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Abstract: The fractal properties of geomagnetic northward component data (H-component) in the
equatorial region during various phases of solar activity over Southeast Asia were investigated
and then quantified using the parameter of the Hurst exponent (H). This study began with the
identification of existence of spectral peaks and scaling properties in international quiet day H-
component data which were measured during three levels of solar activity: low, intermediate, and
high. Then, various cases of quiet and disturbed days during different solar activity levels were
analyzed using the method that performed the best in the preceding part. In all the years analyzed,
multifractal scaling and spectral peaks exist, signifying that the data have fractal properties and that
there are external factors driving the fluctuations of geomagnetic activity other than solar activity.
The analysis of various cases of quiet and disturbed days generally showed that quiet days had anti-
persistence tendencies (H < 0.5) while disturbed days had persistence tendencies (H > 0.5)—generally
a higher level of Hurst exponent compared to quiet days. As for long-term quiet day H-component
data, it had a Hurst exponent value that was near H ' 0.50, while the long-term disturbed day
H-component data showed higher values than that of the quiet day.

Keywords: solar activity levels; geomagnetic storm; geomagnetic northward component; fractal
properties; Hurst exponent; detrended fluctuation analysis (DFA)

1. Introduction

The geomagnetic field of the Earth is an astonishing feat of nature as it protects us
from the incoming forces from the Sun, such as charged particles in the solar wind [1,2]
that may be the harbinger of catastrophe on earth, if the geomagnetic field were to never
exist in the first place. This so-called catastrophe is the geomagnetic storm; its occurrence of
which can be attributed to the compression of the magnetosphere due to the solar wind [3].
When such a storm occurs, it can disrupt the telecommunication systems and electrical
grids on earth, among many other things. There are two classes of geomagnetic activity,
namely ‘quiet day’ and ‘disturbed day’. A quiet day is the period where the fluctuations of
geomagnetic activity are only affected by solar and lunar daily variations, while a disturbed
day is the period where the fluctuations are affected predominantly by the occurrence of a
geomagnetic storm.

In understanding the characteristics of geomagnetic activity, one of the attributes
analyzed is its fractal properties [4–6], which are the characteristics of self-similarity that a
particular object has when subjected to varying degrees of magnification [7,8]. A fractal
parameter, the Hurst exponent, is used to quantify these properties by defining the long-
term correlation of the time series of a geomagnetic activity [9]. The value of Hurst exponent
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ranges from 0 to 1 (0 < H < 1); if the Hurst exponent is less than 0.5 (0 < H < 0.5), a time series
is considered as anti-persistent or having a negative long-term correlation. In contrast, if
the Hurst exponent is more than 0.5 (0.5 < H < 1), a time series is considered as persistent
or having a positive long-term correlation. Meanwhile, if the Hurst exponent is equal to
0.5 (H = 0.5), the time series is considered as fully random or not having any discernible
long-term correlations (apart from being random, that is). In this study, the Hurst exponent
was used extensively to quantify the fractal properties of the geomagnetic data.

There are several methods that can be utilized in determining the Hurst exponent
of a time series including the rescaled range analysis (RRA), power spectrum analysis
(PSA), detrended fluctuation analysis (DFA), and the newly established method of robust
detrended fluctuation analysis (r-DFA), among many others. Of all the methods mentioned,
the DFA method has been proven to have exceptional accuracy [10,11] in analyzing fractal
properties not only for geomagnetic data [3,5,6,12–14] but for other purposes as well, as
noted by Kantelhardt et al. [15]. On the other hand, the newer method of r-DFA has been
prominently utilized in analyzing hydrological data [16–18] and to a lesser extent, other
types of data such as meteorological data [19], medical data [20], and solar activity data [21].
As for geomagnetic data, to date, it has been subjected to the method of r-DFA [22], but not
to an extensive degree. Hence, this study utilized the method to analyze geomagnetic data.

