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Abstract: In the present manuscript, the evolution of the cosmic parameters and planes are being
investigated in the framework of the DGP braneworld model. In this scenario, the interaction Γ
between the Barrow holographic dark energy model (whose infrared cutoff scale is set by Hubble
and event horizons) and pressureless dark matter are considered. We check the behavior of different
cosmological parameters such as Hubble, equation of state, deceleration and squared speed of sound
from the early matter-dominated era until the late-time acceleration. It is found that the range of
Hubble parameter lies in the interval 95+35

−35 (for Hubble horizon) and 97+23
−23 (for event horizon).

For both horizons, the equation of state parameter favors the phantom dominant era as well as
the ΛCDM model while the deceleration parameter illustrates the accelerated expansion of the
universe. Furthermore, stability of the underlying model is found through squared speed of sound.
Furthermore, it is observed that ω−ω′ϑ plane corresponds to freezing and thawing region for Hubble
and event horizons, respectively. Furthermore, statefinder plane shows the ΛCDM and Chaplygin
gas behavior for both models. Finally, we investigate the thermodynamical nature of the underlying
model through Barrow entropy as horizon entropy and found validity for both horizons.

Keywords: DGP braneworld model; barrow entropy; barrow holographic dark energy model; hubble
horizon; event horizon; generalized second law of thermodynamics

1. Introduction

The universe is expanding, a well-established fact based on studies of type Supernova
Ia (SNe Ia) [1,2], gravitational lensing (GL) [3], cosmic microwave background radiation
(CMBR) [4,5] and the baryonic acoustic oscillations (BAO) [6,7]. It is strongly suggested that
this type of expansion is attributed to an unknown force called dark energy (DE) [8–13].
The only known property of DE can be described as a fluid having negative pressure
(repulsive force), which accounts for 76% of the total energy density of the current universe.
The ΛCDM model (Λ) was the first model to investigate DE, whose equation of state is
constant (ωϑ = −1), but it dubbed two basic problems, named fine-tuning [14–18] and
cosmic coincidence problems [7]. A large number of theoretical DE models and modified
theories of gravity have been proposed in the literature to describe the possible existence
of DE. Some promising DE models are pilgrim DE model [19–21], K-essence [22–24],
new agegraphic DE model [25,26], holographic DE (HDE) model [27,28] and its modified
families. Similarly, on orientation of the modified theories of gravity, there are many
attempts, for instance, the f (R) gravity (where R denotes the Ricci scalar) [29,30], f (T)
gravity (where T expresses the torsion scalar) [31], f (G) gravity (where G presents the
Gauss–Bonnet term) [32,33], the Dvali–Gabadadze–Porrati (DGP) braneworld model [34]
and so on.

According to the braneworld scenario, our universe is realized as a 3-brane embedded
in a higher-dimensional spacetime. One of the new versions of the braneworld scenario
is proposed by DGP, which states as our four-dimensional Friedmann–Robertson–Walker
(FRW) universe embedded in five-dimensional Minkowski spacetime. In this context, the
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usual gravitational laws are recovered by adding the action of brane (computed with the
brane intrinsic curvature) with Einstein–Hilbert action. The DGP model has two main
forms of solutions, the first one is the self-accelerating form while other is the normal
form. The first form of DGP model explores the late-time cosmic acceleration without
recourse to DE [35,36]. Unfortunately, this form of DGP has ghost instabilities and it
cannot realize a phantom divide crossing by itself, so it is necessary to add at least a
component of energy to obtain a phantom-like phase. On the other hand, the normal form
of the DGP model can realize a phantom-like phase, but cannot describe the accelerated
expansion of the universe. Therefore, by adding a DE component to the normal form, one
can explain late-time acceleration with new facilities which also shown good consistency
with observations. In the literature, a lot of authors have considered the DGP model to
explore different cosmological issues. Mukherjee [37] investigated the spherical collapse
of matter overdensity by using the semi-analytic approach in the context of the DGP
braneworld model. The structure formation [38], growth of large scale structure [39] and
numerical study of cosmological perturbation [40] are studied in braneworld cosmology.
Biswas et al. [41] investigated various physical aspects of the generalized ghost DE model
in the context of braneworld cosmology. They studied cosmological parameters (Hubble,
equation of state, deceleration, Adiabatic sound speed), planes (ωϑ −ω′ϑ, state-finder) and
found a stable solution that is consistent with observational datasets.

