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Abstract: We study the capture cross-section of massless (photon) and massive test particles by
the Schwarzschild–Tangherlini black hole, which is a solution of pure general relativity in higher
dimensional spacetime with R × SD−2 topology. It is shown that an extra dimension weakens
the gravitational attraction of a black hole, and consequently, radii of all the characteristic circular
orbits, such as the radius of a photonsphere decrease in the higher dimensions. Furthermore, it is
shown that in higher dimensions, there are no stable and bounded circular orbits. The critical impact
parameters and capture cross-sections of photons and massive particles are calculated for several
higher dimensions and it is shown that they also decrease with increasing dimension. Moreover,
we calculate the capture cross-section of relativistic and non-relativistic test particles in the higher
dimensions..

Keywords: higher dimensional black hole; capture cross section; impact parameter

1. Introduction

The direct discovery of gravitational waves from the coalescence of black holes in
close binary systems by LIGO-VIRGO collaboration [1–5], detection of the first image of
a supermassive black hole in the center of the elliptic galaxy Messier 87 (M87) by the
Event Horizon Telescope (EHT) [6], measurement of general relativistic effects through
observation of S2 star [7,8] and hot spots [9] orbiting Sagittarius A* in the center of our
galaxy by GRAVITY consortium make the study of black holes in various theories of gravity
a hot topic in relativistic astrophysics.

On the other hand, there is great interest in the alternate theories of gravity including
higher dimensional gravitational field theories. One of these is pure general relativity in
higher dimensional spacetime withR×SD−2 topology which allows exact black hole solu-
tions, e.g., spherical symmetric vacuum Schwarzschild–Tangherlini black hole solution [10].
One of the most astrophysically important features of the black hole spacetimes is to study
the test particle’s motion in the close environment of a black hole and extract information
about the central object through the dynamics of the test particles. As a black hole is
well-known for being the most massive gravitating object with a strong field, its gravitation
increases towards the central black hole and at the radius of the so-called event horizon,
even light rays cannot escape from it. Beyond the event horizon of the black hole, the parti-
cle still has a chance to escape from the black hole, depending on its energy and angular
momentum [11]. The capture (or absorption) cross-section of the particle is determined to
estimate this chance. In this paper, we aim to study the capture cross-section of massive
and massless (photon) particles by the Schwarzschild–Tangherlini black hole. The capture
cross-section can be explained geometrically as the area under the critical impact parameter
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of the particle1. In the case of a massless particle, the capture cross-section is determined
through a radius of unstable circular null geodesics (light ring), which is a boundary for
the escape and capture scenarios. The capture of the massless particle (photon) by the
Schwarzschild–Tangherlini black hole has been studied by several authors via different
means. For example, in [12–15], the authors studied the radius of a photonsphere (light
ring) or critical impact parameter of a light ray in the Schwarzschild–Tangherlini black
hole spacetime via the analysis of geodesic equations. Moreover, in [16,17], the capture
cross-section of a massless particle is determined by studying the absorption cross-section
of a massless scalar field in the high energy limit, via the fact that in this limit, the ab-
sorption cross-section of a massless scalar field by a black hole tends to and oscillates
around a geometrical cross-section of the massless particle [18–21]. Furthermore, other
properties related to the massless particle’s motion around Schwarzschild–Tangherlini
black holes have been studied in [22,23]. On the other hand, the capture cross-section of
a massive test particle by the Schwarzschild–Tangherlini black hole has not been studied
in the literature. Therefore, even if part of the research related to the cross-section of a
massless particle presented in our paper partially discusses the problems treated in the
above given references, they play an important role by providing a comparison with the
massive particle’s capture cross section, and are presented as a separate section here.

