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Abstract: Topological fluctuations change their nature in the different phases of strong interactions,
and the interrelation of topology, chiral symmetry and confinement at high temperature has been
investigated in many lattice studies. This review is devoted to the much less explored subject of
topology in dense matter. After a short overview of the status at zero density, which will serve
as a baseline for the discussion, we will present lattice results for baryon rich matter, which, due
to technical difficulties, has been mostly studied in two-color QCD, and for matter with isospin
and chiral imbalances. In some cases, a coherent pattern emerges, and in particular the topological
susceptibility seems suppressed at high temperature for baryon and isospin rich matter. However, at
low temperatures the topological aspects of dense matter remain not completely clear and call for
further studies.
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1. Introduction

In broad outline, the general framework of this review is Quantum Chromodynamics
(QCD) and its several phases and critical phenomena depending on temperature, baryonic,
isospin and chiral densities. At high temperatures the matter is in a plasma phase—the
Quark-Gluon Plasma. At lower temperatures and increasing baryonic density, one encoun-
ters nuclear matter first, then a transition to a dense deconfined phase of quarks and gluons.
This phase of matter is realised in the interior of neutron stars, extremely compact stellar
objects produced in the supernova explosions. In this extreme environment several exotic
phases can be realised. The recent observation of gravitational wave signals originating
from the merging of two neutron stars has triggered further interest in the theoretical
investigation in this direction, see e.g., Ref. [1].

Current and planned experiments have the capability of exploring the phase diagram
of strong interactions. Ab-initio lattice studies [2,3] have produced results at non-zero
baryon density, at rather large temperature in QCD, at non-zero isospin and chiral densities,
and in entire phase diagram for two-color QCD, which is protected by the sign problem by
the Pauli-Gürsey symmetry. The focus of most studies is on chiral and confining properties,
and only a limited subset has addressed topology.

The interplay of chiral symmetry, confinement and topology may well depend on the
details of the microscopic dynamics, which in turn is affected by matter density. In vacuum,
chiral symmetry breaking occurs via a space-homogeneous condensate. At high temper-
ature this is known to dissolve, while for low temperatures and high-density different
pairing phenomena result in a rich, and still not entirely explored phase diagram [4–6].
In particular, Ref. [6] suggests a distinct different behaviour of the topological susceptibility
at high temperatures and zero density, and high densities and low temperatures. A simpli-
fied view of the phase diagram from Ref. [5] can be seen in Figure 1. Non-homogeneous
phases [7,8], predicted and only recently observed [9] in simple models at finite density,
may well have different confining and topological properties.

A non-zero density—be it due to baryon, isospin or chiral imbalances—is then an
important probe for the interplay of chiral symmetry, confinement and topology, and may
shed some light on its general aspects.
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Figure 1. A schematic view of the phase diagram of QCD in the baryon, isospin chemical potential,
and temperatures, from Ref. [5]. For two-color QCD the diagram would look similar, but the zero-
temperature baryon and isospin critical chemical potential are the same, and the two dense phases
are characterised by diquark and pion condensation.

2. Topology and Strong Interactions

The dynamics of gauge field is a fascinating aspect of strong interactions. Asymptotic
freedom, and the self-interacting nature of the gluons, are reflected by the structure of the
gauge sector of the theory. A configuration of gauge fields may have a topological content,
measured by the topological charge density q(x) :

q(x) ≡ g2

32π2 Fa
µν F̃µν

a (1)

Indeed (see e.g., Ref. [10]) Q ≡
∫

q(x)d4x equals the Chern–Pontryagin index or
winding number of gauge fields. It can only assume integer values, thus identifying the
topological class to which the gauge configuration belongs.

The QCD Lagrangian may be coupled to the topological charge density

L = LQCD + θ
g2

32π2 Fa
µν F̃µν

a , (2)

Experiments on the electric dipole moment of the neutron dn place limits on the value
of θ parameter. The limits follow from the relation between dn and θ. QCD sum rules
give dn = 2.4× 10−16θ e cm [11] and chiral perturbation theory gives dn = 3.3× 10−16θ e
cm [12]. The most recent experimental measure [13] of the neutron electric dipole moment
is dn = (0.0± 1.1 (stat) ± 0.2 (sys)) ×10−26 e cm, which may be interpreted as an upper
limit |dn| < 1.8× 10−26 e cm at a 90% C.L. Combining the experimental limit with the
relations mentioned above, one arrives at the bound θ < 0.5× 10−10. This anomalously
small value of θ leads to the hypothesis of an axion field which would force θ to vanish
dynamically [14,15]. tealIn parallel, and not further discussed in this review, the possibility
of a very small, but non-zero nEDM remains open. Such result would indicate physics
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beyond the standard model [16] and it is a subject of an active theoretical investigation, see
e.g., Ref. [17].