Among numerous studies utilizing the Hurst exponent to analyze the fractal properties
of geomagnetic time series, this study used an approach similar to Hamid et al. [14] in
which they characterized the fractal properties of quiet and disturbed days utilizing three
different fractal methods of PSA, RRA, and DFA. However, they only analyzed short-term
data during medium solar activity level in the declining phase. Other notable studies
include that of Rabiu et al. [23] which observed periodicities, the existence of spectral
peaks, in long-term geomagnetic data by utilizing data from geomagnetic stations scattered
around the world using the PSA method. Despite the global coverage of stations, the
Southeast Asia region was not included in their study. Recently, the study by Nasuddin
et al. [24] characterized H-component data over the South Atlantic Anomaly region during
the quiet and disturbed days of the year 2011. However, their study only utilized a single
method of PSA and only short-term data were analyzed.

In this study, the research gap left by previous studies was filled by the following steps;
first, the fractal properties of international quiet day data from the geomagnetic equatorial
region stations in the Southeast Asia region were investigated by utilizing long-term data
during various levels of solar activity. Next, the newly established fractal method, the r-
DFA method, was tested against other long-established fractal methods—namely the RRA,
PSA, and DFA—in terms of its accuracy for determining Hurst exponent in the geomagnetic
data. Lastly, the most accurate method in our preceding test was used in characterizing
various cases of quiet and disturbed days, including both short and long datasets.

2. Methodology
2.1. Data Procurement

The geomagnetic northward component, H, or H-component, was chosen as the
basis for this study as it is very susceptible to the geomagnetic volatility of the Earth at
the geomagnetic equator—the scope of the area investigated in this study—and virtually
considered to show the same characteristics as the total field component [14,24]. The data
used were of 1-s resolution for the year 2009, 2013, and 2015 which covered three different
solar activity levels of low, intermediate, and high solar activity, respectively.

The H-component data used in this study was taken from the geomagnetic stations
of Davao, Philippines (7.00◦ N, 125.40◦ E) and Langkawi, Malaysia, (6.30◦ N, 99.78◦ E)
-henceforth abbreviated as DAV and LKW, respectively- all of which are a part of the
Magnetic Data Acquisition Systems (MAGDAS) authorized by the International Center for
Space Weather Science and Education (ICSWSE) of Kyushu University, Japan [25]. Figure 1
illustrates a sample of the H-component data analyzed in this study.
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Figure 1. An example of the H-component data. These in particular are single day data of 23 June 2015 (a) and 4 June 2015
(b) taken from DAV station. These data represent disturbed and quiet days, respectively, which are part of the short-term
events analyzed in this study.

Dst index which is an aggregate index of H-component, A-index which is an index of
Kp index average over the period of 24 h, and the International Quiet and Disturbed Day
Database were utilized to identify quiet and disturbed days of each year. Datasets of the
Dst index and International Quiet and Disturbed days were obtained from WDC Kyoto
web services, while datasets of A-index were obtained from NASA’s OMNIWeb service.

This study was divided into three parts. The first part involved the identification of
the fractal properties of International Quiet Day H-component data which required the
selection of H-component data of 60 quietest days according to the International Quiet
Day data for the year 2009, 2013, and 2015 from DAV station. The selected data were
later analyzed using the PSA method. It was found that the data from LKW station were
scattered with noises if it were to be analyzed in the long-term fashion. Therefore, it was
decided that the data from LKW station would be omitted for the first part of the study
and to be used exclusively for the short-term event analyses.

The second part involved the testing of various fractal methods to find the best
method in determining the Hurst exponent in the geomagnetic data. This required all the
aforementioned methods—namely the PSA, RRA, DFA, and r-DFA—to be tested multiple
times against various synthetic signals that simulated the characteristics of the geomagnetic
data. Each method was tested against five different types of signals, measured by Hurst
exponent. For each type of signal, three distinctive datasets were synthesized to be tested
against each method. The results considered for comparison were the averaged results.

