
in phase space, the areas go to zero, and unitarity is violated.

Here it is also interesting to note that suppose we have two “density matrix elements”,
and they differ by

$(x, x′; t) = ρ(x, x′; t) exp
[
γ
(
x− x′

)2
]

, (102)

for some real number γ and have the property $(x, x; t) = ρ(x, x; t). Then these two
density matrix elements will give the same probability distribution and satisfy the same
normalization condition, but they may not all be physical. They may not be guaranteed to
be semi-positive definite.

Finally we examine the commutator of the position operator at different times

[
x̂(t), x̂(t′)

]
=

1
m
[
d1(t)d2(t′)− d1(t′)d2(t)

] [
x̂(0), p̂(0)

]
= − i

mω
sinh ω(t− t′) . (103)

The commutator is far from being zero, so they do not commute. For the motion of the
inverted oscillator having the mean position and momentum, given by (100), the effects of
quantum fluctuation effect are not negligible, because the ratio

lim
t→∞

√
〈∆x̂2(t)〉
〈x̂(t)〉 =

mω

p0

√
1

4β
+

β

m2ω2 . (104)

approaches a constant of order unity, as t→ ∞. Therefore as in the free particle case, we
conclude that the quantum inverted oscillator remains quantal throughout its evolution.

To summarize the salient features in our model studies discussed in this section we
refer the reader back to Section 1.2, for an itemized list of pivotal findings.

In the next section we shall discuss the evolution of a quantum field in an inflationary
universe. After a long duration of inflation the quantum state has undergone a high degree
of squeezing. This is the reason why some authors felt justified enough to adopt the
leading-order approximation, and, without providing any convincing explanation, ignored
the sub-leading terms. With the help of the simpler quantum mechanical models studied
in this and the previous section, we have pin-pointed where the pitfalls are with regard
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to the classicalization issue where the fallacy of the prior claims resides. In the same vein,
for the case of inflation studied in the next section we shall show that viewed as a closed
system, quantum cosmological perturbations do not decohere. In addition, the existence of
quantum entanglement lends support to our thesis that closed quantum systems do not
turn classical just because they are badly squeezed.

5. Inflation Field

Cosmological perturbations in an inflationary universe, in an appropriate gauge,
follows the linear perturbations of the inflation field [31], so we will just follow the unitary
evolution of the perturbations of the inflation field.

The perturbation of the inflation field can be described by a minimally coupled scalar
field φ in spatially flat de Sitter space, whose line element in the conformal time frame is
given by

ds2 = a2(η)
(
−dη2 + dx2

i
)

, (105)

Here, a(η) is the scale factor that depends only on the conformal time η. Thus the La-
grangian takes the form

L = −1
2

∫
d3x a2

[
−
(
∂ηφ

)2
+
(
∂iφ
)2
]
=

a2(η)

2 ∑
k

[
φ′k(η)φ

′∗
k (η)− k2φk(η)φ

∗
k(η)

]
, (106)

where we decompose the field into its modes, and the temporal dependence is included in
φk(η)

φ(x, η) = ∑
k

φk(η) e+ik·x . (107)

It is convenient to make a change of variable χk(η) = a(η) φk(η), and write the
Lagrangian as9

L =
1
2 ∑

k

{
χ′kχ′∗k −

[
k2 − a′′

a

]
χkχ∗k −

d
dη

[ a′

a
χkχ∗k

]}
. (108)

The last term is a total time derivative, so its contribution can be discarded. Thus the
canonical momentum conjugated to χk is given by

pk =
∂L

∂χ′k
= χ′∗k , (109)

and then the equation of motion is

χ′′k +
[
k2 − a′′

a

]
χk = 0 . (110)

Each mode essentially behaves like a linear parametric oscillators, so its evolution remains
Gaussian if the initial state of such a system is a Gaussian. If the initial state is a pure state
like the vacuum state, then it will evolve to a two-mode squeezed (vacuum) state [31].
Creation of particle pairs will accompany such a parametric evolution.

If a(η) = −(Hη)−1 with −∞ < η < 0−, then the mode function uk(η) is given by

uk(η) =
1√
2k

(
1− i

kη

)
e−ikη , (111)

normalized by the Wronksian condition uku
′∗
k − u′ku∗k = i. After we promote the canonical

variables to operators, they can be expanded by the mode function uk(η),

χ̂k(η) = â+k uk(η) + â†
−k u∗k (η) , p̂k(η) = â−k u′k(η) + â†

+k u′∗k (η) , (112)
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and χ̂−k = χ̂†
+k. In the limit η → −∞, the mode function corresponds to the positive-

frequency mode

lim
η→−∞

uk(η) =
1√
2k

e−ikη , lim
η→−∞

u′k(η) = −i

√
k
2

e−ikη . (113)

