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Abstract: (1) This review has been written in memory of Steven Moszkowski who unexpectedly
passed away in December 2020. It has been inspired by our many years of discussions. Steven’s
enthusiasm, drive and determination to understand atomic nuclei in simple terms of basic laws of
physics was infectious. He sought the fundamental origin of nuclear forces in free space, and their
saturation and modification in nuclear medium. His untimely departure left our job unfinished but
his legacy lives on. (2) Focusing on the nuclear force acting in nuclear matter of astrophysical interest
and its equation of state (EoS), we take several typical snapshots of evolution of the theory of nuclear
forces. We start from original ideas in the 1930s moving through to its overwhelming diversity today.
The development is supported by modern observational and terrestrial data and their inference in the
multimessenger era, as well as by novel mathematical techniques and computer power. (3) We find
that, despite the admirable effort both in theory and measurement, we are facing multiple models
dependent on a large number of variable correlated parameters which cannot be constrained by data,
which are not yet accurate, nor sensitive enough, to identify the theory closest to reality. The role
of microphysics in the theories is severely limited or neglected, mostly deemed to be too difficult
to tackle. (4) Taking the EoS of high-density matter as an example, we propose to develop models,
based, as much as currently possible, on the microphysics of the nuclear force, with a minimal set of
parameters, chosen under clear physical guidance. Still somewhat phenomenological, such models
could pave the way to realistic predictions, not tracing the measurement, but leading it.

Keywords: equation of state of nuclear matter; strongly interacting matter; neutron stars; gravita-
tional waves; heavy-ion collisions; nuclear physics
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1. Introduction

In 1936, Bethe and Bacher [1] reviewed rather extensive data, subject to experimental
techniques of the day, available on the charge, weight, binding energy, size, spin, statistics
and electromagnetic moments of nuclei and outlined the then current state of knowledge
of nuclear physics. Radioactive decay had been extensively studied and experiments
with scattering of neutrons and protons by protons yielded fundamental cross-section
and angular distribution information. Data on the photo-disintegration of the deuteron
and the capture of neutrons by protons were also available. Analysis of the data required
model input about the force acting between nucleons bound in nuclei and in free space.
Qualitative features of the force, deduced from the data, relied heavily on analogy with
atoms and chemistry and are remarkably similar to what we know today. The linear
dependence of the nuclear mass on the number of nucleons in the nucleus, and particularly,
the comparison of properties of the deuteron, triton and alpha particle led to deduction of
fundamental properties of nuclear forces–the saturation, short range, exchange character
and the charge, spin and isospin dependence. Their attempts to find an analytic expression
for the nuclear force in order to calculate properties of the lightest nuclei failed. The three
most prominent models, the Heisenberg, Wigner and Majorana forces did not cover all
the aspects of the nuclear interaction. One of the problems was that determination of the
parameters of the forces relied on a combined data from finite nuclei and free nucleon
scattering, which we now know are not directly compatible.

The effort to compute nuclear binding energies precisely led to development in two
different directions: the single-particle “statistical model” [1] and the liquid drop model of
Gamow (1930) [2]. Neither model required a quantitative analytical form for the nuclear
force, derived from first principles. Thus started the trend of phenomenology, lasting to
this day. This trend has had two consequences: it requires experimental data to calibrate
any theory, thus theory always trails experiment. It diverted the attention of the field from
seeking the true nature of the nuclear force.

The “statistical” model assumed, in the first approximation, each particle moving
independently of the others. It had been applied to atoms, using the Hartree method, with
great success. It is educational to recall a comment about application of this method in
nuclear physics, made by Bethe and Bacher in 1936 [1]:

It can be said at once that this approximation will not be as successful in nuclear
theory as in the theory of atoms. The main reason for this is the saturation type of
the nuclear forces: Any given nuclear particle interacts essentially only with two
particles of other kind. Therefore the force between a given pair of particles will
be of the same order of magnitude as the force exerted by the whole nucleus on
one particle. This is contrary to the assumptions of the Hartree theory. These are
that in first approximation the total action of the nucleus on one particle may be
represented by an average field, corresponding to the average distribution of all
other particles over the nucleus. The correlations between the different particles,
i.e., the fact that the motion of one particle is influenced by the instantaneous
position of the others, is supposed to cause only small perturbations in the
Hartree theory. These assumptions of the Hartree theory are well satisfied in the
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atomic problem because the force due to the nucleus, and the force corresponding
to the average charge distribution of the electrons are very much stronger than
the fluctuations of the force caused by, say, a close approach of one other electron
to the electron considered. In nuclear physics, the force on one neutron changes
by 100 percent or more according to whether a proton happens to be near the
neutron or not. Therefore the correlations between the nuclear particles will be of
extreme importance for any satisfactory calculation of nuclear energies, and the
Hartree method will afford only a poor approximation. In spite of these serious
objections against the Hartree method, we are forced to use it because no better
method seems practicable at the moment.

In 2021, although refined in some ways, no better method is available. However,
Bethe’s warning comment has been forgotten.

The original liquid drop model treated the nucleus as a drop of incompressible liquid
made of protons and neutrons and focused only on classical macroscopic characteristics
of nuclei. The liquid drop approach had, among other things, the advantage of allowing
extrapolation beyond finite nuclei to infinite matter, essential for modeling of astrophysical
objects. We will discuss this model in some detail in Section 3.1.

Free nucleon–nucleon scattering experiments in the 1950s and later stimulated more
elaborate modeling of the bare nucleon–nucleon (NN) potentials (coined the “realistic”
potentials) and of the structure of the deuteron (see Section 3.2.1). However, it has become
clear that these potentials do not work in finite nuclei and that the fundamental question is:
why and how are forces between free nucleons modified in nuclear medium?

This problem has been addressed in many hundreds of papers over the years, but a
satisfactory solution is yet to be found. A frequent argument is that the exact solution of
the nuclear many-body problem, which is beyond the current computer resources, will be
obtained when quantum computers become available. This would of course imply that the
free nucleon interaction is fully understood. There is, however, another way of thinking
about it. Rather than improvement in computing power, the physics of the nuclear force
may require new insight, both in theory and in identification of experimental/observational
data exhibiting adequate sensitivity to its impact. Spelling out the problem and illustrating
some of its consequences may encourage a fresh way forward.

It is well beyond the scope of this paper to cover even a small fraction of all the
theoretical models in the literature, related directly or indirectly to the problem of the
nuclear force. Here, we focus only on dense baryonic matter, believed to exist in cold and
hot compact objects and present selected snapshots which, in our mind, illustrate well
the message we wish to convey to the reader. Finite nuclei and their interactions will be
mentioned only when a broader context is helpful to the discussion. However, it is clear
that any success in describing the nuclear force must equally well describe both dense
baryonic matter and finite nuclei.

This paper is divided into the following sections: in Section 2, the concept of the
equation of state (EoS) is introduced in the context of compact objects; the nuclear physics
input to the EoS is highlighted in Section 3, presenting the basic ideas of macroscopic
(Section 3.1) and microscopic (Section 3.2) models, followed by a short survey of reliable
observational and terrestrial data available for constraining the EoS in Section 4, including
neutron stars in Section 4.1, gravitational waves in Section 4.2 and heavy-ion collisions in
Sections 4.3 and 4.4; Section 5 contains concluding remarks.

2. The Equation of State

In a general form, the EoS is a relation between any thermodynamical state variables
of a system which fully specify the state of the system under a given physical condition.
In the context of compact objects, the EoS is usually defined as a relation between the
pressure, energy density and temperature. It is important to emphasize that the EoS also
depends on the composition of the system, which is crucial for modeling astrophysical objects in
various situations. In other words, the nuclear and particle physics input into models of
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compact objects is contained in their EoS. Oertel et al. [3] reviewed comprehensively the
status of our knowledge about the EoS of neutron stars (NSs) and core-collapse supernovae
(CCSN) before the observation of gravitational waves (GW), detailing many theoretical
methods and astrophysical and terrestrial data needed for constructing an EoS model and
constraining its parameters. A more recent review [4], focussed on a wide range of aspects
of the GW observation, and related them to a hybrid EoS, built on the chiral effective field
theory (χEFT) at low density and the perturbative QCD (pQCD) at high densities. The
recent status of the research of the EoS of neutron stars can be found in [5].

The NS EoS forms the principal input into the Tolman–Oppenheimer–Volkov (TOV)
equation [6], yielding the gravitational mass of the star as a function of its radius. Despite
all the constraints available, the predictions for the maximum gravitational mass and the
related radius of a cold NS with only proton, neutrons and leptons in the interior differ
substantially, as illustrated in Figure 1.

