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Abstract: The dominant CMB dipole anisotropy is a Doppler effect due to a particular motion of
the solar system with a velocity of 370 km/s. Since this derives from peculiar motions and local
inhomogeneities, one could meaningfully consider a fundamental frame of rest Σ associated with the
Universe as a whole. From the group properties of Lorentz transformations, two observers, individu-
ally moving within Σ, would still be connected by the relativistic composition rules. However, the
ultimate implications could be substantial. Physical interpretation is thus traditionally demanded
in order to correlate some of the dragging of light observed in the laboratory with the direct CMB
observations. Today, the small residuals—from those of Michelson–Morley to present experiments
with optical resonators—are just considered instrumental artifacts. However, if the velocity of light
in the interferometers is not the same parameter “c” of Lorentz transformations, nothing would
prevent a non-zero dragging. Furthermore, the observable effects would be much smaller than what
is classically expected and would most likely be of an irregular nature. We review an alternative
reading of experiments that leads to remarkable correlations with the CMB observations. Notably,
we explain the irregular 10−15 fractional frequency shift presently measured with optical resonators
operating in vacuum and solid dielectrics. For integration times of about 1 s and a typical Central
European latitude, we also predict daily variations of the Allan variance in the range (5÷ 12) · 10−16.

Keywords: Cosmic Microwave Background; preferred reference frame; ether-drift experiments

1. Introduction

Soon after the discovery [1] of the Cosmic Microwave Background (CMB), it was
realized that the observed temperature of the radiation should exhibit a small anisotropy
as a consequence of the Doppler effect associated with the motion of the Earth [2,3]
(β = V/c):

T(θ) =
To
√

1− β2

1− β cos θ
(1)

Accurate observations with satellites in space [4,5] have shown that the measured
temperature variations correspond to a motion of the solar system described by an average
velocity V ∼ 370 km/s, a right ascension α ∼ 168◦, and a declination γ ∼ −7◦, pointing
approximately in the direction of the constellation Leo. This means that, if one sets To ∼
2.725 K and β ∼ 0.00123, there are angular variations of a few millikelvin:

∆TCMB(θ) ∼ Toβ cos θ ∼ ±3.36 mK (2)

These variations represent by far the largest contributions to the CMB anisotropy and
are usually denoted as the kinematic dipole [6].

With this interpretation, it is natural to wonder about the reference frame in which this
CMB dipole vanishes exactly, i.e., could it represent a fundamental system for relativity, as
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in the original Lorentzian formulation? The standard answer is that one should not confuse
these two concepts. The CMB is a definite medium and sets a rest frame where the dipole
anisotropy is zero. There is nothing strange in that our motion with respect to this system
can be detected. In this sense, there would be no contradiction with special relativity.

However, to a good approximation, this kinematic dipole arises from the vector
combination of the various forms of peculiar motion that are involved (rotation of the solar
system around the center of the Milky Way, motion of the Milky Way toward the center
of the Local Group, motion of the Local Group of galaxies in the direction of the Great
Attractor, etc.) [5]. Therefore, since the observed CMB dipole reflects local inhomogeneities,
it becomes natural to imagine a global frame of rest associated with the Universe as a
whole. The isotropy of the CMB could then just indicate the existence of this fundamental
system Σ that we may conventionally decide to call “ether”, but the cosmic radiation
itself would not coincide with this form of ether1. Due to the group properties of Lorentz
transformations, two observers S’ and S”, moving individually with respect to Σ, would
still be connected by a Lorentz transformation with a relative velocity parameter fixed by
the standard relativistic composition rule 2. However, the ultimate consequences could be
far reaching, even considering just the implications for the interpretation of non-locality in
the quantum theory3.

The idea of a preferred frame finds further motivation in the modern picture of the
vacuum, which is intended as the lowest-energy state of the theory. This is not trivial
emptiness, but is believed to arise from the macroscopic Bose condensation process of
Higgs quanta, quark-antiquark pairs, gluons, etc.; see, e.g., [15–19]. The hypothetical
global frame could then reflect a vacuum structure that has a certain substantiality and can
determine the type of relativity physically realized in nature.

Since the answer cannot be found with theoretical arguments only, the physical role of
Σ is thus traditionally postponed to the experimental observation, in the Earth frame S′,
of some dragging of light: the effect of an “ether drift”. This would require: (i) the detection
of a small angular dependence ∆c̄θ

c 6= 0 of the two-way velocity of light in the laboratory
and (ii) the correlation this angular dependence with the direct CMB observations with
satellites in space.

Of course, experimental evidence for both the undulatory and corpuscular aspects of
radiation has substantially modified the consideration of an ether and its logical need for
the physical theory. However, the existence of a rest frame that is tight with respect to the
underlying energy structure of the vacuum does not contradict the basic tenets of general
relativity, where the off-diagonal components g0i of the metric play the role of a velocity
field and, as such, are the most natural way to introduce effects associated with the state of
motion of the observer, such as, for instance, a small angular dependence of the velocity
of light4.

So far, it is generally believed that no genuine ether drift has ever been observed.
In this traditional view, which dates back to the end of 19th century, when one was still
comparing with Maxwell’s classical predictions for the orbital velocity vorb = 30 km/s,
all measurements (from Michelson–Morley to the most recent experiments with optical
resonators) are seen as a long sequence of null results, i.e., typical instrumental effects in
experiments with better and better systematics (see, e.g., Figure 1 of Ref. [25]).

However, upon closer inspection, things are not so simple for at least three reasons:
(i) In the old experiments (Michelson–Morley, Miller, Tomaschek, Kennedy, Illing-

worth, Piccard–Stahel, Michelson–Pease–Pearson, Joos) [26–35], light was propagating in
gaseous media, air, or helium at room temperature and atmospheric pressure. In these
systems with a refractive index of N = 1 + ε, the velocity of light in the interferometers,
say cγ, is not the same parameter c of Lorentz transformations. Hence, nothing prevents
a non-zero effect because, when light is absorbed and re-emitted, the small fraction of
refracted light could keep track of the velocity of matter with respect to the hypothetical
Σ and produce a direction-dependent refractive index. Then, from symmetry arguments
valid in the ε→ 0 limit [36–40], one would expect |∆c̄θ |

c ∼ ε(v2/c2), which is much smaller



Universe 2021, 7, 311 3 of 33

than the classical expectation |∆c̄θ |class
c ∼ (v2/2c2). For instance, in the old experiments

in air (at room temperature and atmospheric pressure, where ε ∼ 2.8 · 10−4), a typical

value was |∆c̄θ |exp
c ∼ 3 · 10−10. This was classically interpreted as a velocity of 7.3 km/s, but

would now correspond to 310 km/s. Analogously, in the old experiment in gaseous helium
(at room temperature and atmospheric pressure, where ε ∼ 3.3 · 10−5), a typical value was
|∆c̄θ |exp

c ∼ 2.2 · 10−11. This was classically interpreted as a velocity of 2 km/s, but would
now correspond to 240 km/s. Those old measurements could thus become consistent with
the motion of the Earth in the CMB.

(ii) Differently from those old measurements, in modern experiments, light now
propagates in a high vacuum or in solid dielectrics, often in the cryogenic regime. Then,
the more stringent limits of the present might not depend only on the technological progress,
but also on the media that are tested, thus preventing a straightforward comparison.

(iii) In the analysis of the data, the hypothetical signal of the drift was always as-
sumed to be a regular phenomenon—namely, with only smooth time modulations that
depend deterministically on the rotation of the Earth (and its orbital revolution). The data,
instead, always had an irregular behavior, with statistical averages much smaller than
the individual measurements, inducing one to interpret the measurements as typical in-
strumental artifacts. However, a relation, if any, between the macroscopic motion of the
Earth and the microscopic propagation of light in the laboratory depends ultimately on
the nature of the physical vacuum. By comparing with the motion of a body in a fluid,
this traditional view corresponds to the form of regular (“laminar”) flow in which global
and local velocity fields coincide. Some general arguments (see [41,42]) suggest instead
that the physical vacuum might behave as a stochastic medium that resembles a turbulent
fluid in which large-scale and small-scale flows are only indirectly related. This means that
the projection of the global velocity field at the site of the experiment, say ṽµ(t), could
differ non-trivially from the local field vµ(t), which determines the direction and magni-
tude of the drift in the plane of the interferometer. In particular, if turbulence becomes
isotropic at the small scale of the experiment, a genuine non-zero signal can coexist with
vanishing statistical averages for all vector quantities. Thus, one should Fourier analyze
the data for ∆c̄θ(t)

c and extract the (second-harmonic) phase θ2(t) and amplitude A2(t),
which give, respectively, the direction and magnitude of the local drift, and concentrate
on the amplitude, which, being positive definite, remains non-zero under any averaging
procedure. By correlating the local vµ(t) with the global ṽµ(t), the time modulations
of the statistical average 〈A2(t)〉stat will then give information on the magnitude, right
ascension, and declination of the cosmic motion. Depending on the type of correlation,
there are various implications. For instance, in a uniform-probability model, where the
kinematic parameters of the global ṽµ(t) are just used to fix the typical boundaries for a
local random vµ(t), one finds 〈A2(t)〉stat = (π2/18)Ã2(t), where Ã2(t) is the amplitude in
the deterministic picture. With such smaller statistical averages, one will obtain a velocity
that is larger by

√
18/π2 ∼ 1.35 from the same data. Therefore, by returning to those old

measurements— |∆c̄θ |exp
c ∼ 3 · 10−10 and |∆c̄θ |exp

c ∼ 2.2 · 10−11, respectively, for air or gaseous
helium at atmospheric pressure—the data can be interpreted in three different ways: (a)
as 7.3 and 2 km/s in a classical picture, (b) as 310 and 240 km/s in a modern scheme and
in a smooth picture of the drift, or (c) as 418 and 324 km/s in a modern scheme, but now
allowing for irregular fluctuations of the signal. In this third interpretation, the average of
the two values agrees very well with the CMB velocity of 370 km/s.

After having illustrated why the evidences for Σ may be much more subtle than
usually believed, in Section 2, we will review the basics of these experiments and,
in Sections 3 and 4, we will review the alternative theoretical framework of [37–40]. This
will be applied in Section 5 to the old experiments in gaseous media, where ∆c̄θ

c was
extracted from the fringe shifts in Michelson interferometers. As we will show, our scheme
leads to a consistent description of the data and to remarkable correlations with the direct
CMB observations with satellites in space.
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Still, the simple relation |∆c̄θ |
c ∼ ε(v2/c2) leaves unexplained the physical mechanisms

producing the observed anisotropy in gaseous systems. As a first possibility, we have
thus considered that the electromagnetic field of the incoming light could determine differ-
ent polarizations in different directions in the dielectric depending on its state of motion.
However, if this works in weakly bound gaseous matter, the same mechanism should also
work in a strongly bound solid dielectric, where the refractivity is (Nsolid − 1) = O(1),
and thus, it should produce a much larger |∆c̄θ |

c ∼ (Nsolid − 1)(v2/c2) ∼ 10−6. This is
in contrast with the Shamir–Fox [43] experiment in perspex, where the observed value
was smaller by orders of magnitude. Then, as an alternative possibility, in Section 6, we
review the traditional thermal interpretation [44,45] of the residuals in gaseous media.
The idea was that, in a weakly bound system as a gas, a small temperature difference
∆Tgas(θ) of a millikelvin or so between the optical arms could induce convective cur-
rents in the gas and, in turn, angular differences in the refractive index proportional to
εgas∆Tgas(θ)/T, where T ∼ 300 K is the temperature of the laboratory. In our scheme,
the overall consistency of different experiments would now indicate that such ∆Tgas(θ)
must have a non-local origin as if the interactions with the background radiation could
transfer a part of ∆TCMB(θ) in Equation (2) and bring the gas out of equilibrium. However,
those old estimates were slightly too large because our analysis gave ∆Tgas(θ) = (0.2÷ 0.3)
mK. Thus, these interactions were so weak that, on average, the temperature differences
induced in the optical paths were only 1/10 of the ∆TCMB(θ) in Equation (2). Nevertheless,
whatever its precise value is, this typical magnitude can help with intuition. In fact, it can
explain the quantitative reduction of the effect in the vacuum limit, where εgas → 0 and
the qualitative difference with strongly bound solid dielectrics, and where such small tem-
perature differences would mainly dissipate through heat conduction without producing
any particle motion and directional refraction in the rest frame of the medium.