However, we may consider a more general case that the inflation starts at η = η0 < 0. We

then require that uk(η0) =
1√
2k

and u′k(η0) = −i

√
k
2

. Thus the positive-frequency mode

function takes a rather complicated form

uk(η) =
1√
2k

e−ik(η−η0)
{

i
(1 + ikη)[1 + (1− i)kη0][1− (1 + i)kη0]

2k3ηη2
0

− i
1− ikη

2k3ηη2
0

e+i2k(η−η0)
}

, (114)

and the fundamental solutions are given by

d(1)k (η) =
k[η0 − η(1− k2η2

0)] cos k(η − η0) + (1 + k2ηη0) sin k(η − η0)

k3ηη0
, (115)

d(2)k (η) =
−k(η − η0) cos k(η − η0) + (1 + k2ηη0) sin k(η − η0)

k3ηη0
, (116)

with

d(1)k (η0) = 1 , d′(1)k (η0) = 0 , d(2)k (η0) = 0 , d′(2)k (η0) = 1 , (117)

Then the general evolution of χ̂k(η) can be constructed in the same way as outlined in
Section 3 by

χ̂k(η) = d(1)k (η) χ̂k(η0) + d(2)k (η) χ̂′k(η0) = d(1)k (η) χ̂+k(η0) + d(2)k (η) p̂−k(η0) , (118)

χ̂′k(η) = d′(1)k (η) χ̂k(η0) + d′(2)k (η) χ̂′k(η0) , (119)

such that
p̂k(η) = χ̂′†k (η) = d(1)k

′(η) χ̂−k(η0) + d(2)k
′(η) p̂+k(η0) . (120)

At the initial time the mode operator can be expressed in terms of the creation and
annihilation operators (â†

±k, â±k) of the ±k modes,

χ̂k(η0) =
1√
2k

(
â†
−k + â+k

)
, χ̂′k(η0) = i

√
k
2
(
â†
−k − â+k

)
. (121)

Then we can express χ̂k at any time in terms of the creation and annihilation operators at
the initial times,

χ̂k(η) =
1√
2k

[
d(1)k (η)− ik d(2)k (η)

]
â+k +

1√
2k

[
d(1)k (η) + ik d(2)k (η)

]
â†
−k . (122)

Compared with (112) we arrive at a convenient relation

uk(η) =
1√
2k

[
d(1)k (η)− ik d(2)k (η)

]
, (123)

between the mode function uk(η) and the fundamental solutions d(1,2)
k (η) to the differential

Equation (110).
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5.1. Canonical Variables Remain Noncommutating

From (118), we may compute the commutators of χ̂k at different times10[
χ̂k(η), χ̂k(η

′)
]
= 0 , (124)

but

[
χ̂k(η), χ̂†

k(η
′)
]
= i

k(η − η′) cos k(η − η′) + (1 + k2ηη′) sin k(η − η′)

k3ηη′
, (125)

independent of η0, so the same expression even if η0 → −∞. The commutator Equa-
tion (125) for the superhorizon mode kη � 1, kη′ � 1 in general does not vanish. It is
approximately given by [

χ̂k(η), χ̂†
k(η
′)
]
= −i

η3 − η′3

3ηη′
, (126)

and will approach zero only if additional limits η → 0− and η′ → 0− are imposed. Thus in
general these two operators do not commute.

Notice that if one opts to keep only the growing part contribution of d(i)k (η) for the
superhorizon modes, then [χ̂k(η), χ̂†

k(η
′)] = 0 without additional requirement η and

η′ → 0−. This is where some prior authors wrongly conclude that these two operators
commute for superhorizon modes at any time.

Different from the previous examples, given a fixed k, we can always find, in the
inflation field case, a sufficiently small η and η′ to make the commutator [χ̂k(η), χ̂†

k(η
′)] as

close to zero as possible. This is not a typical scenario. On the other hand, the equal-time
commutation relation between the canonical variables is always nonzero, given by[

χ̂k(η), p̂k(η)
]
=
[
d(1)k (η)d(2)k

′(η)− d(1)k
′(η)d(2)k (η)

] [
χ̂k(η0), p̂k(η0)

]
= i . (127)

A spurious argument is also often used for the equal-time commutation relation in
this context: For a finite η0, if one keeps only the dominant contributions of d(i)k (η) for the
superhorizon modes

d(1)k (η) ' 1
kη

[cos kη0

kη0
+ sin kη0 −

sin kη0

k2η2
0

]
, d(2)k (η) ' 1

kη

[cos kη0

k
− sin kη0

k2η0

]
, (128)

then one will obtain
d(1)k (η)d(2)k

′(η)− d(1)k
′(η)d(2)k (η) = 0 , (129)

because both d(i)k (η) have the same form of η dependence. Thus one again incorrectly
concludes that [