2.1. Topology, from Low to High Temperatures

The close and challenging interplay of topology, chiral and axial symmetry and gauge
field dynamics—which we will briefly review below—has motivated investigations at
high temperature, well before considering high density. In short summary, the topological
susceptibility drops at the high temperature chiral phase transition, although it is still
under debate whether a partial axial restoration coincides or not with chiral restoration,
see e.g., Ref. [18] for a recent review, including a full set of references.

The behaviour of topology has been extensively studied at high temperature on
the lattice [18–22]: it decreases in the plasma and at very high temperatures follows the
predictions of the dilute instanton gas, DIGA (which we will briefly introduce in the
next subsection), in which only configurations with zero, or unit, topological charges are
possible. The results are briefly summarised in Figure 2, from Ref. [18].
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Figure 2. The fourth root of topological susceptibility versus the temperature in full QCD. (a) shows
the gluonic results from Ref. [21]. (b) shows the tabulated results from Ref. [23]. (c) Ref. [24]; these
results are rescaled from a higher pion mass (d) and (d1) show the results from Ref. [22] obtained
by rescaling from the two lightest masses mπ = 220, 260 MeV. (e) the results from Ref. [20], where a
careful continuum extrapolation with a conservative error estimate was performed. From Ref. [18].

2.2. Symmetries of QCD, and Topology

At a classical level, and in the massless limit, LQCD has a global U(N)×U(N) ≡
SU(N)× SU(N)×U(1)B ×U(1)A symmetry, where N is the number of light flavours.
The most natural scenario compatible with the pions and K mesons spectrum is the sponta-
neous breaking of the SU(3)×SU(3) symmetry of LQCD in the three-flavour massless limit,
while the other flavours are massive and do not participate in the chiral dynamics. In this
scenario, Chiral Perturbation Theory predicts the masses of the mesons and baryons made
by the physical up, down and strange quarks. The condensate formed in this breaking
would also break the U(1)A symmetry: hence, the η′ should follow the same fate as the
other mesons, while it is distinctly heavier.
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The way out is breaking explicitly the U(1)A symmetry [25]: since the topological
charge appears in the divergence of the U(1)A current Jµ

5

∂µ Jµ
5 = 2N f Q + 2

N f

∑
i=1

miψ̄iγ5ψi (3)

the breaking of the axial symmetry may be achieved by a non-trivial topology which leads
to the non-conservation of the current. In this way the large mass of the η′ affords a direct
evidence of the non-trivial topology of the vacuum, responsible for the explicit U(1)A
breaking [26–28]. The η′ carries thus interesting information on the anomalous component
and on topology: as anticipated in Ref. [29] the η′ should be on the same footing as the
other mesons in the plasma, once the anomalous component disappears. Indeed, this was
verified on the lattice in [30], see Figure 3.

Figure 3. The mass of the η′ as a function of the temperature in QCD: the η′ mass approaches
the mass of a (unphysical) s̄s meson at the transition, signaling the suppression of the anomalous
component due to topological fluctuations. From Ref. [30].

Additionally, the spectrum results concurs in indicating that the topological suscepti-
bility is greatly reduced in the plasma.

One interesting case, much studied numerically, is two-color QCD, which enjoys an
enlarged chiral symmetry [31]: quarks and antiquarks belong to equivalent representation
of the color group. As a consequence of that, the ordinary chiral symmetry of QCD
SU(N)× SU(N) is enlarged to SU(2N). Thanks to this symmetry the theory does not
have a sign problem at non-zero baryon density: intuitively, baryon and isospin density
are the same for the two-color world.

A further symmetry is the isospin symmetry: a global transformation, an SU(2)
rotation in flavour space (QCD interactions are flavour-blind). It acts on up and down
quarks and LQCD is invariant for identical or vanishing masses. In reality this symmetry
is explicitly broken by the (small) mass difference between up and down quarks. Isospin
breaking has consequences also on topology, since chiral perturbation theory [32] predicts,
at leading order (LO),

χLO =
z

1 + z2 m2
π f 2

π (4)
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with z = mu/md. We would not pursue these aspects—we will always consider mu = md.
We will instead consider the effect on topology of an isospin density [33], artificially
induced by an appropriate chemical potential- more precisely, by its third component, I3.
The motivation for this is to understand the regime of finite density of a conserved charge
(the isospin), aiming at the observation of the transition from hadronic to quark degrees of
freedom at zero/low temperatures.

In nuclear matter and in astrophysics isospin imbalance is very important, how-
ever in real world the baryonic density is much larger than the isospin one, µI � µB.
In Ref. [33] as well as in lattice studies [34–40], the authors consider an idealization with
µI 6= 0, µB = 0. Such a system is unstable under weak interactions which do not conserve
isospin. Nonetheless, in this purely QCD world this system can still give us relevant
information, also considering that it is free from the sign problem [31], and we will discuss
lattice results below.

