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Abstract: In the case of two-scalar field cosmology, and specifically for the Chiral model, we de-
termine an exact solution for the field equations with an anisotropic background space. The exact
solution can describe anisotropic inflation with a Kantowski–Sachs geometry and can be seen as the
anisotropic analogue of the hyperbolic inflation. Finally, we investigate the stability conditions for
the exact solution.
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1. Introduction

The early acceleration epoch of the universe is the inflationary era [1], to which the
isotropy and homogeneity of the observed universe are due [2]. The origin of the inflation is
unknown. However, the introduction of a minimally coupled scalar field, the inflation, into
the cosmological dynamics of Einstein’s General Relativity provides an acceleration when
the scalar field potential dominates. Hence, the scalar field drives the spacetime towards
a locally isotropic and homogeneous space form that leaves only very small residual
anisotropies, which are left from the pre-inflationary era [3,4]. Therefore, anisotropies may
have been important for the evolution of the universe. Thus, the investigation of exact
solutions in anisotropic inflationary models is a subject of special interest.

Exact and analytic solutions are important for the study of the evolution and of the
viability of a given cosmological model. In one scalar field cosmology, exact and analytic
solutions in a homogeneous and isotropic background space can be found in [5–14]. On the
other hand, there are few known anisotropic exact solutions with one scalar field [15–21].

Multiscalar field models have been proposed as alternative models for the description
of the whole cosmological history [22,23]. In the multiscalar field model the additional de-
grees of freedom provide new dynamical behaviours in the cosmological dynamics [24–30].
Some anisotropic exact solutions in multifield cosmology can be found in [20,31,32].

A multiscalar field model that has drawn the attention of cosmologists in recent years
is the Chiral model. The Lagrangian function of the Chiral model is inspired by the σ-
model [33] and is composed of two scalar fields, and the kinetic energy is defined on a
two-dimensional hyperbolic space [34]. The Chiral model with an exponential potential
provides a new inflationary solution known as hyperbolic inflation [35,36]. Hyperinflation
solves various problems of inflationary physics. In hyperbolic inflation, the dynamics are
driven by all of the matter components of the field equations, that is, by the scalar field
potential and the kinetic parts of the two scalar fields. Moreover, the initial conditions in
the start and in the end of the inflation can be different in the Chiral model, which means
that the curvature perturbations depend upon the number of the e-fold [37]. Further-
more, detectable non-Gaussianities in the power spectrum are supported by the multifield
inflation [38].

In this study we investigate the existence of a new exact solution in Chiral cosmology
with an anisotropic background space. As far as isotropic and homogeneous models
are concerned, Chiral theory has been widely studied previously with many interesting
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results—see for instance [39–42]—while recently, extensions of Chiral cosmology were
considered by assuming one of the two scalar fields to be a phantom field [43]. In our
consideration for the background space we consider locally rotational spacetimes (LRS)
with two scale factors that belong to the family of Bianchi I, Bianchi III and Kantowski–
Sachs spacetimes. These anisotropic spacetimes have the property that they fall into the
spatially flat, closed and open Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime
when they reach isotropy. The plan of the paper is as follows.

In Section 2 we present the cosmological model of our consideration and we derive the
gravitational field equations. In Section 3 we present the new solution of our analysis, which
is that of anisotropic hyperbolic inflation. The analysis of homogeneous perturbations is
presented in Section 4, where we discuss the stability properties of the new exact solution.
Finally, in Section 5 we draw our conclusions.

2. Chiral Cosmology

We consider the gravitational Action Integral

S =
∫ √

−gdx4(R + LC
(
φ,∇µφ, ψ,∇µψ

))
(1)

in which R(xκ) is the Ricci scalar of the metric tensor gµν(xκ), and LC
(
φ,∇µφ, ψ,∇µψ

)
is

the Lagrangian function for the Chiral model, which describes the dynamics for the two
scalar fields φ(xκ) and ψ(xκ), that is:

LC
(
φ,∇µφ, ψ,∇µψ

)
= −1

2
gµν(xκ)

(
∇µφ(xκ)∇νφ(xκ) + e−2κφ(xκ)∇µψ(xκ)∇νψ(xκ)

)
+ V(φ(xκ)). (2)

From the kinetic term of Equation (2) we observe that the scalar field lies on two
geometries: The physical space with metric tensor gµν(xκ) and the two-dimensional space
of constant curvature with metric hAB = diag

(
1, e−2κφ

)
and curvature Rh ' −κ2, A, B =

1, 2. The parameter κ is assumed to be a nonzero constant, otherwise the line element
hAB reduces to the two-dimensional flat space and the Lagrangian Equation (2) is reduced
to that of multiquintessence theory. In general, the potential function (Equation (2)) has
been assumed to also be a function of the second field ψ

(
xk
)

. However, hyperbolic
inflation in the case of FLRW space follows for the exponential potential [35] V(φ(xκ)) =
V0 exp(−λφ(xκ)), which we shall consider in this analysis.