χ̂k(η), p̂k(η)
]
' 0 , (130)

and wrongly proclaim that the quantum-to-classical transition has implicitly occurred.
Equation (130) is clearly in contradiction with (127). In addition, all the issues concerning
the Wigner function11 discussed in Section 4 apply here. The extreme squeezing of the
state, caused by the exponential expansion of the background spacetime, offers a strong
temptation for authors of this persuasion to dispense with the subleading terms, and to
draw physical conclusions based only on the dominant contributions. Thus, the salient
lesson we have learned so far is that the subdominant contributions may not be wantonly
discarded and must be treated carefully. Then we will correctly find that the non-commutativity
between the canonical operators are intact and robust.
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5.2. Particle Creation: Numbers and Coherence

The inflation field perturbation has a distinguished quantum feature that is absent
in the examples in Section 4. The particles in the ±k modes are created in pair over the
parametric evolution driven by the expanding spacetime. These particles are not created
incoherently. In fact they are entangled. Even though particles are copiously produced and
entangled, the state of the perturbation remains pure without entropy production [31,111].

Let us look into this aspect in more detail. In the Heisenberg picture, the time evolution
of the linear field operator can be expressed as a mapping of the operators in terms of the
squeezed transformation

âk 7→ S†
2(ζk) âk S2(ζk) = cosh ηk â+k − e+iθk sinh ηk â†

−k , (131)

with the two-mode squeeze operator

S2(ζk) = exp
[
ζ∗k â+k â−k − ζk â†

+k â†
−k

]
, (132)

and the rotation transformation

âk 7→ R†(ψk) âk R(ψk) = âk e−iψk , (133)

with the rotation operator

R(ψk) = exp
[
−i ψk

(
â†

k âk +
1
2

)]
. (134)

The squeeze parameter ζk = ηk eiθk and the rotation angle ψk are time-dependent functions,
reflecting the time evolution of the operator âk in this case. At a later time, the operator âk
at the initial time is formally mapped to

b̂+k = R†(ψk)S†
2(ζk) âk S2(ζk)R(ψk) = αk â+k + β∗k â†

−k , (135)

with

αk = e−iψk cosh ηk , β∗k = −e−iψk e+iθk sinh ηk . (136)

The Bogoliubov coefficients αk, βk obey the Wronskian condition

|αk|2 − |βk|2 = 1 . (137)

Two useful combinations of the Bogoliubov coefficients are

|βk|2 = sinh2 η−k = sinh2 ηk , (138)

αkβ∗k = −ei(ψ−k−ψ+k)eiθ+k cosh η+k sinh η−k = −eiθk cosh ηk sinh ηk , (139)

where we have assumed [31,127] that the squeeze parameters ηk, θk and the rotation
angle ψk depend only on the magnitude of k. Equation (138) gives the number density
of the pair-created particles, while (139) is a measure of coherence between the created
particle [128].

The Bogoliubov coefficients can be related to the fundamental solutions by [31,127]

αk =
1
2k

[
k d(1)k (η) + i d′(1)k (η)− i k2 d(2)k (η) + k d′(2)k (η)

]
, (140)

βk =
1
2k

[
k d(1)k (η)− i d′(1)k (η)− i k2 d(2)k (η)− k d′(2)k (η)

]
. (141)

Thus we readily find that for the mode function (114), we have
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|βk(η)|2 =
1

8k8η4η4
0

{
1 + 2k4(η4 + η4

0
)
−
[
1− 2k2(η − η0)

2 + 4k4η2η2
0
]

cos 2k(η − η0)

− 2k
(
η − η0

)(
1 + 2k2ηη0

)
sin 2k(η − η0)

}
> 0 . (142)

It is oscillatory with frequency 2k when |2kη| > 1, but the amplitude is proportional to
roughly k−4. On the other hand, if |2kη| < 1 it gradually stops oscillating and transits
to a monotonic increase as η → 0− like k−4η−4. That is, the number density of created
particles of each mode oscillates with time when its physical wavelength is smaller than
the horizon width, but when the physical wavelength becomes greater than the horizon, it
grows monotonically.

Similar behavior is observed for the coherence between the created particles Ck = αkβ∗k.
However, two points are worth emphasizing. First, this quantity is not positive definite
like the particle number density. Moreover, its phase will come to a constant π, as shown
in Figure 4.

- 20 - 15 - 10 - 5

- 1

1

2

3

Figure 4. The time variation of the phase θk in coherence Ck = |Ck| eiθk for mode k. The blue solid
curve has the initial time is η0 = −20 and k = 1, the orange dashed curve η0 = −40 and k = 1, and
the green dotted curve η0 = −20 and k = 5.