This brief discussion on symmetries leads us to consider three different chemical
potentials: two of which associates with conserved charges, µB and µI , the third associated
with a the non-conserved axial current, µ5 ≡ (µR − − − µL)/2, which couples to the
current ψ̄iγ5ψi see Equation (3).

2.3. Conserved Charges µB and µI

Let us consider again the phase diagram in the µB, µI , T space, from Ref. [5], see
Figure 1: at high temperature-chiral symmetry is restored. In the limit of zero temperatures
isospin and baryochemical potential induce the transition to a dense phase, characterised
by different pairing phenomena, see e.g., Refs. [4,5]. A standard scenario predicts the
transition when the chemical potential equals the mass of the lowest state carrying the
corresponding charge: µc

B ' mN , and µc
I ' mπ , with mN and mπ being the nucleon

and pion mass, respectively. The two dense phases are characterised by different pairing
phenomena in real QCD, and are probably separated by a low temperature phase transition
at in the µB, µI plane, studied in chiral perturbation theory [41].

In two-color QCD, due to the already mentioned fact that the baryons of the theory
are diquarks, the phase diagram in Figure 1 would look the same in the two directions,
with the same thresholds along baryon and isospin chemical potential. The two condensed
phases, which are significantly different in QCD, are now the same and have both (colorless)
condensates: diquark and pion condensates in the µB and µI directions.

2.4. Instantons and Zero Modes

One possible way to discuss the different properties of the phases of strong interac-
tions at zero and non-zero density vis-a-vis topology is to consider the behaviour of instan-
tons [42]. Instantons are classical solutions to the Euclidean equations of motion: localized
regions of space-time (typical sizes are 1/3 fm) , with very strong gluonic fields, and charac-
terised by a topological quantum number. It turns out that there are important differences in
the instanton behaviour at zero and non-zero densities and temperatures [6,43,44]. At low
temperatures one expects a random instanton ensemble, accounting for chiral breaking.
At high temperatures one expects instanton-anti-instanton pairs, eventually behaving at
high temperatures like a dilute gas, described by the Dilute Instanton Gas Approximation,
DIGA, in which only configurations with zero, or unit, topological charges are possible,
while at finite density one may expect instanton chains [43]. The reason for this [43] is that
either at finite temperature and finite density the quark propagation in time direction is
favored over space-like propagation, the latter being suppressed by e−πTr and eiµr, respec-
tively. In general, the fermion determinant generates strong correlations among instantons.
Because of this, the random instanton ensemble, responsible for chiral breaking, dissolves
into clusters oriented in the time direction: the already mentioned instanton-anti-instanton
pairs at high temperature (eventually turning into the dilute instanton gas) and instanton
chains at high density.
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The details may be found in Ref. [44], where the authors discuss the role of instantons
in the three major phases of strong interactions: the hadronic phase, the color supercon-
ductor phase, and the quark-gluon plasma phase. In brief, the reasoning starts from
Equation (3) which shows a remarkable connection between gauge fields and fermions.
This is made more transparent by the Atiyah–Singer index theorem [45,46]:

1
32π2 εµνρσ

∫
Tr[Fµν(x)Fρσ(x)] d4x = n+ − n− . (5)

We see that the topological charge ’counts’ the number of zero modes of the massless Dirac
operator with positive and negative chirality n±. The Atiyah–Singer theorem works also
at finite density, however, the nature of the zero modes are now different, since there are
extra states appearing at the Fermi surface. In QCD this interaction leads to the formation
of diquark (colored) Cooper pairs, to BCS instability and to color superconductivity—these
are the phases depicted in Figure 1. In two-color QCD, diquark pairs are stable as they
are color neutral and a diquark condensate is formed. The different phases of strong
interactions can then be characterised by instanton dynamics, and an important point is
that pair dynamics should always predominate as temperature increases, at any chemical
potential. One would then expect some significant changes in topology at fixed chemical
potential when increasing temperature, as well as changes when fixing the temperature
and increasing the chemical potentials.

2.5. Detecting Topology—The Chiral Magnetic Effect and µ5

From a phenomenological point of view, the Atiyah–Singer theorem opens the way
to the possibility of a direct observation of topology in experiments, see e.g., Refs. [47–49].
In fact, the gluons do not carry conserved charges which could be directly measured.
But we can still ’see’ topological fluctuations in the quark sector. These observations are
at the root of the discovery of the so-called Chiral Magnetic Effect (CME) [49]: electric
charge separation in the presence of an external magnetic field that is induced by the
chirality imbalance. This striking effect could be observed in heavy ion collisions and in
condensed matter experiments and its prediction has spawned a significant experimental
activity. Many reviews are available, see e.g., [48] and we will not discuss further the CME
here, as our focus is equilibrium studies of topology and their signatures in the phase
diagram. However, it is important to underscore that it is indeed the CME that has called
the attention of the lattice community on the chiral chemical potential, and has motivated
the numerical analysis at equilibrium which we will discuss later. teal It is important to
notice that the chiral chemical potential µ5 couples to the chiral charge density operator
ψ†γ5ψ which is not conserved because of the chiral anomaly. So it is not on the same
footing as the baryon chemical potential or the isospin chemical potential. µ5 cannot be
generated in thermodynamic equilibrium, topological fluctuations will wash it out: µ5 is
just an external coupling able to generate a chiral imbalance [50–54], and it may require
renormalization in the ultraviolet [50].

