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Abstract: Using the lattice gauge field theory, we study the relation among the local chiral condensate,
monopoles, and color magnetic fields in quantum chromodynamics (QCD). First, we investigate
idealized Abelian gauge systems of (1) a static monopole–antimonopole pair and (2) a magnetic flux
without monopoles, on a four-dimensional Euclidean lattice. In these systems, we calculate the local
chiral condensate on quasi-massless fermions coupled to the Abelian gauge field, and find that the
chiral condensate is localized in the vicinity of the magnetic field. Second, using SU(3) lattice QCD
Monte Carlo calculations, we investigate Abelian projected QCD in the maximally Abelian gauge,
and find clear correlation of distribution similarity among the local chiral condensate, monopoles, and
color magnetic fields in the Abelianized gauge configuration. As a statistical indicator, we measure
the correlation coefficient r, and find a strong positive correlation of r ' 0.8 between the local chiral
condensate and an Euclidean color-magnetic quantity F in Abelian projected QCD. The correlation is
also investigated for the deconfined phase in thermal QCD. As an interesting conjecture, like magnetic
catalysis, the chiral condensate is locally enhanced by the strong color-magnetic field around the
monopoles in QCD.

Keywords: QCD; chiral symmetry; monopole; lattice QCD; spontaneous symmetry breaking; Abelian
projection; magnetic catalysis

1. Introduction

Quantum chromodynamics (QCD) is an SU(Nc) gauge theory to describe the strong
interaction, and has presented many interesting subjects full of variety and difficult prob-
lems in physics. Actually, in spite of the simple form of the QCD action, this miracle theory
creates hundreds of hadrons and leads to various interesting non-perturbative phenomena,
such as color confinement and dynamical chiral-symmetry breaking [1].

This magic is due to the strong coupling of QCD in the low-energy region, and this
strong-coupling nature drastically changes the vacuum structure itself. Therefore, a pertur-
bative technique is no more workable and analytical treatment of QCD is fairly difficult
in the strong-coupling region. As a reliable standard technique, lattice QCD Monte Carlo
simulations have been applied to analyze non-perturbative QCD [2,3].

Among the non-perturbative properties of QCD, spontaneous chiral-symmetry break-
ing is particularly important in our real world. Indeed, chiral symmetry breaking drastically
influences the vacuum structure and gives a non-trivial vacuum expectation value of the
chiral condensate 〈q̄q〉, which plays the role of an order parameter. Additionally, it is con-
sidered that chiral symmetry breaking leads to dynamical quark-mass generation [1,4], and
creates most of the matter mass of our Universe, apart from the dark matter, because only
small masses of u, d, current quarks, and electrons are Higgs-origin in atoms [5] and their
contribution to the nucleon mass is estimated to be small [6]. In addition, chiral symmetry
breaking inevitably accompanies light pions of the Nambu–Goldstone bosons, and their
small mass gives range of the nuclear force.
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In non-perturbative QCD, color confinement is also one of the most important phe-
nomena in physics, and presents an extremely difficult mathematical problem. Experiments
for hadron spectra and lattice QCD studies for various inter-quark potentials [7–10] show
that the quark confining force is basically characterized by a universal physical quantity of
the string tension σ ' 0.89 GeV/fm. This universal string tension is physically explained
by one-dimensional squeezing of the color electric flux, i.e., the color flux-tube formation
in hadrons, as is also indicated by lattice QCD for both mesons [3] and baryons [11]. As
for the relation between color confinement and chiral symmetry breaking, it is not yet
clarified directly from QCD. Although almost coincidence between deconfinement and
chiral-restoration temperatures [12] suggests their close correlation, a lattice QCD analysis
using the Dirac-mode expansion based on the Banks–Casher relation [13] indicates some
independence of these phenomena in QCD [14,15].

For the quark confinement mechanism, Nambu [16], ’t Hooft [17], and Mandelstam [18]
proposed the dual superconductivity scenario, paying attention to analogy with the Abrikosov
vortex in the superconductivity, where Cooper-pair condensation leads to the Meissner effect,
and the magnetic flux is excluded or squeezed like a one-dimensional tube as the Abrikosov
vortex. If the QCD vacuum can be regarded as the dual version of the superconductor, the
electric-type color flux is squeezed between (anti)quarks in hadrons, and quark confinement
can be physically explained by the dual Meissner effect. Because of the electromagnetic du-
ality, the dual Meissner effect inevitably needs condensation of magnetic objects, i.e., color
magnetic monopoles, which correspond to the dual version of the electric Cooper-pair
bosonic field.

In the dual-superconductor picture for the QCD vacuum, however, there are two large
gaps with QCD.

1. Although QCD is a non-Abelian gauge theory, the dual-superconductor picture is
based on an Abelian gauge theory subject to the Maxwell-type equations including
magnetic currents, where electromagnetic duality is manifest;

2. Although QCD includes only color electric variables, i.e., quarks and gluons, as the el-
ementary degrees of freedom, the dual-superconductor picture requires condensation
of color magnetic monopoles as a key concept.