This can be seen from the expansion of Ck about η = 0−

eiθk ' −1− i 2kη + 2k2η2 + · · · . (143)

In Figure 4, it is interesting to note that for η sufficiently close to η0, the blue solid curve and
the green dotted curve follow the same envelope. However, when |kη| � 1, the blue curve
more or less overlap with the red dashed curve, independent of the initial time, as has ben
shown in (143). We also observe that the initial phase is π/2, seemingly contradictory to
the fact that αk(η0) = 1 and βk(η0) = 0. It may be resolved by their Taylor expansions
around η = η0

αk(η) = 1 + i
1− k2η2

0
kη2

0

(
η − η0

)
+ · · · , (144)

βk(η) = −i
1

kη2
0

(
η − η0

)
+ · · · . (145)

Thus, the value of the phase angle in fact comes from the first-order contribution of βk(η).
The covariance matrix elements are given by
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bk =
1
2
〈
{

χ̂k(η), χ̂†
k(η)

}
〉 = uk(η)u

∗
k (η)

=
1

4k7η2η4
0

{(
1 + k2η2)(1 + 2k4η4

0
)
−
(
1− k2η2 + 4k2ηη0 − 2k2η2

0 + 2k4η2η2
0
)

cos 2k(η − η0)

− 2k
(
η − η0 + k2η2η0 − 2k2ηη2

0
)

sin 2k(η − η0)
}

, (146)

ak =
1
2
〈
{

p̂k(η), p̂†
k(η)

}
〉 = u′k(η)u

′∗
k (η)

=
1

4k7η4η4
0

{(
1− k2η2 + k4η4)(1 + 2k4η4

0
)

−
(
1− 3k2η2 + k4η4 + 4k2ηη0 − 4k4η3η0 − 2k2η2

0 + 6k4η2η2
0 − 2k6η4η2

0
)

cos 2k(η − η0)

− 2k
(
η − η0 − k2η3 + 3k2η2η0 − k4η4η0 − 2k2ηη2

0 + 2k4η3η2
0
)

sin 2k(η − η0)
}

, (147)

ck =
1
2
〈
{

χ̂k(η), p̂k(η)
}
〉 = 1

2
[
uk(η)u

∗
k (η)

]′
=

1
4k7η3η4

0

{
−
(
1 + 2k4η4

0
)
+
(
1− 2k2η2 + 4k2ηη0 − 2k4η3η0 − 2k2η2

0 + 4k4η2η2
0
)

cos 2k(η − η0)

+ k
(
2η − 2η0 − k2η3 + 4k2η2η0 − 4k2ηη2

0 + 2k4η3η2
0
)

sin 2k(η − η0)
}

. (148)

As shown in Figure 5, on the subhorizon scales, they oscillates with time, but once the
physical wavelength of the mode crosses the Hubble horizon, they increase monotonically
and indefinitely.
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0.4
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0.6
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- 0.11

- 0.015
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0.17

Figure 5. The time variation of the covariance matrix elements for mode k. The blue solid curve
denotes bk = 1

2 〈
{

χ̂k(η), χ̂†
k(η)

}
〉, the orange dashed curve ak = 1

2 〈
{

p̂k(η), p̂†
k(η)

}
〉, and the green

dotted curve ck = 1
2 〈
{

χ̂k(η), p̂k(η)
}
〉. We choose the parameter η0 = 10 and k = 1. Hence, their

behaviors are qualitatively different, when |kη| < 1, where the corresponding mode has a physical
wavelength greater than the Hubble horizon.
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Roughly, there is a trend that ck will lie between bk and ak in the super-horizon regime
although it is not accurately portrayed in Figure 5 because different vertical scales are used.
In addition, the element ck(η) seems always positive for the superhorizon modes

ck(η) ' −
1

2k3η3 + · · · , (149)

for kη � 1, and the dominant contribution is independent of η0. That is, for |kη0| � 1, we
always have ck(η) > 0 when kη � 1. For comparison, in the superhorizon regime, we have

bk(η) '
1

2k3η2 + · · · , ak(η) '
1

2k3η4 + · · · . (150)

The trend is then clearly seen. We emphasize again that similar to the inverted oscillator, if
we use the exact, full expressions of the covariance matrix elements, we always have

ak(η)bk(η)− c2
k(η) =

1
4

, (151)

a signature of the unitary evolution of the pure Gaussian state. If one uses the approximated
expressions (149) and (150) for the superhorizon modes, one would find

ak(η)bk(η)− c2
k(η) = 0 . (152)