There is no general consensus on the composition of the NS core. The common un-
derstanding is that at densities at and below approximately three times nuclear saturation
density (ρ0 ∼ 0.16 fm−3; see Section 3.1) the matter in a cold NS consists of nucleons
and leptons in chemical equilibrium. At higher densities in cold stars, hyperons appear
naturally (due to Pauli blocking), when their chemical potentials exceed their effective
masses and the strangeness non-conserving weak processes become possible [7–11]. Dif-
ferent models vary in predictions of the threshold densities for appearance of hyperons,
which depend on hyperon couplings and the consequent hyperon binding energies [12]. At
higher temperatures, hyperons exist at all densities [11], and have to be accounted for in
EoS models.

Hyperons add additional degrees of freedom to the system, which inevitably lower
the pressure with increasing energy density and hyperon content (softening of the EoS).
As a consequence, the maximum gravitational mass of cold NSs with hyperons is lower
than that of nucleon-only stars, in some models below the observation limits (the “hyperon
puzzle”). This is a model-dependent effect related to the choice of hyperon couplings
which are still not well known, although some estimates can be obtained from data on
hypernuclei. Thus, unambiguous observational fingerprints of hyperon presence in NS
interiors have not been established, despite the extensive literature on the subject. A most
informative recent review of hyperon physics in high-density matter can be found in [13].

Another frequently discussed component of NS interiors is matter consisting of (par-
tially) deconfined quarks. The idea started in the 1970s and has been developing since
(see, e.g., [14–23]). Many forms and phases of the quark matter and of the hadron-quark
transition as well as studies of the interplay between hyperonic and quark matter [24,25]
have been suggested but, again as in the case of hyperons, no observational fingerprints
have yet been found. Annalla et al. [26] suggested that the hadron-quark matter can be
mapped by a discontinuity (jump) in the square of the speed of sound as a function of
particle number density in a NS. However, Stone et al. [11] demonstrated that the predicted
jumps are most likely related to generic instabilities, caused by changes in composition
of the hadronic matter, for example the appearance of hyperons, and cannot be taken
as a specific signature of a hadron-quark phase transition. Such instabilities could be
understood in a classical analogy with the effect of induced vibration in a medium, causing
impedance through its refracting index on propagation of a sound wave.

The microscopy of quark deconfinement and its nature in NS cores poses unanswered
questions. It is not clear to what extent the conditions inside NSs compare to those in
heavy-ion collisions where the quark-gluon plasma was detected by the STAR and PHENIX
experiments at the RHIC collider at the Brookhaven National Laboratory in early 2020s.
The results were recently confirmed at ALICE, ATLAS and CMS experiments at the LHC at
CERN collider (https://home.cern/science/physics/heavy-ions-and-quark-gluon-plasma
(accessed on 7 June 2021)) [27]. However, the quark-gluon plasma produced in these
experiments is essentially baryon free, which is very different to conditions in NS star cores.
The current beam scan for the critical point in the QCD diagram (see Section 4.3 by the

https://home.cern/science/physics/heavy-ions-and-quark-gluon-plasma
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STAR collaboration is designed to produce baryon-rich quark-gluon plasma to see whether
its phase transition changes to a first-order one once the baryon chemical potential is larger
than a critical value. This effort is expected to continue also on the planned new facilities
FAIR and NICA. Such information will be important for putting the question of existence
of the quark matter on firmer ground.

Figure 1. Selection of mass–radius curves of cold NSs containing only n, p, e and µ in the core.
The figure is adopted from [3] under American Physical Society Reuse and Permissions License
RNP/21/JUN/040827, where details of the EoSs can be found.

Very recently, the possibility of accretion of non-spinning mini-black holes in the
center of a non-rotating NS was revisited [28]. The concept of endoparasitic black holes in
NSs is not new, but cannot be rejected outright, although again a definitive observational
fingerprint has not been identified.

Boson condensates, pions [29,30], kaons [31–33] and ρ-mesons [34] have been also
considered to be present in the NSs interiors. To add to the complexity, proton supercon-
ductivity and neutron superfluidity in the NS cores have been extensively studied [35,36].

The extreme environment in NS interiors, to the limited extent we understand it,
allows the existence of the above possibilites (and more), in accord with known physical
laws. However, presently available observational data are very unlikely to provide sufficient
sensitivity to all the individual scenarios and their relationships as encoded in the EoS.

3. Nuclear Physics Input into the Dense Matter EoS
3.1. Macroscopic Approach

In this section, we review the basic ideas and assumptions which were used to build
the first macroscopic models of nuclei. These models are still used today, with only some
technical modifications, despite their very simple (semi) classical origin.

3.1.1. Semi-Empirical Mass Formula and Nuclear Matter

One of the early models of the atomic nucleus employed the analogy with a drop of in-
compressible liquid. Gamow [2] formulated the first liquid drop model and Weizsäcker [37]
and Bethe and Bacher [1] used this model to express the total binding energy B(A, Z) and
the binding energy per particle B(A, Z)/A of an even–even nucleus with N neutrons, Z
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protons and the mass number A = N + Z with uniform matter and charge density, in the
form, known as the semi-empirical mass formula (SMF)

B(A, Z) = avol A + asurf A2/3 + aCZ2 A−1/3 + asym(N − Z)2 A−1 (1)

where avol, asurf, aC and asym are coefficients of the volume, surface, Coulomb and symme-
try terms. The A dependence of the individual terms is based on the assumption that the
nucleus is a sphere with radius R, containing closely packed spherical nucleons with radii
r0 [1]. The symmetry term arises because the protons and neutrons, as different particles,
are treated separately as non-interacting Fermi gases obeying the Pauli principle. For differ-
ent numbers of protons and neutrons there will be a difference between the energy levels
occupied by protons and neutrons which will contribute to the total energy of the nucleus
and decrease its binding energy. To obtain the coefficients in Equation (1), the binding en-
ergy is fitted to experimental nuclear masses, M(A, Z) = (Zm(1H) + Nmn − B(A, Z))/c2.

It is instructive to review the relative magnitude and the mass number dependence of
different terms in the SMF using the binding energy per particle as given in Equation (2) .

B(A, Z)/A = avol + asurf A−1/3 + aCZ2 A−4/3 + asym(N − Z)2 A−2 (2)

We calculate individual terms in Equation (2) as a function of A = N + Z of selected
nuclei between 16O and 254Fm. The coefficients avol, asurf, aC and asym are taken as 15.36,
16.42, 0.691 and 22.53 MeV, respectively. These values were determined by Kirson [38] from
a fit of the basic Equation (1) to the 2003 mass table [39]. As shown in Figure 2, the major
contribution comes from the volume term which is independent of A. The total is reduced
by the surface term, dominant in light nuclei, competing with the Coulomb term which, as
expected, becomes more important in heavy nuclei. The symmetry term plays the least
important role, except for very light nuclei, and decreases with increasing A in finite nuclei.
However, this term plays an important role in highly isospin asymmetric systems such
as NS.
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Figure 2. Binding energy per particle as calculated in Equation (2). The magnitude of the volume,
surface, Coulomb and symmetry contribution to the total nuclear binding energy, depicted by the
horizontal black line, are displayed vs. mass number A. For more discussion, see text.

The mass number independence of the volume term in Equation (2) was one of
the reasons for introducing the concept of infinite nuclear matter (INM) ([1,40] and refs.
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therein), a hypothetical medium made up of infinite number of uniformly distributed
protons and neutrons, with a given proton/neutron ratio, and no Coulomb field. INM has
only two properties that can be calculated, the binding energy per particle and the particle
number density.

The binding energy per particle of INM with N = Z, the symmetric nuclear matter
(SNM), E0, is given by the coefficient av in Equation (2) as all the other terms tend to zero
for A→ ∞ and N = Z. However, it is important to remember that the value of av has been
obtained by fitting the full SMF formula to experimental masses. Thus, by approximating
E0 by av we assume that the terms in the SMF are independent (not correlated) and the
volume term, strictly speaking, describes matter consisting of nucleons interacting without
a distinction between protons and neutrons. Effects of correlations and refining terms
in SMF were studied, for example, by Kirson [38]. There are many fits available in the
literature but they all converge to av between 14 and 17 MeV [38].