The third and final part involved the characterization of both short- and long-term
cases involving quiet and disturbed days. For the short-term cases studied, all the major
solar event days with Dst < −200nT- in the year 2013 and 2015 were required to be
concatenated into a single dataset for each year and then analyzed by using data from
DAV and LKW stations. Next, two major solar events—namely, the moderate solar storm
and intense solar storm which happened in 2013 and 2015 respectively—were analyzed
using data from DAV and LKW stations. The results of the preceding analyses were then
compared with a couple of quiet days in their respective period, following the period
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of study of the second analysis which happened to be June solstice for 2015 and March
equinox for 2013. All of the dates for the short-term cases analyzed in this study are listed
in Table 1.

Table 1. Selection of short-term events analyzed in this study.

Solar Activity Level Type of Day Dates Analyzed
(DD/MM/YYYY)

Intermediate Disturbed
17/03/2013
01/06/2013
29/06/2013

Quiet 26/03/2013

High Disturbed

17/03/2015
18/03/2015
22/06/2015
23/06/2015
07/10/2015
20/12/2015
21/12/2015

Quiet 04/06/2015

Next, for the long-term cases studied, the 60 quietest days according to the Interna-
tional Quiet Day data for the year 2009 and the 60 most disturbed days according to the
International Disturbed Day data for the year 2013 and 2015 were analyzed using data
from DAV station. The datasets were then refined by eliminating days with A-index below
25 (A-index < 25) for each year to be analyzed.

2.2. Methods

Four methods were utilized for identifying fractal properties in this study—namely, the
Power Spectrum Analysis (PSA), Rescaled Range Analysis (RRA), Detrended Fluctuation
Analysis (DFA), and Robust Detrended Fluctuation Analysis (r-DFA). Alongside all of the
abovementioned methods, the concept of fractional Brownian motion was also heavily
utilized throughout this study, which is explained extensively in this section.

2.2.1. Power Spectrum Analysis (PSA)

The first method utilized was the power spectrum analysis. It is a method that
evaluates a time series in a way that enables us to point out random inflections within
it [26], thus allowing for a thorough examination of the scaling features [14]. The analysis
starts with the Fourier transformation of the geomagnetic time series

Fm =
N−1

∑
j=1

yn exp
(

2πijmN−1
)

(1)

where yn is the geomagnetic time series and m = 0, 1, 2, N − 1. The time series may indeed
be a self-affine fractal if the correlation of the power spectrum, P(f ) and the frequency, (f )

P( f ) = |Fm( f )|2 (2)

shows a linear relation where the power spectrum decreases alongside the frequency,
P( f ) ∼ f−β where β indicates the degree of correlation [26] or in our case, the spectral
exponent [14]. From the spectral exponent, β, the Hurst exponent can be determined.
The Hurst exponent for a stationary fractional Gaussian noise can be calculated with
H = (β + 1)/2, for −1 ≤ β < 1. Meanwhile, for a non-stationary fractional Brownian
motion, it can be calculated with H = (β− 1)/2 for 1 < β ≤ 3. On another note, if β
happens to be equal to 1, the noise shall be in the form of 1/f [26,27].
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2.2.2. Rescaled Range Analysis (RRA)

The second method used was the rescaled range analysis (also known as R/S analysis).
It is a method devised by Mandlebrot and Wallis [28], based on the pioneering hydrological
study of Hurst [29], which measures the parameter of Hurst exponent, H. This parameter
allows the measurement of the intensity of long-range dependence in a time series [10].

The analysis starts with the division of the geomagnetic time series into n subintervals,
yn, with size τ. The range of each subinterval is then calculated

Rn(τ) = (yn)max − (yn)min (3)

Next, the standard deviation of each subinterval is calculated

Sn(τ) =

[
1

τ − 1
(yn)

2
]1/2

(4)

The Hurst exponent is finally obtained using the correlation between R/S and τ;
R/Sn ∼ τH where H is the slope of the double logarithmic plot of <R/S>n against τ.