If one uses this condition to argue for the classicalization of inflationary cosmological per-
turbations, one would miserably be doomed because it violates the Robertson-Schrödinger
uncertainty relation

ak(η)bk(η)− c2
k(η) ≥

1
4

. (153)

5.3. Entanglement: An Indelible Signifier of Quantumness

If each mode of the inflation field perturbation starts in a vacuum state, then the
evolution will lead it to a two-mode squeezed vacuum, which remains a pure state. To
examine whether there exists quantum entanglement between states of modes ±k, an
easily computable entanglement measure for such a bi-partite pure Gaussian state is their
reduced von Neumann entropy [111,129,130]. This is the von Neumann entropy of the
reduced density matrix, which is obtained after we coarse-grain one party of the bi-partite
pure Gaussian state associated with modes ±k. As is shown in [31,111], the entanglement
measure takes the form

Sk =
(

Nk + 1
)

ln
(

Nk + 1
)
− Nk ln Nk , (154)

with the created particle number density being Nk = |βk|2. Following earlier discussions
on |βk|, we learn that it would change monotonically once the ±k mode crosses the
horizon, meaning that the physical wavelength of the ±k mode is greater than the horizon.
Therefore the pair-created particles are unambiguously entangled even for the superhorizon
modes. This is a very strong evidence that the inflation field perturbation remains quantum-
mechanical. Together with the arguments presented earlier, we can say that the inflation
field perturbation never drops its quantum nature, and decoherence does not occur during
the unitary evolution of the perturbation. Similar consideration has been carried out
by [131], who investigate the quantum discord in the bi-partite state among the modes ±k.
They showed that for a pure state, the quantum discord takes the same form as the reduced
von Neumann entropy, discussed above. We concur with their conclusion that ‘. . . the CMB
is placed in a state which is “very quantum”. This means that it is certainly impossible to reproduce
all the correlation functions in a classical picture . . . ’.

Finally, in this context we mention the take-home message of our recent companion
paper [31], that the entropy of the bipartite state for modes ±k is zero throughout the
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unitary evolution because it continues to be a pure state and the created particles are
entangled. If somehow we lose track of one partner of the pair in mode +k or −k, we
will end up having nonzero entropy given by (154). Thus implies that entropy production
in cosmological particle creation does not result from particle creation per se, but is a
consequence of the loss of complete information of the field.

6. Conclusions

In this paper we adopt the Heisenberg picture to re-derive some earlier results pertain-
ing to the classicalization issue of closed linear quantum systems where the free particle [32]
and the inverted oscillator [33] models have been used as analogues to the quantum cosmo-
logical perturbations in inflationary universe. The advantage of the Heisenberg equations
in treating the analog models systems lies in its physical transparency and proximity to
the classical equations of motion, so one can directly identify the dynamical features of the
systems in question.

The classical or semi-classical limit of a closed quantum system is subtler than what
one might think. The cut- and-dry rule of thumb of simply taking h̄→ 0 alone may not be
the proper way to reach a classical limit even though it is well-known that classical physics
does not contain h̄. Neither is the large n limit alone, as prescribed by the correspondence
principle: A highly excited system is often expected to show classical behavior because the
energy difference of the neighboring states are small compared with the mean energy of the
system. It is often stated that the quantum, discrete nature becomes increasingly obscure
and a classical description becomes viable. We use a harmonic oscillator as an example to
show that taking the large n (excitation number) limit does not produce equivalent results
as compared to a vanishing h̄. To refresh these basic points we have included a pedagogical
derivation in Appendix B to show the conditions how the Wigner function in a phase-space
formulation of the quantum harmonic oscillator can, in the suitable semi-classical limit,
describe the corresponding paths in phase space of a classical harmonic oscillator—namely,
n→ ∞ and h̄→ 0 while keeping the total energy fixed .

A closed system should remain quantum mechanical throughout its unitary evolution.
For the un-confined linear quantum systems such as the free particle, inverted oscillator
and cosmological perturbations in the inflationary universe, they have a common feature,
that is, the dispersions of the canonical variables tend to grow unbounded over the unitary
evolution, so that at late times the quadrature ellipse becomes extremely squeezed in one
direction and stretched in another direction. It is then often claimed or implicitly argued
that in this limit the ellipse can reduce to a well-defined path in phase space, and the
Wigner function will be proportional to a delta function that defines the path and the
proportionality factor gives the classical probability of the system along the emergent
phase-space path. Since in this argument h̄ remains finite, the resulting Wigner function
clearly violates the requirement that a proper Wigner function is bounded both from above
and below. Further, the density matrix elements converted from this delta-function like
Wigner function is unphysical: (1) It does not correspond to a pure state if the closed
system starts in pure state; (2) It does not describe a mixed state either because the purity
of the state is greater than unity, (3) the density matrix has negative eigenvalues, violating
unitarity, leading to negative probability and ill-defined von Neumann entropy; and 4) the
Robertson-Schrödinger uncertainty relation is not respected.