The paper is organized as follows. Section 2 is devoted to the description of pure gen-
eral relativity in higher dimensional spacetime withR×SD−2 topology, to its Schwarzschild–
Tangherlini black hole solution, and massless (photon) and massive test particles motion
in the higher dimensional spacetime. In Section 3, a motion of a photon and its capture
by the Schwarzschild–Tangherlini black hole is discussed. In Section 4, we study the
capture cross-section of a massive test particle by the Schwarzschild–Tangherlini black
hole. Section 5 summarizes the main results obtained in the paper.

2. Basic Equations

The general relativity in higher dimension is described by the generalized Einstein–
Hilbert action

S =
∫

dDx
√
−gR . (1)

Without the loss of generality, we adopted units such that the gravitational constant
and speed of the light are equal to unity, i.e., GD = c = 1. After applying the least action
principle to the action (1), we obtain Einstein field equations for the higher dimensional
spacetimes as

Rµν −
1
2

gµνR = 0 , (2)

where Rµν, R, and gµν are Ricci tensor, Ricci scalar and metric tensor, respectively. Note
that the Greek indices run within 0, 1, 2, . . . , D− 1.

By solving the Einstein field Equation (2) for the spacetime with topologyR×SD−2,
one can obtain the following higher dimensional Schwarzschild solution, aslo known as
the Schwarzschild–Tangherlini solution [10]:

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ2

D−2 , f (r) = 1− µ

rD−3 , (3)

1 Therefore, sometimes in the literature, this quantity is called the geometrical capture cross-section
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where dΩ2
D−2 is a metric on a (D− 2)-dimensional unit sphere that is given by

dΩ2
D−2 = dθ1

2 + sin2θ1dθ2
2 + . . . +

D−3

∏
i=1

sin2 θidθ2
D−2 ,

(4)

and µ is a mass parameter that is related to the black hole mass M through a relation

µ =
16πM

(D− 2)ΩD−2
, with ΩD−2 =

2π(D−1)/2

Γ(D−1
2 )

. (5)

For simplicity, we introduce dimensionless coordinates implementing the following
transformations: r → r/µ1/(D−3) and t → t/µ1/(D−3) so that the metric function of the
spacetime (3) takes the following form:

f (r) = 1− 1
rD−3 , (6)

and hereafter, we refer to the new rescaled radial and time coordinates.
At this point, we start to study the test particle’s motion in the spacetime of the

Schwarzschild–Tangherlini black hole and assume that the motion is confined at the
equatorial plane of the spacetime so as θ1 = θ2 = . . . = θD−3 = π/2. Then, one can easily
notice from the symmetry of the spacetime metric (3) that the momenta corresponding
to the time, t, and azimuthal coordinate, θD−2, are conserved due to the stationarity and
spherical symmetry of the spacetime, and these conserved momenta are called energy, E,
and angular momentum, L, of the particle, respectively, as

f (r)ut = E ,

r2uθD−2 = L . (7)

From the normalization condition uµuµ = −1, we obtain the following equation for
the radial velocity of the particle:

(ur)2 = E2 −Veff, with Veff = f (r)
(

L2

r2 + ε2
)

, (8)

where ε is the mass of the test particle and it is either ε = 1 or ε = 0 for the massive and
massless (photon) particles, respectively.

One can see from Figure 1 that with increasing the dimension of the spacetime, height
of the effective potential increases; however, the maximum of the effective potential, which
corresponds to the unstable circular photon orbit, shifts towards the central black hole.
Now, by using the conditions that the particle revolving around the black hole has no radial
velocity and its orbit corresponds to the extrema of the effective potential, respectively, as

ur = 0 , V′eff = 0 , (9)

one can find the specific energy and specific angular momentum of the particle moving
along the circular orbit around Schwarzschild–Tangherlini black hole as

E =
2r3−D(rD−3 − 1

)2

2rD−3 + 1− D
, (10)

L =
(D− 3)r2

2rD−3 + 1− D
. (11)

Note that the specific energy (or angular momentum) of the particle defines the energy
(or angular momentum) per mass of the particle as E = E/ε (or L = L/ε). Considering
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the fact that the energy and angular momentum of the photon in the circular orbit diverge,
one can easily find the radius of the photonsphere in the Schwarzschild–Tangherlini black
hole spacetime as

rps =

(
2

D− 1

)1/(3−D)

, (12)

Figure 1. Radial profile of the effective potential of a test particle in the Schwarzschild–Tangherlini
black hole’s spacetime for L = 5 and the dimension is in the range D ∈ [4, 10].