To calculate the particle number density of the SNM, an assumption has to be made
concerning the relation between R, r0 and A. Taking there are A nucleons in the sphere
with the radius R, containing A smaller spheres with equal radii r0, the volume of the
sphere is V = 4/3πR3, which is equal to 4/3πr3

0
f A, with f being the packing factor. This

relation leads to the standard expression for the mass number dependence of nuclear
radius R = R0 A1/3, with R0 = f r0 and the A-independent particle number density
ρ0 = A/V = 3/(4πR0

3).
The value of R0 was determined from electron scattering experiments on heavy nuclei

and on hydrogen and the deuteron, which confirmed the finite size of the nucleon [41,42].
These experiments confirmed that, on average, the central density of heavy nuclei is rather
independent of the mass number A, that the nuclear radius is indeed proportional to
A1/3. The results were, however, not quite model independent as the analysis required
empirical input of the proton charge distribution (12 different function were used in [41]).
The value of R0 = 1.12 fm led to ρ0 = 0.17 fm−3 [40]. We note that it is quite remarkable
that approximately sixty years later and with more sophisticated experiments and theory
available, the value of ρ0 obtained from parity-violating electron scattering measurement
(PREXII) on 208Pb is reported as 0.1480 ± 0.0036 (exp) ± 0.0013 (theo) fm−3 [43].

The assumed constancy of the binding energy per particle and of the particle number
density of SNM has a fundamental meaning. The constant density implies that there
must be a balance between attractive and repulsive components of the nuclear force
which are equilibrated at that density–the saturation density. At this density, the number of
surrounding nucleons for each nucleon in the matter is the same, regardless of the position
in space. If the nuclear force is of a short range comparable with the inter-nucleon distance,
each nucleon will interact only with a few nucleons in its vicinity, resulting, on average, in
the same contribution to the total binding energy per particle –the saturation energy.

3.1.2. Liquid Drop Based Models

The interest in modeling nuclear masses led to further development of the liquid drop-
based model of finite nuclei and nuclear matter. Shell effects and a small deformation (but
still taking constant bulk particle distribution) were added in the 1966 liquid drop model
(LDM) of Myers and Swiatecki [44]. Variable proton and neutron density distribution
throughout the nuclear volume, decreasing smoothly to zero in the surface region, nuclear
surface diffusines and thickness were included in the droplet model (DLM) for spherical
(1969) [45] and arbitrary shapes (1974) [46]. The volume, surface and Coulomb terms
were expanded in a Taylor series around the LDM values in terms of the proton–neutron
asymmetry δ = (ρn − ρp)/ρ (ρ = ρn + ρp) and deviation of the density ρ from its nuclear
matter value ρ0 ε = (ρ0 − ρ)/(3ρ0). Using these expansions, the energy per particle in
nuclear matter can be expressed as [45]

B(ρ, δ, ε)/A = −avol + Jδ2 + 1/2(Kε2 − 2Lεδ2 + . . .) (3)
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where J, L, and K are the symmetry energy coefficients, L gives the density dependence of
the symmetry energy and K is the nuclear compressibility coefficient. (Note that we take the
sign avol as negative in compliance of the general usage of a bound system having negative
energy.) For symmetric nuclear matter δ = 0 and the minimum value of the binding energy
per particle B(δ = 0, ε = 0)/A equals E0 and occurs at ρ = ρ0. In asymmetric nuclear matter
(ANM), at ρ = ρ0, the energy per particle is dependent on the proton–neutron asymmetry
as −E0 + Jδ2 and is always higher than −E0.

A more recent development of liquid drop-based physics is the finite range droplet
model (FRDM) of Moller and collaborators ([47–49] and ref. therein). The macroscopic part
of the latest FRDM (2016) [49] involves further refinement as compared to the DLM, and
has 38 adjustable constants. The FRDM is currently seen as one of the most reliable models
not only of nuclear masses, but also shapes and related quantities, such as fission barriers
and α and β decay rates.

We move on to consider what is known concerning the values of the macroscopic
parameters J, L and K. Although there is a general consensus about the most likely values
of the saturation properties of infinite nuclear matter based on nuclear masses, mass
modeling is less sensitive to the J, L and K values, important for the EoS of nuclear matter
(some sensitivity to L has been explored in [49]). There has been a consolidated effort to
find other experimental and theoretical constraints for these parameters without reaching
agreement. Values obtained from different relevant experiments are dependent on models
used for their analysis, and the data themselves often suffer from large uncertainties (see
e.g., [50,51]).

The value of the symmetry energy coefficient J in Equation (3) at ρ0 is reasonably
well constrained between approximately 28 and 34 MeV, but its density dependence,
the parameter L, is still unclear. It was first investigated in connection with the EoS of
cold NSs in 2003 [52] and later examined in numerous scenarios. Bao-An Li et al. [53]
comprehensively reviewed papers up to 2014, including open theoretical issues, constraints
from terrestrial laboratory experiments and imprints and extraction of the symmetry energy
from astrophysical observations. Future perspectives in the research were outlined, but no
positive conclusion was drawn. A recent progress reports on the subject was published
by Bao-An Li and collaborators in 2019 [21,54], including current and future data from
GW, but again, no definitive conclusion was reached. The current limits on the value
of L at ρ0 range between approximately 30 and 100 MeV and its density dependence is
not constrained.

Very recently, the results of the second PREX-II experiment yielding the neutron skin
thickness of 208Pb through parity violating asymmetry in elastic scattering of longitudinally
polarized electrons [43]. The skin thickness, 0.283 ± 0.071 fm, is larger than predicted
by most of the current theoretical models. This value would constrain the density de-
pendence of the symmetry energy in nuclear matter around the saturation density and
have implication on radii and composition of NSs [55]. The result has been used, with a
certain class of relativistic mean-field (RMF) models (see Section 3.2.2) to extract model-
dependent values of J, L to be 38.1 ± 4.7 MeV and 107 ± 37 MeV, respectively [56] at a
density of approximately 0.15 fm−3. These values differ considerably from the canonical
values produced by most of the currently established models; see, e.g., [3] for a review. It
would be helpful to show that the RMF models, as adjusted to reproduce the thick neutron
skin of 208Pb, are performing equally well on other observables of finite nuclei across the
nuclear chart. It would be also interesting to know what saturation energy at saturation
density they predict. Some steps towards investigation of the consequences of the results
in [56] have been already taken. For example, Essick et al. [57] used a non-parametric EoS
representation [58] to constrain the J, L, and 208Pb neutron skin directly from observations
of NSs with minimal modeling assumptions and obtained J = 35+12

−0.09 MeV, L = 57+66
−0.53

MeV and 208Pb skin thickness to be 0.18+10
−0.09 fm. If additional constraint on the EoS at

densities below ρ0, obtained from the χEFT is imposed in their Bayesian framework, the
errors decrease and the final result is J = 34 ± 3 MeV , L = 58 ± 19 MeV and 208Pb skin
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thickness to be 0.19+3
−0.04 fm, close to predictions of more traditional models. Yue et al. [59]

tested the new result obtained by the PREXII collaboration in their analysis including a
complex set of data on ground states of finite nuclei and giant monopole resonances, the
constraints on the equation of state of symmetric nuclear matter at suprasaturation densi-
ties from flow data in heavy-ion collisions, the largest neutron star (NS) mass reported so
far for PSR J0740+6620, the NS tidal deformability extracted from gravitational wave signal
GW170817 and the mass–radius of PSR J0030+045 measured simultaneously by NICER.
They set limits on the nuclear matter parameters at saturation density J = 34.5 ± 1.5 MeV,
L = 85.5 ± 22.3 MeV and 208Pb skin thickness to be between 0.22 and 0.27 fm. As a minor
point, we note that the symmetry energy coefficient J in Equation (3) and the symmetry
energy S(ρ, δ, ε), frequently defined as

S(ρ, δ, ε) = B(ρ, δ = 1, ε)/A− B(ρ, δ = 0, ε)/A, (4)

the difference between the energy per particle of the maximally asymmetric matter [pure
neutron matter (PNM)] and that of the SMN are not equal, except at the saturation density.
To the first order in ε, S(ρ, δ, ε) = J − Lε at any other density, illustrating the inherent
correlation between J and L. Higher-order corrections also contribute to the difference (not
shown here).

The compressibility coefficient, K, is another fundamental property of nuclear matter
which has received a lot of attention with no definitive result. It quantifies the monopole
vibration (breathing mode) of the nuclear surface, which is best studied via measurement
of the monopole giant resonance (GMR) energies EGMR. The compressibility of a nucleus
with the mass number A, KA, can be related to EGMR as KA = (M/h̄2) < r2 > E2

GMR with
M being the mass of the nucleon and r the rms matter radius of the nucleus [60,61]. In
the macroscopic approach, KA can be parameterized, in analogy with the SMF, in terms of
A−1/3 and the asymmetry β = (N − Z)/A as [62]

KA = Kvol + Ksurf A−1/3 + KCoulZ2 A−4/3 + Ksymβ2 (5)

where the coefficients can be seen as the second derivatives of avol, asurf, aC and asym in the
SMF (1) with respect to r, with the number of protons and neutrons kept constant. The
coefficients in Equation (5) are then obtained from fits to experimental EGMR and the value
of K is deduced by identifying it with Kvol.