Description of DE through the well-known holographic principle (HP) (the entropy of
black hole is proportionate to its area) has become an interesting approach at cosmological
framework. The HDE model was the first attempt which is not only the best candidate to
describe DE but also in agreement with observational data. One can obtain the vacuum
energy density of the HDE model due to the connection between ultra-violet (UV) cutoff
(short distance cutoff) and infra-red (IR) cutoff (largest length of quantum field theory).
Initially, Li derived its energy density as ρϑ = 3n2M2

pl L
−2, where n denotes the numerical

constant, Mpl = 1√
8πG

is the reduced Planck mass and L expresses the horizon of the
universe. Inflationary evolution of the universe in the context of the HDE model is studied
in [42–47] while Gao et al. [48] investigated HDE model with Ricci scalar curvature. In
addition to all of these achievements, the minimal HDE model has a number of problems.
The biggest problem is that the χ2 is higher than flat ΛCDM even through HDE has an extra
parameter. This appears to be down to an incompatibility with observational data within
HDE [49]. Furthermore, the minimal HDE model with Hubble horizon is not a good choice,
since it precludes DE [27]. Furthermore, some new types of HDE model are modified by
utilizing different generalized entropies with holographic fundamentals. These extended
forms are the Tsallis HDE model [50], the Renyi HDE model [51,52], the SharmaMittal HDE
model [53,54] and the barrow HDE model [55]. These modified HDE models are obtained
by utilizing HP with different generalized entropies.

The entropy is the essential concept to explore universal features of a system from
its microscopic details. The Bekenstein–Hawking entropy (black hole entropy) [56,57] is a
non-extensive quantity, proportional to the area of its event horizon A defined as SBH = A

4 .
From the statistical point of view, Boltzmann and Gibbs has initially defined as entropy
in terms of the probability distribution. Gibbs entropy is defined over an ensemble while
Boltzmann thought the entropy is the the macroscopic state of a system. In modern physics,
Boltzmann–Gibbs (BG) entropy which is motivated by statistical physics, is known as the
basic entropy. The BG entropy is further generalized in a dynamical system, information
theory and statistical physics. Kolmogorov–Sinai entropy [58] is an example of generalized
entropy related to the dynamical system while Rényi entropy is an example of information
theory. Another important generalization of standard BG entropy is Tsallis non-extensive
entropy constructed by Tsallis and Cirto [50]. In [59], Tsallis argued that BG entropy would
not be a suitable entropy to describe a black hole (BH) as this entropy is not proportional
to the BH volume. In 1975, Sharma and Mittal constructed another form of generalized
entropy named Sharma–Mittal (SM) entropy [60]. Some remarkable features of SM entropy
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are that it fails to be concave [61] (requires thermodynamical stability) and it is not Lasche-
stable [62] (stability for small variations of the probabilities).

Recently, Barrow [63] proposed a new form of entropy inspired by COVID-19 virus
cases, named Barrow entropy. This entropy is a quantum gravitationally corrected black-
hole entropy due to the fractal structure brought about in its horizon. Mathematical form
of Barrow entropy is considered as

SB =

(
A
A0

)1+ ∆
2

, (1)

where A and A0 are the normal and Planck area, respectively, while ∆ denotes the quantum
deformation. The maximal deformation exist for ∆ = 1 while for ∆ = 0 we recover normal
(Bekenstein) entropy. Next, Saridakis [55] derived the Barrow HDE (BHDE) model by
utilized the HP in a cosmological structure and Barrow entropy. The energy density of this
BHDE model is defined as

ρϑ = CL2−∆, (2)

where the parameter C has the dimension [L−2−∆]. In literature, various IR cutoffs have
been proposed to understand the dynamics of universe. In this paper, we consider the
Hubble (L = 1

H ) and the event
(

L = Rh = a(t)
∫ ∞

t
dt

a(t)

)
horizons as IR cutoffs. Motivation

of these cutoffs are as follows.
In case of event horizon, we found some difficulty as there does not exist any standard

big bang model against this horizon. Furthermore, for the accelerating era of the universe,
the event and Hubble horizons have different forms. Wang et al. [64] checked the validity
of thermodynamics laws (first and second thermodynamics laws) for Hubble and event
horizon with Bekenstein entropy as horizon entropy. They considered the usual definition
of the temperature and entropy and found compatibility for Hubble horizon while the
violation of these laws are obtained in case of the event horizon. They demonstrated that
the event horizon presented the global space-time properties; therefore, it is larger than
Hubble horizon. They argued that this horizon universe remains non-static and, therefore,
thermodynamical quantities are different and not as simple as in static space-time. Sadjadi
and Honardoost [65] considered the linear combination of Hubble and event horizon in
the framework of the interacting HDE model and investigated the possibility of crossing
ω = −1 by assuming the validity of second thermodynamical law. Arevalo et al. [66]
checked the validity of the generalized second law of thermodynamics (GSLT) for Hubble,
event and linear combination of these horizons. They also considered the interacting HDE
model in a FRW background and found constraints, under which the generalized second
law is valid.