In Figure 2, the radius of the photonsphere for several dimensions of the spacetime is
presented. In the case of a standard Schwarzschild black hole, one recovers the photon-
sphere at rps = 1.5.

Figure 2. Radii of the photonsphere as a function of dimension of the Schwarzschild–Tangherlini
black hole’s spacetime.

One can see from Equation (12) and Figure 2 that an extra dimension in the spacetime
weakens the gravitational attraction of the black hole and consequently, the radius of the
photonsphere decsreases.

Another orbit, which is one of the most astrophysically important orbits around the
black hole are the marginally stable circular orbits (MSCO). It is obvious that the stability
of the orbit is ensured by positivity of the second derivative of the effective potential
with respect to a radial coordinate that provides the effective potential to be concave
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upward. The marginally stable orbits are located at the following inflection point, where
the concavity of the effective potential changes:

V′′eff = 0 . (13)

To find the MSCOs, one must solve Equation (14) together with the circularity conditions
Equation (9). By solving them, we determine that the MSCO is bounded only from the
inner side. Therefore, we call this orbit the innermost stable circular orbit (ISCO) and it is
located at

risco =

(
1− D
D− 5

)1/(D−3)
, (14)

In the case of a standard 4D Schwarzschild black hole, one recovers the ISCO radius
at risco = 3. Interestingly, one can see from (14) that the ISCO exists only in the case of
4-dimensional spacetime. In higher dimensional Schwarzschild–Tangherlini spacetime,
there is no ISCO, which indicates absence of stable circular orbits as in the case of the higher
dimensional Majumdar-Papapetrou spacetime [24]. It may be treated as strong evidence
that the higher dimensions do not play a role in our Universe, which consists of bounded
systems.

The next orbit of the test particle we want to mention here is the marginally bound
circular orbit (MBCO). The MBCO represents the innermost circular orbit of a massive par-
ticle, which is energetically bounded to the central black hole. This radius is located closer
to the black hole than ISCO and between these two orbits, there are circular orbits which
are all unstable. Since the spacetime we are considering in this paper is asymptotically flat,
the MBCO is determined as the solution to the equation of E(rmbco) = 1. By solving this
equation, we find the radius of MBCO at

rmbco =

(
2

5− D

)1/(D−3)
, (15)

Again, similar to the case of the ISCO, the MBCO exists only in the 4-dimensional
standard Schwarzschild black hole spacetime at rmbco = 2. By summing all results obtained
from the circular orbits, we conclude that the effective potential of the massive test particle
does not have region Veff < 1 beyond the photonsphere in higher dimensions (D > 4).

3. Capture of Photon

In this section, we study a motion of a photon and its capture by the Schwarzschild–
Tangherlini black hole, whose line element is given by (3) with metric function (6). Prior
to turning to the study, we introduce a notion of impact parameter, denoted by b, that
defines the possible closest approach distance of a photon to the black hole before reaching
an observer at infinity. It is well-known that the photon passing through the black hole
spacetime can approach the black hole until the photonsphere, beyond which it moves
along the photonsphere or is captured by the black hole. Therefore, the photonsphere is a
boundary between capture and escape scenarios. Therefore, our main task in this section is
to find the impact parameter, b, of the photon.