Stone, Stone and Moszkowski [63] reviewed in detail the methods of analysis of GMR
data as well as values of K obtained using different techniques and theories between 1961
and 2016. 37 different results, covering a range of K from 100 to 380 MeV were found, with
a trend to higher values K in relativistic than in non-relativistic mean-field models. They
further analysed the data on EGMR available in 2016 using a simplified expression for KA

KA − KCoulZ2 A−4/3 = Kvol(1 + cA−1/3) + Ksymβ2 (6)

where c is the ratio of Ksurf and Kvol. Taking fixed KCoul from theory and sampling the
values of c in the range −2.4 and −1.6, the best fit to the A dependence of EGMR in the
region from Ni to Pb was found for the ratio c closely distributed at approximately −2.
This procedure yielded the value of K between 250 and 315 MeV. Neglecting the difference
between Ksurf and Kvol, (c = −1) yielded somewhat lower results, K between 220 and
260 MeV, but the fit to EGMR was significantly worse. This outcome reflects the role of the
diffuse nuclear surface, more compressible than the stiffer bulk inside, in determination of
KA, which should not be ignored.

As a final comment in this section, we reiterate that the (semi) classical models of
nuclear matter do not require quantitative explicit knowledge of the nuclear force. Yet, the
saturation energy and density of the SNM, obtained using rather simple classical assumptions, are
directly related to the fundamental features of nuclear force, the short range and saturation. To
constrain parameters of mass formula-based models, only gross nuclear data are needed;
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ground-state experimental masses, charge and matter radii and energies of low amplitude
vibrational modes. Nevertheless, the ability to reproduce the saturation properties of SNM
is accepted as a necessary requirement for low-energy nuclear structure theories which
then calculate further quantities, such as the symmetry energy and its derivatives.

3.2. Microscopic Approach
3.2.1. NN Interactions in Free Space

As discussed in Section 3.1, macroscopic models are not explicitly dependent on details
of nuclear forces. The early experiments with free neutron–proton and proton–proton
scattering (see Section 1) and problems with their interpretation were followed by more
elaborate attempts to improve understanding of the nuclear force.

Realistic Potentials

Since the late 1950s, a vast amount of data on partial waves, their phase shifts and
related properties from free nucleon scattering with energies up to 350 MeV were accu-
mulated (for current status see http://nn-online.org (accessed on 7 June 2021)). This
stimulated more sophisticated versions of the realistic free NN phenomenological poten-
tial, e.g., the non-relativistic Reid soft-core, Reid93 and Argonne families [64–67] and the
relativistic Nijmegen and Bonn families [65,68,69], the latter based on meson-exchange
models of the nuclear interaction. Each of these potentials depended on many parameters
(∼10–40), which allowed a close-to-perfect fit to data.

There were two major consequences of this development. First, it turned out that most
of the two-body potentials were phase-shift-equivalent, meaning that they worked equally
well in reproduction of the data, but a unique identification of the nuclear force remained
illusive. Second, as already mentioned in the Introduction, when applied to nuclear matter
and/or finite nuclei, they did not work. The bare NN interactions were not additive in a
many-body environment as, for example, in the way that Coulomb interactions are. The
predicted saturation energy and density of SNM were in disagreement with the values
extracted from macroscopic models [70–72]. Brueckner–Hartree–Fock (BHF) [73] theory
with two-body potentials, such as the Reid-soft core, applied to finite nuclei, produced
only poor agreement with experimental ground-state binding energy and rms radii [74–76].
Higher-order corrections were added and parameterized to improve the results (for details,
see comments in [77]).

The medium effect on the bare NN interaction was further studied in later years
(for an excellent review, see [78]). Brueckner G-matrix theory was applied in both, the
non-relativistic BHF [72] and relativistic Dirac–Brueckner–Hartree–Fock (DBHF) [68,79]
frameworks. Variational [80,81] and Vlowk methods [82–85] studied the medium effect by
means of perturbation theory. Various techniques were applied to ensure convergence
of the perturbation series, including limitation of high momentum components in the
scattering amplitudes and renormalization schemes. As a general outcome of these efforts,
it has become clear three-body, and possibly higher order, forces play an essential role
in the NN interaction in medium and must be added to two-body models to overcome
the first hurdle–to predict correctly the fundamental properties of nuclear matter, the
saturation density and energy. As a negative side of this varied effort it has been impossible
to establish the best approach.

Chiral Effective Field Theory

Another, increasingly popular, tool providing interactions for modeling high-density
matter up to approximately twice nuclear saturation density is the chiral effective field theory
χEFT, originally proposed by Weinberg [86,87]. In the absence of the possibility of deriving
nuclear forces directly from QCD, which is not perturbative at low densities, the χEFT
model has been formulated in terms of nucleons, their excitations, and pions, instead of
quarks and gluons [88]. The theory provides a systematic low-momentum expansion of
long- and medium-range forces between nucleons and pions, consistent with the spon-

http://nn-online.org


Universe 2021, 7, 257 11 of 31

taneously broken QCD chiral symmetry. The short-range physics is parameterized by
contact terms constrained by parity, time-reversal and the usual conservation laws, but not
by chiral symmetry. These terms have to be fitted to data. The contributions to the χEFT
expansions are regulated by a cutoff parameter that has to determined from a comparison
with experiment. The positive aspect of the theory is that it provides a systematic hierarchy
of nuclear interactions by including the three-body and higher-order forces naturally on
the same footing. However, again, it has not yet provided a unique solution to the problem
of the nuclear force.

An interesting early exploration of the impact of the χEFT approach was reported by
Sammarruca et al. [89]. The authors compared two very different methods of calculating
properties of PNM and SNM, the symmetry energy and the mass–radius curve of a cold
NS. In the first scenario, the realistic meson-theoretic two-body Bonn-B potential was used
in the DBHF approximation. The second employed a high-precision NN chiral potential
and chiral effective three-nucleon forces at the N2LO order. The authors found the results very
close and concluded that the two approaches, formally different, are complementary and contain
the important features of nuclear forces but are not sensitive to the exact way nucleons act in
nuclear matter.

There has been an increasing number of χEFT applications reported in recent years (for
reviews, see [90–92]). High-quality two-body NN potentials, ranging from leading order
(LO) to next-to-next-to-next-to-next-LO were constructed. EMN2017, the highest-order
potential (N4LO), reproduced the world data on NN scattering below the pion threshold
available up to 2016 with χ2/datum 1.15, the best result obtained with χEFT [90,93]. Chiral
EMN2017 potentials at NLO, N2LO and N3LO orders, with the three-body interaction
at N2LO and N3LO, fitted to saturation properties of SNM and the binding energy of
the triton, have been used recently to study ground-state energies and charge radii of
closed-shell medium-mass nuclei [94]. We show in Figure 3 results of the binding energy
per particle in oxygen, calcium and nickel nuclei. The reader is referred to the original
reference for details of this figure. On the whole, the nuclei are over-bound at the NLO
level and converge to under-binding with the increasing orders. The final results have
still several tens of MeV to be accounted for. The radii (not shown here) are systematically
too large.

To illustrate typical EoS of PNM and SNM calculated with EMN2017 chiral poten-
tials [93], we show results of Drischler et al. using ENM2017 [95] in Figure 4. We observe
that although the error bands are reduced in N3LO as compared to N2LO, they diverge
significantly above the saturation density. Very recently, Drischler et al. [92] reported results
on the density dependence of the symmetry energy S from various chiral potentials [96–98]
and of the S− L correlation. The results, demonstrated in Figure 5, are compared with
those of selected phenomenological models [99–101] (left panel) and the latest constraints
from various experimental and empirical sources (right panel).

Figures 4 and 5 demonstrate that, at best, the models with χEFT potentials, combined
with many-body perturbation methods and/or Bayesian schemes show agreement with
predictions of phenomenological models, but do not discriminate among them. The errors
are still too large, even at the nuclear saturation density and certainly above. Thus,the models
cannot not be meaningfully applied to high-density hadronic matter in compact objects. In addition,
the proliferation of χEFTmodels, using various orders and cutoff values, and employing
different methods of many-body approaches detracts from the value of individual results.
This reduces the chance of understanding the fundamentals of the nuclear force in medium
by this approach.