Anisotropic Spacetime

In this study for the physical space we consider the LRS anisotropic line element in
the Milne variables

ds2 = −dt2 + e2α(t)
(

e2β(t)dx2 + e−β(t)
(

dy2 + f 2(y)dz2
))

(3)

in which the function f (y) has one of the following forms, fA(y) = 1, and the line element
describes a Bianchi I spacetime, fB(y) = sinh

(√
|K|y

)
, where gµν(xκ) is that of Bianchi III

spacetime and fC(y) = sin
(√
|K|y

)
, where gµν takes the form of Kantowski–Sachs space.

Variable β(t) indicates the existence of anisotropy. When β̇(t) = 0, the background space is
that of the FLRW universe.

For the line element (Equation (3)) and the Action Integral (Equation (1)) it follows
that the equations of motions that drive the dynamics for the variables α(t), β(t), φ(t) and
ψ(t) are

e3α

(
3α̇2 − 3

4
β̇2 − 1

2

(
φ̇2 + e−2κφψ̇2

)
−V(φ)

)
− eα−βK = 0, (4)

2α̈ + 3α̇2 +
3
4

β̇2 +
1
2

(
φ̇2 + e−2κφψ̇

)
−V(φ)− 1

3
e−2α−βK = 0, (5)
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β̈ + 3α̇β̇ +
2
3

e−2α−βK = 0, (6)

φ̈ + κe−2κφψ̇2 + 3α̇φ̇ + V,φ = 0, (7)

ψ̈− 2κφ̇ψ̇ + 3α̇ψ̇ = 0, (8)

where K =
f (y),yy

f (y) is the spatial curvature of the three-dimensional hypersurface of
Equation (3). For Bianchi I spacetime, K = 0, for Bianchi III space, K > 0, and for
the Kantowski–Sachs spacetime, K < 0.

3. Exact Solution

We assume the exponential potential V(φ) = V0 exp(−λφ). Moreover, we observe
that Equation (8) is total derivative, i.e., d

dt
(
ψ̇e3α−2κφ

)
= 0. Hence, the conservation law for

the field equations is
I0 = ψ̇e3α−2κφ. (9)

Equation (5) can be seen as a second conservation law for the dynamical system. In
the case of a spatially flat FLRW universe, i.e., β̇ = 0 and K = 0, the analytic solution of the
field equation was presented recently in [28] using the Lie symmetry approach.

Hence, in order to investigate the existence of additional conservation laws, we apply
the theory of Lie symmetries. For a review on applications of the Lie symmetry analysis in
cosmology we refer the reader to [44]. We omit the presentation of the calculations and we
directly present the results.

The dynamical system consisting of the second-order differential Equations (5)–(8) for
the exponential potential admits the symmetry vectors

X1 = ∂ψ , X2 = 2t∂t +
2
3
(
∂α + ∂β

)
+

4
λ

(
∂φ + κψ∂ψ

)
, for λ 6= 0 (10)

with the corresponding conservation laws I0 and

I1 = e3α

(
β̇− 4α̇ +

4
λ

(
φ̇ + κe−2κφψ̇

))
. (11)

For λ = 0, that is V(φ) = V0, the admitted symmetry vectors are the elements of the
so(3) algebra for the metric tensor hAB. They are

Z1 = ∂ψ, Z2 =
(
∂φ + κψ∂ψ

)
, (12)

Z3 = ψ∂φ + κ

(
ψ2

2
+ ψ− 1

2κ
e2κφ

)
, (13)

with conservation laws I0 and
Ī2 =

(
φ̇ + κe−2κφψ̇

)
(14)

and

Ī3 = ψφ̇ + κ

((
ψ2

2
+ ψ

)
e−2κφ − 1

2κ

)
ψ̇. (15)