As Figure 3 shows that the effective potential of the photon tends to zero at infinity,
the impact parameter is defined by

bcr =
Lcr

E
, (16)
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with Lcr being the critical angular momentum of a photon. For simplicity, one can rewrite
the radial equation of motion (8) for the photon (ε = 0) by applying the transformation
λ→ λL for the affine parameter in the following polynomial form:

(ur)2 =
1
b2 −

f
r2 . (17)

In order for the right-hand side of Equation (17) to take the monic polynomial form,
we multiply both sides of equation by b2rD−1 as

b2rD−1(ur)2 = rD−1 − b2rD−3 + b2 . (18)

The zeros of the right-hand side of Equation (18) represent the turning points. A shape
of the effective potential indicates that in this case, there are three possible scenarios in terms
of the numbers of turning points: (i) no turning point with b < bcr, which characterizes
the cases that either the photon coming from infinity falls into a black hole, or if a photon
that was emitted from near the horizon escapes to infinity; (ii) one turning point with
b = bcr that characterizes the case that the photon coming from infinity or emitted just
outside the event horizon of the black hole is captured by the photonsphere at r1 = rps; (iii)
two turning points with b > bcr characterize the cases that either the photon coming from
infinity reaches the periastron (r2) and again escapes to infinity, or if the photon emitted
from near the horizon reaches an apastron (r1) and falls back to the black hole.

Figure 3. Radial profile of the effective potential of a photon in the Schwarzschild–Tangherlini
spacetime for L = 5 and the dimension in the range D ∈ [4, 10].

Thus, we are interested in the second scenario in which the critical impact parameter
corresponds to the maximum of the effective potential where two turning points merge
into one. To find the value of b for one turning point, we must find the value of b that forms
the discriminant of the polynomial on the right hand side of (18). To find the discriminant,
we apply a determinant of the Sylvester matrix for the resultant of the polynomial. Since
the discriminant of this polynomial strongly depends on the dimension D, we determine
the discriminant after specifying the dimension below.

Moreover, to estimate the likelihood of a photon being captured by the black hole, we
study the capture cross-section of a photon by the black hole. From the geometrical point
of view, the capture cross-section of a photon is determined through the photonsphere at
the given plane as

σcapt = πb2
cr . (19)
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3.1. D = 4: Schwarzschild Black Hole

Despite the fact that the capture cross-section of a photon by the Schwarzschild black
hole has already been studied in [25–31], in order to keep sequences for all dimensions, we
also present the results here. Thus, in this case, the equation takes the form

b2r3(ur)2 = r3 − b2r + b2 . (20)

The determinant of the polynomial on the right-hand side of (20) is determined by the
following Sylvester matrix:

det


1 0 −b2 b2 0
0 1 0 −b2 b2

3 0 −b2 0 0
0 3 0 −b2 0
0 0 3 0 −b2

 = 0 . (21)

By solving the above equation with respect to the impact parameter, we found the
critical value of impact parameter as

bcr =
3
√

3
2

, (22)

and the capture cross-section of the photon by the Schwarzschild black hole is equal to

σcapt =
27π

4
. (23)

3.2. D = 5: Schwazrschild-Tangherlini Black Hole

For the 5-dimensional Schwazrschild-Tangherlini black hole, Equation (18) takes the
following form:

b2r4(ur)2 = r4 − b2r2 + b2 . (24)

The determinant of the polynomial on the right-hand side of (24) is determined by the
following Sylvester matrix:

det



1 0 −b2 0 b2 0 0
0 1 0 −b2 0 b2 0
0 0 1 0 −b2 0 b2

4 0 −2b2 0 0 0 0
0 4 0 −2b2 0 0 0
0 0 4 0 −2b2 0 0
0 0 0 4 0 −2b2 0


= 0 . (25)

By solving the above equation with respect to the impact parameter, we found the
critical value of impact parameter as

bcr = 2 . (26)

The capture cross-section of a photon by the 5-dimensional Schwarzschild–Tangherlini
black hole is equal to

σcapt = 4π. (27)