Furthermore, regarding the evolution of the quantum operator, for unbounded motion,
an approximation is often used where only the leading order contribution is kept. One
would then show that the (canonical) operator at different times commute and even the
equal-time commutation relation vanishes, and, voila, classicality emerges. This is another
gaffe in the folklore. As a matter of fact, if one considers the full contribution, even
just keeping the subleading contribution, one can unambiguously demonstrate that the
aforementioned operator does not commute, and the commutation relation is preserved.

Therefore, it is an oversimplification to regard the large squeezing limit as a classical
limit because the quantum features of this closed system remain intact, and discount-
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ing or dismantling them leads to ill-defined mathematical properties and unphysical
consequences. This is perspicuously seen if we perform an unsqueezing via an unitary
transformation. The quantum coherence of the system can be restored. Finally, in cos-
mological perturbations, there is a more compelling argument for the preservation of
quantumness. The particle pairs created during the inflationary universe are entangled.
Entanglement is a uniquely quantum feature, and its existence is especially important if
one wishes to trace back the quantum origin of cosmological perturbations using quantum
information-theoretical tools.
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Appendix A. Preservation of the Uncertainty Function under Squeeze Transformation

Here we show that the squeeze transformation does not modify the bound in the
generalized uncertainty relation for the free, linear quantum scalar field. Since the free
quantum scalar field in flat space can be viewed as a collection of quantum harmonic
oscillators, we will use a harmonic oscillator to illustrate this point. Suppose that the
oscillator is in an arbitrary normalized state |ψ〉. The generalized uncertainty relation can
be expressed as

〈χ̂2〉〈 p̂2〉 − 1
4
〈
{

χ̂, p̂
}
〉2 = C2 − AB , (A1)

where the displacement and the conjugated momentum of the oscillator are respectively

χ̂ =
1√

2mω

(
â† + â

)
, p̂ = i

mω√
2

(
â† − â

)
, (A2)

such that

〈χ̂2〉 = 1
2mω

(
A + B + 2C

)
, 〈 p̂2〉 = −mω

2
(

A + B− 2C
)

,
1
2
〈
{

χ̂, p̂
}
〉 = i

2
(

B− A
)

,

with A = 〈ψ|â2|ψ〉 , B = 〈ψ|â†2|ψ〉 , and C = 〈ψ|â† â|ψ〉+ 1/2.
If we apply the squeeze operator Ŝ on the state |ψ〉, then its associated actions on â

can be given by

ŜâŜ† = µ â + ν â† , (A3)

with µ2 − |ν|2 = 1 . We then have

Ŝχ̂Ŝ† =
1√

2mω

[(
µ + ν

)
â† +

(
µ + ν∗

)
â
]
, Ŝ p̂Ŝ† = i

√
mω

2
[(

µ− ν
)

â† −
(
µ− ν∗

)
â
]

,

such that

〈Ŝχ̂2Ŝ†〉〈Ŝ p̂2Ŝ†〉 − 1
4
〈Ŝ
{

χ̂, p̂
}

Ŝ†〉2 =
(
C2 − AB

)(
µ2 − |ν|2

)2 = C2 − AB

= 〈χ̂2〉〈 p̂2〉 − 1
4
〈
{

χ̂, p̂
}
〉2 . (A4)

It then shows that in general the squeezing does not modify the generalized uncertainty
relation; it only distorts the quadratures in the relation.
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Appendix B. Semiclassical Limit of the Harmonic Oscillator

It is well-known that the motion of a classical harmonic oscillator traces out an ellipse
in the phase space of its canonical variables (x, p). Thus it is quite naturally to ask whether
the Wigner function for a quantum harmonic oscillator in the phase space formulation of
quantum mechanics can, in a suitable semi-classical limit, reveal the same feature. That is,
can one show that in the semi-classical limit, the Wigner function reduces to

Wn(x, p) =
1

2π
δ(H− En) , (A5)

which is consistent with classical expectation. The following discussion is largely based on
the work [126], with notations adapted to this paper. Suppose the oscillator has an energy
En = (n + 1/2)ω, which is held fixed when the semi-classical limit h̄→ 0 is reached. Thus
the excitation number n will grow accordingly.