3. Lattice Results—Topology and Dense Matter

In the previous Section we have argued that one may expect some significant dif-
ferences in topology in the different phases, and have shown a summary of results at
zero density. Here we will review the current lattice results for topology in dense matter,
with different temperatures.

A very brief technical note before proceeding: let us remind ourselves that the different
densities we have discussed are realised by adding the appropriate zeroth component of
the current to the Lagrangian, while on Euclidean lattices the temperature is the reciprocal
of the time extent of the lattice, T = 1/Nta, a being the lattice spacing and Nt the number of
sites in the temporal direction. The results on topology are so far limited to the topological
susceptibility, the fluctuations of the topological charge. Details on the rich and highly
technical subject of lattice topology may be found in Ref. [55].
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3.1. Baryon Density

These studies were mostly carried out for two-color QCD, since this is free from the
sign problem. As discussed above, the dynamics may be significantly different from that of
QCD, especially concerning the nature of the pairing at high density. However, the hope
is that the main features of instanton dynamics which are at the heart of this discussion
remain valid—although of course this is subject to verification.

Studies of two-color matter have been performed by several groups [34,56–64]. teal In
cold matter, these studies have confirmed that baryonic matter forms at an onset µo = mπ/2,
whereupon diquarks start populating the vacuum. If the dynamics favor pairing, they
could condense: diquark condensation at low temperatures, above µo is consistently
observed in lattice studies. However, the dependence of the diquark condensate on the
chemical potential is still unsettled, leading to different hypotheses on the nature of the
phase about µo: some studies find consistence with chiral perturbation theory indicating
a BEC phase [64], followed from a transition to free behaviour, interpreted as a crossover
to BCS. Others find compatibility with a free quark behaviour [65] immediately above µo,
at largish masses, and non-conclusive results for lower masses [65]. According to the same
study, early signals for deconfinement for chemical potentials µ ' 1.1mπ [61] should be
interpreted with care. In brief, the issue of the nature of the dense phase above µo is subtle,
and under investigation. The very existence of an onset at µo and low temperatures is
instead uncontroversial, and we will concern ourselves with the behaviour of topology
past this onset, in comparison with the observations at high temperatures.

One first study of topology was carried out in two-color QCD with eight flavours of
staggered fermions [58]—this choice may be surprising as the theory in the continuum
limit is known to be within the conformal window of QCD, see e.g., Refs. [66–68]. However,
the coupling was strong enough to break chiral symmetry at zero temperature. In this
condition one may study the phase diagram—similarly, for instance, to what one would
do in lattice strong coupling electrodynamics. One important caveat, of course, is that
topology is poorly defined at strong coupling: the very nature of the topology require
the continuum limit [55]—on a discrete system the barriers among different topological
sectors are finite, as the system may be easily deformed. On the lattice, this produces
the so-called dislocations, which artificially increase topological fluctuations. To mitigate,
at least partially, this effect in Ref. [58] the analysis is restricted to finite temperature, which
is realised with finer lattices. In addition to that, the lattice configurations were subjected
to smoothing—a local coarse graining—designed to suppress artifacts. The results of [58]
indicate that gluon dynamics, chiral symmetry and topology are interrelated in the region
of temperatures 0.3 < T/Tc < 0.4. The behaviour is exemplified in Figure 4: to appreciate
the correlation among different observables the diagrams show the derivatives with respect
to the chemical potential of the Polyakov loop, the chiral condensate and the topological
susceptibility. The coincidence of the peaks, signaling the onset of the superfluid phase, is
quite clear.

Obviously, these earlier investigations called for more studies, including lower tem-
peratures. Of particular interest would be the study of topology in the superfluid phase,
characterised by a diquark condensate, as discussed at the beginning of this Section.

A study dedicated to topology in the cold phase, i.e., accessing the superfluid region
of two-color QCD, found interesting differences between two and four flavours [61],
see Figure 5. The topological susceptibility was measured on two different gauge field
ensembles. The first used a 123 × 24 lattice and N = 2 flavours of Wilson fermions.
The second ensemble used the same system size, and N = 4. The two ensembles have
similar pion masses in lattice units, mπa = 0.68, and may be considered fairly ‘cold’: the
onset for the superfluid phase should then be µoa ' 0.34. A summary of the results is
offered by Figure 5: interestingly, apparently the topology in the two-flavour theory is
insensitive to the chemical potential, while the results in the four-flavour model may even
suggest an increase of the topological susceptibility. The authors issue a caveat though: also,
in this case one may fear important discretization effects. Barring these, the observation is
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that other thermodynamic studies revealed that the two-flavour model is weakly coupled
above the onset [60], while in contrast, the four-flavour model appears to be strongly
coupled [62]. So, there is the possibility that the raise of the topological susceptibility in
the four-flavour model above the onset does indeed reflect the strongly coupled nature of
the theory.