As of recently, the method of RRA is still being utilized in analyzing medical data [30],
geological data [31–33], internet traffic data [34,35], and solar activity data [36]. Addition-
ally, it is also utilized in the field of engineering [37].

2.2.3. Detrended Fluctuation Analysis (DFA)

The third method utilized was the detrended fluctuation analysis. It is a method
devised by Peng et al. [38] to detect scaling features that a particular time series has. It is
exceptionally created such that the spurious detection of scaling and long-range correlation
can be avoided; thus, a generally more accurate result can be produced.

The detrended fluctuation analysis starts with the integration of the geomagnetic time
series, y(t), of size N. Next, the time series is divided into n subintervals, yn(t), of size τ.
The subsequent time series is then put through a detrending process in which the local
trend is subtracted in each subinterval,

F(τ) =

[
1
N

N

∑
k=1
|y(t)− yn(t)|2

]1/2

(5)

which resulted in the fluctuation of the time series, F(τ). This calculation is repeated for
each of the subintervals; the average fluctuation can be represented with the correlation of
F(τ)n ∼ τα where α is the scaling exponent, representing the slope of double logarithm
plot of F(τ) against τ. From the scaling exponent, α, the Hurst exponent can be determined.
The Hurst exponent for a stationary fractional Gaussian noise is H = α. Meanwhile, for a
non-stationary fractional Brownian motion, the Hurst exponent is H = α− 1.

In recent years, the method of DFA has been utilized in various fields of study, more so
than other methods listed here, including medical [39–41], hydrology [42], engineering [43],
environmental studies [44], climatology [45], and geology [46].

2.2.4. Robust Detrended Fluctuation Analysis (r-DFA)

The last method used was the robust detrended fluctuation analysis. It is a method
devised by Habib et al. [47] as an improvement to the already established detrended
fluctuation analysis (DFA) method. The improvement involves additional steps of analysis
to the established method of DFA.

After a particular geomagnetic time series is computed using the regular DFA method,
surrogate datasets are made on which the regular DFA will be performed upon. The
results of the DFA analysis on the surrogate datasets would be used to modify the original
DFA result, thus diminishing the bias inherent when using DFA of higher order [15].
Next, piecewise linear regression is used to optimize the location of the data where there
is a change in scaling properties, which in this case can be referred to specifically as
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‘crossover’ [48,49]—the existence of which is predefined—and also to minimize the least
square error between data that is bound to happen.

If crossovers are indeed identified to exist in the data, a further test is performed
in the form of ANCOVA (analysis of covariance) and multiple comparison procedure
which would detect the exact number of the crossovers that the data has until the point
of saturation and produces the local scaling exponent, αL for each section according to
the division made by the crossovers. Instead, if crossovers are not identified, a robust
regression is used to determine the global scaling exponent, α. As for the determination of
the Hurst exponent, the method remains the same as the regular DFA method and can be
implemented seamlessly with this method.

2.2.5. Fractional Brownian Motion (fBm)

Fractional Brownian Motion is devised by Mandlebrot and Van Ness [50] as a form of
stochastic process which is continuous in nature and consists of Gaussian increments. It is
defined by

BH(t) =
1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− s)H− 1

2 − (−s)H− 1
2
]
dB(s) +

∫ t

0
(t− s)H− 1

2 dB(s)
}

(6)

where BH(t) is fractional Brownian motion at time t, Γ is gamma function, H is Hurst
exponent and B(s) is standard Brownian motion at time s [51]. At H = 0.5, it generalizes
into a standard Brownian motion.

The concept of fractional Brownian motion (fBm) was used extensively in the second
part of this study; it involved the testing of the various methods using various synthetic
signals. The various synthetic signals were in fact made using fBm as fBm can provide
simulations that are quite close to real geomagnetic data.