3.2.2. Density-Dependent NN Interactions

The difficulty with adapting realistic potentials to a dense environment led to con-
struction of nuclear interactions directly parameterized as a function of density. Such
interactions were seen as less fundamental, but promised more flexibility, wider application
range and easier handling in mean-field approximations. The non-relativistic Skyrme [77],
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Gogny [102,103] and the Moszkowski [104] models were constructed. These models have
been used successfully for both, nuclear matter and finite nuclei.

Figure 3. Ground-state binding energy per particle of oxygen, calcium and nickel closed-shell
even–even nuclei calculated with the Entem et al. [93] potentials at the N3LO order and cutoff
values Λ = 420, 450, and 500 MeV marked by the brown, orange, and green-solid lines and circles,
respectively. Experimental data are shown as short black bars. The results for the N2LO (NLO) order
are marked with a dashed (dotted) line. The figure was taken from [94] under American Physical
Society Reuse and Permissions License RNP/21/JUN/040828.

Skyrme Interaction

The Skyrme potential was developed by Skyrme and collaborators [105–108] in 1956–
1959. This mean-field potential had a two-body part, closely related to scattering of
particles in free space and a three-body part, representing many-body effects. To simplify
the calculation, short-range expansion of matrix elements of the two-body potential was
used, up to second power of relative momenta of the two particles. The matrix elements
depended on three familiar parameters t0, t1, and t2, the measures of the mean central
potential, with exchange character, controlled by the parameters x0, x1, and x2. A tensor
potential in even (odd) states, of strength T (U), and a short range spin-orbit two-body
potential, were included. This formulation of the Skyrme potential allowed only scattering in S
and P states, implying its validity only for low relative momenta.

The three-body part of the potential was expressed as a contact term dependent on one
constant t3. This term gave a contribution to the two-body term, proportional to the local density.
Skyrme also explored four-body forces and D-wave states but detailed implementation
was beyond the scope of his paper. Specifically, to include D-wave scattering would have
required the expansion to the fourth power of the relative momenta (see below).

Vautherin and Brink [77] revisited the Skyrme potential in 1972. They adopted the
two- and three-body parts of the potential in momentum space and transformed it to
coordinate space. They confirmed that the two-body matrix elements of the potential
correspond only to S- and P-wave interactions. Furthermore, they also found an equivalent
form of the original three-body potential as a two-body density-dependent interaction.
With improved fitting technique, two sets of values of the five model parameters (only
x0 was considered), SI and SII, which achieved considerably improved agreement with
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experimental data as compared with [108]. However, they pointed out that, due to their
correlations, a multiplicity of choices of the parameters was possible.

Figure 4. Energy per particle E/A as a function of number density ρ calculated in N2LO (left) and
N3LO (right). The shaded areas represent theoretical uncertainties. The rectangles mark ranges of
the empirical values of the saturation density and energy of SNM. The vertical dotted line is drawn
at ρ0 = 0.16 fm−3. The figure was adapted from [95]. The ranges of the symmetry energy Esym and its
slope L are displayed in the bottom panels. For more details, see the original reference.
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Figure 5. (Left): Density dependence of the symmetry energy S as a function of number density ρ

calculated with different chiral potentials (bands) and phenomenological potentials (symbols). The
vertical band shows the saturation density ρ0. (Right): Theoretical and experimental constraints on
the correlation between the symmetry energy and its slope are also shown. In both parts of the figure
the light and dark grey areas represent results using GP methods described in [91,95]. The figure was
adapted from [92], where additional information can be found.

Owing to the relative ease in its implementation in Hartree–Fock calculations, the
Skyrme model enjoyed immediate success. However, this success has had a negative
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effect on the development of the field. After Vautherin and Brink, the Skyrme model
was applied to a ever wider ranges of experimental data on finite nuclei. Good fits
were achieved by increasing the number of variable parameters and refining the Skyrme
Hamiltonian [10,109–116]. However, the quadratic limit on the expansion was never
changed. In its current most general form, the Skyrme energy density functional contains
all conceivable bilinear couplings of densities and currents up to second order in derivatives.
This approach introduces 23 coupling constants which are, in principle, density dependent.
In a more manageable minimalist approach, the number of the constants can be reduced to
∼10 [10,117].

The parameters of the Skyrme model in the Hartree–Fock approximation (SHF) are
adjusted using least-squares fitting techniques to a large sample of current ground-state
and low-energy excitation data. The saturation properties of the SNM are either fixed
and included in the fits or systematically varied within the accepted empirical range (see
Section 3.1) in order to study their effects on properties of finite nuclei. In particular, the
density dependence J, L, Ksym and K (with Ksym being the curvature, second derivative, of
J with respect to particle number density) all show rather dramatic differences in different
versions of the model. Figure 6 shows prediction of the widely used versions SLy4 [118],
BSk27s [114] and SkT1 [119]. Fit is required to the values of J, L, K at the saturation density.
Note, however, the different predicted variation of the quantity L, the density dependence
of the symmetry energy, which, with increasing density, is more or less constant, decreases
and increases in the three models, respectively. There is no consensus as to how L should
vary. Ksym has even uncertain sign. Both Ksym and L seriously influence the EoS of NSs.

In 2012, Dutra et al. [120] tested 240 different Skyrme parameter using then accepted
constraints on nuclear matter properties. Dutra et al. considered the macroscopic quantities
derived from liquid drop-type models, from heavy-ion collisions (but see Section 4.3) and
from giant resonances. In addition they employed a range of microscopic data, including
neutron and proton effective mass, β-equilibrium matter, Landau parameters of SNM and
PNM, and observational data on high- and low-mass cold NSs. Only 16 sets were found
to satisfy the macroscopic constraints. This 16 reduced to 5 when microscopic constraints
were included. However, it was not possible to justify the success of these five on physical
grounds. They did not show the way forward.

The low relative momentum limit of the Skyrme interaction imposes a fundamental
constraint on its proper application which has been widely ignored. As stated above, the
two-body term of the Skyrme potential is dependent only on the relative momenta of the
two particles to the second power meaning that it accommodates only to S- and P-wave
interactions. In dense matter, the kinetic energy of particles with momentum kF, at the
Fermi surface, h̄2k2

F/2m is approximately 37, 77 and 122 MeV at densities ρ0, 3ρ0 and 6ρ0,
respectively (kF = (3π2ρ/2)1/3), taking the rest mass of the nucleon in free space. The
mean energy is 60% lower than these values, but the lower effective mass in matter rises
them again. Scattering experiments show that at energies approximately 100 MeV the
contribution of D-waves not included in the Skyrme potential as commonly used cannot be
neglected. Skyrme [108] emphasized that including D-wave interactions would require the
addition of a term dependent on the fourth power of the relative momenta. He discussed
its effect only in finite nuclei, i.e., up to saturation density. Thus, although the Skyrme EoS is
frequently numerically applied up to high density expected in the interior of heavy NSs, all such
applications are inconsistent with the limit on physical validity of the model. In other words, a
Skyrme-based EoS is only correctly used in NSs with central particle number density below
approximately 3ρ0. The author recalls a comment by David Brink after she and colleagues
published the first paper in which the Skyrme model was applied to NSs [52] pointing out
this problem. This paper and most subsequent standard Skyrme model NS calculations
suffer from this defect.
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Figure 6. The symmetry energy coefficient J, its slope L and curvature Ksym vs. number density ρ

in units ρ0, as predicted by the SLy4 [109] , BSk27s [114] and SkT1 [119] Skyrme models for SNM.
The incompressibility coefficient K is added for completness. The solid vertical brown line indicates
ρ/ρ0 = 1.0.

More general phenomenological energy density functionals (EDF) than those built on
the standard Skyrme interaction discussed here have been explored [121–124]. They include
terms dependent on the relative momenta k and k′ up to the sixth order. The number of
the additional terms and related variable parameters is high as compared to the standard
EDF, which makes use of these extensions impractical.

Relativistic Mean-Field Models

Relativistic mean-field models (RMF) use nuclear interactions based on meson exchange
between point-like nucleons (without internal structure) and have been seen as a more
fundamental, but still phenomenological, approach to the nuclear many-body problem. These
models have several aspects not present in their non-relativistic counterparts. These in-
cluded intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation
mechanism for nuclear matter, causality. They do not have problems related to the superlu-
minal speed of sound in medium. Furthermore, RMF models are naturally applicable to
high-density matter whereas the non-relativistic low-momentum Skyrme model is not.

Among the first were models of the (non-linear) Walecka type, since the 1970s [125–128]
and later [129,130]. These models used density-independent nucleon–meson coupling
constants which kept the number of adjustable parameters to approximately eight, similar
to the early Skyrme interactions. Density dependence of the couplings, introduced by
Typel and Wolter in 1999 [131] and developed later, e.g., [132–134], increased this number
to approximately 15, again on a par with modern Skyrme parameterizations.