3.3. Generic Case

As we have already stated that the critical impact parameter of a photon is determined
by the ratio (16) with the given energy in (10) and angular momentum at the photonsphere
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at (12). Thus, the impact parameter of a photon in the arbitrary dimensional Schwarzschild–
Tangherlini black hole spacetime is determined by

bcr =
22/(D−3)√D− 3(D− 1)(D−1)/2(D−3)

23/(D−3)(D− 1)− 2D/(D−3)
. (28)

The capture cross-section of a photon by the generic Schwarzschild–Tangherlini black
hole is given by

σcapt =
24/(D−3)(D− 3)(D− 1)(D−1)/(D−3)[

23/(D−3)(D− 1)− 2D/(D−3)
]2 π. (29)

In order to present them quantitatively, we have presented Figure 4 and in Table 1 for
the dimension of the spacetime in the range D ∈ [4, 10].

Table 1. The critical impact parameter and capture cross-section of a photon by the Schwarzschild–
Tangherlini black hole for several values of spacetime dimension.

Quantities D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D = 10

bcr
3
√

3
2 2 55/6

3√2
√

3
33/4
√

2
77/10
5√2
√

5
2 3√2√

3
3 32/7
7√2
√

7

œcapt
27
4 π 4π 5

3
( 5

2
)2/3

π 3
√

3
2 π 7

5
( 7

2
)2/5

π 4
3 22/3π 9 34/7

7 22/7 π

Figure 4. The critical impact parameter (Left panel) and capture cross-section (Right panel) of a photon in the
Schwarzschild–Tangherlini black hole spacetime for the dimension in the range D ∈ [4, 10].

Moreover, we study the capture (or escape) of the photon as a function of propagation
direction as in [25]. An observer at rest in the field of the Schwarzschild–Tangherlini black
hole measures the following velocities of the photon relative to his orthonormal frame:

vr̂ = ±
√

1− b2 f
r2 , vφ̂ = b

√
f

r
, (30)

where + and − signs before the square root indicate the direction of motion of a photon,
whether it is coming from or toward a black hole, respectively. The components of the
velocity satisfy v2

r̂ + v2
φ̂
= 1.

This condition can be written in terms of the trigonometric functions of the angle
between radial and propagation directions, δ, as sin2 δ + cos2 δ = 1, with vr̂ = cos δ and
vφ̂ = sin δ.
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From the effective potential in Figure 3, it can be seen that there is always possibility
for a photon to be captured by (or escape from) the black hole. Below, let us analyse the
capture of the photon by the black hole cases separately.

(i) The photon is inside the photonsphere (1 ≤ r ≤ rps). At the event horizon at r = 1, the
photon has no chance to escape and it is captured by the black hole (δ = 2π). Beyond
the event horizon, the chance to escape from (capture by) the black hole increases
(decreases) and at the photonsphere at r = rps, the escape and capture are equally
likely (δ = π). Therefore, in Figure 5, escape and capture curves intersect at the
photonsphere, where they are equally likely. In this region, the escape can happen
only if vr̂ > 0 and b < bcr.

(ii) The photon is outside the photonsphere (r > rps). In this case, as r increases, a chance
for the photon to escape increases and to capture decreases. In this region, escape
can happen in two cases: 1) vr̂ > 0 ensures the photon escapes; 2) vr̂ < 0 and b > bcr
ensure the particle moves towards the black hole and reaches the periastron (bigger
turning point) and bounces back to infinity.

These two cases are calculated and summed for the photon in the Schwrazschild-
Tangherlini black hole spacetime in Figure 5. One can see that in higher dimensional black
holes, at the given radius, a photon is more likely to escape rather than the ones with fewer
dimensions. This is one more indication that the extra dimension of the Schwrazschild-
Tangherlini spacetime weakens the gravitational attraction of the black hole.