Many authors studied remarkable works in the framework of the BHDE model.
Archana et al. [67] explored statefinder diagnostic for a flat FRW universe in the framework
of the BHDE model. Sharma et al. [68] studied a Barrow agegraphic DE model and
found the nature of some cosmological parameters and planes. Similarly, Srivastava
and Sharma [69] investigated the evolutionary history of cosmological parameters and
reconstructed the quintessence scalar field model for the BHDE model with Hubble cutoff.
Mamon et al. [70] proposed an interacting model of BHDE and discussed cosmological
parameters and planes as well as the generalized second law of thermodynamics for
a spatially flat FLRW universe. In this manuscript, we investigate the nature of some
cosmological parameters (Hubble, equation of state, deceleration, squared speed of sound)
and planes (ωϑ − ω′ϑ, statefinder) for the BHDE model with Hubble and event horizon
under DGP cosmology. We also present the graphical behavior of each parameter and
plane and found stable solutions. We also check the stability of the underlying model
through the generalized second law of thermodynamics. The structure of this paper
is as follows. In the next section, we discusse the field equations of DGP braneworld
cosmology. Section 4 is dedicated to investigating the dynamics of cosmological parameters.
In Section 5, we extend our study towards cosmological planes. The generalized second law
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thermodynamics is studied in Section 6. Finally, the last section is devoted to a summary
of our results.

2. Field Equation

We consider a homogeneous and isotropic FRW universe on the brane which can be
describe by the line element

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + r2dΩ2
)

, (3)

where a(t) and k are the scale factor and curvature parameter. The open, flat and closed
universe can be characterized for k = −1, 0, 1, respectively. For a flat FRW universe,
the modified Friedmann equation in DGP braneworld cosmology [35] is given by

H2 =

(√
ρ

3M2
p
+

1
4r2

c
+

ε

2rc

)2

, (4)

where H(a) is a Hubble parameter such that H(a) = ȧ
a and dot presents its derivative with

respect to (w.r.t) time t. The crossover length scale is denoted by rc such that rc =
M2

p

2M3
5
= G5

2G4
,

it is also interesting to mention here that 1
H � rc is corresponds to 4D general relativity and

the contradiction leads to significant effect of 5D. Furthermore, ρ = ρϑ + ρm, where ρϑ and
ρm are the energy densities of DE and dark matter (DM), respectively, Mp is reduce Planck
mass and ε = ±1. This value of ε leads to two types of solutions of the DGP cosmology,
first one is self accelerating solution (ε = +1) and the second one presents normal branch
(ε = −1). The normal branch is shown as the accelerating phase of the universe due to
the DE component while the self accelerating branch expresses acceleration without the
presence of an additional DE component. In standard cosmology, Equation (4) can also be
written as

H2 − ε

rc
H =

ρ

3M2
p

. (5)

The above equation can also be written in fractional energy density form by consid-
ering Ωm = ρm

3M2
p H2 , Ωϑ = ρϑ

3M2
p H2 and Ωrc =

1
4H2

0 r2
c

(where H0 denotes the present value of

Hubble parameter). Therefore, Equation (5) in the form of fractional density becomes

1 =
2εH0

H

√
Ωrc + Ωm + Ωϑ ⇒ 1 = ΩB + Ωm + Ωϑ, (6)

where ΩB = 2εH0
H
√

Ωrc. In further calculations, we consider M2
p = 1. In this manuscript,

we are assuming non-interaction conservation equations between DE and DM that leads to
the following form

ρ̇ϑ + 3H(ρϑ + pϑ) = −Γ, (7)

ρ̇m + 3H(ρm + pm) = Γ, (8)

where Γ is the interaction term that presents the rate of energy exchange between dark
sectors. From conservation Equation (7), it clear that Γ < 0 corresponds to the energy
transfer from DM to BHDE while Γ > 0 shows the energy transfer from BHDE to DM.
The non-interaction case (Γ = 0) leads energy density of DE as ρm ∝ a−3. Therefore,
the non-interaction case is more general to understanding the dynamics of the universe with
different perspectives. In the literature [71], many linear and non-linear interaction terms
have been proposed, which are the function of ρϑ ρm and H and their linear combinations.
Among these interaction terms, Γ = 3Hd2ρm is most effective case [72]. Hence, In this
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work, we consider Γ = 3Hd2ρm (where d2 is the coupling constant). Using this choice of Γ
in Equation (8), we have

ρm = ρm0a3(d2−1), (9)

where ρm0 is the integration constant.

3. Cosmological Parameters and Planes

In this section, we briefly discuss some basic but important cosmological parameters
like Hubble (H), EoS (ωϑ), deceleration (q) and squared speed of sound (V2

s ). The most
important feature of these parameters are that they not only describe the formation of the
universe from neutrinos, baryons, dark matter and DE but also tell us about the global
dynamics of the universe such as expansion rate and curvature. Hence, we investigate
these feature of the universe through above mention parameters for BHDE model in the
framework of DGP braneworld cosmology.

3.1. Hubble Parameter

This parameter sets the scale of our universe at present time. The present value of Hubble
parameter is known as Hubble constant which lies in the range H0 = 65–75 km/s/Mpc. To find
the expression of Hubble parameter for the underlying model under DGP braneworld
gravity, first we differentiate Equation (5) w.r.t cosmic time t, which gives the following
expression

Ḣ =
ρ̇ϑ + ρ̇m

3(2−ΩB)
, (10)

for Hubble horizon as IR cutoff, the expression of Hubble parameter is obtain by using
Equations (2) and (7)–(10) as follows

Ḣ =
9(d2 − 1)H2

0 Ωm0a3(d2−1)

6− 3ΩB − C(2− ∆)H−∆ , (11)

where Ωm0 = ρm0
3H2

0
.