Most significantly, this thermal argument has an interesting predictive power. In fact,
it implies that if some tiny fundamental signal were definitely detected in vacuum, then,
with very precise measurements, the same signal should also show up in a solid dielectric
where the non-local thermal gradient is ineffective. In Section 7, this expectation will be
compared with the modern experiments, where ∆c̄θ

c is now extracted from the frequency
shift of two optical resonators. Here, after the vector average of many observations,
the present limit is a residual 〈∆c̄θ

c 〉 = 10−18 ÷ 10−19. However, this just reflects the

very irregular nature of the signal because its typical magnitude has a value |∆c̄θ(t)|
c ∼

10−15, which is about 1000 times larger. This 10−15 magnitude is found with vacuum
resonators [46–51] made of different materials and operating at room temperature and/or
in the cryogenic regime, as well as in the most precise experiment ever performed in a
solid dielectric [25]. As such, it could hardly be interpreted as a spurious effect. In the
same model discussed above, we are then led to the concept of a refractive index Nv
for the physical vacuum, which is established in an apparatus placed on the Earth’s
surface. This Nv should differ from unity at the 10−9 level in order to give |∆c̄θ(t)|v

c ∼
(Nv − 1) (v2(t)/c2) ∼ 10−15, and thus, it would fit with [52], where a vacuum refractivity
εv = (Nv − 1) ∼ 10−9 was considered. Indeed, if the curvature observed in a gravitational
field reflects local deformations of the physical space-time units, for an apparatus on the
Earth’s surface, there might be a tiny refractivity εv ∼ (2GN M/c2R) ∼ 1.4 · 10−9, where GN
is the Newton constant and M and R are the mass and radius of the Earth. This could make
a difference with the ideal free-fall environment, which is always assumed to operationally
define the parameter c of Lorentz transformations in the presence of gravitational effects.
Then, for a typical daily projection of 250 km/s . ṽ(t) . 370 km/s and in the same
uniform-probability model that was used successfully for the classical experiments, we
would expect a fundamental signal with an average magnitude of (8.5± 3.5) · 10−16. This is
a genuine signal, which would pose an intrinsic limitation to the precision of measurements
and, according to our numerical simulations, can be approximated as white noise. Thus,
it should be compared with the frequency shift of two optical resonators at the largest
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integration time (typically 1 s) where the pure white-noise branch is as small as possible,
but other types of noise are not yet important.

As emphasized in the conclusive Section 8, the consistency of this prediction with the
most precise measurements in vacuum and solid dielectrics that operate at room tempera-
ture and in the cryogenic regime and the satisfactory description of the old experiments
should therefore induce one to perform an ultimate experimental check: detecting the
expected, periodic, and daily variations in the range (5÷ 12) · 10−16.

2. Basics of the Ether-Drift Experiments

Let us start with some basic notions. As anticipated, old and modern experiments
adopt different technologies, but, in the end, have the same scope: looking for the hypo-
thetical Σ through a tiny angular dependence of the two-way velocity of light c̄γ(θ). This
quantity can be measured unambiguously and is defined through the one-way velocity
cγ(θ) as

c̄γ(θ) =
2 cγ(θ)cγ(π + θ)

cγ(θ) + cγ(π + θ)
(3)

where θ indicates the angle between the direction where light propagates and the velocity
with respect to Σ. By defining the anisotropy

∆c̄θ = c̄γ(π/2 + θ)− c̄γ(θ)

one finds a simple relation with ∆t(θ), the difference in time for light propagating back
and forth along perpendicular rods of length D (see Figure 1), and one finds

∆t(θ) =
2D

c̄γ(θ)
− 2D

c̄γ(π/2 + θ)
∼ 2D

c
∆c̄θ

c
(4)

Figure 1. A schematic illustration of the Michelson interferometer.

This relation was at the base of the original Michelson interferometer, but is also valid
today when we assume Lorentz transformations. In this case, in fact, in the S′ frame where
the rod is at rest, the length D does not depend on the orientation (in the last relation, we
are assuming the propagation of light in a medium with a refractive index N = 1 + ε,
and ε� 1). We thus get the fringe patterns (λ being the wavelength of light)

∆λ(θ)

λ
∼ 2D

λ

∆c̄θ

c
(5)

which were measured in the old experiments.
Instead, nowadays, an angular dependence of c̄γ(θ) is extracted from the frequency

shift ∆ν(θ) of two optical resonators; see Figure 2. The particular type of laser-cavity
coupling used in the experiments is known in the literature as the Pound–Drever–Hall
system [53,54]. The details of this technique go beyond our scope. However, the main ideas
are simple and beautifully explained in Black’s tutorial article [55]. A laser beam is sent
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into a Fabry–Perot cavity, which acts as a filter. Then, a part of the output of the cavity is
fed back to the laser to suppress its frequency fluctuations. This method provides a very
narrow bandwidth and has been crucial for the precision measurements that we are going
to describe.

Figure 2. The scheme of a modern ether-drift experiment. The light frequencies are first stabilized
by coupling the lasers to Fabry–Perot optical resonators. The frequencies ν1 and ν2 of the signals
from the resonators are then compared in the beat note detector, which provides the frequency shift
∆ν = ν1 − ν2.

The frequency of the resonators is proportional to c̄γ(θ) through an integer number m,
while fixing the cavity mode and the cavity length L measured in the laboratory S′ frame:

ν(θ) =
c̄γ(θ)m

2L
(6)

Again, by assuming Lorentz transformations, the length of the cavity in its rest frame
S′ does not depend on the orientation in space, so that

∆ν(θ)

ν0
∼ ∆c̄θ

c
(7)

where ν0 is the reference frequency of the resonators. These relations have always been
assumed in the interpretation of the experiments.

3. A Modern Version of Maxwell Calculation

For a quantitative analysis, let us consider a medium of refractive index N = 1 + ε
with 0 ≤ ε � 1. This medium fills an optical cavity at rest in the laboratory S′ frame in
motion with velocity v with respect to Σ. If we assume (a) that c̄γ(θ) is isotropic when
S′ ≡ Σ and (b) that Lorentz transformations are valid, then any anisotropy in S′ should
vanish identically either for v = 0 or for the ideal vacuum limit, i.e., when the velocity
of light tends to the basic parameter c of Lorentz transformations5. Therefore, one can
perform an expansion in powers of the two small parameters ε and β = v/c. Since, by its
definition, c̄γ(θ) is invariant under the replacement β → −β and, at fixed β, is invariant
when replacing θ → π + θ, the lowest non-trivial angular dependence is found to be
O(εβ2) and can be expressed in the general form [17–19]:

c̄γ(θ) ∼
c
N

[
1− ε β2

∞

∑
n=0

ζ2nP2n(cos θ)

]
(8)
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In the above relation, the invariance under θ → π + θ is achieved by expanding in
even-order Legendre polynomials with arbitrary coefficients ζ2n = O(1). These coefficients
vanish identically in Einstein’s special relativity with no preferred system, but should not
vanish a priori in a “Lorentzian” formulation.

If we retain the first few ζs as free parameters, Equation (8) could already be useful for
fitting experimental data. In any case, independently of their numerical values, one should
appreciate the substantial difference introduced with respect to the classical prediction.
As an example, by assuming, for simplicity, v = 300 km/s and ε ∼ 2.8 · 10−4 for air at room
temperature and atmospheric pressure, we find the following difference:

∆c̄θ(0)
c
∼ 2.8 · 10−10

[
3
2

ζ2 +
5
8

ζ4 + ...
]

(9)

This would be about three orders of magnitude smaller than the classical estimate
β2 = 10−6 that would be expected from Maxwell’s calculation [57] for the same v = 300 km/s.
However, depending on the actual ζs, Equation (9) would also be about 10÷ 20 times
smaller than the old standard value for the much lower orbital velocity vorb = 30 km/s:

∆c̄θ(0)
c

∣∣∣
class

=
v2

orb
c2 = 10−8 (10)

For experiments in gaseous helium at room temperature and atmospheric pressure,
where ε ∼ 3.3 · 10−5, the equivalent of Equation (9) would even be 100 ÷ 200 times
smaller than this old standard. The above elementary arguments suggest that the old
ether-drift experiments in gaseous media might have been overlooked. So far, they have
been considered as null results. However, this may just depend on a comparison with the
wrong classical formula.

However, the dependence on the unknown ζs is unpleasant because it prevents a
straightforward comparison with the data. For this reason, according to other symmetry
arguments [37,39,40], we will further sharpen our analysis with another derivation of
the ε → 0 limit. This additional derivation makes use of the effective space-time metric
gµν = gµν(N ), which should be substituted into the relation gµν pµ pν = 0 to describe light
in a medium with refractive index N ; see, e.g., [58]. At the quantum level, this metric was
derived by Jauch and Watson [59] when quantizing the electromagnetic field in a dielectric.
They realized that the formalism introduces a preferred reference system where the photon
energy Eγ does not depend on the angle θ of light propagation. They observed that this is
“usually taken as the system for which the medium is at rest”, a conclusion that is obvious
in special relativity, where there is no preferred system, but it is less obvious in our case.
We will therefore adapt their results and consider a different limit where the photon energy
Eγ is θ−independent only when both the medium and observer are at rest in some frame Σ.

To see how this works, we will consider two identical optical resonators—namely,
resonator 1, which is at rest in Σ, and resonator 2, which is at rest in S′. We will also intro-
duce πµ ≡ ( Eπ

c , ß) to indicate the light 4-momentum for Σ in its cavity 1 and pµ ≡ (
Ep
c , p)

to indicate the analogous 4-momentum of light for S′ in its cavity 2. Finally, we will denote
by gµν the space-time metric used by S′ in the relation gµν pµ pν = 0 and by

γµν = diag(N 2,−1,−1,−1) (11)

the metric that Σ adopts in the analogous relation γµνπµπν = 0 and that produces the
isotropic velocity cγ = Eπ/|ß| = c

N .
We emphasize the peculiar view of special relativity where no observable difference

can exist between Σ and S′. In our perspective, instead, this physical equivalence is only
assumed in the idealN = 1 vacuum limit. Indeed, as anticipated in the introduction, in the
presence of matter, where light is absorbed and then re-emitted, the fraction of refracted
light could keep track of the particular motion of matter with respect to Σ and produce a
∆c̄θ 6= 0.
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By first considering the N = 1 limit, the frame-independence of the velocity of light
requires one to impose

gµν(N = 1) = γµν(N = 1) = ηµν (12)

where ηµν is the Minkowski tensor. This standard equality amounts to the introduction of
a transformation matrix, say Aµ

ν , such that, for N = 1,

gµν(N = 1) = Aµ
ρ Aν

σγρσ(N = 1) = Aµ
ρ Aν

σηρσ = ηµν (13)

This relation is strictly valid for N = 1. However, by continuity, one is driven to
conclude that an analogous relation between gµν and γµν should also hold in the ε→ 0 limit.
The only subtlety is that relation (13) does not uniquely fix Aµ

ν . In fact, it is fulfilled either
by choosing the identity matrix, i.e., Aµ

ν = δ
µ
ν , or by choosing a Lorentz transformation,

i.e., Aµ
ν = Λµ

ν . It thus follows that Aµ
ν is a two-valued function when N → 1.