We focus on the case for which λ 6= 0. We observe that the two conservation laws I0, I1
are not in involution, that is, {I0, I1} 6= 0, where {, } is the Poisson Bracket. Consequently
we cannot infer the Liouville integrability of the field equations. However, the existence of
the symmetry vector X2 indicates the existence of invariant functions. We follow [44] and
we search for the exact solution of the form

a(t) = p1 ln t , β(t) = p2 ln t , φ(t) = p3 ln t. (16)
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We substitute into the conservation law I0, which gives I0 = t3p1−2κp3 ψ̇, that is,

ψ(t) =
I0

1− 3p1 + 2κp3
t1−3p1+2κp3 , 3p1 − 2κp3 6= 1 (17)

ψ(t) = I0 ln t , 3p1 − 2κp3 = 1. (18)

In addition, we assume that I0 6= 0, otherwise we reduce to the case of anisotropic
spaces with a quintessence field [15].

Let us assume now that 3p1 − 2κp3 6= 1, then by replacing Equations (16) and (17) in
the field Equations (4)–(7) we arrive at the exact solution

α(t) =
1
3

(
1 + 2

κ

λ

)
ln t , β(t) =

4
3

(
1− κ

λ

)
ln t , φ(t) =

2
λ

ln t , (19)

ψ(t) =
λI0

2κ
t2 κ

λ , V0 =
κ

λ

(
4 + I2

0 λ2
)

, K = 4
κ

λ

(
1− κ

λ

)
(20)

with the constraint equation (
4(1− κλ) +

(
2 + I2

0

)
λ2
)
= 0. (21)

Hence, 3p1 − 2κp3 = 2κ
λ , which means that 2κ − λ 6= 0.

This is a new anisotropic exact solution with two scalar fields. For K = 0, it follows
that λ = κ. Thus, β(t) = 0, which means we end with the spatially flat FLRW spacetime.
The background spacetime is that of Bianchi III spacetime when κ(λ− κ) > 0, while the
Kantowski–Sachs metric is recovered when κ(λ− κ) < 0.

The anisotropic scale factor can be written as β(t) = λ
κ K ln t, which means that the

existence of a spatial curvature indicates the existence of anisotropy. Thus, the isotropic
open or closed FLRW spacetimes, similarly to Kasner-like universes, are not provided by
this exact solution.

Indeed, this solution is the analogue of the hyperbolic inflation in the anisotropic back-
ground space. The deceleration parameter is defined as q = −1− ä

ȧ2 , that is, q(t) = − 2(κ−λ)
2κ+λ .

Consequently, when the acceleration parameter is negative, q(t) < 0, the exact solution
describes an accelerated solution. Thus, when − 2(κ−λ)

2κ+λ < 0, we observe that K < 0. Hence
acceleration exists only for the Kantowski–Sachs background space. This inflationary
solution is an extension of the inflationary solution found before for the inflation field in
Kantowski–Sachs geometry [45].

Finally, for the case 3p1 − 2κp3 = 1, by replacing Equations (16) and (18) in the field
equations, from Equation (6) we find p2 = 2(1− p1) and K = −3

(
1− 4p1 + 3p2

1
)
. Thus,

from Equation (7) it follows that

2I2
0 κ2 + (1− 3p1)t−1+3p1 − 2t1+3p1+

λ−3p1λ
2κ V0κλ = 0. (22)

Because we are interested in solutions with two scalar fields, we study cases with
I0 6= 0 and p1 6= 1

3 . Thus, the polynomial Equation (22) can not be solved, which means
that there is no anisotropic solution of the form of Equation (16) for 2p1 − 2κp3 = 1.

4. Stability Analysis

We continue our analysis with the study of the stability properties for the new
anisotropic inflationary solution. We define the new variable H = ȧ, and we substitute into
Equations (4)–(7)

H =

(
1 + 2 κ

λ

)
3t

+ δH(t) , β(t) =
4
3

(
1− κ

λ

)
ln t + δβ(t) , (23)

φ(t) =
2
λ

ln t + δφ , ψ̇ = I0e−3α+2κφ , V0 =
κ

λ

(
4 + I2

0 λ2
)

, K = 4
κ

λ

(
1− κ

λ

)
(24)
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and we linearize. Moreover, we perform the new change of variable, this time for the
dependent variable t = es. Hence we obtain the system of two linear second-order
differential equations

0 = 3λ
(

λ(2κ + λ)δβ′′ +
(

8κ2 − 6κλ + 4λ2
)

δβ′ + 4(λ− κ)δφ′
)

(25)

− 8κ(5κ − 2λ)(κ − λ)δβ + 24κ(κ − λ)δφ

and

0 = λ
(
6(λ− κ)δβ′ + λ(2κ + λ)δφ′′ + 2(κ(2κ + λ) + 3)δφ′

)
(26)

+ 12κ(κ − λ)δβ + 2κ
(
(2κ + λ)

(
4κ2λ− 4κ − λ3

)
− 6
)

δφ

with the constraint

δH(s) =
e−s(λ((λ− κ)δβ′ + δφ′) + 2κ(κ − λ)δβ− 2κδφ)

λ(2κ + λ)
(27)

and δβ′ = dδβ
ds .