Figure 5. The angle between radial and propagation directions of captured photon by (gray) and
escaped photon from (brown) the Schwarzschild–Tangherlini black hole spacetime as a function of
radial coordinate for the dimension in the range D ∈ [4, 10]. Where the vertical line corresponds to
the photonsphere of the standard Schwarzschild black hole (black line).

4. Capture of Massive Particle

In this section, we study the capture cross-section of a massive test particle by the
Schwarzschild–Tangherlini black hole. Similar to the previous section, to study the capture
cross-section of a massive particle by the black hole, one must first determine the critical
impact parameter of the particle. However, since the effective potential of the massive
particle tends to one in Figure 1, not to zero as in the case of photon in Figure 3, at spatial
infinity, the critical impact parameter is defined quite differently to the case of photon (16),
as follows:

bcr =
Lcr√
E2 − 1

. (31)
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As it is seen from (31), our main task is to find the critical specific angular momen-
tum of the particle. To find it, we first rewrite the radial equation of motion (8) in the
following form:

rD−1(ur)2 =
(
E2 − 1

)
rD−1 −L2rD−3 + r2 + L2 .

(32)

The zeros of a polynomial on the right-hand side of (32) represent the turning points.
As in the case of the capture of photon in the previous section, from a shape of the effective
potential in Figure 1 it is easy to realize that depending on the energy of the particle, there
can be up to two turning points and one of the three scenarios presented in the previous
section can occur. Again, the critical impact parameter corresponds to the case with one
turning point where two turning points merge. The two turning points merge only if the
discriminant of the polynomial on the right-hand side of (32) vanishes. Again, to find the
discriminant, we apply the Sylvester matrix for the resultant polynomial. In our case, the
Sylvester matrix is the one with a size of (2D− 3)× (2D− 3). Unfortunately, we could not
solve the determinant of this matrix for the arbitrary dimension. Therefore, we solve them
by specifying the dimensions of the spacetime below.

4.1. D = 4: Schwarzschild Black Hole

In the case of the capture of a massive test particle by the standard Schwarzschild
black hole, the radial equation of motion (32) takes the following form:

r3(ur)2 =
(
E2 − 1

)
r3 + r2 −L2r + L2 .

(33)

The Sylvester matrix for this case is written as

det


E2 − 1 1 −L2 L2 0

0 E2 − 1 1 −L2 L2

3
(
E2 − 1

)
2 −L2 0 0

0 3
(
E2 − 1

)
2 −L2 0

0 0 3
(
E2 − 1

)
2 −L2

 = 0 , (34)

that gives the following equation:

L2
[
27E4 − 4E2

(
L2 + 9

)
+ 4
(
L2 + 2

)]
+ 4 = 0 . (35)

By solving this equation, we obtain the following expression for the specific angular
momentum:

Lcr =

√√√√E[9E(3E2 − E
√

9E2 − 8− 4
)
− 8
√

9E2 − 8
]
+ 8

8(E2 − 1)
.

(36)

By inserting expression (36) into (31), one obtains the critical impact parameter and
consequently, the capture of the massive particle with energy per mass E . Let us check the
capture cross-section for some limiting cases.

Let us consider the test particle is relativistic or a highly energetic particle. In this case,
the capture cross-section is given by

σcapt =
27π

4

(
1 +

2
3E2

)
+ O(E−4) , (37)
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that is identical with the one in [25].
Now, let us consider a non-relativistic particle with energy E = 1 + β2/2, where β is a

ratio of the velocity of the particle and speed of light as β = v/c. In this case, the capture
cross-section is given by

σcapt =
4π

β2 + O(β2) . (38)

4.2. D = 5: Schwarzschild–Tangherlini Black Hole

In the case of the capture of a massive test particle by the 5-dimensional Schwarzschild–
Tangherlini black hole, the radial equation of motion (32) takes the following form:

r4(ur)2 =
(
E2 − 1

)
r4 + (1−L2)r2 + L2 .