Figure 4. The correlation among topology, confinement and chiral symmetry as seen from the µB

derivatives of the topological susceptibility, the Polyakov loop and the chiral condensate in two-color
QCD, on a hot lattice. From Ref. [58].

Figure 5. Topological susceptibility versus chemical potential in two-color QCD for two and four
flavours, from Ref. [61], in a cold lattice; the expected µo in lattice units is µoa ' 0.34.
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A recent paper [64] analysed the temperature dependence of the results at high
chemical potential using the same setup at low and high temperature, but for the number
of time slices, which controls the temperature itself. At a temperature of about 0.45Tc,
where Tc is the chiral transition temperature at zero chemical potential, the topological
susceptibility is found to be almost constant for all the values of chemical potential, from the
hadronic to superfluid phase. In contrast, for a temperature of about 0.89Tc the topological
susceptibility becomes small as the hadronic phase changes into the quark-gluon plasma
phase. The results, shown in Figure 6, indicate a significant temperature effect, which
changes the behaviour of the topological susceptibility from constant with µB (in the cold
phase) to decreasing with µ in the hot phase, the latter observation in agreement with
Ref. [57].

Figure 6. Polyakov loop and topological susceptibility in two-color QCD, in a cold (left) and in hot lattice, from Ref. [64].
We would like to highlight here the lack of sensitivity of the topological susceptibility on the threshold for the Polyakov loop
at µo at T = 0.45Tc (left), to be contrasted with the (anti) correlated behaviour of the same observables in the Quark-Gluon
Plasma (right). Please note that the identification of the diquark dense phase with a BEC phase followed by a BCS one is
still under debate [65].

The results of [34] are obtained on a 324 lattice, which is described as a cold one.
In simulations for N = 2 a clear correlation between chiral condensate and topological
susceptibility emerged Figure 7. Accepting that these are simulations on cold lattices,
there is an apparent contradiction with the scenario of [62,64], see Figure 6, left, as well
Figure 5, left. However, the physical temperature is, according to the estimates of the paper
T = 140 MeV [34], so it could well be that one is effectively observing a transition to a
Quark-Gluon Plasma, albeit in a finite volume. Indeed the diquark condensate remains
smaller than the condensate, indicating a different behaviour from the cold transition. This
may offer a solution to this apparent puzzle. A clearer conclusion may be reached by per-
forming simulations for chemical potentials in the dense phase, and varying temperatures:
one may observe a transition from a phase with large topological susceptibility to a phase
with suppressed susceptibility. Lacking those simulations, for the time being the results
remain to some extent puzzling.



Universe 2021, 7, 336 10 of 15

Figure 7. Chiral condensate and topological susceptibility as a function of baryochemical potential in two-color QCD, from
Ref. [34].

3.2. Isospin Density

The phase diagram at finite density of isospin, introduced in Section 2 and shown in
Figure 8, has been studied on the lattice by various authors [36,38,69,70]. An interesting
feature is that the critical line T = T(µI) has a very small slope—it is almost horizontal.
So simulations performed at fixed temperature varying µI are very likely crossing the pion
condensation line unless the temperature is really close to Tc.

Figure 8. Lattice results for the phase diagram of QCD in the temperature-chemical potential for
isospin plane, from Ref. [36].

Topology was studied in Ref. [71]: the authors perform simulations in full QCD with
staggered fermions on 243 × 6 lattices, with a similar setup as the one used in Ref. [72] to
study a 84 lattice. In Ref. [72] the transition to the condensed phase was clearly observed,
with µc

I ' mπ/2 On the 243 × 6 lattice the pion mass was set at its physical value,
corresponding to mπa = 0.2, leading to an expected critical isospin chemical potential
µc

I a = 0.1. Topology was then studied by analysing the zero and non-zero modes of the
overlap Dirac operator, which has an exact chiral symmetry, and it is thus particularly
suited for this analysis. The eigenvalue distributions were obtained for µI = 0.5, 1.5µI c
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i.e., below and above the isospin phase transition, and they are remarkably similar, see
Figure 9.

Figure 9. Eigenvalue spectrum of the Overlap Dirac operator for QCD with a physical pion mass, on 243 × 6 lattice for
µI = 0.5, 1.5µI c, left and right diagram. From Ref. [71].

As with what was observed at finite baryon density, and low temperatures, in
two-color QCD, apparently topology in cold systems does not change in dense matter.
This would be consistent with the predictions of Ref. [6].