3. Results and Discussion
3.1. Fractal Properties of Quiet Day Geomagnetic Data

Figure 2 shows the power spectrum periodogram of 60 quiet days for the year 2009,
2013, and 2015. The blue spectra represents the year 2009, the green spectra represents the
year 2013, and the red spectra represents the year 2015. Table 2 shows the comparison of the
spectral peaks found in this study compared with Rabiu et al. [23] study. The H-component
data from Bangui station, Central African Republic (4.33◦ N, 18.57◦ E) and Kourou station,
French Guiana (5.21◦ N, 307.27◦ E), which are abbreviated as BNG and KOU respectively,
were chosen from Rabiu et al.’s study for comparison as these stations are located near the
geomagnetic equator, to match the geomagnetic conditions of DAV station.

Table 2. Comparison of spectral peaks found in this study with Rabiu et al. [23] study.

This Study (DAV) Rabiu et al. [23] (KOU and BNG)

Year Existing Peaks (h) Year Existing Peaks (h)

2009 6, 8, 12, 24 1996 8, 12, 24
2013 6, 8, 12, 24 2000 6 *, 8, 12, 24
2015 6, 8, 12, 24 2002 8, 12, 24

* Only KOU station data showcases a peak at 6 h mark during that period.

One common attribute that can be observed from the periodograms is the scaling
properties. The change in data scaling rule indicates that the data has fractal properties [8]
which were present in all of the periodograms analyzed in this study. The markings at the
bottom of Figure 1—namely M1 and M2—indicate that all of the three periodograms have
virtually the same scaling properties, with two distinct areas having different scaling rule.
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While the identification of the point at which the scaling properties change is purely
a qualitative process [52,53] and the use of power spectrum analysis as a method is not
optimized to indicate precisely the scaling properties of a data [54], the fact remains that all
the periodograms showed a change in scaling rule, a multifractal scaling [55,56]. Hence, all
of the long-term quiet day data analyzed in this study exhibited fractal properties.

Aside from the scaling properties of the data, another attribute that can be observed
from the periodograms is the spectral peaks. From Table 2, this study found that the
year 2009, 2013, and 2015 showed the same number of peaks at the same hour marks;
6 h, 8 h, 12 h, and 24 h. As for the study of Rabiu et al. [23], all the years studied—1996,
2000, and 2002—also showed the same number of peaks at the same hour marks (albeit
different from our findings of peaks) of 8 h, 12 h, and 24 h, with an exception for the peak
at the 6 h mark which was only present in the KOU station H-component data for the year
2000. The existence of peaks itself is often attributed to several factors such as solar daily
variation [14,23,57], lunar daily variation [58], and atmospheric tides [57,59]. Solar daily
variation is caused by the rotation of the Earth, causing the Earth’s changes from night
to day, which primarily causes the existence of the spectral peak at the 24 h mark. Lunar
daily variation is caused by the motion of the moon revolving around the Earth, which
causes the spectral peaks at the 12 h mark. The other factor that drives the existence of
other peaks is the atmospheric tides caused by the rotation of the Earth, creating a global
scale of oscillations which naturally have harmonic periods [59]. These harmonic periods
correspond directly to the period in which the spectral peaks exist, which in turn, causes
the remaining spectral peaks of 6 h and 8 h to exist.

It is concluded that all the long-term geomagnetic data over Southeast Asia during
low, intermediate, and high solar activity showed fractal properties, and the existence of
multiple spectral peaks showed that solar activity was not the sole driver of geomagnetic
fluctuations. The findings in this study generally agreed with Rabiu et al. [23] study which
used data from a different region. We came to this decision by considering the stations
from which the data were used and the period of the study. The stations of DAV, KOU, and
BNG are all located near the geomagnetic equator. As for the period of study, the years
2009, 2013, and 2015 correspond directly with the years 1996, 2000, and 2002. The years
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2000 and 1996 were set during the solar maximum while the years 2002 and 2015 were set
during the solar minimum. It is worth noting that this study did not subtract the baseline
of H-component as implemented by Rabiu et al. [23]. In addition, their study analyzed
the 1 h resolution data of H-component for the whole year while this study analyzed 1 s
resolution data of H-component for selected quietest days of the year according to the
international quiet day data. Nevertheless, the spectral peaks present in both H-component
data are virtually the same.