Historically, to bridge between QCD and the dual-superconductivity, ’t Hooft pro-
posed Abelian gauge fixing [19], partial gauge fixing which only remains Abelian gauge
degrees of freedom in QCD. By Abelian gauge fixing, QCD reduces into an Abelian gauge
theory, where off-diagonal gluons behave as charged matter fields similar to W±µ in the
Weinberg–Salam model and give the color electric current jµ in terms of the residual
Abelian gauge symmetry. As a remarkable fact in the Abelian gauge, color-magnetic
monopoles appear as topological objects corresponding to the non-trivial homotopy group
Π2(SU(Nc)/U(1)Nc−1) = ZNc−1

∞ in a similar manner to appearance of ’t Hooft–Polyakov
monopoles [20] in the SU(2) non-Abelian Higgs theory. Thus, in the Abelian gauge, QCD is
reduced into an Abelian gauge theory, including both electric current jµ and magnetic cur-
rent kµ, which is expected to give a theoretical basis of the dual-superconductor picture for
the confinement mechanism, although off-diagonal gluons remain as charged matter fields.

From the viewpoint of Abelianzation of QCD, the maximally Abelian (MA) gauge [21]
is an interesting special Abelian gauge. In the MA gauge, off-diagonal gluons have a
large effective mass of about 1 GeV in both SU(2) and SU(3) lattice QCD [22–24], so that
off-diagonal gluons become infrared inactive, and only the Abelian gluon is relevant at
distances larger than about 0.2 fm. Additionally, monopole condensation is suggested from
appearance of long entangled monopole worldlines [21,25] and the magnetic screening in
lattice QCD [26,27].

In this way, by taking the MA gauge, the QCD vacuum can be regarded as an Abelian
dual superconductor at a large scale, and color magnetic monopoles seem to capture
essence of non-perturbative QCD. Note, however, that, even without gauge fixing, there is
an evidence of monopole condensation in non-Abelian gauge theories [27], and, therefore,
it might be possible to define infrared-relevant monopoles in QCD and to construct the dual
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superconductor system in more general manner. In fact, MA gauge fixing gives a concrete
way to extract infrared-relevant Abelian gauge manifold and monopoles from QCD.

In the context of the dual superconductor picture, close correlation between monopoles
and chiral symmetry breaking was pointed out in the dual Ginzburg–Landau theory [28],
in SU(2) lattice QCD in the MA gauge [29,30], and in SU(3) lattice QCD [31,32]. Since most
of the pioneering lattice studies were done in SU(2) QCD or on a small lattice as 83 × 4, we
recently investigated SU(3) QCD with a large volume, and find a clear correlation between
monopoles and the chiral condensate in SU(3) lattice QCD in the MA gauge [33].

In this paper, as a continuation of Ref. [33], we proceed the lattice works for the relation
between chiral symmetry breaking and color magnetic objects including monopoles. In
particular, as a new point of this paper, we quantitatively study correlation of the local
chiral condensate with color magnetic fields using the lattice gauge theory.

The organization of this paper is as follows. In Section 2, we review the MA gauge and
Abelianization of QCD in SU(3) lattice formalism. In Section 3, we prepare magnetic objects
in Abelian projected QCD. In Section 4, we consider the local chiral condensate and chiral
symmetry breaking in Abelian gauge systems. In Section 5, we present idealized Abelian
gauge systems of a static monopole–antimonopole pair on a lattice, and investigate the
relation of the local chiral condensate with the magnetic objects. In Section 6, we perform
SU(3) lattice QCD Monte Carlo calculations and study the relation among monopoles,
magnetic fields, and the local chiral condensate in Abelian projected QCD in the MA gauge.
Section 7 is devoted for summary and conclusion.

2. Maximally Abelian Gauge and Abelianization of QCD

To begin with, we briefly review the lattice formalism for maximally Abelian (MA)
gauge fixing and Abelianization in QCD.

Continuum QCD is described with the quark field q(x), the gluon field Aµ(x) ∈
su(Nc) and the QCD gauge coupling g. In SU(Nc) lattice QCD [3], the gluon field is de-
scribed as the SU(Nc) link variable Uµ(s) ≡ exp

(
iagAµ(s)

)
∈ SU(Nc) on four-dimensional

Euclidean lattices with the spacing a and the volume V = LxLyLzLt.
Using the Cartan subalgebra ~H ≡ (T3, T8) in SU(3), MA gauge fixing is defined so as

to maximize

RMA[Uµ(s)] ≡∑
s

4

∑
µ=1

tr
(

U†
µ(s)~HUµ(s)~H

)
= ∑

s

4

∑
µ=1

(
1− 1

2 ∑
i 6=j

∣∣Uµ(s)ij
∣∣2) (1)

by the SU(3) gauge transformation, and, therefore, this gauge fixing strongly suppresses
all the off-diagonal fluctuation of the SU(3) gauge field. In the MA gauge, the SU(3) gauge
group is partially fixed remaining its maximal torus subgroup U(1)3 ×U(1)8 with the global
Weyl (color permutation) symmetry [34], and QCD is reduced to an Abelian gauge theory.

From the SU(3) link variable UMA
µ (s) ∈ SU(3) in the MA gauge, we extract the Abelian

link variable

uµ(s) = ei~θµ(s)·~H = diag
(

eiθ1
µ(s), eiθ2

µ(s), eiθ3
µ(s)
)
∈ U(1)3 ×U(1)8 ⊂ SU(3) (2)

by maximizing the overlap

RAbel ≡
1
3

Re tr
{

UMA
µ (s)u†

µ(s)
}
∈
[
−1

2
, 1
]

. (3)

Note that the distance between uµ(s) and UMA
µ (s) becomes the smallest in the SU(3)

manifold, and there is a constraint ∑3
i=1 θi

µ(s) = 0 (mod 2π) reflecting the uni-determinant
of uµ(s). Here, θi

µ(s) (i = 1, 2, 3) is taken to be the principal value of −π ≤ θi
µ(s) < π.