This gives two possible solutions for the metric in S′. In fact, when Aµ
ν is the identity

matrix, we find
[gµν(N )]1 = δ

µ
ρ δν

σγρσ = γµν ∼ ηµν + 2εδ
µ
0 δν

0 (14)

while, when Aµ
ν is a Lorentz transformation, we obtain

[gµν(N )]2 = Λµ
ρ Λν

σγρσ ∼ ηµν + 2εvµvν (15)

where vµ is the S′ 4-velocity, and vµ ≡ (v0, v/c) with vµvµ = 1. As a consequence,
the equality [gµν(N )]1 = [gµν(N )]2 can only hold for vµ = δ

µ
0 , i.e., for v = 0 when S′ ≡ Σ.

Notice that by choosing the first solution [gµν(N )]1, which is implicitly assumed in
special relativity to preserve isotropy in all reference frames, as well as for N 6= 1, we are
considering a transformation matrix Aµ

ν that is discontinuous for any ε 6= 0. In fact, it is the
non-trivial peculiarity of Lorentz transformations to enforce Equation (13) for Aµ

ν = Λµ
ν so

that ΛµσΛν
σ = ηµν, and the Minkowski metric, if valid in one frame, will then apply to all

equivalent frames.
On the other hand, if one inserts [gµν(N )]2 into the relation pµ pνgµν = 0, the photon

energy E(|p|, θ) will now depend on the direction of propagation. This gives the one-way
velocity cγ(θ) =

E(|p|,θ)
|p| , which, to O(ε) and O(β2), is

cγ(θ) ∼
c
N

[
1− 2εβ cos θ − εβ2(1 + cos2 θ)

]
(16)

with a two-way combination:

c̄γ(θ) =
2cγ(θ)cγ(π + θ)

cγ(θ) + cγ(π + θ)
∼ c
N

[
1− εβ2(1 + cos2 θ)

]
(17)

This final form, which corresponds to the setting in Equation (8) (ζ0 = 4/3, ζ2 =
2/3, and all ζ2n = 0 for n > 1), could be considered the modern version of Maxwell’s
calculation [57] and will be adopted in the analysis of experiments near the ε = 0 limit,
as for gaseous systems.

For the sake of clarity, let us return to the definition of the gas refractive index N in
Equation (11). How is this quantity related to the experimental value Nexp obtained from
the two-way velocity measured in the Earth laboratory? This can be easily understood by
first introducing an angle-dependent N̄ (θ) through c̄γ(θ) ≡ c/N̄ (θ) with

N̄ (θ) ∼ N
[
1 + (N − 1)β2(1 + cos2 θ)

]
(18)

and then defining the isotropic experimental value after an angular averaging—namely,

c
Nexp

≡ 〈 c
N̄ (θ)

〉θ =
c
N

[
1− 3

2
(N − 1)β2

]
(19)
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One could therefore obtain the unknown valueN ≡ N (Σ) (as if the cavity with the gas
were at rest in Σ) from the experimental Nexp ≡ N (earth) and v. As an example, the most
precise determinations for air are at a level 10−7, say Nexp = 1.0002924.., for λ = 589 nm,
0 ◦C, and atmospheric pressure. Therefore, for v ∼ 370 km/s, the difference betweenN (Σ)
and N (earth) is smaller than 10−9 and can be ignored. Analogous considerations apply to
other gaseous media (such as N, CO2, helium, etc.) where the precision in Nexp is, at best,
at the level of a few 10−7. Finally, whatever v is, the relation N (Σ) = Nexp becomes more
and more accurate in the low-pressure limit where (Nexp − 1)→ 0.

To conclude, from Equation (17), the fractional anisotropy is found to be

∆c̄θ

c
=

c̄γ(π/2 + θ)− c̄γ(θ)

c
∼ ε

v2

c2 cos 2(θ − θ2) (20)

and is suppressed by the small factor 2ε with respect to the classical estimate ∆c̄θ
c ∼

v2

2c2 .
Here, v and θ2 indicate the magnitude and the direction of the drift in the interferometer’s
plane, and, from Equation (5), one obtains the fringe pattern

∆λ(θ)

λ
=

2D
λ

∆c̄θ

c
∼ 2D

λ
ε

v2

c2 cos 2(θ − θ2) (21)

In this way, the dragging of light in the Earth frame is described as a pure second-
harmonic effect that is periodic in the range [0, π]. This is the same as in the classical theory
(see, e.g., [60]), with the exception of its amplitude,

A2 =
2D
λ

ε
v2

c2 (22)

which is suppressed by the factor 2ε relative to the classical amplitude Aclass
2 = D

λ
v2

c2 . This
difference could then be re-absorbed into an observable velocity,

A2 =
D
λ

v2
obs
c2 (23)

which depends on the gas refractive index

v2
obs ∼ 2εv2 (24)

This vobs is the very small velocity traditionally extracted from the classical analysis
of the experiments through the relation

vobs ∼ 30 km/s

√
AEXP

2

Aclass
2

(25)

when one was still comparing with the standard classical prediction Aclass
2 = D

λ (
30 km/s

c )2

for the orbital velocity.
However, before a more detailed comparison with experiments, additional consid-

erations are needed about the physical nature of the ether drift as an irregular phe-
nomenon. Some general motivations and a simple stochastic model will be illustrated in
the following section.

4. Dragging of Light as an Irregular Phenomenon

Aside from the magnitude of the signal, the other important aspect of the experiments
concerns the time dependence of the data. As anticipated in the introduction, it was always
assumed that, for short-term observations of a few days where there are no sizable changes
in the orbital velocity of the Earth, a genuine physical signal should reproduce the regular
modulations induced by its rotation. Instead, in both classical and modern experiments, the
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data have always shown a very irregular behavior with statistical averages that are much
smaller than the instantaneous values. This was always a strong argument for interpreting
the data as instrumental artifacts. However, in principle, a definite instantaneous value
∆c̄θ(t)

c 6= 0 could also coexist with a vanishing statistical average.
This possibility was considered in [37–42] by assuming that the observed signal is

determined by a local velocity field, say vµ(t), which does not coincide with the projection
of the global Earth motion, say ṽµ(t), at the observation site. By comparing with the motion
of a body in a fluid, the equality vµ(t) = ṽµ(t) amounts to the assumption of a form of
regular, laminar flow where global and local velocity fields coincide. Instead, in the case of
a turbulent fluid, large-scale and small-scale flows would only be indirectly related.

An intuitive motivation for this turbulent-fluid analogy derives from the comparison
of the vacuum to a fluid with vanishing viscosity. Then, within the Navier-0Stokes equation,
a laminar flow is by no means obvious due to the subtlety of the zero-viscosity (or infinite
Reynolds number) limit; see, for instance, the discussion given by Feynman in Section
41.5, Volume II of his Lectures [61]. The reason is that the velocity of such a hypothetical
fluid cannot be a differentiable function [62], and one should think, instead, in terms of a
continuous velocity field that is not differentiable anywhere [63]. This analogy leads to the
idea of a signal with a fundamental stochastic nature, such as when turbulence, at small
scales, becomes homogeneous and isotropic.

With this in mind, let us return to Equation (20) and make explicit the time dependence
of the signal by re-writing it as

∆c̄θ(t)
c
∼ ε

v2(t)
c2 cos 2(θ − θ2(t)) (26)

where v(t) and θ2(t) indicate, respectively, the instantaneous magnitude and direction of
the drift in the plane of the interferometer. This can also be re-written as

∆c̄θ(t)
c
∼ 2S(t) sin 2θ + 2C(t) cos 2θ (27)

with

2C(t) = ε
v2

x(t)− v2
y(t)

c2 2S(t) = ε
2vx(t)vy(t)

c2 (28)

and vx(t) = v(t) cos θ2(t), vy(t) = v(t) sin θ2(t).
The standard analysis is based on a cosmic velocity of the Earth characterized by a

magnitude V, a right ascension α, and an angular declination γ. These parameters can be
considered constant for short-term observations of a few days so that, with the traditional
identifications v(t) ≡ ṽ(t) and θ2(t) ≡ θ̃2(t), the only time dependence should be due
to the Earth’s rotation. Here, ṽ(t) and θ̃2(t) are derived from the simple application of
spherical trigonometry [64]:

cos z(t) = sin γ sin φ + cos γ cos φ cos(t′ − α) (29)

ṽ(t) = V sin z(t) (30)

ṽx(t) = ṽ(t) cos θ̃2(t) = V
[
sin γ cos φ− cos γ sin φ cos(t′ − α)

]
(31)

ṽy(t) = ṽ(t) sin θ̃2(t) = V cos γ sin(t′ − α) (32)

In the above relations, z = z(t) is the zenithal distance of V, φ is the latitude of the
laboratory, t′ = ωsidt is the sidereal time of the observation in degrees (ωsid ∼ 2π

23h56′
), and

the angle θ̃2(t) is counted conventionally from North through East so that North is θ̃2 = 0
and East is θ̃2 = 90◦. With the identifications v(t) ≡ ṽ(t) and θ2(t) ≡ θ̃2(t) (or, equivalently,
vx(t) = ṽx(t) and vy(t) = ṽy(t)), one thus arrives at the simple Fourier decomposition

S(t) ≡ S̃(t) = S0 + Ss1 sin t′ + Sc1 cos t′ + Ss2 sin(2t′) + Sc2 cos(2t′) (33)
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C(t) ≡ C̃(t) = C0 + Cs1 sin t′ + Cc1 cos t′ + Cs2 sin(2t′) + Cc2 cos(2t′) (34)

where the Ck and Sk Fourier coefficients depend on the three parameters (V, α, γ) and are
given explicitly in [37,40].

Instead, we will consider an alternative scenario where vx(t) 6= ṽx(t) and vy(t) 6= ṽy(t).
In particular, the local velocity components, vx(t) and vy(t), will be assumed to be non-
differentiable functions expressed in terms of random Fourier series [62,65,66]. The simplest
model corresponds to a turbulence, which, at small scales, appears homogeneous and
isotropic. The analysis of the previous section can then be embodied in an effective space-
time metric for light propagation

gµν(t) ∼ ηµν + 2εvµ(t)vν(t) (35)

where vµ(t) is a random 4-velocity field that describes the drift and whose boundaries
depend on the smooth ṽµ(t) determined by the average motion of the Earth. If this
corresponds to the actual physical situation, a genuine stochastic signal can easily become
consistent with average values (Ck)

avg = (Sk)
avg = 0 obtained by fitting the data with

Equations (33) and (34).
For homogeneous turbulence, a series representation that is suitable for numerical

simulations of a discrete signal can be expressed in the form:

vx(tk) =
∞

∑
n=1

[xn(1) cos ωntk + xn(2) sin ωntk] (36)

vy(tk) =
∞

∑
n=1

[yn(1) cos ωntk + yn(2) sin ωntk] (37)

Here, ωn = 2nπ/T, and T is the common period of all Fourier components. Further-
more, tk = (k− 1)∆t, with k = 1, 2..., and ∆t is the sampling time. Finally, xn(i = 1, 2) and
yn(i = 1, 2) are random variables with the dimension of a velocity and vanishing mean.

In our simulations, the value T = Tday= 24 h and a sampling step ∆t = 1 s were
adopted. However, the results would remain unchanged by any rescaling of T → sT and
∆t→ s∆t.

In general, we define [−dx(t), dx(t)] as the range for xn(i = 1, 2) and [−dy(t), dy(t)]
as the corresponding range for yn(i = 1, 2). By assuming statistical isotropy, we should
impose dx(t) = dy(t). However, to see the difference, we will first consider the more
general case of dx(t) 6= dy(t). If we assume that xn(i = 1, 2) and yn(i = 1, 2) vary with
uniform probability within their ranges [−dx(t), dx(t)] and [−dy(t), dy(t)], the only non-
vanishing (quadratic) statistical averages are

〈x2
n(i = 1, 2)〉stat =

d2
x(t)

3 n2η
〈y2

n(i = 1, 2)〉stat =
d2

y(t)

3 n2η
(38)

Here, the exponent η ensures finite statistical averages 〈v2
x(t)〉stat and 〈v2

y(t)〉stat for
an arbitrarily large number of Fourier components. In our simulations, between the two
possible alternatives η = 5/6 and η = 1 of [66], we have chosen η = 1, which corresponds
to the Lagrangian picture in which the point where the fluid velocity is measured is a
wandering material point in the fluid.