3.3. Chiral Density

Early lattice studies of chiral density were performed having in mind a toy model
for the chiral magnetic effect in heavy ion collisions [52]. One first systematic study of the
phase diagram at equilibrium appeared in Ref. [73]. Even if QCD with a chiral density does
not have a sign problem, these first studies were performed for two-color QCD, for the sake
of simplicity, economy of computational resources , and possible comparison with results
in two-color QCD with a magnetic field. The resulting phase diagram—which confirms the
prediction of model studies—is reproduced in Figure 10. The larger extent of the hadronic
phase—Tc increases with µ5—reflects the so-called chiral catalisys [53]—the enhancement
of the chiral condensate due to chiral imbalance, which pushes the critical temperatures
towards higher values when increasing µ5. Details and a rich list of references may be
found in a recent review [54].

Lattice studies of topology and confinement with a chiral imbalance have been per-
formed in QCD in Ref. [51], using the tree level improved Symanzik gauge action and
staggered fermions with two flavours of dynamical quarks. Four different pion masses
were explored: mπ = (563, 762, 910) MeV. It was found that the model follows the chiral
perturbation theory prediction [74] ρ5 = ΛQCDµ5: the chiral density depends linearly on
the chiral chemical potential, there are no thresholds. The study reveals that the topological
susceptibility increases with the chiral chemical potential, much in the same way as the
chiral condensate did in the two-color study. Moreover, also the string tension increases,
in a rather correlated way. This was interpreted [51] as a signal that the chiral chemical
potential leads to larger fluctuations of the chiral density and, due to the anomaly, to larger
topological fluctuations in QCD: the chiral chemical potential enhances topological fluctua-
tions which in turn are related to the strength of confinement as seen from the string tension,
see Figure 11.
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Figure 10. The phase diagram of QCD (two-color) in the temperature-chiral chemical potential plane;
note the enlargement of the hadronic phase due to the enhancement of chiral breaking. From Ref. [73].

Figure 11. String tension (left) and topological susceptibility (right) in QCD as a function of the
chiral chemical potential, and different pion masses. From Ref. [51].

4. Summarising

Topology and dense matter are studied independently, and intensively on the lattice.
However, studies of the topological aspects in dense matter are still relatively scarce.
We have reviewed the available information for a baryon rich matter, mostly coming from
two-color QCD, for isospin dense matter, and for a chiral imbalance, hoping to highlight
some clear trend, and to contribute to identify the open issues.

Actually, none of the systems considered here is completely realistic: finite baryon
density may well be realised in experiments; however, on the lattice one must use (unphys-
ical) theories free from the sign problem to access to cold, dense phase. Dense, baryon-less
isospin matter would be unstable under weak interactions. Additionally, chiral imbalance
does not exist at equilibrium even in strong interactions. Yet, these studies may add to our
understanding of the phases of strong interactions, and , in some cases, pose some new
challenge. Indeed, one of the main points to be addressed—the interrelation among topol-
ogy, confinement, chiral symmetry—remains to large extent unsolved. These ambiguities
are partly due to lattice artifacts—they are highlighted in all the works we have reviewed,
partly to the different setup of the simulations.The ambiguities may be particularly severe
in systems with a chiral chemical potential, which are to some extent artificial, and where
a continuum limit is not well defined. Very few studies are available in which dense matter
has been explored as a function of temperature within the same model.
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Nonetheless, at least at high temperature, some coherent pattern emerges: a tentative
conclusion is that above the critical temperature for superfluidity/superconductivity, the
topological susceptibility as a function of chemical potential, either isospin and baryonic,
is well correlated with the chiral condensate and the signals for confinement. The same
remains true for the chiral chemical potential: in that case, there is a striking effect called
chiral enhancement: the chiral condensate grows with chemical potential—and the same is
true for topological susceptibility and string tension.

At low temperatures, however, the results for the topological susceptibility are not
entirely settled: in some cases, a similar behaviour as high temperature has been reported;
in other cases a sensitivity to the number of flavours has been observed; other studies
conclude for the insensitivity of the topological susceptibility to the matter density. The lat-
ter observation would indeed be consistent with the analysis of Ref. [6]. The results in
cold systems often call for further investigations and better control of the lattice artifacts,
and this may be particularly true for studies with a chiral chemical potential. This said,
a feature which seems to be well established is the insensitivity of topological susceptibility
to dense matter. However, if instantons’ chains were indeed realised in cold and dense
matter, there should be some signatures in topological observables. Should one think
that the behaviour of topological susceptibility invalidates this picture, or, rather, that
topological susceptibility is simply not able to capture it?
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35. Brandt, B.B.; Cuteri, F.; Endrődi, G.; Schmalzbauer, S. The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin

asymmetry. Particles 2020, 3, 80–86. [CrossRef]
36. Brandt, B.B.; Endrodi, G.; Schmalzbauer, S. QCD phase diagram for nonzero isospin-asymmetry. Phys. Rev. D 2018, 97, 054514.