It turns out more convenient to use the double Fourier transform, the characteristic
function, of the Wigner function

C(χ, κ) =
∫

dqdp e
i
h̄ (κq+pχ) W(q, p) . (A6)

In particular, the characteristic function C(χ, κ) of a pure state can be written as

C(χ, κ) =
∫

dqdp e
i
h̄ (κq+pχ) 1

2πh̄

∫
e−

i
h̄ pyψ(q +

y
2
)ψ∗(q− y

2
)

=
∫

dq e
i
h̄ κq ψ(q +

χ

2
)ψ∗(q− χ

2
) . (A7)

For the nth excited state ψn(q) of the harmonic oscillator,

ψn(q) =
1√
2nn!

(
α2

π

) 1
4

e−
α2
2 q2

Hn(αq) , α2 =
mω

h̄
, (A8)

we have

Cn(χ, κ) = α
∫

dq e
i
h̄ κq 1√

π2nn!
e−α2(q2+ χ2

4 )Hn[α(q−
χ

2
)]Hn[α(q +

χ

2
)] . (A9)

Here Hn(z) is the Hermite polynomial of order n. To evaluate this, we first form the
generating function of Cn(χ, κ) by

∑
n=0

Cn(χ, κ) tn = α
∫

dq e
i
h̄ κq tn
√

π2nn!
e−α2(q2+ χ2

4 )Hn[α(q−
χ

2
)]Hn[α(q +

χ

2
)]

=
1

1− t
exp

[
−1 + t

1− t
κ2 + α4h̄2χ2

4α2h̄2

]
. (A10)

with the help of

∞

∑
n=0

sn

2nn!
e−

y2
2 Hn(y) e−

z2
2 Hn(z) =

1√
1− s2

exp
[
− 1 + s2

2(1− s2)
y2 +

2s
1− s2 yz− 1 + s2

2(1− s2)
z2
]

,

for |r| < 1. We then write (A10) into

∑
n=0

Cn(χ, κ) tn =
1

1− t
exp

[
−κ2 + α4h̄2χ2

4α2h̄2

]
exp

[
− 2t

1− t
κ2 + α4h̄2χ2

4α2h̄2

]
, (A11)
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with

κ2 + α4h̄2χ2

2α2h̄2 =
K

2h̄ω
, and K =

κ2

2m
+

mω2

2
χ2 , (A12)

and compare it with the generating function of the Laguerre polynomials

∑
n=0

Ln(z)tn =
1

1− t
exp

[
− t

1− t
z
]

. (A13)

We find
Cn(χ, κ) = e−

K
2h̄ω Ln(

K
h̄ω

) . (A14)

Now we explore an asymptotic expression of the generalized Laguerre polynomial
L(α)

n (z) for sufficiently large n,

L(α)
n (z) ' Γ(n + α + 1)

n!

(
4
νz

) α
2
[

ϕ(t)
ϕ′(t)

] 1
2 ez/2
√

2t
Jα[νϕ(t)] + · · · , (A15)

valid for z . ν, with

ν = 4n + 2α + 2 , t =
z
ν

, ϕ(t) =
1
2

√
t− t2 +

1
2

sin−1
√

t , (A16)

and the Bessel function of first kind Jα(z). When α = 0, we have

Ln(z) '
[

ϕ(t)
ϕ′(t)

] 1
2 ez/2
√

2t
J0[νϕ(t)] + · · · , (A17)

and ν = 4n + 2. In the limit t� 1, we find

ψ(t) '
√

t− t
3
2

6
+ · · · ,

[
ϕ(t)
ϕ′(t)

] 1
2

'
√

2t +
t

3
2

3
√

2
+ · · · , (A18)

and thus

e−z/2Ln(z) ' J0(
√

νz) , (A19)

which is valid for z . n, or with z = K/(h̄ω) . n

∫
dqdp e

i
h̄ (κq+pχ) Wn(q, p) = Cn(χ, κ) ' J0(2

√
(n + 1)

K
h̄ω

) . (A20)

Going in parallel, we check the double Fourier transformation of the delta function δ(H−
En) ∫

dqdp e
i
h̄ (κq+pχ) δ(H− En) =

∫
dqdp e

i
h̄ (κq+pχ) δ(

p2

2m
+

mω2

2
q2 − En) . (A21)

It is convenient to make the change of variables

Q =

√
mω2

2
q , P =

1√
2m

p , and x =

√
2m
h̄

χ , k =
1
h̄

√
2

mω2 κ , (A22)
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such that (A21) becomes∫
dqdp e

i
h̄ (κq+pχ) δ(H− En) =

2
ω

∫
dQdP ei(Px+kQ) δ(Q2 + P2 − En)

=
2
ω

∫ 2π

0
dΘ
∫ ∞

0
dR R eiλR cos Θ δ(R2 − En)

=
1
ω

∫ 2π

0
eiλ
√

En cos Θ

=
2π

ω
J0(λ
√

En) , (A23)

where

λ =
√

k2 + x2 =
2
√

K
h̄ω

, R =
√

Q2 + P2 . (A24)