In the end, the cosmic motion of the Earth enters through the identifications dx(t) = ṽx(t)
and dy(t) = ṽy(t), as defined in Equations (29)–(32) with V = 370 km/s, α = 168 degrees,
and γ = − 7 degrees, as fixed from our motion within the CMB.

On the other hand, by assuming statistical isotropy, from the relation

ṽ2
x(t) + ṽ2

y(t) = ṽ2(t) (39)
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we obtain the identification

dx(t) = dy(t) =
ṽ(t)√

2
(40)

For this isotropic model, from Equations (36)–(40), we find

〈v2
x(t)〉stat = 〈v2

y(t)〉stat =
ṽ2(t)

2
1
3

∞

∑
n=1

1
n2 =

ṽ2(t)
2

π2

18

〈vx(t)vy(t)〉stat = 0 (41)

with statistical averages for the functions of Equations (28):

〈C(t)〉stat = 0 〈S(t)〉stat = 0 (42)

which vanish at any time t. Therefore, this model describes a definite non-zero signal, but,
if this signal were now fitted with Equations (33) and (34), it would produce vanishing
averages (Ck)

avg = 0, (Sk)
avg = 0 for all Fourier coefficients. In other words, with this

physical signal, these statistical averages will become smaller and smaller by simply
increasing the number of observations.

5. The Classical Experiments in Gaseous Media

To understand how radical the modification produced by Equations (42) in the anal-
ysis of the data is, let us now consider the traditional procedure adopted in the classical
experiments. One would measure the fringe shifts at some given sidereal time on consecu-
tive days so that changes in the orbital velocity were negligible. Then (see Equations (21)
and (27)), the measured shifts at the various angles θ were averaged:

〈∆λ(θ; t)
λ

〉stat =
2D
λ

[2 sin 2θ 〈S(t)〉stat + 2 cos 2θ 〈C(t)〉stat] (43)

and finally, these average values were compared with models for the Earth’s cosmic motion.
However, if, following the arguments of the previous section, the signal is so irregular

that, by increasing the number of measurements, 〈C(t)〉stat → 0 and 〈S(t)〉stat → 0, the
averages in Equation (43) would have no meaning. In fact, these averages would be
non-vanishing just because the statistics are finite. In particular, the direction θ2(t) of
the drift (defined by the relation tan 2θ2(t) = S(t)/C(t)) would vary randomly with no
definite limit.

Therefore, we should concentrate the analysis on the second-harmonic amplitudes,

A2(t) =
2D
λ

2
√

S2(t) + C2(t) ∼ 2D
λ

ε
v2

x(t) + v2
y(t)

c2 (44)

which are positive-definite and remain non-zero under the averaging procedure. More-
over, these are rotational-invariant quantities, and their statistical properties would re-
main unchanged in the isotropic model in Equation (40) or with the alternative choice of
dx(t) ≡ ṽx(t) and dy(t) ≡ ṽy(t). In this way, in a smooth deterministic model and using
Equation (30), we obtain

Ã2(t) ∼
2D
λ
· ε ṽ2(t)

c2 ∼ 2D
λ
· ε V2

c2 · sin2 z(t) (45)

while, with a full statistical average, from Equation (41),

〈A2(t)〉stat ∼
π2

18
· Ã2(t) (46)

By comparing these two expressions, it is evident that, from the same data, one
would now get a velocity that is larger by a factor of

√
18/π2 ∼ 1.35. In addition, from
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Equation (30), aside from the average magnitude 〈ṽ2(t)〉day = V2〈sin2 z(t)〉day, one could
determine the angular parameters α and γ from the time modulations of the amplitude.

As an example, let us consider the second-harmonic amplitudes for the Michelson–
Morley experiment; see Table 1. From these data, by computing the mean and variance,
one finds 〈AEXP

2 〉 ∼ 0.016 ± 0.006, so that by comparing with the classical prediction

Aclass
2 = D

λ
(30km/s)2

c2 ∼ 0.20 and using Equation (25), we find an observable velocity
vobs ∼ (8.4± 1.6) km/s, which is in good agreement with Miller’s analysis; see Figure 3.
However, for air at atmospheric pressure where ε ∼ 2.8 · 10−4, the true kinematical value
would instead be ṽ ∼ (355± 70) km/s from Equation (45) or ṽ ∼ (480± 95) km/s from
Equation (46).

Table 1. The second-harmonic amplitudes for the six experimental sessions of the Michelson–Morley
experiment. The table is taken from [37].

SESSION AEXP
2

8 July (noon) 0.010± 0.005
9 July (noon) 0.015± 0.005
11 July (noon) 0.025± 0.005

8 July (evening) 0.014± 0.005
9 July (evening) 0.011± 0.005
12 July (evening) 0.024± 0.005

Let us then consider Miller’s very extensive observations. After the re-analysis of his
work by the Shankland team [45], there is now the average second harmonic 〈AEXP

2 〉 =
0.044± 0.022 for all epochs of the year (see Table III of [45]). By comparing this amplitude

with the classical prediction for Miller’s apparatus Aclass
2 = D

λ
(30km/s)2

c2 ∼ 0.56, we find
vobs ∼ (8.4± 2.2) km/s. However, the true kinematical velocity is instead ṽ ∼ (355±
70) km/s according to Equation (45) or ṽ ∼ (480± 95) km/s according to Equation (46).

Note the agreement of the two determinations obtained in very different conditions
(the basement of the Cleveland laboratory or the top of Mount Wilson). This shows that the
traditional interpretation [44,45] of the residuals as temperature differences in the optical
paths is only acceptable provided that these temperature differences have a non-local origin.
We will return to this point in Section 6.

Figure 3. The observable velocity measured in various experiments reported by Miller [27].

There is no space for the details of all classical experiments. For that, we address
the reader to our book [40], which also contains many historical notes and references
to previous works. Here, we will limit ourselves to a brief description of Joos’ 1930
experiment [35] in Jena (sensitivity of about 1/3000 of a fringe), which is, by far, the most
precise of the classical repetitions of the Michelson–Morley experiment and is considered
the definitive disproof of Miller’s claims of a non-zero effect6.
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The data were taken at intervals of one hour during the sidereal day and recorded
photographically with an automatic procedure; see Figure 4. From this picture, Joos
adopted 1/1000 of a wavelength as the upper limit and deduced the bound of vobs .
1.5 km/s. To this end, he was comparing with the classical expectation that, for his
apparatus, a velocity of 30 km/s should have produced a second-harmonic amplitude of
0.375 wavelengths. However, since it is apparent that some fringe displacements were
certainly larger than 1/1000 of a wavelength, we performed second-harmonic fits for Joos’
data; see Figure 5. The resulting amplitudes are reported in Figure 6.

We note that the second-harmonic fit to the large fringe shifts in picture 11 has a very
good chi-square, which is comparable and often better than those of other observations
with smaller values; see Figure 5. Therefore, there is no reason to delete observation 11. Its
amplitude, however, is more than ten times larger than the amplitudes from observations
20 and 21. This difference cannot be understood in a smooth model of the drift, where the
projected velocity squared at the observation site can, at most, differ by a factor of two,
as for the CMB motion at a typical Central European latitude, where (ṽ)min ∼ 250 km/s
and (ṽ)max ∼ 370 km/s. To understand these characteristic fluctuations, we thus performed
various numerical simulations of these amplitudes [37,40] in our stochastic model. To this
end, Equations (36) and (37) were replaced in Equation (44), and the random velocity
components were bounded by the kinematical parameters (V, α, γ)CMB, as explained in
Section 4. Two simulations are shown in Figures 7 and 8.

Figure 4. The fringe shifts reported by Joos [35]. The scale corresponds to 1/1000 of a wavelength.



Universe 2021, 7, 311 15 of 33

Figure 5. Some second-harmonic fits to Joos’ data. The figure is taken from [40].
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Figure 6. Joos’ second-harmonic amplitudes in units of 10−3. The vertical band between the two
lines corresponds to the range (1.4± 0.8) · 10−3. The figure is taken from [37].
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Figure 7. Joos’ second-harmonic amplitudes (in units of 10−3 (black dots)) are compared with a
single simulation (red diamonds) at the same sidereal times as those in Joos’ observations. Two
fifth-order polynomial fits to the two sets of values are also shown. The figure is taken from [37] .
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We would like to emphasize two aspects. First, Joos’ average amplitude 〈AEXP
2 〉 =

(1.4± 0.8) · 10−3, when compared with the classical prediction for his interferometer Aclass
2 =

D
λ
(30km/s)2

c2 ∼ 0.375, gives indeed an observable velocity vobs ∼ (1.8± 0.5) km/s, which is
very close to the 1.5 km/s value quoted by Joos. However, when comparing this with our
prediction in the stochastic model in Equation (46), one would now find a true kinematical
velocity of ṽ = 305+85

−100 km/s. Second, when fitting the smooth black curve of the Joos data
in Figure 7 with Equations (29) and (30), one finds [37] a right ascension of α(fit− Joos) =
(168± 30) degrees and an angular declination of γ(fit− Joos) = (−13± 14) degrees, which
are consistent with the present values of α(CMB) ∼ 168 degrees and γ(CMB) ∼ −7 degrees.
This confirms that, when studied at different sidereal times, the measured amplitude can
also provide precious information on the angular parameters.

Finally, all experiments are compared with our stochastic model in Equation (46)
in Table 2. Notice the substantial difference from the analogous summary in Table I

of [45], where the authors compared with the classical relation Aclass
2 = D

λ
(30km/s)2

c2 and
emphasized the much smaller magnitude of the experimental data. The opposite is the
case here. In fact, our theoretical estimates are often smaller than the experimental results,
indicating, most likely, the presence of systematic effects in the measurements. At the same
time, however, by adopting Equation (46), the experiments in air give ṽair ∼ 418± 62 km/s,
and the two experiments in gaseous helium give ṽhelium ∼ 323± 70 km/s, with a global
average of 〈ṽ〉 ∼ 376± 46 km/s, which agrees well with the 370 km/s from the direct CMB
observations. Moreover, from the most precise Piccard–Stahel and Joos experiments, we
find two determinations, ṽ = 360+85

−110 km/s and ṽ = 305+85
−100 km/s, respectively, whose

average of 〈ṽ〉 ∼ 332+60
−80 km/s reproduces with high accuracy the projection of the CMB

velocity at a typical Central European latitude7.
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Figure 8. Joos’ second-harmonic amplitudes (in units of 10−3 (black dots)) are now compared with
a simulation where one averages ten measurements that were performed on 10 consecutive days
at the same sidereal times as those of Joos’ observations (red diamonds). The changes in the averages
observed by varying the parameters of the simulation were summarized into a central value and a
symmetric error. The figure is taken from [37].
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Table 2. The average second-harmonic amplitudes of classical ether-drift experiments. These were extracted from the
original papers by averaging the amplitudes of the individual observations and assuming the direction of the local drift to
be completely random (i.e., no vector averaging of different sessions). These experimental values were then compared with
the full statistical average in Equation (46) for a projection of the velocity of 250 km/s ≤ ṽ(t) ≤ 370 km/s and refractivities
of ε = 2.8 · 10−4 for air and ε = 3.3 · 10−5 for gaseous helium. The experimental value for the Morley–Miller experiment
was taken from the observed velocities reported in Miller’s Figure 4 and, here, our Figure 3. The experimental value
for the Michelson–Pease–Pearson experiment refers to the only known session for which the fringe shifts were reported
explicitly [34] and where the optical path was still fifty-five feet. The symbol ±.... means that the experimental uncertainty
cannot be determined from the available information.