Next, we convert Equation (11) into redshift parameter z by using expression
dt = − dz

H(z)(1+z) and draw the plot of this expression in Figure 1 for different choices
of d and ∆. We consider the best-fit values of model parameters H0 = 74, Ωm0 = 0.32,
C = 3, Ωrc = 0.0003 and ε = −1. From Figure 1, it is obvious that the range of H lies in the
interval 95+35

−35 for selected range of redshift parameter which favors the recent observa-
tional data [73]. Again, in case of event horizon as IR cutoff, Hubble parameter becomes

Ḣ =
1

(2−ΩB)

3H0Ωm0(d2 − 1)a3(d2−1) + (∆− 2)HΩϑ

H −
(

3H2Ωϑ

C

)− 1
∆−2

. (12)

In Figure 2, the Hubble parameter H has been plotted in term of redshift parameter z
for different values of d and ∆. We also choose H0 = 74, Ωm0 = 0.32, C = 3, Ωrc = 0.0003
and ε = −1. For the selected range of the redshift parameter, we obtain the interval of H,
that lies in 97+23

−23 which is also consistent with recent observational data [73].
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H

Hubble Horizon BHDE

Figure 1. Estimation of Hubble parameter H versus redshift parameter 1 + z for interaction BHDE
model with Hubble horizon in case of GDP braneworld cosmology.
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d=5,�=0.2
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Event Horizon BHDE

Figure 2. Plot of Hubble parameter H versus redshift parameter 1 + z for BHDE model with event
horizon for GDP braneworld cosmology.

3.2. Equation of State Parameter

This parameter presents the ratio between pressure to the density of DE (ωϑ = pϑ
ρϑ
),

also governs the rate at which the DE density evolves. See Table 1 below.

Table 1. The different phases of equation of state (EoS) parameter.

Decelerated Phase
ωϑ = 1
ωϑ = 1

3
ωϑ = 0

Stiff Fluid
Radiation-Dominated

Dust Matter-Dominated

Accelerated Phase
−1 < ωϑ < − 1

3
ωϑ = −1
ωϑ < −1

Quintessence
Cosmological Constant

Phantom-Dominated Era

For Hubble horizon, the expression of EoS parameter for underlying model can be
obtain by using Equations (2) and (7) in term of redshift parameter, as follows

ωϑ = −1−
3H2

0 Ωm0d2(1 + z)−3(d2−1)

CH2−∆ − 2− ∆
3H2 Ḣ. (13)

In Figure 3, we show the evolution of EoS ωϑ versus z (redshift parameter) for some
rational values of interaction parameter d and quantum deformation parameter ∆. For all
these values of d and ∆, the EoS parameter remains in phantom dominated era (ωϑ < −1).
In any case, for d = 0.3 and ∆ = 0.35 (red-line) the trajectory corresponds to quintessence
era. It is also interesting to mention here that the trajectories also approach to a cosmological
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constant Λ as ωϑ → −1 in future epoch (z < 1). Similarly, in case of event horizon, the
EoS parameter becomes

ωϑ = −1−
H2

0 Ωm0d2(1 + z)−3(d2−1)

H2Ωϑ
− ∆− 2

3H

H −
(

3H2Ωϑ

C

)− 1
∆−2

. (14)

The graphical behavior of ωϑ versus z is shown in Figure 4 for different values of d
and ∆. We notice here that the EoS parameter, in the case of the BHDE model, remains in
the phantom era, but for d = 0.25 and ∆ = 0.02, it approaches to a cosmological constant
as well as quintessence behavior.

0.0 0.5 1.0 1.5 2.0

-1.4

-1.2

-1.0

-0.8

1+z

�
�

Hubble Horizon BHDE

d=0.4,Δ=4.5

d=0.35,Δ=4

d=0.3,Δ=0.35

Figure 3. The EoS parameter ωϑ versus redshift parameter 1 + z for interaction BHDE model with
Hubble horizon for GDP braneworld cosmology.

0.0 0.5 1.0 1.5 2.0
-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

-0.9

1+z

�
�

Event Horizon BHDE

d=0.35,Δ=0.06

d=0.3,Δ=0.04

d=0.25,Δ=0.02

Figure 4. Plot of EoS parameter H versus redshift parameter 1 + z for interaction BHDE model with
event horizon for GDP braneworld cosmology.