There have been several reviews and studies of the differences in predictive power
of RMF and SHF models [10,135,136]. The level of success in modelling of finite nuclei is
comparable in both models [110,133,137]. RMF models do not suffer from the applicability
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limit on SHF models discussed above. The proliferation of RMF and SHF variants is very
similar. Dutra et al. [138] examined the performance of 263 RMF models used for nuclear
matter and found that only 4 of them satisfied all the constraints. When the constraint on the
volume part of the isospin incompressibility was eliminated, this number increased to 35.

Quark–Meson Coupling Model

A special class of relativistic models, the quark–meson coupling (QMC) model was
developed by Guichon and collaborators [139–141]. It is an effective relativistic mean-field
model in which the forces between individual baryons are self-consistently mediated by
exchange of virtual mesons between the valence quarks in the baryons. The effect of the
medium surrounding the baryons in dense matter, such as in NS cores and nuclei, modifies
dynamics of the valence quarks in the individual baryons. In other words, in the nuclear
medium, the quark–meson couplings acquire an effective density dependence, which is determined
by the response of the quark structure of the baryons to the meson fields.

In the QMC model, the baryons are represented as non-overlapping MIT bags (but
other models of confinement can be used without a loss of generality). In a literal in-
terpretation of the bag model, where only quarks and gluons can live inside the cavity,
this coupling would be unnatural. However, in a more realistic underlying picture, the
quarks are attached to a string (see Figure 7) but otherwise move in the non-perturbative
QCD vacuum. There, nothing prevents them from feeling the vacuum fluctuations, which
are described by meson fields. This feature allows the QMC model to be used up to
approximately 7–8 ρ0 without concerns about the bag overlap.

The model has five adjustable parameters to be fitted to data, all having clear physics
meaning, three coupling constants of the σ, ω and ρ meson fields to the quarks, the mass of
the σ meson (not well known experimentally) and the radius of the bag model representing
the baryons. All other fixed parameters of the model are either taken at their experimental
value or calculated within the model. Once fixed, the adjustable parameters form a set
which is so constrained that any variation would disturb the internal integrity of the model.
Should a serious discrepancy between the model prediction and new observational and
experimental data occur, physics missing in the model must be sought.

This unique concept has several fundamental consequences. As shown already
in [139], the model offers a natural explanation for the saturation of the nuclear force,
automatically includes many-body forces and there is no need to change the number of
parameters when the baryonic composition in the matter changes. Thus, matter consisting
only from nucleons and matter containing the full baryon octet (nucleons and hyperons)
is described by the same parameter set and the hyperon-nucleon and hyperon-hyperon
couplings are fixed by the quark structure within the model. The often discussed “hyperon
puzzle” does not occur in the QMC model.

The QMC model was first applied to NSs ([142] in 2007 and predicted the existence of
a cold NS, with Λ and Ξ0 hyperons in their cores and a maximum mass of 1.97 M�, three
years before such a star was observed by [143–145]. Very recently, the model was extended
to finite temperature [11] and yielded EoS tables suitable for use in modeling proto-neutron
stars (PNSs), CCSN, and remnants of binary neutron star mergers (BNSM).

Some variants of the QMC model of dense matter in compact objects, using simplified
expressions for the bag representing the nucleon, the effective mass of the nucleon and
the treatment of meson fields were reported [146,146–154]. The authors of these QMC
versions allow some flexibility in their parameters not permitted in the fully self-consistent
version above.

Application of a non-relativistic version of the QMC model to finite nuclei yielded
predictions of ground-state properties of finite nuclei in excellent agreement with exper-
imental data over a wide range including superheavy nuclei far beyond the parameter
fitting range [155–158]. Interestingly, the QMC model is, to our knowledge, the only
non-relativistic mean-field model in which the spin-orbit coupling appears naturally.
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Figure 7. Cartoon of the mechanism of interaction in the QMC model. (Left): Density distribution
of valence quarks and gluon tubes as predicted by lattice QCD (see http://www.physics.adelaide.
edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html (accessed on 7 June 2021)). (Right):
Traditional image of a nucleon. The figure was taken from [141] under Elsevier License number
5083931086640 issued 7 June 2021. See text for more details.

To summarize this section, the examples shown here of various attempts used to
understand the effect of nuclear medium on the bare NN interaction have not reached the
“the holy grail’ as yet to a satisfactory conclusion. The models do not have enough sensitivity to
interpret their differences in relation to the physics they are based on.

4. Astrophysical and Terrestrial Data
4.1. Neutron Stars: Masses and Radii

In this section, we select data extracted with no (or minimal) nuclear model depen-
dence. These constitute major serious constraints for NS models and the EoS of baryonic
matter. The TOV equation yields only the gravitational mass as a function of its radius and
yields a maximum mass for a given EoS. Thus ideally the mass and radius of the same object
are needed from observation. However, this has proved difficult. The only other constraint
on a proposed EoS is the maximum observed mass. Thus, the maximum observed mass
serves to eliminate many models.

The gravitational mass of NSs can only be measured in binaries. Masses have been
extracted from observation for decades using different methods (see, e.g., https://www3
.mpifr-bonn.mpg.de/staff/pfreire/NS-masses.html (accessed on 7 June 2021)). The most
precisely measured mass (1.441 M�) is that of the Hulse-Taylor Pulsar PSR B1913+16,
observed in 1974 [159]. This mass was taken as the canonical mass of cold NSs for a
long time.

The situation changed when, in 2010, Demorest et al. [143] announced the mass of
the binary millisecond pulsar 1.97 ± 0.04 M� PSR J1614-2230 (further updated [144,145]).
Since then two stars, PSR J0348+0432 and the millisecond pulsar J0740+6620, were reported
with mass approximately 2 M� [160–162]), with the highest mass 2.08 ± 0.07 M� [162],

Extraction of NS radii from observation, mainly from radio and X-ray signals but also
from surface thermal emission, is rather complicated. Many assumptions about the origin
of the signal, the surface temperature, the stellar atmosphere and its distance from the
observer have to be made.

Oezel and Freire in 2016 [163] summarized observational methods and their analysis
to yield NS radii and placed a constraint on radii between 10 and 11.5 km. Ironically,
the mass of the star is a required assumption and many take it to be 1.4 M�. Further
investigations [164–171] broadened these model-dependent limits to between 10 and 15 km.

There have been several recent attempts to use data from BNSM events to extract
limits on radii and masses of the merging stars and find constraints on their EoS. Various
techniques were used, mainly based on Bayesian schemes, but also nuclear models such
as, for example, (D)BHF [168] (for a review, see [167]). In Figure 8, we illustrate Bayesian
inference for the radius of a 1.4 M� NS, presented by Al-Mamun et al. in 2021 [171] in their

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html
http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html
https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS-masses.html
https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS-masses.html
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Table I. The results were obtained combining GW and electromagnetic data (see caption of
Figure 8 for details). The spread of the values does not indicate preference for a particular
result which would provide the desired constraint.

The latest step towards determination of the mass and radius of the same object is
found in a report of the NICER mission. Bayesian inference of the energy-dependent
thermal X-ray waveform of the isolated pulsar PSR J0030+0451 yielded its estimated
mass 1.44+0.15

−0.14 M� and equatorial circumferential radius 13.02+1.24
−1.06 km [182]. This result

is consistent with the outcome of an independent analysis of the same data by [183] who
obtained 1.34+0.15

−0.16 M� and radius 12.71+1.14
−1.19 km. Although the Bayesian inference method

yields, in principle, both mass and radius, it is still subject to the choice of the prior. Fully
independent mass and radius data would be preferable. To our knowledge there is no more
data available from the NICER primary target, the bright pulsar PSR J0437-4715 [184]. The
mass of this star 1.44 ± 0.07 has been measured independently with uncertainty ∼5% [185]
but its radus remains unknown.