Experiment Gas AEXP
2

2D
λ 〈A2(t)〉stat

Michelson (1881) air (7.8± ....) · 10−3 4 · 106 (0.7± 0.2) · 10−3

Michelson–Morley (1887) air (1.6± 0.6) · 10−2 4 · 107 (0.7± 0.2) · 10−2

Morley–Miller (1902–1905) air (4.0± 2.0) · 10−2 1.12 · 108 (2.0± 0.7) · 10−2

Miller (1921–1926) air (4.4± 2.2) · 10−2 1.12 · 108 (2.0± 0.7) · 10−2

Tomaschek (1924) air (1.0± 0.6) · 10−2 3 · 107 (0.5± 0.2) · 10−2

Kennedy (1926) helium < 0.002 7 · 106 (1.4± 0.5) · 10−4

Illingworth (1927) helium (2.2± 1.7) · 10−4 7 · 106 (1.4± 0.5) · 10−4

Piccard–Stahel (1928) air (2.8± 1.5) · 10−3 1.28 · 107 (2.2± 0.8) · 10−3

Mich.–Pease–Pearson (1929) air (0.6± ....) · 10−2 5.8 · 107 (1.0± 0.4) · 10−2

Joos (1930) helium (1.4± 0.8) · 10−3 7.5 · 107 (1.5± 0.6) · 10−3

These non-trivial checks confirm the overall consistency of our picture with the
classical experiments and should induce one to perform new and dedicated experiments
where the optical resonators, which are coupled to lasers (see Figure 2), are filled with
gaseous media. In this case, from Equation (7), one should compare the data with the
prediction

∆ν(θ)

ν0
=

∆c̄θ

c
∼ ε

v2

c2 cos 2(θ − θ2) (47)

However, precise measurements of the frequency shift in the gas mode are not so
simple [70]. For this reason, it is unclear if there will be a definite improvement with respect
to the classical experiments—in particular, with respect to Piccard–Stahel and Joos.

At present, a rough check of Equation (47) can, however, be obtained from the varia-
tions in the signal observed in the only modern experiment that was performed in these
conditions: the 1963 experiment by Jaseja et al. [71] with He-Ne lasers. Actually, at that
time, optical resonators were not yet used, and thus, they directly compared the frequencies
of two orthogonal He-Ne lasers under 90-degree rotations of the apparatus. However, the
light from the lasers emerged from a He-Ne gas mixture, and thus, the laser frequencies
provided a measure of the two-way velocity of light in that environment. As a matter of fact,
for a laser frequency of ν0 ∼ 2.6 · 1014 Hz, after subtracting a large systematic effect of about
270 kHz due to magnetostriction, the residual variations of a few kHz are roughly consistent
with the refractive indexNHe−Ne ∼ 1.00004 and the typical change in the cosmic velocity of
the Earth for the latitude of Boston. For more details, see the discussion given in [38,40].

6. Experiments in Gases vs. Vacuum and Solid Dielectrics

The results in Table 2 support the idea of a tiny ∆c̄θ
c at the level of 10−10 for the

experiments in air and 10−11 for those in gaseous helium. Simple symmetry arguments
suggest the relation ∆c̄θ

c ∼ (Ngas − 1) v2

c2 so that, from the data, we find the typical velocity
of v ∼ 300 km/s expected from our motion within the CMB. However, one could ask:
Apart from symmetry arguments, what are the physical mechanisms producing this small
observed anisotropy?

As a hint, we recall that Equation (8) was originally deduced in [18] as the most general
angular dependence of the refractive index in the presence of convective currents of the
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gas molecules generated by an Earth velocity v. This idea of convection with respect to the
container of the gas at rest in the laboratory leads to the reconsideration of the traditional
explanation of the small residuals in terms of tiny temperature differences of a millikelvin
or so [44,45]. The interesting aspect is that, aside from helping our intuition, this thermal
interpretation will, in the end, be useful in analyzing the complementary region of the
refractive index N , which is very different from unity, as in solid dielectrics.

In principle, with angular differences ∆TCMB(θ) = ± 3.36 mK in the background
radiation Equation (2), temperature differences of a millikelvin could reflect the collisions
of the gas molecules—at a mean velocity of 370 km/s—with the CMB photons. These
collisions could bring the gas out of equilibrium and induce a temperature difference
∆Tgas(θ) along the optical paths. In general, one expects ∆Tgas(θ) ≤ ∆TCMB(θ), and
the two extreme cases ∆Tgas(θ) = 0 and ∆Tgas(θ) = ∆TCMB(θ) correspond, respectively,
to the limits of vanishing interactions or the complete thermalization of the two systems.

In view of the complexity of the calculation, we have not attempted a full microscopic
derivation of the effect, but just limited ourselves to a much simpler thermodynamic
analysis [39,40]. This just assumes the existence of some ∆Tgas(θ) to derive a corresponding
difference in the refractive index in the optical paths. Consistency with the idea of a non-
local effect will then require the same average 〈∆Tgas(θ)〉 from different experiments.

This type of analysis starts from the Lorentz–Lorentz equation:

N 2 − 1
N 2 + 2

= ARρ + BRρ2... (48)

where ρ is the molar density and AR = (4/3)πNAα is the product of the Avogadro number
NA and the molecular polarizability α (see, e.g., [70]). The coefficient BR takes into account
two-body interactions, which, for air and helium at atmospheric pressure, can be ignored.
For N ∼ 1, we thus obtain the relation for the gas refractivity:

ε = N − 1 ∼ 3
2

ARρ (49)

In the ideal-gas approximation, the molar density at STP (atmospheric pressure and
T = 273.15 K) has the value

ρ(STP) =
P

RT
=

101325
(8.314)(273.15)

mol ·m−3 ∼ 4.46 · 10−5 mol · cm−3 (50)

As an example, for helium and a wavelength of λ = 633 nm, where α ∼
0.52 mol−1 · cm3 [70], this gives ε ∼ 3.5 · 10−5. Thus, in this simple approximation, where
the temperature dependence of ε is

− ∂ε

∂T
∼ 3

2
AR

P
RT2 ∼

ε(T)
T

(51)

and from the relation c̄γ(θ) ≡ c
N̄ (θ)

, a difference ∆Tgas(θ) is seen to induce a typical angular
difference

|∆c̄θ |
c
∼ |N̄ (θ)− N̄ (π/2 + θ)| ∼ ε(T)|∆Tgas(θ)|

T
(52)

which should be visible in the fringe shifts with a second-harmonic amplitude of

Aexp
2 ∼ 2D

λ

ε(T)|∆Tgas(θ)|
T

(53)

For the average room temperature of T ∼ 288÷ 293 K in the experiments, the values
of |∆Tgas(θ)| are reported in Table 3 for the cases in which one can determine a meaningful
experimental uncertainty.
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Table 3. The average second-harmonic amplitude observed in various classical ether-drift experi-
ments and the resulting temperature differences (in mK) from Equation (53).

Experiment Gas AEXP
2

2D
λ |∆Tgas(θ)|

Michelson–Morley (1887) air (1.6± 0.6) · 10−2 4 · 107 0.40± 0.15
Miller (1925–1926) air (4.4± 2.2) · 10−2 1.12 · 108 0.39± 0.20
Illingworth (1927) helium (2.2± 1.7) · 10−4 7 · 106 0.29± 0.22
Tomaschek (1924) air (1.0± 0.6) · 10−2 3 · 107 0.33± 0.20

Piccard–Stahel (1928) air (2.8± 1.5) · 10−3 1.28 · 107 0.22± 0.12
Joos (1930) helium (1.4± 0.8) · 10−3 7.5 · 107 0.17± 0.10

The very good chi-square, 2.4/(6−1)=0.48, shows that all experiments can become
consistent with the same average value,

〈∆Texp(θ)〉 = (0.26± 0.06) mK (54)

so that the residuals observed in the old experiments could also be interpreted as thermal
effects of non-local origin.

This previous analysis suggests two considerations. First, the old estimates of about
1 mK by Kennedy, Shankland, and Joos (see [44,45]) were slightly too large. Within our
present view, this may indicate that the interactions of the gas molecules with the CMB
photons are so weak that, on average, only less than 1/10 of ∆TCMB(θ) is transferred to
the gas in the optical paths. Second, with the thermal mechanism discussed above, in
Equation (18), one could replace εgas = (Ngas − 1) ≡ εthermal + εv and re-write

N̄gas(θ)

Ngas
∼ 1 + (εthermal + εv)β2(1 + cos2 θ) (55)

where εthermal ≡ (Ngas−Nv), εv ≡ (Nv− 1). In this way, we have introduced an extremely
small quantity εv, which, in principle, could still account for a difference between the
velocity of light cγ ≡ c/Nv as measured in a vacuum on the earth’s surface and the ideal
parameter c of Lorentz transformations.

To roughly estimate a possible non-zero εv, let us first recall that, today, the (isotropic) speed
of light in a vacuum is a reference standard with zero error—namely, cref = 299,792,458 m/s
—and that the last precision measurements performed before fixing this reference value had
an error of about 1 m/s at the 3-sigma level [72]. Therefore, assuming |c− cref| . 1 m/s,
we would tentatively estimate εv . 10−9. As such, at room temperature and atmospheric
pressure, where this εv is numerically irrelevant, εthermal is practically the same as the
refractive index considered so far, i.e., εair ∼ 2.8 · 10−4 or εhelium ∼ 3.3 · 10−5. Nevertheless,
Equation (55) is useful because, in the opposite limit of an extremely high vacuum, where,
now, εthermal = 0, for εv 6= 0, we would predict the angular dependence

N̄v(θ)

Nv
∼ 1 + εvβ2(1 + cos2 θ) (56)

and an anisotropy of the two-way velocity of light in a vacuum:

∆c̄θ

c

∣∣∣
vacuum

= N̄v(θ)− N̄v(π/2 + θ) ∼ εvβ2 cos 2θ (57)

Even more interestingly, the thermal argument is also useful for analyzing experiments
in solid dielectrics, such as that originally performed by Shamir and Fox [43] in 1969. They
were aware that the Michelson–Morley experiment did not yield a strictly zero result:
“The non-zero result might have been real and due to the fact that the experiment was
performed in air and not in vacuum” [43]. Therefore, within the traditional Lorentz-
contraction interpretation of the experiment, with a refractive index N that is substantially
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above unity, one might expect a large |∆c̄θ |
c ∼ (N 2 − 1)β2 ∼ β2 ∼ 10−6. This was the

motivation for their experiment in perspex (N = 1.5). Since their measurements were
orders of magnitude smaller, they concluded that the experimental basis of special relativity
was strengthened.

However, with a thermal interpretation of the residuals in gaseous media, the two
different behaviors can coexist. In fact, as anticipated in the introduction, in a system
that is strongly bound as a solid, a small temperature gradient of a fraction of millikelvin
would mainly dissipate through heat conduction without any particle motion or light
anisotropy in the rest frame of the apparatus. On this basis, with a very precise experiment,
a fundamental vacuum anisotropy, such as that in Equation (57), could also become visible
in a solid dielectric.