3.3. Deceleration Parameter

The deceleration parameter q calculates the expansion history of the universe. The pos-
itive and negative sign of this parameter is to identify the decelerated and accelerated
phases of the universe. If −1 ≤ q < 0, it leads to accelerated phase while the decelerated
phase is observed when q ≥ 0. The mathematical expression of q is defined as

q = − a(t)ä(t)
(ȧ(t))2 = −1− Ḣ

H2 . (15)

In the case of the Hubble horizon, the expression of q for underlying model can be
obtain by using Equations (5) and (11), as

q = −1−
9(d2 − 1)H2

0 Ωm0(1 + z)−3(d2−1)

H2(6− 3ΩB − C(2− ∆)H−∆)
. (16)

The plot of the deceleration parameter against the redshift function is shown in
Figure 5. We conclude that for the selected range of z, the deceleration parameter is
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decreasing and decreases to more negative values. This range of q demonstrates the
accelerating expansion of the universe for z < 1.78. Moreover, in case of event horizon,
deceleration parameter becomes

q = −1− 1
H2(2−ΩB)

(
3H0HΩm0(d2 − 1)(1 + z)−3(d2−1) − (∆− 2)H2Ωϑ

((
3H2Ωϑ

C

)− 1
∆−2

− H
))

. (17)

The evolutionary behavior of the q (deceleration parameter) is plotted (Figure 6) for
the BHDE model versus z (redshift function) for the same previous values of all parameters.
From Figure 6, it is clear that the universe enters from an early deceleration phase to the
current acceleration phase, which shows the compatibility with the observational data.

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

1+z

q

Hubble Horizon BHDE

d=0.4,Δ=4.5

d=0.35,Δ=4

d=0.3,Δ=0.35

Figure 5. The evolutionary behavior deceleration parameter q versus redshift parameter 1 + z for
interaction BHDE model with Hubble horizon for GDP braneworld cosmology.

0.0 0.5 1.0 1.5 2.0

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

1+z

q

Event Horizon BHDE

d=0.35,Δ=0.06

d=0.3,Δ=0.04

d=0.25,Δ=0.02

Figure 6. Plot of q versus 1 + z for BHDE model with event horizon for GDP braneworld cosmology.

3.4. Squared Speed of Sound Parameter

The squared speed of sound V2
s is an important tool to check the stability of any model.

If V2
s > 0, it corresponds to the stability of model while V2

s ≤ 0 leads to instability [74].
This parameter is defined as

V2
s =

p′ϑ
ρ′ϑ

=
ṗϑ

ρ̇ϑ
. (18)

Now, substitute pϑ = ρϑωϑ and differentiate it w.r.t to t, it becomes

V2
s =

ω̇ϑρϑ

ρ̇ϑ
+ ωϑ, (19)

for Hubble horizon, Using Equations (11) and (13) one can obtain the expression of V2
s as

follows

V2
s = −1−

3H2
0 Ωmod2(1 + z)−3(d2−1)

cH2−∆ − 2− ∆
3H2 Ḣ +

Hω̇

(2− ∆)Ḣ
. (20)



Universe 2021, 7, 268 9 of 17

For different values of d and ∆, the squared speed of sound v2
s represented by

Equation (20), is plotted in Figure 7 against redshift parameter z. The figure depicts
the positive range of V2

s that corresponds to the stability of the BHDE model. In addition,
for event horizon, this parameter yields

V2
s = −1−

H2
0 Ωm0d2(1 + z)−3(d2−1)

H2Ωϑ
− ∆− 2

3H

H −
(

3H2Ωϑ

C

)− 1
∆−2

−((3H2Ωϑ

C

)− 1
∆−2

− H
)−1

ω̇

∆− 2
. (21)

The evolution of V2
s versus redshift parameter z for event horizon is shown in Figure 8.

For this case, the trajectories of the squared speed of sound are shown V2
s > 0 only when

z ≤ 1.2 which leads to stability of the underlying model.

1.00 1.05 1.10 1.15 1.20

0.0

0.2

0.4

0.6

0.8

1+z

V
s
2

Hubble horizon BHDE

d=0.36,Δ=1.37

d=0.33,Δ=1.36

d=0.3,Δ=1.35

Figure 7. Plot of squared speed of sound V2
s versus redshift parameter 1 + z for BHDE model with

Hubble horizon for for GDP braneworld cosmology.

1.0 1.2 1.4 1.6 1.8 2.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1+z

V
s
2

Hubble horizon BHDE

d=1.9,Δ=0.2

d=1.85,Δ=0.15

d=1.8,Δ=0.1

Figure 8. The V2
s as the function of z for interaction BHDE model with event horizon for GDP

braneworld cosmology.

4. Cosmological Planes

In this section, we study the physical significance of ωϑ −ω′ϑ and state-finder planes
for the BHDE model under DGP braneworld gravity.