(39)

The Sylvester matrix for this case is 7× 7 and written as

det



E2 − 1 0 1−L2 0 L2 0 0
0 E2 − 1 0 1−L2 0 L2 0
0 0 E2 − 1 0 1−L2 0 L2

4
(
E2 − 1

)
0 2

(
1−L2) 0 0 0 0

0 4
(
E2 − 1

)
0 2

(
1−L2) 0 0 0

0 0 4
(
E2 − 1

)
0 2

(
1−L2) 0 0

0 0 0 4
(
E2 − 1

)
0 2

(
1−L2) 0


= 0 , (40)

that gives the following equation:

1− 2EL+ L2 = 0 . (41)

By solving this equation, we obtain the following expression for the specific angular
momentum:

Lcr = E +
√
E2 − 1 . (42)

By inserting expression (42) into (31), one obtains the critical impact parameter and
consequently, the capture of the massive particle with energy per mass E . Let us check the
capture cross-section for some limiting cases.

Let us consider the test particle is a relativistic or highly energetic particle. In this case,
the capture cross-section is given by

σcapt = 4π

(
1 +

1
2E2

)
+ O(E−4) . (43)

For the non-relativistic particle, the capture cross-section is given by

σcapt =
π

β2 + O(β) . (44)

For other dimensions of the spacetime, the same calculations can be repeated. As the
dimension of the spacetime increases, the order of the polynomial together with a size of
the Sylvester matrix, its determinant and expression of the critical angular momentum
all increase. Due to their long forms, we do not report them here, instead, in Table 2, we
present the capture cross-section of the test particle that is relativistic and non-relativistic
cases for the dimension of the Schwarzschild–Tangherlini black hole spacetime in the range
D ∈ [4, 10].
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Table 2. The capture cross-section of relativistic and non-relativistic particles by the Schwarzschild–
Tangherlini black hole for several values of dimension of the spacetime.

Dimension Relativistic Particle (E >> 1) Non-Relativistic Particle (E = 1 + β2/2)

D = 4 27π
4

(
1 + 2

3E2

)
4π
β2

D = 5 4π
(

1 + 1
2E2

)
π
β2

D = 6 5
3

( 5
2

)2/3
π
(

1 + 2
5E2

)
3π

22/3 β4/3

D = 7 3
√

3π
2

(
1 + 1

3E2

)
2π
β

D = 8 7
5

( 7
2

)2/5
π
(

1 + 2
7E2

)
5π

22/533/5 β4/5

D = 9 4
3 22/3π

(
1 + 1

4E2

)
22/3π

3β2

D = 10 9 34/7π
7 22/7

(
1 + 2

9E2

)
7π

22/755/7 β4/7

5. Conclusions

In this paper, we have studied the characteristic circular orbits of the massive and
massless particles around a Schwrazschild–Tangherlini black hole that is a solution of
pure general relativity in higher dimensional spacetime with a R× SD−2 topology. By
studying the circular orbits of test particles, we have determined the extra dimension of the
spacetime weakens the gravitational attraction of the black hole and, consequently, radii of
all the characteristic circular orbits, such as radii of the photonsphere, innermost stable and
marginally bound circular orbits, decrease in the higher dimensions. Moreover, we have
shown that in the Schwarzschild–Tangherlini spacetime there are stable circular orbits only
in the four-dimensional standard Schwarzschild spacetime. In higher dimensions, there are
no stable circular orbits which contradict the astronomical and cosmological observations
of gravitationally bounded systems. It may work in our favor that our Universe, consisting
of galaxies that contain stars, is most probably four-dimensional.

We studied the capture cross-section of massless (photon) and massive test particles by
the Schwarzschild–Tangherlini black hole. The critical impact parameters and capture cross-
sections of a photon and massive particles are calculated for several higher dimensions
and it is shown that they also decrease with increasing dimension. Moreover, we have
calculated the capture cross-section of relativistic and non-relativistic test particles in the
higher dimensions.
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