To see how this works, let us first observe that, as in the gas case, forNv 6= 1, there will
be a very tiny difference between the refractive index defined relative to the ideal vacuum
value c and the refractive index relative to the physical isotropic vacuum value c/Nv
measured on the Earth’s surface. The relative difference between these two definitions is
proportional to εv . 10−9 and, for all practical purposes, can be ignored. More significantly,
all materials would now exhibit the same background vacuum anisotropy proportional to
εvβ2 in Equation (57). To this end, let us first replace the average isotropic value

c
Nsolid

→ c
NvNsolid

(58)

and then use Equation (56) to replaceNv in the denominator with N̄v(θ). This is equivalent
to defining a θ−dependent refractive index for the solid dielectric

N̄solid(θ)

Nsolid
∼ 1 + εvβ2(1 + cos2 θ) (59)

so that
[c̄γ(θ)]solid =

c
N̄solid(θ)

=
c

Nsolid

[
1− εvβ2(1 + cos2 θ)

]
(60)

with an anisotropy
[∆c̄θ ]solid
[c/Nsolid]

∼ εvβ2 cos 2θ (61)

In this way, a genuine vacuum effect, such as that in Equation (57), if present, could
also be detected with a very precise experiment in a solid dielectric. It is then important
to understand the magnitude εv . 10−9 suggested by the last precision measurements of
about thirty years ago [72]. Is it just accidental, or does it express a fundamental property
of light on the Earth’s surface? In the latter case, with εv ∼ 10−9 6= 0 in Equations (57)
and (61), a typical 10−15 signal should then show up. Let us therefore compare this with
present experiments, starting from those with vacuum optical resonators.

7. Modern Experiments with Optical Resonators
7.1. Basic Aspects of Present Experiments in Vacuum

As anticipated, the Pound–Drever–Hall system [53,54] shown in Figure 2 was crucial
for precision tests of relativity. The first application dates back to Brillet and Hall in
1979 [73]. They were comparing the frequency of a CH4 reference laser (fixed in the
laboratory) with the frequency of a cavity-stabilized He-Ne laser placed on a rotating table.
Since the stabilizing optical cavity was placed inside a vacuum envelope, the measured
shift ∆ν(θ) gave a measure of the anisotropy of the velocity of light in vacuum.

In the last forty years, substantial improvements have been introduced into the experi-
ments. However, the assumptions behind the analysis of the data are basically unchanged,
and any physical signal is assumed to depend deterministically on the velocity of the
Earth with respect to some fixed preferred frame. As emphasized in the previous chapters,
the macroscopic motion of the Earth (i.e., on a cosmic scale) could instead affect the mi-
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croscopic propagation of light in an optical cavity in some complicated, indirect way, and
a genuine signal could easily be misinterpreted as a spurious effect. For this reason, first
of all, we will try to understand the magnitude of the instantaneous signal with vacuum
cavities and then compare the data with numerical simulations performed within the same
model as that adopted for the classical experiments.

To understand the magnitude of the signal, we have compared with Figure 9a of [47]
and Figure 4 [51]. These give the idea of a very irregular ∆ν with a typical magnitude in the
range of ±1 Hz; see our Figure 9. For the adopted reference frequency ν0 = 2.8 · 1014 Hz,
this is the anticipated 10−15 fractional level. The same value was obtained from [48].
Actually, in this other article, the instantaneous signal is not shown explicitly, but it can be
deduced from the typical variation over a characteristic time of 1 ÷ 2 s. For an irregular
signal, in fact, this variation gives the magnitude of the signal itself, and its value is,
again, 10−15.
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Figure 9. The experimental frequency shift reported in Figure 9a of [47] (courtesy of Optics Com-
munications). The black dots give the instantaneous signal, the red dots give the average of the
signal over 1640 sequences. For a laser frequency ν0 = 2.82 · 1014 Hz, ∆ν = ±1 Hz corresponds to a
fractional value ∆ν/ν0 of about ±3.5 · 10−15.

After having obtained these first indications, we tried to understand the meaning of
this irregular signal. Namely, is it just spurious noise (e.g., thermal noise [74]), or could it
represent a genuine signal? As a check, we then compared with other two experiments,
those of [46,50], where the optical cavities were made of different materials and were
operating at a cryogenic temperature. Again, the same 10−15 level was found. Since it is
extremely unlikely that spurious effects remain the same for experiments operating in such
different conditions, it is natural to explore the possibility that this 10−15 signal admits a
physical interpretation.

Therefore, applying to the physical vacuum the same model that was used successfully
for the classical experiments, we will tentatively express this observed fractional shift in
terms of a cosmic Earth velocity and of a refractive index Nv as∣∣∣∣∆ν(θ)

ν0

∣∣∣∣
exp

=

∣∣∣∣∆c̄θ

c

∣∣∣∣
exp
∼ (Nv − 1) (v2/c2) ∼ O(10−15) (62)

For v ∼ 300 km/s, this supports our previous idea of a tiny refractivity of εv =
(Nv − 1) ∼ 10−9 for the physical vacuum established in an apparatus placed on the Earth’s
surface. Therefore, it is now the time to recall the scenario of [52], which could indeed
explain this result.
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7.2. A 10−9 Refractivity for the Vacuum on the Earth’s Surface

The idea of a non-zero vacuum refractivity may have different motivations. The per-
spective of [52] was inspired by the so-called emergent gravity approach [75–81], where the
introduction of a non-trivial metric field gµν(x) is considered in analogy with the hydro-
dynamic limit of many condensed-matter systems. This emergent interpretation is made
manifest in a parametric dependence of the metric on some auxiliary, gravity-inducing
fields sk(x), i.e., gµν(x) = gµν[sk(x)]. As in the pioneering Yilmaz derivation based on the
static Newtonian potential [82,83], the Einstein equations for the metric would then follow
from the equations of motion for the sks in flat space after introducing a suitable stress
tensor for these auxiliary fields. In this way, one could (partially) fill the conceptual gap
with classical General Relativity.

An interesting consequence derives from the boundary condition gµν[sk = 0] = ηµν.
In fact, if the sks are understood as excitations of the physical vacuum, which therefore
vanish identically in its equilibrium state, one could easily understand [77] why the energy
of the unperturbed vacuum plays no role. This perspective of a non-gravitating vacuum
energy [77] provides, perhaps, the most intuitive solution of the so-called cosmological-
constant problem that is usually mentioned in connection with the quantum vacuum.
In this sense, with this type of approach, one takes Feynman’s words seriously: “The first
thing we should understand is how to formulate gravity so that it doesn’t interact with the
vacuum energy” [84].

Another interesting aspect of this approach is that, even without knowing the un-
derlying sks, in the simplest case of a static metric, all dynamical effects are equivalent to
two basic ingredients: (i) local modifications of the physical clocks and rods and (ii) local
modifications of the velocity of light. Therefore, with this interpretation of the observed
curvature, one could try to test the fundamental assumption of General Relativity that,
in the presence of gravity, the velocity of light in vacuum cγ is still a universal constant—
namely, it remains the same basic parameter c of Lorentz transformations. Notice that, here,
we are not considering the so-called coordinate-dependent speed of light. Rather, we are
focused on the true, physical cγ, as obtained from experimental measurements in vacuum
optical cavities placed on the Earth’s surface. Thus, in principle, a precise measurement
that establishes that cγ 6= c could give information on the fundamental mechanisms at the
base of the gravitational interaction.

For the various aspects of space-time measurements, a very clear reference is Cook’s
article, “Physical time and physical space in general relativity” [85]. There, the appropriate
units of time and length (dτ and dl, respectively) are defined to ensure that all observers
measure the same universal speed of light (“Einstein postulate”). For a static metric, these
definitions are dτ2 = g00dt2 and dl2 = gijdxidxj. Thus, in General Relativity, the condition
ds2 = 0, which governs the propagation of light, can be expressed formally as

ds2 = c2dτ2 − dl2 = 0 (63)

and, by construction, always gives the same speed dl/dτ = c.
However, if the physical units were instead dτ̂ and dl̂ with, say, dτ = q dτ̂ and

dl = p dl̂, the same condition

ds2 = c2q2dτ̂2 − p2dl̂2 = 0 (64)

would now be interpreted differently as

cγ =
dl̂
dτ̂

= c
q
p
≡ c
Nv

(65)

The possibility of different units is thus a simple motivation for a vacuum refractive
index of Nv 6= 1.
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To fix the ideas, we will start from the unambiguous point of view of special rela-
tivity: The right space-time units are those for which the speed of light in the vacuum
cγ, when measured in an inertial frame, coincides with the basic parameter c of Lorentz
transformations. However, inertial frames are just an idealization. Therefore, the physical
realization is to assume standards of distance and time that can change locally, but such that
the identification cγ = c holds in the asymptotic condition, which is as close as possible to
an inertial frame. This asymptotic condition corresponds to measure cγ in a freely falling
frame8 and is crucial for an operational definition of the otherwise unknown quantity c.

With this premise, an observer S′ placed on the Earth’s surface can still describe light
propagation in different ways. We address the reader to [52], where these aspects were
originally discussed, and to [39,40] for further refinements. The whole idea, however, is
simple and can be reduced to Figure 10. An observer S′ placed on the Earth’s surface is in
free-fall with respect to all masses in the Universe, but not with respect to the gravitational
field of the Earth. Its effect can be schematically represented by means of a heavy mass M
carried on board of an elevator.

Figure 10. An intuitive visualization of two physically distinct situations. In case (b), a heavy mass M
is carried on board of a freely falling system. Unlike in the ideal case (a), the mass M could introduce
a vacuum refractivity so that cγ 6= c.

The two situations in panels (a) and (b) of Figure 10 are physically distinct, but in
General Relativity, it is assumed that both observers will measure the same c of Lorentz
transformations. A non-zero vacuum refractivity for system (b) can thus be expressed as

εv = Nv − 1 ∼ z
2

(
2|δU|

c2

)
(66)

where δU is the extra Newtonian potential produced by the heavy mass M at the exper-
imental setup. In General Relativity, one assumes z = 0, while the two non-zero values
(z = 1 or 2) account for the two alternatives traditionally reported in the literature for the
effective refractive index in a gravitational potential (see the discussion in [39,40] and, in
particular, Broekaert’s footnote 3 [86]). In our case, by introducing the Newton constant,
the radius R, and the mass M of the Earth so that δU = GN M

R , we find

εv ∼
z
2

1.4 · 10−9 (67)

We emphasize that, regardless of whether z = 1 or 2, the velocity of light in a vacuum
cavity on the Earth’s surface (panel (b) in our Figure 10) could differ at the level of 10−9

from the ideal value c, which is operationally defined with the same apparatus in a truely
freely falling frame (panel (b) in our Figure 10). As discussed at the end of Section 6, this
εv ∼ 10−9 was suggested by the last precise measurements of the velocity of light and,
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by comparing with Equation (62), could now provide a physical argument for seriously
considering the presently observed 10−15 fractional frequency shift of two vacuum optical
resonators. Let us therefore take a closer look at the present experiments.

7.3. A Closer Look at Experiments and Numerical Simulations of the Signal

Most recent ether-drift experiments measure the frequency shift ∆ν of two rotating
optical resonators. To this end, let us re-write Equation (26) as

∆ν(t)
ν0

=
∆c̄θ(t)

c
∼ ε

v2(t)
c2 cos 2(ωrott− θ2(t)) (68)

where ωrot is the rotation frequency of the apparatus. Therefore, one finds

∆ν(t)
ν0
∼ 2S(t) sin 2ωrott + 2C(t) cos 2ωrott (69)

where C(t) and S(t) are given in Equations (28) for ε = εv,

2C(t) = εv
v2

x(t)− v2
y(t)

c2 2S(t) = εv
2vx(t)vy(t)

c2 (70)

and vx(t) = v(t) cos θ2(t), vy(t) = v(t) sin θ2(t). For a non-rotating apparatus, such as that
in Figure 9, the fractional frequency shift is thus simply 2C(t).

The present analysis of the data is the following. For short-term observations of a few
days, the frequency shifts measured upon rotation of the apparatus are used to extract the
instantaneous 2C(t) and 2S(t) through Equation (69). These data are then compared with
the parameterizations in Equations (33) and (34) to fit the Ck and Sk Fourier coefficients.
From very extensive observations, the present values of these coefficients are at the level of
10−18 ÷ 10−19, i.e., about 1000 times smaller than the typical 10−15 instantaneous signal.