4.1. ωϑ −ω′ϑ Plane

The ωϑ − ω′ϑ (where ′ expresses the derivative w.r.t ln a) plane analysis, is a very
significant tool as it has been used to differentiate different DE models through trajectories
on its plane. Initially, Caldwell and Linder [75] introduced this plane to investigate the
behavior of the quintessence DE model. They divide this plane into two classes named
thawing region where ω′ϑ > 0 for ωϑ < 0 and the freezing region where ω′ϑ < 0 for ωϑ < 0.
It is interesting to mention here that cosmic expansion in the freezing phase is accelerating
more compared to the thawing region. Now, one can differentiate Equation (13) w.r.t ln a
to find the expression of ω′ϑ for Hubble horizon as follows
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ω′ϑ =
3H2

0 Ωm0(1 + z)(3−3d2)

CH3(C(∆− 2)H−∆ − 3ΩB + 6)2

(
− 3C2

(
d2 − 1

)
(∆− 2)2H1−∆ + C2(∆− 2)3

× (1 + z)H−∆Ḣ − 6C(∆− 2)(1 + z)
(
d2(∆− 1)− 1

)
(ΩB − 2)Ḣ + 3C

(
d2 − 1

)
(∆− 2)

× H
(

3
(
d2 + 1

)
(ΩB − 2)− (1 + z)Ω̇B

)
+ 9d2(∆− 2)(1 + z)(ΩB − 2)2H∆Ḣ − 27d2(d2

− 1
)
(ΩB − 2)2H∆+1

)
. (22)

The plot of ωϑ versus ω′ϑ is shown in Figure 9, where the horizontal axis is defined by
ωϑ while the vertical axis presented by ω′ϑ. From Figure 9, it is clear that ω′ϑ < 0 as ωϑ < 0,
which corresponds to the freezing phase. In case of event horizon, the expression of ω′ϑ
takes the following form

ω′ϑ =
3

1
2−∆−1(1 + z)

H2
(
(1 + z)3d2 H2(ΩB − 1) + H2

0 Ωm0(1 + z)3
)(− (H2

0 Ωm0(1 + z)(3−3d2) + H2(ΩB

− 1)
)
C−1

) 1
2−∆
(

H2
0 Ωm0(1 + z)2

(
(∆− 2)(1 + z)Ḣ − 3

(
d2 − 1

)
H
)
+ (1 + z)3d2

H2
(

∆

× (ΩB − 1)Ḣ + HΩ̇B

))
+

(
d2H2

0 Ωm0(1 + z)(3d2+3)H
(
(ΩB − 1)

(
3
(

d2 − 1
)

H + 2(1

+ z)Ḣ
)
+ (1 + z)HΩ̇B

))(
(1 + z)3d2

H2(ΩB − 1) + H2
0 Ωm0(1 + z)3

)−2
. (23)

Using Equation (23), we plot Figure 10 (ωϑ vs. ω′ϑ) for BHDE model. We note that
ω′ϑ > 0 for ωϑ < 0 which leads to the thawing region.

d=2.4,�=1.1

d=2.45,�=1.15

d=2.5,�=1.2

-70 -60 -50 -40 -30 -20 -10 0

-2000

-1500

-1000

-500

0

ωϑ

ω
ϑ
′

Hubble Horizon BHDE

Figure 9. The behavior of ωϑ versus ω′ϑ for interaction BHDE model with Hubble horizon in the
context of GDP braneworld cosmology.
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Figure 10. Plot of ωϑ versus ω′ϑ for interaction BHDE model with event horizon in the framework of
GDP braneworld cosmology.

4.2. Statefinder Diagnosis

The Hubble parameter and deceleration parameter are two traditional geometrical
diagnostics that are known as the best choice to describe the cosmic expansion of the
universe, but they cannot differentiate different DE models. Hence, Sahni et al. [76]
introduced the statefinder {r, s} plane with the help of two dimensionless parameters r
and s, which not only characterized the different DE models uniquely but also depend
upon H and q. Thus, with the help of {r, s} plane, we can find the distance of underlying
BHDE model from ΛCDM scenario. See Table 2 below.

Table 2. The different DE models corresponding to different values of r and s.

Model r s

ΛCDM 1 0
CDM limit 1 1
Phantom and Quintessence <1 >0
Chaplygin Gas >1 <0

The statefinder parameters in term of H and q is defined as

r = 1 +
3Ḣ
H2 +

Ḧ
H3 , s =

r− 1
3(q− 1

2 )
. (24)

Now, for the Hubble horizon, we calculate r and s for BHDE model under the DGP
braneworld gravity, which obtained as

r = 1 +
27(d2 − 1)H2

0 Ωm0(1 + z)−3(d2−1)

H2(6− 3ΩB − C(2− ∆)H−∆)
+

1
H3

(
C(∆− 2)− 3H∆(− 2 + ΩB

))−2(
9
(
d2

− 1
)

H2
0 Ωm0(1 + z)(2−3d2)H∆−1

(
C(∆− 2)

(
∆(1 + z)Ḣ − 3

(
d2 − 1

)
H
)
+ 3H∆+1(3(d2

− 1
)
(ΩB − 2) + (1 + z)Ω̇B

)))
. (25)

s =
2

3(2q− 1)

(
27(d2 − 1)H2

0 Ωm0(1 + z)−3(d2−1)

H2(6− 3ΩB − C(2− ∆)H−∆)
+

1
H3

(
C(∆− 2)− 3H∆(− 2 + ΩB

))−2

×
(

9
(
d2 − 1

)
H2

0 Ωm0(1 + z)(2−3d2)H∆−1
(

C(∆− 2)
(

∆(1 + z)Ḣ − 3
(

d2 − 1
)

H
)
+ 3

× H∆+1(3(d2 − 1
)
(ΩB − 2) + (1 + z)Ω̇B

))))
. (26)
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The plot of r versus s in statefinder plane is shown in Figure 11. From Figure 11, we can
see that the plot corresponds to ΛCDM model as we obtain {r, s} = {1, 0}. Furthermore,
this figure shows that r > 1 and s < 0 which states the Chaplygin gas. Similarly, for event
horizon, one can find the expressions of r and s.