We illustrate the maximum mass (black rectangle) and mass/radius (elipse) con-
straints [182,183] in Figure 9, superimposed on predictions from EoS of the QMC-A, CMF
and DD2 models (for details, see [11]). Predictions of the old, well established, APR [99]
and GLENHYB [186] EoS are also shown. To conclude this section, it is clear that the
presently available mass/radius data are not yet precise enough to select between these
EoS which are based on very different underlying physics.
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Figure 8. Radii of a NS with a fixed gravitational mass 1.4 M� as extracted from data on GW170817
(GW) alone, combined GW170817 and GW190425 (GWs) events, and GW data in combinations with
electromagnetic data from NICER, quiescent low mass X-ray binaries (QLMXB), and photo-spheric
radius expansion X-ray burst source (PRE) observations. The data were adopted from [171]. The
models are labeled by numbers: (1) [166], (2) [165], (3) [172], (4) [167], (5,15) [173], (6,7,13,14) [171],
(8) [174], (9) [175], (10) [170], (11) [176], (12) [177], (16) [178], (17) [179], (18) [58,180], and (19,20) [181].
The results of individual models are presented with the 90% credibility level except for models 6, 7,
13 and 14 quoting 95% credibility. For more details, see text and the quoted references.
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Figure 9. NS gravitational mass and radius, computed with the QMC-A, CMF and DD2Y-T models for
cold nucleonic (solid) and hyperonic (dashed) matter. APR EoS [99] and GLENHYB [186] hybrid EoS
of hadronic+quark matter are added for comparison. The black rectangle encloses the mass–radius
range of the three heaviest observed systems. Recent data from NICER, analysed independently
by [182] (blue) and by [183] (orange), yielded limits on the gravitational mass and radius of PSR
J0030-0451, depicted by M-R contours enclosing 68% of the posterior mass. The contours were
smoothed for easier viewing.

4.2. Gravitational Waves
4.2.1. Observation

Observation of gravitational waves (GW) and their counterparts from BNSM has added
a potential new dimension to the search for constraints on the NS EoS. The dynamics of the
BNSM have frequently been modeled in the past to guide observation [187–191]. Modern
general relativity (GR)-based hydrodynamic simulations have been reported [192,193] since
the observation (for reviews, see [194,195]).

There are three GW events involving NS reported to date. The first, GW170817 [196]
is compatible with a collisison of a binary NS system with chirp mass 1.186(1) M�, mass
ratio q ∈ [1,1.34], and reduced tidal parameter Λ̃ ' 300 and smaller than ∼800. Two
electromagnetic counterparts were observed, a gamma ray burst GRB170817, 1.7 s after the
coalescence, and an optical signal AT2017gfo (kilonova) [197,198], observed 0.47–18.5 days
after the event.

The second, GW19025 [199] was, with 90% probability, the coalesce of two objects
with masses ranging from 1.12 to 2.52 M� (dependent on the component spin magnitude)
which is consistent with the individual binary components being neutron stars. Both the
chirp mass and the total mass of this system are larger than any previously known binary
NS system. Thus, a possibility that one or both components are light black holes cannot
be ruled out from GW observation. No confirmed electromagnetic or neutrino emissions
related to this event were identified.

The third, also possibly involving a NS, GW190814 [200], is compatible with a coalesce
of a 22–24.3 M� black hole (primary) and a 2.50–2.67 M� compact object (secondary). No
electromagnetic counterparts have been observed. This event represents a new class of
binary coalescence sources with highly unequal mass and low primary spin [200]. The
secondary component is either the lightest black hole or the heaviest NS ever discovered.
However, this is still a question of debate [201–209].

The post-merger GW signal, which is expected to have the largest luminosity and is
essential for determination of the remnant’s fate, has not been observed in any of these
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events. It is most likely emitted at frequencies above the main sensitivity band of current
detectors [210].

4.2.2. Extraction of Information

Obtaining specific information from the GW wave form (the frequency range, peak
amplitude and luminosity), supplemented by the additional spectroscopic evidence, is far
from straightforward and depends on extensive, detailed modelling. The only realistic
approach at present involves statistical likelihood-based Bayesian schemes of simulation.

To make these simulations computationally viable, two major diversions from state-of-
the-art NS modeling using microscopic EoS must be made. The EoS is greatly simplified to
allow a minimum number of parameters to be determined by sampling [58,171,173,180,211].
In addition, quasi-universal relations between selected pairs of suitably normalized NS
properties are built in to the simulations in the form of simple functions, e.g., polynomials,
determined by only a few parameters [11,134,212–217].

The price to pay for these simplifications and the whole statistical approach is the loss
of all connection to the microscopy of NS matter. Future improved and more complete
GW observations are likely to offer much enhanced sensitivity to model content. Thus,
although these observations contain new physics of great interest, extraction of meaningful
information on the EoS and the nucleon–nucleon interaction in medium from existing data
is not possible.

4.3. Heavy Ion Collisions at Low and Medium Energies

Heavy ion collisions (HIC) with a beam energy below approximately 10 GeV/nucleon
have long been seen as the only terrestrial experiments which could offer constraints
upon the EoS of dense matter. Properties of the EoS such as the incompressibility at
saturation density and density dependence of the symmetry energy are reflected in the
output of the collision, the elliptic and transverse flows, as a function of the projectile and
target nuclide combinations and the incident beam energy. The dynamics of the collision
changes with the incident beam energy as different physical aspects play dominant roles,
and naturally requires sophisticated modelling. Relevant to this this work, we discuss
the Boltzmann–Uhlenbeck–Uehling (BUU) approach, used primarily for medium-to-high
beam energies.

Danielewicz et al. [218] in 2002 used a model based on the pBUU to explore the density
dependence of pressure and hence of the EoS in zero-temperature SNM and PNM in the
range of baryon number density up to 4.6 ρ0, consistent with experimental data on the
particle flow. The uncertainty in the input EoS governing the collision was reflected in
spread of pressure vs. density plots. Over the years these diagrams have been used as
one of the powerful constraints of the EoS of high-density matter. However, recently, this
analysis has been seriously questioned.

Stone, Danielewicz and Iwata [63] revisited the model in 2017, with the aim of explor-
ing the maximum density that can be achieved in Ca and Sn collisions at beam energies
below 800 MeV/particle and the density dependence of the symmetry energy. They con-
cluded that the highest total particle densities were of the order of 2.5 ρ0, only weakly
dependent on initial conditions, far lower than earlier indications suggested. The maxi-
mum proton–neutron asymmetry δ was found ∼0.17 in all investigated systems and at all
beam energies, scarcely rising above its value in the coliding nuclei. This weakened the
argument that such studies could assist with the physics of neutron stars.

Recently this study was extended including Pb collisions as a representation of the
heaviest system accesible HIC experiments. The still unpublished results [219] revealed
that there no increase in the highest achieved density and furthermore that there is a
significant contribution of Coulomb interaction to both the maximum total density and the
isospin asymmetry at that density, which reduces the nuclear interaction effects.

The BUU transport model has also been used by Zhang and Ko [220] using a variant of
the Skyrme interaction Skχm* obtained by fitting the nuclear equation of state and nucleon
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effective masses in asymmetric nuclear matter predicted by the two- and three-body chiral
interactions as well as the binding energies of finite nuclei [221]. They studied the effect
of baryon mean-field potentials on the kinematics of scattering and decay processes in
the Au and Sn collisions and the equilibrium properties of a hot N + ∆ + π system. This
approach allows control of the isovector mass, not available in the pBUU transport, which
may lead to more realistic momentum dependence in the isoscalar sector. However, there
are some concerns about the new interaction itself. The Skχm* force predicts rather low
isovector effective mass, very soft symmetry energy (low value of the slope L at saturation
density) and too small neutron skin in 208Pb, in disagreement with the latest PREXII result.
The Skyrme interaction (Equation (6) in [221]), utilizes a short-range expansion up the
two-body matrix element of the potential up to second power of relative momenta of
the two particles (for discussion, see Section 3.2.2. It is not clear how this basic property
of the Skyrme model was taken into account in derivation of the Skχm* force and in its
application to HIC at beam energies of several hundreds of MeV/A.

Aichelin et al. [222] used the BUU transport model in 1985 to the first study of sensi-
tivity of kaon production at sub-threshold energies in central collisions of heavy nuclei at
beam energies approximately 700 MeV/A. Using empirical EoSs, a significant sensitivity
was found to their stiffness. In 2001, Fuchs et al. [223] investigated the dependence of the
K+ production on the nuclear EoS. The observed increase in the excitation function of K+

multiplicities in heavy (Au+Au) over light (C+C) systems, when going far below threshold,
strongly favored a soft equation of state.

A comprehensive summary of the search for a connection between results of HIC
experiments, available before 2008, and the isospin dependence of in-medium nuclear
effective interactions and the equation of state of neutron-rich nuclear matter can be found
in the review by Bao-An Li and collaborators [224]. The particular focus of the review, the
density dependence of the symmetry energy and its effect on nuclear and astrophysical
phenomena has been a topic of interest to these days [225], still waiting for the final solution.