By recalling our discussion at the beginning of Section 5, this is exactly the same
strategy that was traditionally adopted for the fringe shifts in the old experiments and that
cannot be maintained with a genuine irregular signal. In fact, within our isotropic model
(see Equations (41) and (42)), one would find 〈C(t)〉stat = 0 and 〈S(t)〉stat = 0 at any time t
and mean values of (Ck)

avg = 0, (Sk)
avg = 0 for all Fourier coefficients. Therefore, with an

irregular but genuine signal, a different type of analysis is needed.
To compare with the data, we performed numerical simulations in our isotropic

stochastic model of Section 4 with εv, as in Equation (67). As a first illustration, we show in
Figure 11 two sequences of the instantaneous values for 2C(t) and 2S(t). The two sets belong
to the same random sequence and refer to two sidereal times that differ by 6 h. The set
(V, α, γ)CMB was adopted to control the boundaries of the stochastic velocity components
through Equations (29), (30), and (40). The value of φ = 52 degrees was also fixed to
reproduce the average latitude of the laboratories in Berlin and Düsseldorf. For a laser
frequency of 2.8 · 1014 Hz [51], the interval ±3.5 · 10−15 of these dimensionless amplitudes
corresponds to a random instantaneous frequency shift ∆ν in the typical range of ±1 Hz,
as in our Figure 9.

For a more quantitative analysis, we considered the result of [51] for the average
variation in the frequency shift over 1 s; see their Figure 3, bottom part. This corresponds
to a Root Square of the Allan Variance (RAV) of about 0.24 Hz, or 8.5 · 10−16 at a fractional
level. In general, the RAV describes the time dependence of an arbitrary function f = f (t),
which can be sampled over time intervals of length τ. By defining

f (ti; τ) =
1
τ

∫ ti+τ

ti

dt f (t) ≡ f i (71)
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one generates a τ-dependent distribution of f i values. In a large time interval Λ = Mτ,
the RAV is then defined as

σA( f , τ) =
√

σ2
A( f , τ) (72)

where

σ2
A( f , τ) =

1
2(M− 1)

M−1

∑
i=1

(
f i − f i+1

)2
(73)

The integration time τ is given in s, and the factor of 2 is introduced to obtain the
same standard variance for uncorrelated data as for a white-noise signal with a uniform
spectral amplitude at all frequencies.
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Figure 11. For εv as in Equation (67) and z = 2, we report in units of 10−15 two typical sets of 45 s for
the two functions 2C(t) and 2S(t) of Equation (69). The two sets belong to the same random sequence
and refer to two sidereal times that differ by 6 h. The boundaries of the stochastic velocity components
in Equations (36) and (37) are controlled by (V, α, γ)CMB through Equations (30) and (40). For a laser
frequency of 2.8 · 1014 Hz [51], the range ±3.5 · 10−15 corresponds to a typical frequency shift ∆ν in
the range of ±1 Hz, as in our Figure 9.

To understand the characteristics of our signal, we thus simulated one-day measure-
ments of 2C(t) and 2S(t) at steps of 1 second. The RAV and the standard variance agreed
with a good accuracy, so the signal of our isotropic stochastic model could be approximated
as a pure white noise. From these simulations of one-day measurements (z = 1 or 2), we
obtained mean values of 〈2C〉day = −1.6 · (z/2) · 10−18 and 〈2S〉day = 4.3 · (z/2) · 10−18

and variances of
[σA(2C, 1)]simul =

z
2
(8.7± 0.8) · 10−16 (74)

[σA(2S, 1)]simul =
z
2
(9.6± 0.9) · 10−16 (75)

Here, the ± uncertainties reflect the observed variations due to the truncation of the
Fourier modes in Equations (36) and (37) and to the dependence on the random sequence.
From Equation (69), by quadratically combining these two sigmas, we estimate[

σA(
∆ν

ν0
, 1)
]

simul
∼
√

1
2

σ2
A[2C, 1]simul +

1
2

σ2
A[2S, 1]simul ∼

z
2
(9.2± 0.9) · 10−16 (76)

so that, for a laser frequency of ν0 = 2.8 · 1014 Hz [51], we would predict an average RAV of

[σA(∆ν, 1)]simul ∼
z
2
(0.26± 0.03) Hz (77)
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of the frequency shift at 1 s. This estimate should be compared with the aforementioned
experimental value of

[σA(∆ν, 1)]exp ∼ 0.24 Hz (78)

reported in [51]. The good agreement with our simulated value indicates that, at least for
an integration time of 1 s, the correction to our model should be negligible. In addition,
the data favor z = 2, which is the only free parameter of our scheme.

Our model, however, makes another definite prediction: During the day, there should
be characteristic modulations that reflect the periodic variations of ṽ(t) Equation (30)
in the plane of the interferometer. For z = 2 and the typical Central European value of
ṽ(t) = (250÷ 370) km/s, taking into account the uncertainties in the simulations, from bins
of data centered around the various times t, the RAV at 1 s explores the range

5 · 10−16 .
[

σA(
∆ν

ν0
, 1)
]

t
. 12 · 10−16 (79)

This range was obtained with our numerical simulation, but can be approximated as[
σA(

∆ν

ν0
, 1)
]

t
∼ 8.4 · 10−16

(
ṽ(t)

315 km/s

)2

(80)

where ṽ(t) is defined in Equation (30).
Detecting these periodic variations would therefore give the cleanest test of our

picture, provided that these variations are not obscured by spurious effects. The simplest
strategy for a comparison is to determine—from the spectral amplitude of the experimental
signal—the frequency ω0 beyond which the spectral amplitude

√
S(ω) becomes flat. Thus,

by defining τ0 ∼ ω−1
0 , for integration times of τ . τ0, the RAV is dominated by the

pure white-noise component of the signal. Then, since, typically, τ0 ∼ 1 s, by measuring
the experimental RAV at τ0 in different hours of the day, one can directly compare with
Equation (79)9.

For a more refined comparison, one could try to generate a colored signal that, as in
the real experimental situation, contains various branches (white noise, pink noise, random
walk, etc.), and one could try to directly estimate the modifications of our basic white-
noise component at the various τs. Since these modifications depend on the particular
experiment, we decided to consider [25]. This was a high-precision cryogenic experiment
with microwaves of 12.97 GHz, where almost all electromagnetic energy propagated in a
medium (sapphire) with a refractive index of about 3 (at microwave frequencies). Therefore,
an analysis of this experiment will also check our Equation (61), implying that, with very
precise measurements, a fundamental 10−15 vacuum signal such as that in (57) should also
show up in a solid dielectric.

In Figure 3c of [25], the spectral amplitude of this particular apparatus is seen to
become flat at frequencies of ω ≥ 0.5 Hz, indicating the estimate of the order of magnitude
of τ0 ∼ 1 s. In collaboration with Dr. Giancarlo Cella of the VIRGO Collaboration, these
data for the spectral amplitude were then fitted to an analytic power-law form to describe
the lower-frequency part at 0.001 Hz ≤ ω ≤ 0.5 Hz. This fitted spectrum was then used to
generate a signal with a Fourier transform. Finally, very long sequences of this signal were
stored to produce a “colored” version of our basic white-noise signal. The details of this
analysis will be published elsewhere [87].

Here, we will limit ourselves to reporting the results of a first set of simulations in
intervals of 2000 s. To obtain a qualitative impression of the effect, we show in Figure 12
a sequence of our basic white-noise signal and a sequence of its colored version. After aver-
aging over many 2000-s sequences of this type, the corresponding RAVs for the two signals
are shown in Figure 13. The experimental RAV extracted from Figure 3b of [25] is also
reported (for the non-rotating setup). At this stage, the agreement of our simulated, colored
signal with the experimental data only remains satisfactory up τ = 50 s. Reproducing the
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signal at larger τs will require further efforts, but this is not relevant here, as our scope is
just to understand the modifications of our stochastic signal near the 1-s scale.

Figure 12. We report two typical sets of 2000 s for our basic white-noise (WN) signal and its colored
version, which was obtained with a Fourier transform of the spectral amplitude from [25].

Figure 13. We report the Allan variance for the fractional frequency shift obtained from simulations
of sequences of 2000 seconds for our basic white-noise (WN) signal and for its colored version, which
was obtained with a Fourier transform of the spectral amplitude from [25]. The direct experimental
results of [25] for the non-rotating setup are also shown.

From Figure 13, we find that, at the value of interest τ = 1 s, our predicted white-noise
signal (7.1± 0.3) · 10−16 is changed by about +15% when comparing with our simulated
colored value (8.2± 0.3) · 10−16 or by about +20% when comparing with the experimental
value of about 8.5 · 10−16. Thus, if present in the experimental data the periodic variations
of a factor of 2, as in Equation (79), should remain visible, at least with the systematics at
the level of [25].

At the same time, this 8.5 · 10−16 that was obtained in [25] for the experimental
RAV at 1 s is the same 8.5 · 10−16 that we extracted from the value of σA(∆ν, 1)exp ∼
0.24 Hz from [51] after normalizing to the laser frequency of ν0 = 2.8 · 1014 Hz. There-
fore, this beautiful agreement between [51] (a vacuum experiment at room temperature)
and [25] (a cryogenic experiment in a solid dielectric), while confirming our predictions in
Equations (57) and (61) of a fundamental 10−15 signal, indicates that periodic variations
such as those in Equation (79) should also remain visible with the apparatus of [51].

8. Summary and Conclusions

Due to the present interpretation of the dominant dipole anisotropy of the Cosmic
Microwave Background as a Doppler effect, one may wonder about the reference system in
which this dipole exactly vanishes. Since the observed motion is, to a good approximation,
the combination of peculiar motions and reflects local inhomogeneities, one could naturally
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consider the idea of a global frame of rest associated with the Universe as a whole that
could characterize the form of relativity physically realized in nature. The isotropy of
the CMB could then just indicate the existence of this fundamental system Σ, which we
could conventionally decide to call “ether”, but the cosmic radiation itself would not
coincide with this type of ether. Due to the fundamental group properties of Lorentz
transformations, two observers individually moving with respect to Σ would still be
connected by the standard relativistic composition rule of velocities. However, ultimate
implications could be far reaching, even when considering just the interpretation of non-
locality in the quantum theory.

Since the answer cannot be found on purely theoretical grounds, physical interpre-
tation is traditionally postponed to the detection of some dragging of light in the Earth
frame—namely, to measuring a small angular dependence ∆c̄θ

c of the two-way velocity
of light in the laboratory and trying to correlate the measurements with the direct CMB
observations with satellites in space. The present view is that no such meaningful correla-
tions have ever been observed, and all data collected so far (from Michelson–Morley to
the modern experiments with optical resonators) are just considered typical instrumental
effects in measurements with better and better systematics.

However, if the velocity of light in the interferometers is not the same parameter “c”
of Lorentz transformations, nothing would prevent a non-zero dragging. For instance,
in experiments in gaseous media with a refractive index of N = 1 + ε, the small fraction of
refracted light could keep track of the velocity of matter with respect to the hypothetical
Σ and produce a direction-dependent refractive index. Then, from symmetry arguments
that are valid in the ε→ 0 limit, one would expect |∆c̄θ |

c ∼ ε(v2/c2), which is much smaller

than the classical expectation of |∆c̄θ |class
c ∼ (v2/2c2). For v ∼ 300 km/s, and by inserting

the appropriate refractive index, i.e., ε ∼ 2.8 · 10−4 for air and ε ∼ 3.3 · 10−5 for gaseous
helium, this reproduces the observed order of magnitude: |∆c̄θ |

c ∼ 10−10 and |∆c̄θ |
c ∼ 10−11,

respectively.
In addition, aside from being much smaller than classically expected, observable

effects could have an irregular nature. This means that the projection of the global velocity
field at the site of the experiment, say ṽµ(t), could differ non-trivially from the local field
vµ(t), which determines the instantaneous direction and magnitude of the drift in the
plane of the interferometer. As a definite model, to relate vµ(t) and ṽµ(t), we followed the
physical analogy with a turbulent fluid—in particular, with the form of turbulence that,
at small scales, becomes statistically homogeneous and isotropic. To this end, the local
vµ(t) was expanded in a large number of Fourier components that varied randomly within
boundaries that depended on the smooth ṽµ(t) determined by the average motion of the
Earth. In this model, at the small scale of the experiment, statistical averages of vector
quantities vanish identically. Therefore, one should analyze the data for ∆c̄θ(t)

c in phase
θ2(t) and amplitude A2(t), which give, respectively, the direction and magnitude of the
local drift, and concentrate on the latter, which, being positive definite, remains non-zero
under any averaging procedure. Then, even discarding θ2(t), the average value and the
time modulations of the statistical average 〈A2(t)〉stat would be sufficient to correlate a
genuine signal with the corresponding cosmic motion.