The Abelian projection is defined by the simple replacement of the SU(3) link variable
Uµ(s) by the Abelian link variable uµ(s) for each gauge configuration, that is, O[Uµ(s)]→
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O[uµ(s)] for QCD operators. Abelian projected QCD is thus extracted from SU(3) QCD.
The case of 〈O[Uµ(s)]〉 ' 〈O[uµ(s)]〉 is called “Abelian dominance” for the operator O [35].

As a remarkable fact, Abelian dominance of quark confinement is shown in both
SU(2) [36] and SU(3) lattice QCD [37–39]. Additionally, Abelian dominance of chiral
symmetry breaking is observed in SU(2) [29–31] and SU(3) lattice QCD [33].

3. Magnetic Objects in Abelian Projected QCD

In this section, we prepare magnetic objects in Abelian projected QCD in four-dimensional
Euclidean space-time.

3.1. Monopoles in Abelian Projected QCD

In this subsection, we define monopoles in Abelian projected QCD in lattice formal-
ism [40]. Like the ordinary SU(3) plaquette, the Abelian plaquette variable is defined as

uµν(s) ≡ uµ(s)uν(s + µ̂)u†
µ(s + ν̂)u†

ν(s) = ei~θµν(s)·~H

= diag(eiθ1
µν(s), eiθ2

µν(s), eiθ3
µν(s)) ∈ U(1)2 ⊂ SU(3), (4)

where µ̂ is the µ-directed unit vector in the lattice unit. The Abelian field strength θi
µν(s)

(i = 1, 2, 3) is the principal value of the exponent in uµν(s), and is defined as

∂µθi
ν(s)− ∂νθi

µ(s) = θi
µν(s)− 2πni

µν(s),

−π ≤ θi
µν(s) < π, ni

µν(s) ∈ Z, (5)

with the forward derivative ∂µ. Note that θi
µν(s) is U(1)2 gauge invariant and corresponds

to the regular Abelian field strength in the continuum limit of a→ 0, while ni
µν(s) corre-

sponds to the singular gauge-variant Dirac string [40].
The electric current jiµ and the monopole current ki

µ are defined from the Abelian field
strength θi

µν as

jiν(s) ≡ ∂′µθi
µν(s), (6)

ki
ν(s) ≡ ∂µ θ̃i

µν(s)/2π = ∂µñi
µν(s) ∈ Z, (7)

where ∂′µ is the backward derivative and θ̃µν is the dual tensor of θ̃µν ≡ 1
2 εµναβθαβ. Both

electric and monopole currents are U(1)2 gauge invariant, according to U(1)2 gauge
invariance of θi

µν(s). In the lattice formalism, ki
µ(s) is located at the dual lattice L4

dual of
sα + 1

2 with flowing in µ direction [41].
In this way, Abelian projected QCD includes both electric current jiµ and monopole

current ki
µ. Remarkably, lattice QCD shows monopole dominance, i.e., dominant role of

monopoles for quark confinement in the MA gauge [42]. Additionally, lattice QCD shows
monopole dominance for chiral symmetry breaking, that is, monopoles in the MA gauge
crucially contribute to spontaneous chiral-symmetry breaking in both SU(2) [29,31] and
SU(3) lattice QCD [33].

In the lattice formalism, the monopole current ki
µ appears on the dual lattice L4

dual of
sα + 1

2 , and, therefore, we define the local monopole density

ρL(s) ≡
1

3 · 24

3

∑
i=1

∑
s′∈P(s)

4

∑
µ=1

∣∣∣ki
µ(s
′)
∣∣∣, (8)

where P(s) denotes the dual lattices in the vicinity of s, i.e., P(s) =
{

s′ ∈ L4
dual

∣∣|s− s′| = 1
}

.
Note here that the distance between the site s and its closest dual site s′ is |s − s′| =√

∑4
1(

1
2 )

2 = 1 in the four-dimensional Euclidean space-time.



Universe 2021, 7, 318 5 of 17

3.2. General Argument for Magnetic Instability and Magnetic Objects in the QCD Vacuum

In QCD in the MA gauge, color magnetic monopoles generally appear, and play an
important role in non-perturbative properties, which might looks curious, since the original
QCD action does not have monopoles.

However, some active roles of magnetic objects would be natural in QCD, because
QCD itself has color magnetic instability, and spontaneous generation of color magnetic
fields generally takes place, as Savvidy first pointed out in 1977 [43,44].

In fact, in the QCD vacuum in the Minkowski space-time, the gluon condensate
〈Ga

µνGa
µν〉 takes a large positive value, which physically means that the QCD vacuum

is filled with color magnetic fields. Since the gluon condensate is expressed with color
magnetic fields ~Ha and color electric fields ~Ea as

〈Ga
µνGa

µν〉 = 2(〈~H2
a 〉 − 〈~E2

a〉) > 0, (9)

its large positivity means inevitable significant generation of color magnetic fields. Thus,
some superior role of magnetic objects is expected instead of electric objects in the Minkowski
QCD vacuum.

In the Euclidean space-time, because of the space-time SO(4) symmetry, the roles of
magnetic and electric fields become similar. Actually, the gluon condensate is written as
Ga

µνGa
µν = 2(~H2

a + ~E2
a), where the electromagnetic duality is manifest. Then, in Euclidean

QCD, the electric field often behaves as a magnetic field, and, therefore, we regard the
Euclidean electric field as a sort of the magnetic field in this paper.