Thus we have ∫
dqdp e

i
h̄ (κq+pχ) δ(H− En) =

2π

ω
J0(

2
√

K En

h̄ω
) . (A25)

Following our previous arguments, we would like to fix En = (n + 1
2 )h̄ω while taking

the limit h̄→ 0, so (A25) becomes

∫
dqdp e

i
h̄ (κq+pχ) δ(H− En) =

2π

ω
J0(2

√
(n + 1)

K
h̄ω

) . (A26)

Comparing (A26) with (A20), we obtain that in the combined limits n� 1, h̄→ 0 with a
fixed En = (n + 1/2)h̄ω

Wn(q, p) =
ω

2π
δ(

p2

2m
+

mω2

2
q2 − En) . (A27)

Therefore we find that when both limits are taken together, the Wigner function reduces to
a form that is consistent with the classical dynamics of the harmonics oscillator. We next
examine the normalization condition∫

dqdp Wn(q, p) =
ω

2π

∫
dqdp δ(H− En) =

ω

2π

∫
dQdP δ(Q2 + P2 − En)

=
1
π

∫ 2π

0
dΘ
∫ ∞

0
dR R δ(R2 − En)

= 1 ,

(A28)

and check that it is satisfied.

Notes
1 Here, the center of attention is the quantum perturbations of the inflation field, that is, δϕ̂(x, t) (see next subsection);

the mean field φ̄(t) is governed by a potential V(φ̄) which engineers the inflationary dynamics, such as ‘slow-roll’, etc.
2 There is plenty of truth in the idiom,“truth is always simple, but simplicity is not always the truth”.
3 The background field is often assumed to be classical, but this needs to be proven rather than assumed to be

automatically valid. The φ̄(x, t) regarded as a mean field keeps its quantum nature. (The difference between a mean
field and a classical field is explained in, e.g., [38].) One can show how readily the mean field is decohered by its
quantum fluctuations, such as treated in [25].

4 Note gravitational waves are weak metric perturbations. Gravitons are quantized short wavelength linear perturba-
tions off of a smooth spacetime manifold, in the nature of collective excitations. Gravitons are governed by general
relativity, a low energy theory for the macroscopic structure of spacetime, a far cry from quantum gravity, defined as
theories for the microscopic structures of spacetime functional at the Planck scale [42]

5 Despite the similarity in form with the bilinear xqn type of coupling between a quantum Brownian oscillator
interacting with a bath of many modes, when two fields are bilinearly coupling, only one mode of the system field
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interacts with one mode of the bath field, the physics is totally different. It is like two equal subsystems interacting.
One would not see dissipation or decoherence; the energy and phase information only pass from one to another back
and forth. A large number of modes in the bath is needed to see dissipation and decoherence in the system.

6 For a pure state |ψ〉, the density matrix operator is ρ̂ψ = |ψ〉〈ψ|. We thus have ρ̂2
ψ = ρ̂ψ. In addition, any pure

Gaussian state can be reached from the vacuum state by a suitable unitary transformation. Since the vacuum has
minimal uncertainty, that is, ab− c2 = 1/4 and since the unitary transformation preserve the Robertson-Schrödinger
uncertainty principle, the resulting pure Gaussian state then has ab− c2 = 1/4.

7 Although in [32], the authors did not explicitly write the Wigner function into a form proportional to a delta function
for the free particle case, their Equation (63) and Figure 1 served the same end. Besides, the Wigner function of the
cosmological perturbations in their Equation (29) takes the delta-function form. They obtained their Equations (15)
and (16) by keeping only the dominant contributions. According to the analysis in our Section 3 these results in [32]
are thus problematic.

8 In [33], only the dominant contribution is kept, so the derived Wigner function of a quantum inverted oscillator
in their Equation (2.13) contains a delta function. It does not describe a physical state, according to [121] and the
reasoning in our Section 3.

9 Or instead of k representation, we may use the x representation,

L =
1
2

∫
d3x

{
χ′2(x, η)−

[
∂iχ(x, η)

]2
+

a′′

a2 χ2(x, η)− d
dη

[ a′(η)
a(η)

χ(x, η)
]2}

,

and
p(x, η) = χ′(x, η) .

10 In the context of a parametrically driven quantum system, (125) is used for the discussion about the non-commutativity
of an operator at different times, not (124), which is usually used in the non-parametrically driven cases, such as the
free particle and the inverted oscillator.

11 For example, in [1], the Wigner funciton of the cosmological perturbations in its Equation (46) is written into a delta
function form, and when only the leading term of what is resulting in its Equation (51) is kept, the conclusion of
‘decoherence without decoherence’ is conveniently yet haphazardly drawn.
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