As proof, we report some remarkable correlations found in the old experiments:
(a) By fitting the smooth polynomial interpolation of the irregular Joos second-

harmonic amplitudes in our Figure 7 with Equations (29) and (30), one finds [37] a
right ascension of α(fit− Joos) = (168 ± 30) degrees and an angular declination of
γ(fit− Joos) = (−13 ± 14) degrees, which are consistent with the present values of
α(CMB) ∼ 168 degrees and γ(CMB) ∼ −7 degrees.

(b) Through an inspection of our Table 2, if we compare this with our Equation (46),
all experiments with light propagating in air give ṽair ∼ 418 ± 62 km/s, and the two
experiments in gaseous helium give ṽhelium ∼ 323± 70 km/s. Thus, the global average o
f〈ṽ〉 ∼ 376± 46 km/s agrees well with the 370 km/s from the direct CMB observations.
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(c) From the two most precise experiments in Table 2, Piccard–Stahel (Brussels and Mt.
Rigi in Switzerland) and Joos (Jena, Germany), we find two determinations, ṽ = 360+85

−110 km/s
and ṽ = 305+85

−100 km/s, respectively, whose average of 〈ṽ〉 ∼ 332+60
−80 km/s reproduces with

high accuracy the projection of the CMB velocity at a typical Central European latitude.
Still, the simple relation |∆c̄θ(t)|

c ∼ ε(v2(t)/c2), while providing a consistent descrip-
tion, leaves unexplained the physical mechanisms producing the small anisotropy observed
in the gaseous systems. Here, in this summary, rather than immediately re-proposing our
reasoning of Section 6, we shall follow the other way around. We will thus first summarize
the analysis of Section 7 for the present experiments in vacuum and in solid dielectrics,
and, at the very end, armed with these results, we will return to the mechanism at work in
the gaseous media.

In Section 7, we started from the modern experiments, which measure the frequency
shift ∆ν(t) of two vacuum optical resonators. By considering the most precise experiments
with optical cavities made of different materials and operating at room temperature or
in the cryogenic regime, one gets the idea of a universal, irregular signal with a typical
fractional magnitude of |∆ν(t)|

ν0
∼ 10−15. Within the same model as that adopted for the

classical experiments, we thus explored the possibility of interpreting this signal in terms of
a vacuum refractivity εv = Nv − 1 ∼ 10−9 in order to obtain |∆ν(t)|

ν0
∼ εv(v(t)/c)2 ∼ 10−15

for the typical v(t) ∼ 300 km/s.
This 10−9 vacuum refractivity could have a precise physical interpretation. In fact,

the value εv ∼ (2GN M/c2R) ∼ 1.4 · 10−9 was suggested [52] as a possible signature for dis-
tinguishing an apparatus on the Earth’s surface from the same apparatus placed in an ideal
freely-falling frame that defines the parameter c of Lorentz transformations; see Figure 10.
In addition, in our stochastic model, a definite 10−15 instantaneous signal will coexist
with vanishing statistical averages for all vector quantities, such as the Ck and Sk Fourier
coefficients extracted from a standard temporal fit to the data with Equations (33) and (34).
Our physical model would thus be immediately consistent with the present limits of
10−18 ÷ 10−19 obtained for these coefficients after averaging many observations.

Since our signal can be approximated as a universal form of white noise and sets an
intrinsic limit to the precision of measurements, for a comparison with experiments, we
then considered the characteristics of the signal for the integration time (typically 1 s) in
which the pure white-noise branch is as small as possible, but other types of noise are not
yet important. In this case, when comparing with [51], our numerical simulation of the
Allan variance for measurements over a whole day (σA(∆ν, 1)simul = 0.26± 0.03 Hz) is in
complete agreement with the experimental result of σA(∆ν, 1)exp ∼ 0.24 Hz.

We also emphasized that this 0.24 Hz, when normalized to their laser frequency, gives
a fractional shift of 8.5 · 10−16, which is precisely the same as that obtained in [25] at 1 s;
see our Figure 13. Now, Ref. [51] is an experiment running with vacuum cavities, at room
temperature, and with a reference frequency of ν0 = 2.8 · 1014 Hz, while Ref. [25] is a
cryogenic experiment with microwaves of 12.97 GHz, where almost all electromagnetic
energy propagates in a medium (sapphire) with a refractive index of about 3. It is impossible
that this extraordinary agreement can be due to accidental effects. Therefore, our conclusion
is that there is a fundamental vacuum signal that shows up in vacuum and solid dielectrics
and whose average magnitude is completely consistent with the velocity of 370 km/s
obtained from the CMB observation with satellites in space.

We also predict periodic, daily variations in the range of (5÷ 12) · 10−16 for a typical
Central European latitude. This range was obtained from our numerical simulation, but
can also be expressed in a simpler way as[

σA(
∆ν

ν0
, 1)
]

t
∼ 8.4 · 10−16

(
ṽ(t)

315 km/s

)2

(81)
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where ṽ(t) is defined in Equation (30). Our simulations at the end of Section 7 indicate that,
for an integration time of 1 s, our basic signal is modified by about 20%. Therefore, these
periodic variations, if they are really there, should remain visible.

Let us then return to gaseous media. Namely, what could be the physical mechanism
that, starting from a fundamental 10−15 vacuum signal, enhances the effect up to 10−11 and
10−10 in gaseous helium and air, respectively, and finally disappears in solid dielectrics,
as in the very precise cryogenic experiment in sapphire, which also gave the same 10−15 as
in vacuum? Our answer to this question in Section 6 was based on the traditional interpre-
tation [44,45] of the old residuals in terms of a small temperature difference ∆Tgas(θ) of a
millikelvin or so between the optical arms. These differences could induce convective cur-
rents of the gas molecules and a small angular dependence of the refractive index. However,
we found the same universal value of ∆Tgas(θ) = 0.2÷ 0.3 mK in the various experiments.
Therefore, those old estimates, besides being slightly too large, were misinterpreting the
effect. Since different experiments converge to the same value, the effect cannot be due
to local temperature conditions, but must have a non-local origin. Our interpretation is
that the interactions of the gas molecules with the background radiation are so weak that,
on average, only less than 1/10 of the ∆TCMB(θ) in Equation (2) is transferred to bring
the gas out of equilibrium. Nevertheless, regardless of its precise value, this thermal
interpretation can help intuition by explaining the quantitative reduction of the effect in
the vacuum limit where εgas → 0 and the qualitative difference from strongly bound solid
dielectrics where this tiny thermal gradient cannot produce any observable particle motion
or directional refraction in the rest frame of the medium.

In conclusion, by considering old and modern experiments, we have found several
correlations between optical measurements in the laboratory and the kinematical param-
eters obtained from direct CMB observations with satellites in space. These correlations
are summarized in the three items ((a), (b), and (c)) listed above and in the successful
quantitative description of the RAV measured in [25,51] for the relevant region of integra-
tion times of about 1 s, where the white-noise branch is as small as possible, but other
experiment-dependent effects are not yet important. Ours is not the only scheme to analyze
the experiments, but it fulfills the traditional criterion of indicating a reference system that
could play the role of the fundamental frame for relativity. We also observe that, for the
same region of integration times, our scheme predicts periodic daily variations of the RAV
that should be observable. Therefore, due to the importance of the issue, we would expect
to receive an experimental confirmation or a disproof. If it is definitively confirmed, one
more complementary test should be performed by placing vacuum (or solid dielectric)
optical cavities on board of a satellite, as in the OPTIS proposal [88]. In this ideal free-fall
environment, as in panel (a) of our Figure 10, the typical instantaneous frequency shift
should be much smaller (by orders of magnitude) than the corresponding 10−15 value
measured with the same interferometers on the Earth’s surface.
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Notes
1 With very few exceptions, modern textbooks tend to give a negative meaning to the idea of a fundamental state of rest. However,

this was the natural perspective for the first derivation of the relativistic effects by Lorentz, Fitzgerald, and Larmor. Over the
years, the value of a Lorentzian formulation has been emphasized by many authors, notably by Bell [7]; see Brown’s book [8] for
a complete list of references. For more recent work, see also De Abreu and Guerra [9] and Shanahan [10].

2 We ignore here the subtleties related to the Thomas–Wigner spatial rotation that is introduced when considering two Lorentz
transformations along different directions; see, e.g., [11–13].

3 This was well illustrated in Ref. [14]: “Thus, Nonlocality is most naturally incorporated into a theory in which there is a special
frame of reference. One possible candidate for this special frame of reference is the one in which the cosmic background radiation
is isotropic. However, other than the fact that a realistic interpretation of quantum mechanics requires a preferred frame and the
cosmic background radiation provides us with one, there is no readily apparent reason why the two should be linked”.

4 Preferred-frame effects are common to many models of dark energy (and/or of dark matter), such as the massive gravity
scheme proposed by Rubakov [20], the effective graviton–Higgs mechanism of Ref. [21], or non-local modifications of the
Einstein–Hilbert action [22–24]. In these cases, one also expects a dependence of the velocity of light on the state of motion of
the observer.

5 However, a null result in an ideal vacuum can also be deduced [56] without assuming Lorentz transformations, but only from
simple assumptions on the choice of the admissible clocks.

6 Joos’ optical system was enclosed in a hermetic housing and, as reported by Miller [27,67], it was traditionally believed that his
measurements were performed in a partial vacuum. In his article, however, Joos was not clear on this particular aspect. Only
when describing his device for fine electromagnetic movements of the mirrors does he refer to the condition of an evacuated
apparatus [35]. Instead, Swenson [68,69] declared that Joos’ fringe shifts were finally recorded with optical paths that were
placed in a helium bath. Therefore, we followed Swenson’s explicit statements and assumed the presence of gaseous helium at
atmospheric pressure.

7 In [40], a numerical simulation of the Piccard–Stahel experiment [31] is reported for both the individual sets of 10 rotations of
the interferometer and the experimental sessions (12 sets, each set consisting of 10 rotations). Our analysis confirms their idea
that the optical path was much shorter than the instruments in the United States, but their measurements were more precise
because spurious disturbances were less important.

8 One should further restrict light propagation to a small enough region that tidal effects of the external gravitational potential
Uext(x) can be ignored.

9 However, the time τ0 could also be considerably larger than 1 s, as, for instance, in the cryogenic experiment of [46]. There,
the RAV at 1 s was about 10 times larger than the range in Equation (79), but, in the quiet phase between two refills of the
refrigerator, σA(∆ν/ν0, τ) was monotonically decreasing from τ−1/2 up to τ0 = 250 s, where it reached its minimum value of
σA(∆ν/ν0, τ0) ∼ 5.3 · 10−16. This is still consistent with the lower bound in Equation (79), so we would tentatively argue that
Equation (79) should be replaced by the more general form 5 · 10−16 . [σA(∆ν/ν0), τ0)]t . 12 · 10−16 with the same range, but
with a τ0 that now depends on the experiment.
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