[CrossRef]
37. Brandt, B.B.; Cuteri, F.; Endrodi, G.; Schmalzbauer, S. Exploring the QCD phase diagram via reweighting from isospin chemical

potential. PoS LATTICE 2019, 2019, 189.
38. Braguta, V.V.; Kotov, A.Y.; Nikolaev, A.A. Lattice Simulation Study of the Properties of Cold Quark Matter with a Nonzero

Isospin Density. JETP Lett. 2019, 110, 1–4. [CrossRef]
39. Detmold, W.; Orginos, K.; Shi, Z. Lattice QCD at non-zero isospin chemical potential. Phys. Rev. D 2012, 86, 054507. [CrossRef]
40. Cea, P.; Cosmai, L.; D’Elia, M.; Papa, A.; Francesco Sanfilippo The critical line of two-flavor QCD at finite isospin or baryon

densities from imaginary chemical potentials. Phys. Rev. D 2012, 85, 094512. [CrossRef]
41. Toublan, D.; Kogut, J.B. Isospin chemical potential and the QCD phase diagram at nonzero temperature and baryon chemical

potential. Phys. Lett. B 2003, 564, 212–216. [CrossRef]
42. Schäfer, T.; Shuryak, E.V. Instantons in qcd. Rev. Mod. Phys. 1998, 70, 323–425. [CrossRef]
43. Rapp, R.; Schäfer, T.; Shuryak, E.V.; Velkovsky, M. Diquark Bose condensates in high density matter and instantons. Phys. Rev. Lett.

1998, 81, 53–56. [CrossRef]
44. Rapp, R.; Schäfer, T.; Shuryak, E.V.; Velkovsky, M. High density QCD and instantons. Ann. Phys. 2000, 280, 35–99. [CrossRef]
45. Atiyah, M.F.; Singer, I.M. The Index of elliptic operators. 5. Ann. Math. 1971, 93, 139–149. [CrossRef]
46. Atiyah, M.F.; Singer, I.M. Dirac Operators Coupled to Vector Potentials. Proc. Natl. Acad. Sci. USA 1984, 81, 2597–2600. [CrossRef]
47. Bzdak, A.; Esumi, S.; Koch, V.; Liao, J.; Stephanov, M.; Xu, N. Mapping the Phases of Quantum Chromodynamics with Beam

Energy Scan. Phys. Rept. 2020, 853, 1–87. [CrossRef]
48. Kharzeev, D.E.; Levin, E.M. Color Confinement and Screening in the θ Vacuum of QCD. Phys. Rev. Lett. 2015, 114, 242001.

[CrossRef] [PubMed]
49. Kharzeev, D.E. The chiral magnetic effect and anomaly-induced transport. Prog. Part. Nucl. Phys. 2014, 75, 133–151. [CrossRef]
50. Ruggieri, M.; Chernodub, M.N.; Lu, Z. Topological susceptibility, divergent chiral density, and phase diagram of chirally

imbalanced QCD medium at finite temperature. Phys. Rev. 2020, 102, 014031. [CrossRef]
51. Astrakhantsev, N.Y.; Braguta, V.V.; Kotov, A.Y.; Kuznedelev, D.D.; Nikolaev, A.A. Lattice study of QCD at finite chiral density:

Topology and confinement. Eur. Phys. J. A 2021, 57, 15. [CrossRef]
52. Yamamoto, A. Chiral magnetic effect in lattice qcd with a chiral chemical potential. Phys. Rev. Lett. 2011, 107, 031601. [CrossRef]

[PubMed]
53. Braguta, V.V.; Kotov, A.Y. Catalysis of dynamical chiral symmetry breaking by chiral chemical potential. Phys. Rev. 2016, 93,

105025. [CrossRef]
54. Yang, L.; Luo, X.; Segovia, J.; Zong, H. A Brief Review of Chiral Chemical Potential and Its Physical Effects. Symmetry 2020,

12, 2095. [CrossRef]
55. Müller-Preussker, M. Recent results on topology on the lattice (in memory of Pierre van Baal). PoS LATTICE 2015, 2014, 003.
56. Hands, S.; Kogut, J.B.; Lombardo, M.; Morrison, S.E. Symmetries and spectrum of SU(2) lattice gauge theory at finite chemical

potential. Nucl. Phys. B 1999, 558, 327–346. [CrossRef]