The solutions of the perturbations are expressed as

(δβ, δφ)T =

(
ζ1 ζ2
ζ3 ζ4

)
(exp(µ1(λ, κ)s), exp(µ2(λ, κ)s))T , (28)

where µ1(λ, κ), µ2(λ, κ) are the eigenvalues for the linearized system. The asymptotic
solution is stable, when Re(µ1 < 0) and Re(µ2 < 0).

In Figure 1 we present the region plots for the parameters µ1 and µ2 is the space (λ, κ),
where the perturbations decay.

-10 -5 0 5 10
-10

-5

0

5

10

λ

κ

Solution is stable

-10 -5 0 5 10
-10

-5

0

5

10

λ

κ

Solution is stable and q<0

Figure 1. Region plot for the eigenvalues µ1(λ, κ), µ2(λ,κ), where the perturbations around the new anistropic solution
decay (left), and the perturbations around the new anistropic solution decay and the new anisotropic solution describes an
anisotopic inflationary universe (right).
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5. Conclusions

In this work we investigated the existence of inflationary solutions on multifield cos-
mology with a homogeneous LRS anisotropic background space. In the context of Chiral
cosmology and for the model that describes the hyperbolic inflation in an FLRW back-
ground space, we found an anisotropic exact solution that provides anisotropic inflation
when the background spacetime has a negative spatial curvature, that is, the physical space
is described by the Kantowski–Sachs spacetime.

For the exact solution, the anisotropic parameter and the spatial curvature are ana-
logues. Therefore, when the curvature term vanishes, the physical space becomes isotropic.
The method that we applied for the derivation of the exact solution is based upon the inves-
tigation of Lie invariant functions, by calculating the Lie symmetries for the cosmological
field equations. Finally, the stability properties for these exact solutions were studied. We
found that the inflationary anisotropic solution can be a stable solution.

In contrary to the slow-roll inflationary solution for the single scalar field [1], in which
ψ̇ = 0, and 3α̇φ̇ ' −V,φ, in the hyperinflation the following expressions are true [35]:

φ̇ ' 6
2κ + λ

α̇ , (29)

which means that the evolution of the scalar field is independent on the derivative of the
potential. Hence, by replacing the new anisotropic solution in Equation (29) we find that it
is true, while for the second field ψ(t) it holds that

e−2κφψ̇2 = 6
(

1− 6
2κ + λ

)
α̇2 − α̇− 3

2
β̇2 −−2V(φ)− 2e−2α−βK (30)

where we conclude that we have derived the analogue for the hyperinflation in an
anisotropic background space.

At this point it is important to mention that the exact solution that we found does
not provide the limit of the cosmological constant [46]. Indeed, the declaration parameter
is q(t) = − 2(κ−λ)

2κ+λ and the limit for the cosmological constant is recovered when q(t) = 1,
that is λ = 0. However, in our analysis we considered λ 6= 0. For other forms of the scalar
field potential, it is possible that there exist exact solutions that provide the limit of the
cosmological constant. Such an analysis is outside the scope of this work, since we focused
on the exponential potential. From this result we can infer that the Chiral model provides
inflationary anisotropic solutions that can be used as a toy model for the study of the very
early universe.

Let us assume now the new anisotropic exact solution in the limit where κ
λ ' 1 + ε,

then α(t) =
(
1 + 2

3 ε
)

ln t and β(t) = 4
3 ε ln t. Hence, for ε2 = 0 the anisotropies are small,

and inflation can be described by the Hubble slow roll parameters [47] εH = − Ḣ
H2 , ηH =

ε̇H
Hε̇H

, from where we calculate εH ' 1− 2
3 ε and ηH = 0. However, these slow-roll pa-

rameters are similar to those of the exponential potential for the inflation field. However,
because of the additional degrees of freedom, the solution may not be always stable, and
thus the actual solution will be different from the exact solution.

In a future study we plan to investigate the stability properties for the general model
and also to investigate the behaviour of the inflationary parameters with initial conditions
near the region of the exact solution.
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