The variations of the statefinder parameters is shown in Figure 12 for different values
of d and ∆. Clearly, we see that r > 0 and s < 0 which again shows the Chaplygin gas.
However, r = 1 and s = 0 leads to ΛCDM model.

1.0 1.5 2.0 2.5 3.0

-0.4

-0.3

-0.2

-0.1

0.0

r

s

Hubble horizon BHDE

Figure 11. Variation of parameter r versus s for interaction BHDE model with Hubble horizon in the
context of GDP braneworld cosmology.
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Figure 12. Plot of r versus s for interaction BHDE model with event horizon under GDP braneworld
cosmology.

5. Generalized Second Law of Thermodynamics

Well-known relations between BH physics and thermodynamical laws provided us
some useful information that BH emits thermal radiation (Hawking radiation). This con-
nection motivated the exploration of the relation between gravity and thermodynamics.
Initially, Jacobson [77] used fundamental relation between heat Q, entropy S and tempera-
ture T, δQ = TδS (Clausius relation) with the proportionality of horizon area to entropy
and derived the Einstein equation. Then, Padmanabhan [78] applied thermodynamics
laws on the horizon and developed a general formalism in spherically symmetric space-
times. Furthermore, this mechanism extended in the cosmological background by using
the Hubble horizon. Cai and Kim [79] considered TA = 1

2πRA
(Hawking temperature)

and SA =
πR2

A
G (Bekenstein entropy) with the apparent horizon for a FRW universe and

constructed the Friedmann equation in term of the first law of thermodynamics. This
remarkable attempt (thermodynamical interpretation of gravity) opened a new horizon to
investigate cosmological properties in terms of thermodynamics. In [80–82], authors estab-
lished the relation between gravity and the higher-dimensional theories (Gauss–Bonnet
term and Lovelock gravity). In general, the modified second thermodynamic law is known
as the sum of the comic derivative among all horizon-related entropies and the normal
entropy must be non-negative, i.e., Ṡtot = Ṡ + Ṡh > 0, where S is the internal entropy of
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the universe and Sh represents the Hawking entropy or horizon entropy. The first law of
thermodynamics is defined as

TdS = dE + pϑdV ⇒ TṠ = Ė + pϑV̇, (27)

where V =
4πR3

h
3 , Th = 1

2πRh
, E =

4πR3
h

3 (ρϑ + ρm) and pϑ = ωϑρϑ. The total entropy is of
the following form

Ṡtot = Ṡ + Ṡh, (28)

where Ṡh is the external (horizon) entropy. In this paper, we consider Barrow entropy used
in Equation (1) as horizon entropy. Therefore, the expression of total entropy in case of
Hubble horizon as follows

S′tot =
−16π2

3(1 + z)H6

(
C(2− ∆)ḢH2−∆ + 9H2

0 Ωm0(d2 − 1)(1 + z)−3(d2−1)H2 − 9H2
0 Ωm0Ḣ

× (1 + z)−3(d2−1) − 3CḢH2−∆ − CH−1−∆ Ḣωϑ

)
+

γ(∆ + 2)
(1 + z)H4+∆ Ḣ, (29)

where γ = ( 4π
A0
)

∆+2
2 .

Figure 13 presents the plot of total entropy vs. redshift parameter. We found the
validity of GSLT as S′tot ≥ 0. Finally, for event horizon, the expression of S′tot becomes

S′tot =
−16π2

H(1 + z)

(
3H2Ωϑ

C

)(
3H2

0 Ωm0(d2 − 1)(1 + z)−3(d2−1) +

H −
(

3H2Ωϑ

C

)− 1
∆−2

(

× H2(∆ + Ωϑ) + 3H2
0 Ωm0(1 + z)−3(d2−1) + 3H2Ωϑωϑ

))
− γ(∆ + 2)

(1 + z)H

(
3H2Ωϑ

C

) ∆+1
∆−2
(

H

−
(

3H2Ωϑ

C

)− 1
∆−2
)

. (30)

Figure 13 shows the plot of total entropy against the redshift parameter. From figure,
it is clear that GSLT is also satisfied for the event horizon.

1.0 1.1 1.2 1.3 1.4

0

5

10

15

20

25

30

35

1+z

S
' t
o
t

Hubble horizon BHDE

Figure 13. Plot of S′tot versus redshift parameter 1 + z for interaction interacting BHDE model with
Hubble horizon under GDP braneworld cosmology.