However, the main problem with seeking to use HIC data at low and medium beam
energies to constrain the NS and CCSN EoS concerns a particular feature of the EoS which
is often overlooked (see Section 2). The EoS of any system is dependent on its composition.
We compare the physical nature of matter created in the HIC and existing in cold NS
cores in Table 1 to highlight the fundamental incompatibility of the two systems. The
main difference springs from the duration of the collision and of the formation of a NS.
The time-scale of HIC is that of the strong interaction, ∼10−24 s. Thus, only products of
the strong interaction can appear, nucleons in ground and excited states and free pions,
possibly kaons. In a NS, the situation is much more complex. As discussed in more detail
in Section 4.1, the star develops since its birth on time scales allowing not only the strong,
but most importantly, weak interactions to act, which fundamentally changes the high-
density matter makeup in NS cores. The time scale of weak interaction in free space is
approximately 10−13 s but can be longer in dense matter, up to ∼1 year [226,227]. This
allows appearance of weak interacton products throughout the life of a NS. Furthermore the
proton–neutron asymmetry in cold NS matter is remote from that reached in HIC. Another
important difference between HIC and NSs, of course, is the role of gravity in the NS,
which, together with the nuclear force, determines the pressure and density distribution of
the matter.

Considering CCSN matter, it is closer to matter in HIC in one respect. The proton–
neutron ratio is close to one half at the birth of the PNS. However, leptons, not present
in the HIC, play an essential role in CCSN physics and the evolution of its remnant.
Also, questions concerning the existence (or not) of equilibrium in HIC, which would allow
estimation of the temperature reached in the collision and its comparison with temperatures
expected in CCSN events are not yet fully resolved.

The recent object of great interest is the remnant of BNSM. As already mentioned
in Section 4.2, there is a considerable theoretical effort to model its properties. However,
the vital piece of information needed to put these models on a more solid ground, the
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post-merger GW signal, has not been observed as yet. It is therefore not clear, for example,
which part of the remnant is heated up to temperatures, supposedly comparable its those
achieved in HIC, the baryonic core or the surrounding neutrino mantel ([194] and ref.
therein). Thus, any constraints derived from modeling of the remnant should be taken as
tentative.

We therefore conclude that data from heavy-ion collisions in this regime cannot directly infer
constraints on properties of compact objects. Although technically possible, such process cannot be
justified at the fundamental level.

Table 1. Physical properties of matter in HIC at beam energies considered in [218] and in the interior
of a cold NS. No phase transitions to quark matter are included.

Property HIC NS

Time scale 10−24 s 10−13 s
Interactions strong strong

weak
Gravity no yes
Coulomb yes no
Strangeness conserved not conserved in weak
Nucleons yes yes
Hyperons no yes
Pions/Kaons yes condensate possible
Leptons no yes
p/n ratio ∼1 ∼0.1

4.4. High-Energy Heavy Ion Collisions

The hadron production in nuclear collisions at ultra-relativistic beam energies has
been studied at different facilities, such as (now historical) CERN SPS, RHIC and currently
at highest beam energy at LHC for a long time. The main objective has been to create
conditions close to those at the Early Universe when quarks were not confined in hadrons
but were able to move freely over distances larger than the size of the hadrons. The
mechanism of hadronization of the quark soup as a function of temperature T and the
baryonic chemical potential µB is extremely complex and is in the heart of understanding
of the so called QCD phase diagram of a strong interacting matter in chemical and thermal
equilibrium which includes information of phase boundaries and transitions between
hadronic and quark matter. The diagram includes the first-order transition line between
the hadronic (ordered) and quark (disordered) matter which ends with the critical point
where the transition is of second order [228]. The high T and low µB region of the diagram
is readily probed in heavy-ion collision experiments, while the low T and high µB region is
the domain of nuclear matter and neutron stars.

Theoretical tools developed to make predictions and interpret high-energy exper-
iments include a variety of approaches. Thermal statistical models, such as hadron-
resonance gas model [229–231], and statistical hadronization model [232,233], as well as
ultra-relativistic quantum molecular dynamics models [234] and the blast-wave model [235]
are used. One of the main objectives of these studies is to obtain information on particle
production. The various criteria for the chemical freeze-out (inelastic reactions cease) and
the kinematic (thermal) freeze-out, when the elastic reactions also cease, and the composi-
tion of the hadronic matter is fixed in time [230,233,234] are investigated. The hierarchy of
particles produced in the range of temperatures from ∼160 to 50 MeV and µB from ∼20 to
approximately 800 MeV starts with pions and kaons and carried on particle and antiparti-
cle pairs of protons, Λ, Ξ and Ω hyperons, followed by light He and H clusters [232,233].
Typical baryon number density is below the saturation density fo nuclear matter. All
these species are produced in reactions governed by the strong interaction, conserving
strangeness, because the typical time of the reactions is not longer than 10−23 s. The new
facilities being currently built, FAIR at GSI and NICA in JINR [236], designed to probe
the medium T and µB of the QCD diagram, will face the same problem, already discussed
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in Section 4.3. The longer life-time of compact objects (see Section 4) allows for the weak
interactions to develop, which changes not only the hadron make-up but also brings in
leptons, essential for the physical processes in these objects to proceed. Therefore attempts
to derive constraints on properties of compact objects from high-energy heavy-ion collisions, (see,
e.g., [236,237]) suffer from the same fundamental problem as outlined in Section 4.3.

5. Concluding Remarks

The baryon–baryon interaction in free space and its modification by the surrounding
medium is far from being understood. The current proliferation of models with many corre-
lated not-well-constrained parameters does not help in its solution. The more complex the
current models are, the more difficult it becomes to interpret the results on a fundamental
level. Hans Bethe in his 1953 paper [238] “What holds the nucleus together” said that

In the past quarter of the century physicists have devoted a huge amount of
experimentation and mental labor to this problem–probably more man-hours
than have been given to any other scientific question in the history of mankind.

In 2021, we have scarcely advanced. This paper deliberately took a step back into the
history of the field of high-density matter in search for some important clues or assumptions,
which might have been made way back and forgotten over time. Some of the basic concepts
of models we use today, such as the macroscopic drop-type models, are based on a very
classical picture of the nucleus and are almost 90 years old. SNM, introduced decades ago
as a testing ground for nuclear models, is an idealized approximation of reality. We still take
its basic properties, saturation density and energy, as essential constraints of our models
today. Relativistic meson-theoretical and non-relativistic potential models are used side
by side in free nucleon–nucleon scattering analysis and found phase-shift equivalent. The
χEFT was first introduced in the 1970s, almost at the same time as the density-dependent
effective interactions for mean-field approximation to both nuclear matter and finite nuclei.

All these concepts and techniques are in full use today. Many papers employing EoS
based on different physics make predictions on observables of interest and compare the
results between themselves and with experiment. However, no strongly preferred EoS
model has emerged.

We should realize that with enough parameters, one can fit almost anything. The
current observational and terrestrial constraints are not sufficiently model sensitive enough.
There is, in principle, an infinite number of EoS of high-density matter that can be con-
structed on totally different physical backgrounds which all satisfy the data. The same data
are reflected in parameters of different models in different ways. A specifically tailored
model, with a larger number of parameters, is apparently better, if only a fit to a limited
class of data is sought. However, such models gibe description rather than understanding.

The ideal goal of understanding the nuclear force in the same fundamental way as
the gravitational, electromagnetic, strong forces is probably out of our reach at present.
A positive way forward may be to focus on theories with a minimal number of variable param-
eters constrained by physics. One example of such effort is the QMC model discussed in
Section 3.2.2. As a phenomenological mean-field model, it does not provide information
on the baryon–baryon interaction in free space, so the concept of the interaction between
hadrons being propagating between their constituent quarks is not universal. However,
with a set of five well-constrained parameters, its reproduction of experimental data, both
on compact objects and finite nuclei, is impressive, and its predictive power is still being
explored. The model is developing by refining the physics content, not varying or adding
parameters. Thus, there is only one parameter set per version of the model, in stark contrast
with other mean-field models.

Finally, there is the fundamental question of the sensitivity of available data to the
microscopy of our models. We are faced with a range of predictions of a particular
phenomenon from various models, based on different physics, and do not seem to have
means to distinguish among them. A question can be asked as to what we actually learn from
the models except that they are consistent with the data.
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Only a limited selection of examples are presented here. Many topics were omitted,
including the dynamic properties of pulsars, NS cooling, the effect of magnetic fields, the
role of superfluidity and superconductivity in the star cores and their crusts, the mechanism
of core-collapse supernovae, and the lattice and perturbative QCD. The story that repeats
itself in these areas only strengthens the need for new ideas. This is much more difficult than
mere detailed modifications of old theories but it is the only way to move the field forward.
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132. Nikšić, T.; Vretenar, D.; Finelli, P.; Ring, P. Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon

couplings. Phys. Rev. C 2002, 66. [CrossRef]
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