3.3. Lorentz Invariant Quantities in Abelian Projected QCD

In Abelian projected QCD, there are two Lorentz invariant quantities F and G in the
Euclidean space-time:

F ≡ 1
3

3

∑
i=1

1
4

Fµν
i Fµν

i =
1
3

3

∑
i=1

1
2
(~H2

i + ~E2
i ), (10)

G ≡ 1
3

3

∑
i=1

1
4

Fµν
i F̃µν

i =
1
3

3

∑
i=1

~Hi · ~Ei, (11)

with the color magnetic field (~Hi)j ≡ 1
2 εjkl Fkl

i and the color electric field (~Ei)j ≡ Fj4
i . These

quantities are also invariant under the residual U(1)2 gauge transformation and global
Weyl transformation [34], i.e., permutation of the color index, in the MA gauge.

Here, F is parity-even and expresses total magnitude of magnetic fields in the Eu-
clidean space-time, since the electric field behaves as a magnetic field there. In this paper, we
simply call F “magnetic quantity” in Euclidean gauge theories. Note that G is parity-odd
and is just the Abelian projected quantity of the topological charge density on instantons in
QCD, which might relate to chiral symmetry breaking.

In the lattice formalism, the field strength tensor is a plaquette variable spanning at s,
s + µ̂, s + ν̂, and s + µ̂ + ν̂, so that we define the Abelian field strength Fi

µν(s) as the local
average of clover-type four plaquettes,

a2gFi
µν(s) ≡

1
4

(
θi

µν(s) + θi
µν(s + µ̂) + θi

µν(s + ν̂) + θi
µν(s + µ̂ + ν̂)

)
, (12)

and consider F and G as local quantities in each Abelian gauge configuration.

4. Local Chiral Condensate and Chiral Symmetry Breaking in Gauge Theories

In this section, we consider the chiral condensate and chiral symmetry breaking in the
gauge theory in terms of the quark propagator.
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4.1. Local Chiral Condensate in Lattice QCD

In this subsection, we briefly review the local chiral condensate in lattice formalism.
The local chiral condensate can be calculated with the quark propagator for each gauge
configuration U = {Uµ(s)} generated with the Monte Carlo method.

As the lattice fermion, we here adopt the Kogut–Susskind (KS) fermion [3]. For the
KS fermion, the Dirac operator γµDµ is expressed by ηµDµ with the staggered phase
ηµ(s) ≡ (−1)s1+···+sµ−1 (µ ≥ 2) with η1(s) ≡ 1. The KS Dirac operator is expressed as

(ηµDµ)ss′ =
1
2

4

∑
µ=1

∑
±
±ηµ(s)U±µ(s)δs±µ̂,s′ (13)

with U−µ(s) ≡ U†
µ(s− µ̂), and the KS Dirac eigenvalue equation takes the form of

1
2

4

∑
µ=1

∑
±
±ηµ(s)U±µ(s)χn(s± µ̂) = iλnχn(s). (14)

Here, the quark field qα(s) is described by a spinless Grassmann variable χ(s) [3], and the
chiral condensate per flavor is evaluated as 〈q̄q〉 = 〈χ̄χ〉/4 in the continuum limit.

The local chiral condensate can be calculated using the quark propagator of the KS
fermion with a small quark mass m. The chiral-limit value is estimated by the chiral
extrapolation of m → 0. As a technical caution, the chiral and continuum limits do not
commute for the KS fermion at the quenched level, although this problem would be absent
in full QCD [45].

For the gauge configuration U = {Uµ(s)}, the Euclidean KS fermion propagator is
given by

Gij
U(x, y) ≡ 〈χi(x)χ̄j(y)〉U = 〈x, i|

(
1

ηµDµ[U] + m

)
|y, j〉 (15)

with the color index i and j. This propagator is numerically obtained by solving the large-scale
linear equation with a point source. The local chiral condensate for the gauge configuration
{Uµ(s)} is expressed with the propagator as

〈χ̄(x)χ(x)〉U = −Tr GU(x, x). (16)

Here, we consider the net chiral condensate by subtracting the contribution from the trivial
vacuum U = 1 as

〈χ̄χ(x)〉U ≡ 〈χ̄(x)χ(x)〉U − 〈χ̄χ〉U=1, (17)

where the subtraction term is exactly zero in the chiral limit m = 0. The global chiral
condensate is obtained by taking its average over the space-time x and the gauge ensembles
U1, U2, ..., UN ,

〈χ̄χ〉 ≡∑
x,i
〈χ̄χ(x)〉Ui / ∑

x,i
1. (18)

4.2. Chiral Symmetry Breaking in Abelian Gauge System

In this subsection, we analytically investigate relation between chiral symmetry break-
ing and the field strength in Euclidean Abelian gauge systems. For the simple argument,
we consider Euclidean U(1) gauge systems with quasi-massless Dirac fermions coupled to
the U(1) gauge field, although it is straightforward to generalize this argument to Abelian
projected QCD with U(1)2 gauge symmetry.
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In the U(1) gauge system, the chiral condensate is proportional to the functional trace
of the fermion propagator,

I ≡ Tr
1

6 D + m
= −mTr

1
D2 −m2 + g

2 σ · F , (19)

with the covariant derivative Dµ ≡ ∂µ + igAµ, the field strength Fµν, σ · F ≡ σµνFµν and
σµν ≡ i

2 [γµ, γν]. Note that D2−m2 is a negative-definite operator, and all of its eigenvalues
are negative. Since the trace of any odd-number product of γ-matrices is zero, we find

I = −mTr
D2 −m2 − g

2 σ · F
(D2 −m2)2 − 2g2(F − γ5G)− g

2 [D
2, σ · F] , (20)

with

F ≡ 1
4

FµνFµν =
1
2
(~H2 + ~E2), G ≡ 1

4
Fµν F̃µν = ~H · ~E. (21)

Because of the overall factor m in I, I goes to zero in the chiral limit m → 0, unless the
denominator becomes zero in this limit.