6. Concluding Remarks

In this manuscript, we have made a versatile study on the interaction of the BHDE
model in the context of GDP braneworld cosmology. The DGP braneworld is proposed
by Giorgi Dvali, Gregory Gabadadze and Massimo Porrati for self-accelerating branch
(ε = +1) and normal branch (ε = −1). We have tried to investigate various physical
aspects of the newly proposed BHDE model under the normal branch of DGP cosmology.
We have considered Γ as an interacting parameter between BHDE and pressureless DM.
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In this scenario, we have assumed Hubble and event cutoffs to be the IR limit. In this
framework, we addressed the nature of some important cosmological parameters such
as Hubble H, EoS ωϑ, deceleration q and squared speed of sound V2

s . We have also
investigated the nature of some cosmological planes such as ωϑ −ω′ϑ and the statefinder
{r, s}. We have examined all these parameters and planes for different choices of d and
∆ in the form of redshift. We have taken the best-fit values of all model parameters as
H0 = 74, Ωm0 = 0.32, C = 3, Ωrc = 0.0003 and ε = −1. Next, we are going to summarize
the important results of our findings.

• We have examined the variation of Hubble parameter w.r.t redshift z in Figure 1
(Hubble horizon) and Figure 2 (event horizon). In Figure 1, we obtained the range of
H lies in the interval 95+35

−35 which satisfied the recent observational data. Similarly,
Figure 2 shows the range of Hubble parameter as H = 97+23

−23 which again very near to
observational limit.

• The EoS parameter ωϑ for the BHDE model is investigated in Figures 3 and 4 for
Hubble and event cutoffs, respectively. From both figures, it is clear that ωϑ < −1
which shows that the universe is under the influence of the phantom dominated era.
Both figures also remain in ΛCDM limit as ωϑ → −1.

• Next, deceleration parameter is plotted with Hubble horizon (Figure 5) and event
horizon (Figure 6) for BHDE model under braneworld cosmology. In Figure 5, we
obtained −1 ≤ q < 0 for selected range of redshift parameter, which corresponds
to accelerated phase of the universe. In any case, at early epoch, when z > 1.78,
the trajectories are shown to be in the decelerated phase. Moreover, in Figure 6 the
graph of this parameter illustrated the decelerated phase q ≥ 0 for 1.7 ≤ z ≤ 2 while
we obtain−1 ≤ q < 0 for 0 ≤ z < 1.7 which leads to accelerated phase of the universe
at present and future epoch.

• The graphical behavior of squared speed of sound parameter is found in Figures 7 and 8.
We observed that the trajectories in both figures are shown V2

s > 0, which implies that
the BHDE model under DGP braneworld gravity is stable for both cutoffs.

• We have also discussed ωϑ −ω′ϑ study for BHDE model in Figures 9 and 10. The tra-
jectories of this plane in Figure 9 indicated the freezing phase as ω′ϑ < 0 for ωϑ < 0
with Hubble horizon as IR cutoff. Similarly, Figure 10 examines the behavior of the
same plane for event cutoff. From Figure, it is clear that ω′ϑ > 0 for ωϑ < 0 which lead
to thawing region. Therefore, cosmic expansion is more accelerating is observed for
Hubble horizon.

• We analyzed the evolutionary behavior of statefinder plane in Figures 11 and 12. First
of all, both figures correspond to ΛCDM model as {r = 1, s = 0}. Next, in both figures
{r > 1, s < 0} which lead to Chaplygin gas model.

• Finally, we examined the validity of GSLT through the evolution of total entropy area
S′tot in Figures 13 and 14 for Hubble and event cutoffs, respectively. In both cases,
GSLT is valid as we found non-negative constraints (S′tot ≥ 0).
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Figure 14. The evolution of S′tot versus redshift parameter 1 + z for interacting BHDE model with
event horizon under GDP braneworld cosmology.



Universe 2021, 7, 268 15 of 17

As a final comment, we can conclude that all results for the BHDE model with Hubble
and event cutoffs are stable and consistent with observational data. See Tables 3 and 4.

Table 3. Summary of the observational data on ωDE.

ωDE Observational Schemes Refrences

−1.56+0.60
−0.48 TT + lowE [73]

−1.58+0.52
−0.41 TT,TE,EE + lowE [73]

−1.57+0.50
−0.40 TT,TE,EE,lowE + lensing [73]

−1.04+0.10
−0.10 TT,TE,EE + lowE + lensing + BAO [73]

Table 4. Summary of the observational data on q0.

q0 Observational Schemes Refrences

−0.644± 0.223 BAO + Masers + TDSL + Pantheon [83]

−0.6401± 0.187 BAO + Masers + TDSL + Pantheon + H0 [83]

−0.930± 0.218 BAO + Masers + TDSL + Pantheon + H(z) [83]

−1.2037± 0.175 BAO + Masers + TDSL + Pantheon + H0 + H(z) [83]
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