http://dx.doi.org/10.1016/j.physletb.2016.09.063
http://dx.doi.org/10.1103/PhysRevD.98.094501
http://dx.doi.org/10.1038/nature20115
http://dx.doi.org/10.1103/PhysRevD.95.054502
http://dx.doi.org/10.1103/PhysRevD.11.3583
http://dx.doi.org/10.1016/0550-3213(80)90370-3
http://dx.doi.org/10.1016/0550-3213(79)90332-8
http://dx.doi.org/10.1103/PhysRevD.53.5028
http://www.ncbi.nlm.nih.gov/pubmed/10020499
http://dx.doi.org/10.1016/j.physletb.2019.05.035
http://dx.doi.org/10.1103/PhysRevD.59.054502
http://dx.doi.org/10.1007/JHEP03(2019)033
http://dx.doi.org/10.1103/PhysRevLett.86.592
http://dx.doi.org/10.1103/PhysRevD.102.074507
http://dx.doi.org/10.3390/particles3010007
http://dx.doi.org/10.1103/PhysRevD.97.054514
http://dx.doi.org/10.1134/S0021364019130083
http://dx.doi.org/10.1103/PhysRevD.86.054507
http://dx.doi.org/10.1103/PhysRevD.85.094512
http://dx.doi.org/10.1016/S0370-2693(03)00701-9
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1103/PhysRevLett.81.53
http://dx.doi.org/10.1006/aphy.1999.5991
http://dx.doi.org/10.2307/1970757
http://dx.doi.org/10.1073/pnas.81.8.2597
http://dx.doi.org/10.1016/j.physrep.2020.01.005
http://dx.doi.org/10.1103/PhysRevLett.114.242001
http://www.ncbi.nlm.nih.gov/pubmed/26196971
http://dx.doi.org/10.1016/j.ppnp.2014.01.002
http://dx.doi.org/10.1103/PhysRevD.102.014031
http://dx.doi.org/10.1140/epja/s10050-020-00326-2
http://dx.doi.org/10.1103/PhysRevLett.107.031601
http://www.ncbi.nlm.nih.gov/pubmed/21838347
http://dx.doi.org/10.1103/PhysRevD.93.105025
http://dx.doi.org/10.3390/sym12122095
http://dx.doi.org/10.1016/S0550-3213(99)00364-8


Universe 2021, 7, 336 15 of 15

57. Alles, B.; D’Elia, M.; Giacomo, A.D. Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory. Nucl. Phys. B 1997,
494, 281–292; Erratum in 2004, 679, 397–399. [CrossRef]

58. Alles, B.; D’Elia, M.; Lombardo, M.P. Behaviour of the topological susceptibility in two colour QCD across the finite density
transition. Nucl. Phys. B 2006, 752, 124–139. [CrossRef]

59. Lombardo, M.; Paciello, M.L.; Petrarca, S.; Taglienti, B. Glueballs and the superfluid phase of Two-Color QCD. Eur. Phys. J. C
2008, 58, 69–81. [CrossRef]

60. Hands, S.; Kim, S.; Skullerud, J. A Quarkyonic Phase in Dense Two Color Matter? Phys. Rev. D 2010, 81, 091502. [CrossRef]
61. Hands, S.; Kenny, P. Topological Fluctuations in Dense Matter with Two Colors. Phys. Lett. B 2011, 701, 373–377. [CrossRef]
62. Hands, S.; Kenny, P.; Kim, S.; Skullerud, J. Lattice Study of Dense Matter with Two Colors and Four Flavors. Eur. Phys. J. A 2011,

47, 60. [CrossRef]
63. Astrakhantsev, N.Y.; Bornyakov, V.G.; Braguta, V.V.; Ilgenfritz, E.M.; Kotov, A.Y.; Nikolaev, A.A.; Rothkopf, A. Lattice study of

static quark-antiquark interactions in dense quark matter. J. High Energy Phys. 2019, 2019, 171. [CrossRef]
64. Iida, K.; Itou, E.; Lee, T. Two-colour QCD phases and the topology at low temperature and high density. J. High Energy Phys.

2020, 2020, 181. [CrossRef]
65. Boz, T.; Giudice, P.; Hands, S.; Skullerud, J. Dense two-color QCD towards continuum and chiral limits. Phys. Rev. D 2020, 101,

074506. [CrossRef]
66. Appelquist, T.; Ratnaweera, A.; Terning, J.; Wijewardhana, L.C.R. The Phase structure of an SU(N) gauge theory with N(f) flavors.

Phys. Rev. D 1998, 58, 105017. [CrossRef]
67. Appelquist, T.; Sannino, F. The Physical spectrum of conformal SU(N) gauge theories. Phys. Rev. D 1999, 59, 067702. [CrossRef]
68. Orlando, D.; Reffert, S.; Sannino, F. Charging the Conformal Window. Phys. Rev. D 2021, 103, 105026. [CrossRef]
69. Brandt, B.B.; Endrodi, G. QCD phase diagram with isospin chemical potential. PoS LATTICE 2016, 2016, 039.
70. Bornyakov, V.G.; Nikolaev, A.A.; Rogalyov, R.N.; Terentev, A.S. Gluon Propagators in 2 + 1 Lattice QCD with Nonzero Isospin

Chemical Potential. arXiv 2021, arXiv:2102.07821.
71. Bali, G.S.; Endrodi, G.; Gavai, R.V.; Mathur, N. Probing the nature of phases across the phase transition at finite isospin chemical

potential. arXiv 2016, arXiv:1610.00233.
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