Since the operator (D2 −m2)2 in the denominator is positive definite, to realize the
zero denominator in I in Equation (20), we need a significant negative contribution from
the other three terms including F , G, or [D2, σ · F]. For instance, in the absence of the field
strength, i.e., Fµν ≡ 0, one finds near m ' 0

IFµν≡0 = mTr
1

p2 + m2 = mγ
∫ d4 p

(2π)4
1

p2 + m2 = m
γ

16π2

∫ Λ2

dp2 p2

p2 + m2 ' m
γΛ2

16π2 (22)

with the UV cut-off Λ and the degeneracy γ. According to the positive denominator in the
integrand, IFµν≡0 has no IR singularity to cancel m of the numerator, and, therefore, IFµν≡0
goes to zero in the chiral limit of m→ 0.

To cancel m in the numerator of I, we need a significantly large amount of the field
strength so as to present zero mode in the denominator of I and to keep I non-zero in the
chiral limit. Note here that F (≥ 0) always gives a negative (non-positive) contribution
in the denominator of I, while the contribution from G or [D2, σ · F] can be positive and
negative. In fact, the magnetic quantity F can give the zero mode in the denominator of
I, even without the contribution from G and [D2, σ · F]. In contrast, in Euclidean Abelian
gauge systems, F ≡ 1

4 F2
µν = 0 means Fµν = 0, and then G = [D2, σ · F] = 0.

To conclude, the magnetic quantity F is expected to be significantly important to
realize chiral symmetry breaking in Euclidean Abelian gauge theories, although, in some
cases, the contribution from G and [D2, σ · F] can assist the realization of chiral symme-
try breaking.

In a special case of constant Fµν, one finds [D2, σ · F] = 0 for the Abelian system, and obtains

I = −mTr
(D2 −m2)[(D2 −m2)2 − 2g2F ]
[(D2 −m2)2 − 2g2F ]2 − 4g2G2 , (23)

because of trγ5 = trσµν = trγ5σµν = 0. For more special case of a constant magnetic field,
there occurs the Landau-level quantization, and the spatial degrees of freedom perpen-
dicular to the magnetic field is frozen in the lowest Landau level. This infrared effective
low-dimensionalization of the charged spinor dynamics induces chiral symmetry breaking
in the chiral limit [46–48], which is known as magnetic catalysis [49].
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5. Abelian Gauge System with a Static Monopole–Antimonopole Pair on a Lattice

In the QCD vacuum, complicated monopole world-lines generally emerge in the MA
gauge [21,25], and, therefore, it is difficult to clarify the primary correlation with the chiral
condensate among the magnetic objects, such as monopoles, F and G.

In this section, to seek for the primary correlation with the chiral condensate, we
create idealized Abelian gauge system with a monopole–antimonopole pair on a lattice,
and investigate the relation among the local chiral condensate, monoples, and magnetic
fields. Additionally, we consider a magnetic flux system without monopoles.

For simplicity, we here consider U(1) lattice gauge systems described by U(1) link variables

uµ(s) = eiθµ(s) ∈ U(1), (24)

and quasi-massless Dirac fermions coupled to U(1) gauge fields with the coupling g = 1.

5.1. Static Monopole–Antimonopole Pair Systems

To begin with, we deal with an idealized Abelian gauge system of a static monopole–
antimonopole pair on a periodic lattice of the four-dimensional Euclidean space-time.

In the three-dimensional space R3, let us consider a static monopole–antimonopole
pair with the distance of l in z-direction. To realize such a lattice gauge system, we set the
Abelian link-variable uµ(s) to be

ux(s) = uy(s + x̂) = u†
x(s + ŷ) = u†

y(s) = i for sx = sy = 0, 1 ≤ sz ≤ l, (25)

otherwise uµ(s) = 1.
Figure 1 shows the building-block plaquette to realize a static monopole–antimonopole

pair on the lattice. Here, only the red link-variables take a non-trivial value of i.

Figure 1. The building-block plaquette to realize a static monopole–antimonopole pair on the lattice
in (a) the x-y plane and (b) spatial R3 for s = (0, 0, sz, st) with 1 ≤ sz ≤ l. Only the red link-variables
take a non-trivial value of i. The all-red plaquette induces the singular Dirac string at its center on the
dual lattice. A physical magnetic field is also created in the neighboring plaquette uxy(s) including
only one red link.

As for the phase variable θµ(s), which corresponds to the Abelian gluon, one finds

θx(s) = θy(s + x̂) = −θx(s + ŷ) = −θy(s) =
π

2
for sx = sy = 0, 1 ≤ sz ≤ l, (26)

otherwise θµ(s) = 0. For the all-red plaquette with sx = sy = 0 and 1 ≤ sz ≤ l, one gets

∂xθy(s)− ∂yθx(s) = θx(s) + θy(s + x̂)− θx(s + ŷ)− θy(s) = 2π, (27)
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which leads to the Dirac string of nxy(s) = −1 and zero field strength θxy(s) = 0, because
of the definition of the field strength θµν(s) and the Dirac string nµν(s),

∂µθν(s)− ∂νθµ(s) = θµν(s)− 2πnµν(s), −π ≤ θµν(s) < π, nµν(s) ∈ Z. (28)

Thus, the all-red plaquette induces the singular Dirac string at its center on the dual lattice. In
fact, for the idealized system in Figure 1b, a Dirac string appears inside the all-red plaquette.

At the terminal of the Dirac string, a monopole or an anti-monopole appears on the
dual lattice, as shown in Figure 2. Actually, the three-dimensional spatial cube including
only one all-red plaquette has a static (anti)monopole at its center (on the dual lattice),
because only one nkl(s) has non-zero value of ±1 among the six independent plaquettes
composing the cube,

k4(s) = ∂jñj4(s) =
1
2

εjkl∂jnkl(s) =
1
2

εjkl{nkl(s + ĵ)− nkl(s)}
= nxy(s + ẑ)− nxy(s) + nyz(s + x̂)− nyz(s) + nzx(s + ŷ)− nzx(s)
= ±1. (29)

Thus, this idealized system includes a static monopole at ( 1
2 , 1

2 , 1
2 ) and a static anti-monopole

at ( 1
2 , 1

2 , l + 1
2 ) in spatial R3.

Figure 2. The link-variables to realize a static monopole–antimonopole pair on the lattice in spatial R3.
Only the red link-variables take a non-trivial value of i. (a) The cube including only one all-red pla-
quette induces a magnetic monopole at its inside on the dual lattice. (b) A monopole (black diamond)
and an anti-monopole (white diamond) appear at the two terminals of the red plaquette tower.

This monopole and anti-monopole system has also physical magnetic flux around the
line segment connecting the monopole pair. In fact, a physical magnetic field is created
in the neighboring plaquette uxy(s) of the all-red plaquette in Figure 1. In this idealized
system, only the plaquette uxy(s) including one red link takes a non-trivial value as

uxy(s) = −i = e−iπ/2 in case with one nontrivial link, (30)

otherwise uµν(s) = 1. Note here that, by gauge transformation, the location of the Dirac
string is generally changed, but the physical field strength is never changed.

Figure 3 shows the local chiral condensate 〈χ̄χ(s)〉u and the magnetic quantity F ≡
1
4 F2

µν = 1
2
~H2 for l = 4 in the three dimensional space R3. In this demonstration, the quark

mass is taken to be m = 0.01 in the lattice unit.
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4FµνFµν(x, y, z)

Figure 3. An idealized Abelian gauge system of a static monopole and anti-monopole pair with the distance of l = 4. In the
three dimensional space R3, the value is visualized with the color graduation for (a) the local chiral condensate and (b) the
magnetic quantity F .

For this idealized static system, there actually appears a magnetic field ~H, i.e., non-
zero flux of F = 1

2
~H2 > 0, in space between the monopole and the anti-monopole, and

the local chiral condensate takes a significant value in the vicinity of the magnetic field.
In contrast, one finds G = ~H · ~E = 0 everywhere, since only spatial plaquettes take a non-
trivial value and ~E =~0. Thus, in this system, it is likely that the magnetic field stemming
from monopoles has the primary correlation with the local chiral condensate.

5.2. Static Magnetic Flux System

Next, let us investigate a static magnetic flux system without monopoles. Owing to
the spatial periodicity, the special case of l = Lz in the static monopole–antimonopole
system has no (anti)monopoles, because of the magnetic-charge cancellation. In this special
case of l = Lz, there only exists a physical static magnetic flux along z-direction.

Figure 4 shows the local chiral condensate 〈χ̄χ(s)〉u and the magnetic quantity F ≡
1
4 F2

µν = 1
2
~H2 for l = Lz in spatial R3, taking the quark mass of m = 0.01 in the lattice unit.

Again, the local chiral condensate takes a significant value in the vicinity of the
magnetic field ~H, i.e., non-zero flux of F = 1

2
~H2 > 0, even without (anti)monopoles. Note

also that this system has G = ~H · ~E = 0 everywhere, because of ~E =~0. Therefore, in this
idealized system, we conclude that the magnetic field or F has the primary correlation
with the local chiral condensate.
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Figure 4. An idealized Abelian gauge system of a static magnetic flux without monopoles. In the three dimensional space
R3, the value is visualized with the color graduation for (a) the local chiral condensate and (b) the magnetic quantity F .

6. Lattice QCD Study for Local Chiral Condensate, Monopoles, and Magnetic Fields

In our previous study with lattice QCD, we observed a strong correlation between the
local chiral condensate and monopoles in Abelian projected QCD [33]. As a possible reason
of this correlation, we conjectured that the strong magnetic field around monopoles is
responsible to chiral symmetry breaking in QCD, similarly to the magnetic catalysis [46–49].

In this section, using lattice QCD Monte Carlo simulations, we investigate the relation
among the local chiral condensate, monopoles, and magnetic fields in Abelian projected
QCD. In this paper, the SU(3) lattice QCD simulation is performed using the standard
plaquette action at the quenched level. In each space-time direction, we impose the periodic
boundary condition for link variables, and the anti-periodic boundary condition for quarks
in order to describe also thermal QCD.

For the numerical Monte Carlo calculation, we basically adopt the lattice parameter of
β ≡ 2Nc/g2 = 6.0 and the size V = 244. The lattice spacing a ' 0.1 fm is obtained from the
string tension σ = 0.89 GeV/fm [37]. Additionally, we adopt β = 6.0 and V = 243 × 6 for
the high-temperature deconfined phase at T ' 330 MeV above the critical temperature.

Using the pseudo-heat-bath algorithm, we generate 100 and 200 gauge configura-
tions for V = 244 and 243 × 6, respectively. All the gauge configurations are taken every
500 sweeps after thermalization of 5000 sweeps. MA gauge fixing is performed with the
stopping criterion that the deviation ∆RMA/(4V) becomes smaller than 10−5 in 100 iter-
ations. For the calculation of the local chiral condensate, we use the quark propagator
of the KS fermion with the quark mass of m = 0.01, 0.015, 0.02 in the lattice unit, Here,
the quark mass is taken to be finite, since the chiral and continuum limits do not commute
for the KS fermion at the quenched level [45]. The jackknife method is used for statistical
error estimates.

For each lattice gauge configuration of Abelian projected QCD in the MA gauge, we
calculate the local monopole density ρL(s), the local chiral condensate, and the Lorentz
invariants F and G, defined in Section 3.

6.1. Distribution Similarity between Local Chiral Condensate and Magnetic Variables

To begin with, we pick up a gauge configuration generated in lattice QCD on V = 244

at β = 6.0, and investigate correlation between the local chiral condensate and mag-
netic variables.
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Figure 5 shows the local chiral condensate 〈χ̄χ(s)〉u with the quark mass of m = 0.02,
the local monopole density ρL(s), and the Lorentz invariants F (s) and |G(s)|, respectively,
as well as the monopole location in the space R3 at a time slice, for a typical gauge
configuration of Abelian projected QCD.
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Figure 5. Lattice QCD results for (a) the local chiral condensate 〈χ̄χ(s)〉u with the quark mass of m = 0.02, (b) the local
monopole density ρL(s), and the Lorentz invariants (c) F (s) and (d) |G(s)| in spatial R3 at a time slice, for a typical gauge
configuration of Abelian projected QCD. The value is visualized with the color graduation. Monopoles at t = 11.5 and 12.5
are plotted with upper and lower triangles, respectively.

From Figure 5a, one finds that the local chiral condensate tends to take a large value
near the monopole location [33]. Since monopoles appear on the dual lattice, we show
the local monopole density ρL(s), as the average on closest dual sites. Of course, ρL(s)
takes a large value near the monopole. The distribution of the the local monopole density
resembles that of the local chiral condensate, as was pointed out in Ref. [33]. Figure 5c,d
show the Lorentz invariants F and G, respectively. As a new result in this paper, we find
that the distributions of F and G also resemble that of the local chiral condensate.
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The close relation of monopoles with F and G might be understood, since the field
strength tensor relates to monopoles as ∂µ F̃i

µν = ki
ν. Roughly speaking, the monopole can

be a kind of source of F and G. In contrast, their similarity with the local chiral condensate
is fairly non-trivial.

In any case, we find clear correlation of distribution similarity among the local chiral
condensate, the local monopole density, and the Lorentz invariants F and G in Abelian
projected QCD in the MA gauge.

6.2. Correlation Coefficients between Local Chiral Condensate and Magnetic Variables

In this subsection, we quantify the similarity between the local chiral condensate
〈χ̄χ(s)〉u and magnetic variables, i.e., ρL(s), F (s) and G(s), defined in Section 3. To this
end, we use all the generated 100 gauge configurations in lattice QCD on V = 244 at
β = 6.0, and calculate the local chiral condensate at 24 distant space-time points for each
gauge configuration, resulting 1600 data points at each quark mass.

Figure 6 shows the scatter plot between the local chiral condensate 〈χ̄χ(s)〉u and
magnetic variables, i.e., the local monopole density ρL(s), Lorentz invariants F (s) and
|G(s)|, respectively, using 100 gauge configurations of Abelian projected QCD in the MA
gauge, with the quark mass of m = 0.01, 0.015, 0.02 in the lattice unit. In Figure 6, positive
correlation is qualitatively found between the local chiral condensate and the magnetic
variables, ρL, F and |G|, respectively.
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Figure 6. The scatter plot between the local chiral condensate 〈χ̄χ(s)〉u and (a) the local monopole density ρL(s), (b) F (s)
and (c) |G(s)|, using 100 Abelianized gauge configurations in SU(3) lattice QCD with β = 6.0 and V = 244 at each quark
mass m.

Next, we consider a quantitative analysis using correlation coefficients between the
local chiral condensate and the magnetic variables, as a statistical indicator of correlation. In
general, for arbitrary two statistical ensembles {Ai} and {Bi}, their correlation coefficient r
is defined as

r ≡ 〈(A− 〈A〉)(B− 〈B〉)〉
σAσB

, (31)

using the average notation 〈 〉 and the standard deviation σA ≡
√
〈(A− 〈A〉)2〉 and

σB ≡
√
〈(B− 〈B〉)2〉. Here, r = 1 means perfect positive linear correlation, and r & 0.7

indicates strong positive linear correlation.
We measure correlation coefficients between the local chiral condensate |〈χ̄χ(s)〉u|

and three magnetic variables, ρL(s)α, F (s)α and |G(s)|α, at various exponent α, using
100 gauge configurations of Abelian projected QCD in SU(3) lattice QCD at β = 6.0 on
V = 244, for the quark mass m = 0.01 in the lattice unit. Table 1 shows the result for the
correlation coefficients.
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Table 1. Correlation coefficients between the local chiral condensate |〈χ̄χ(s)〉u| and three magnetic
variables, ρL(s)α, F (s)α, and |G(s)|α at various α, using 100 gauge configurations of Abelian projected
QCD in SU(3) lattice QCD at β = 6.0 on V = 244, for the quark mass m = 0.01 in the lattice unit.

Lattice α ρα
L Fα |G|α

V = 244, β = 6.0 0.25 0.47 0.63 0.60
0.5 0.55 0.71 0.67
1 0.62 0.79 0.67

1.5 0.63 0.81 0.60
2 0.60 0.80 0.55

Quantitatively, the magnetic quantity F has the strongest correlation with the chiral
condensate rather than ρL and G. As a conclusion of this paper, we find a strong positive
correlation of r ' 0.8 between the local chiral condensate |〈χ̄χ(s)〉u| and the magnetic
quantity F (s) in the confined vacuum of Abelian projected QCD.

6.3. High-Temperature Deconfined Phase

Finally, we also investigate a high-temperature deconfined phase in lattice QCD on
V = 243 × 6 at β = 6.0, where the temperature is T ' 330 MeV above the critical tempera-
ture. We generate 200 gauge configurations, and calculate the local chiral condensate at 23

distant space points at a time slice for each gauge configuration, resulting 1600 data points
at each quark mass.

Figure 7 shows the scatter plot between the local chiral condensate |〈χ̄χ(s)〉u| and
magnetic variables, i.e., the local monopole density ρL(s), and Lorentz invariants F (s)
and |G(s)|, respectively, using 200 gauge configurations of Abelian projected QCD in the
MA gauge, with the quark mass of m = 0.01, 0.015, 0.02 in the lattice unit.
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Figure 7. Result of the high-temperature deconfined phase for the scatter plot between the local chiral condensate 〈χ̄χ(s)〉u
and (a) ρL(s), (b) F (s) and (c) |G(s)|, using 200 Abelianized gauge configurations in SU(3) lattice QCD with β = 6.0 and
V = 243 × 6 at each quark mass m.

We show in Table 2 correlation coefficients between the local chiral condensate |〈χ̄χ(s)〉u|
and three magnetic variables, ρL(s)α, F(s)α and |G(s)|α, at various exponent α, using 200
gauge configurations of Abelian projected QCD in SU(3) lattice QCD at β = 6.0 on V = 243×6,
for the quark mass m = 0.01 in the lattice unit.

From Figure 7 and Table 2, all the correlations between the local chiral condensate and
the three magnetic variables, ρL, F and G, become weaker in the deconfined phase, where
the chiral condensate itself goes to zero in the chiral limit.
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Table 2. Correlation coefficients in the deconfined phase between the local chiral condensate |〈χ̄χ(s)〉u|
and three magnetic variables, ρL(s)α, F(s)α and |G(s)|α at various α in Abelian projected QCD of SU(3)
lattice QCD at β = 6.0 on V = 243 × 6 for m = 0.01.

Lattice α ρα
L Fα |G|α

V = 243 × 6, β = 6.0 0.25 0.37 0.49 0.49
0.5 0.43 0.55 0.55
1 0.49 0.55 0.52

1.5 0.50 0.51 0.45
2 0.49 0.46 0.38

7. Summary and Conclusions

We have studied the relation among the local chiral condensate, monopoles, and mag-
netic fields, using the lattice gauge theory, as a continuation of Ref. [33].

First, we have created idealized Abelian gauge systems of (1) a static monopole–
antimonopole pair, and (2) a magnetic flux without monopoles, on a four-dimensional
Euclidean lattice. In these systems, we have calculated the local chiral condensate on
quasi-massless fermions coupled to the Abelian gauge field, and have found that the chiral
condensate is localized in the vicinity of the magnetic field.

Second, performing SU(3) lattice QCD Monte Carlo simulations, we have investigated
Abelian projected QCD in the maximally Abelian gauge, and have found clear correlation
of distribution similarity among the local chiral condensate, color monopoles, and color
magnetic fields in the Abelianized gauge configuration.

As a statistical indicator, we have measured the correlation coefficient r, and have
found a strong positive correlation of r ' 0.8 between the local chiral condensate and the
Euclidean color-magnetic quantity F .

We have also examined the local correlation in the deconfined phase of thermal QCD,
and have found that the correlation between the local chiral condensate and magnetic
variables becomes weaker.

Thus, in this paper, we have observed a strong correlation between the local chiral
condensate and magnetic fields in both idealized Abelian gauge systems and Abelian
projected QCD. From these results, we conjecture that the chiral condensate is locally
enhanced by the strong color-magnetic field around the monopoles in Abelian projected
QCD, like magnetic catalysis.

Note, however, that this correlation does not necessarily mean that chiral symmetry
breaking is caused by the non-uniform magnetic field. To realize spontaneous chiral-
symmetry breaking, as was discussed in Section 4.2, we need some zero mode in the
denominator of I in the chiral limit. In the context of the dual superconductor picture, this
might be realized by condensation of monopoles, as was suggested in the dual Ginzburg-
Landau theory [28].

To conclude, once chiral symmetry is spontaneously broken, the local chiral conden-
sate is expected to have a strong correlation with the color magnetic field.
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