3.2. Fractal Methods to Determine the Hurst Exponent of Geomagnetic Data

Table 3 shows the result of the accuracy test for each method using various synthetic
fBm signals. The Hurst exponent values were obtained by using linear regression between
parameters specified to be utilized in each method (Section 2.2), while the errors were based
on the standard error of the regression which indicates how far the observed values are
from the regression line. The color gradient of orange-yellow-green-dark green indicates
the degree of accuracy of each method, with orange being the least accurate and dark green
being the most accurate. The PSA method came out to be the least accurate out of all the
methods, while the DFA came out to be the most accurate.

Table 3. Result of the accuracy test for each method using various synthetic fractional Brownian
motion signals simulating the geomagnetic time series. The color gradient of orange-yellow-green-
dark green indicates the degree of accuracy of each method, with orange being the least accurate
while dark green being the most accurate.

Hurst (H) PSA RRA DFA r-DFA
0.1 0.04 ± 0.02 0.19 ± 0.02 0.09 ± 0.01 0.01 ± 0.03
0.3 0.20 ± 0.02 0.35 ± 0.02 0.31 ± 0.01 0.19 ± 0.03
0.5 0.40 ± 0.01 0.53 ± 0.02 0.51 ± 0.01 0.37 ± 0.03
0.7 0.44 ± 0.01 0.71 ± 0.03 0.70 ± 0.01 0.55 ± 0.04
0.9 0.41 ± 0.00 0.81 ± 0.07 0.91 ± 0.01 0.73 ± 0.04

The PSA method is perfectly capable of identifying in detail the inflections and the
scaling properties within a time series as demonstrated by the preceding part; a task that
the other methods tested here were not that capable of. However, in measuring the overall
Hurst exponent of a time series, it turns out that the PSA method was not that adequate at it.
While it offered a great precise measurement by offering a small amount of standard error,
the measurements just fell far off the mark. When subjected to fBm signals of H = 0.5 and
above, it failed to produce a precise value for each noise and instead returned H ' 0.4—a
point of saturation—for the noise H = 0.5, H = 0.7, and H = 0.9.

The RRA method may be the oldest method tested in this study, but according to
our test, it is still adequate at measuring the overall Hurst exponent of a time series. The
results produced by this method did not go that far off the mark, with a standard error
level that left a lot to be desired—at worst, the amount of error was ±0.07—but was just
acceptable given the age of this method. Moreover, the developments and improvements of
various fractal methods over the period of half a century leaves us with plenty of methods
to choose from, among them the DFA method.

Despite being the newest method in our test, r-DFA did not turn out to be the best
method in this test. The r-DFA method was designed from the ground up, intended to be
used for hydrogeological data. The incapability of the method in measuring the exact Hurst
exponent of a synthetic geomagnetic time series does not come as a surprise since hydroge-
ologists undoubtedly have a different set of goals in using r-DFA as a method. In addition,
there were several adjustments that had to be made in this test including the number of
surrogate sets, the r-DFA order number, and the number of crossovers predetermined.

The number of surrogate sets utilized in this test was 5 sets instead of the supposed
100 sets the originators of the method had performed earlier. As for the r-DFA method,
the results of the sixth order were compared with the other methods as the results yielded
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the nearest reading of the simulated signals. Additionally, there were no crossovers
predetermined to exist in our testing. All these adjustments were made for the sake of
comparison with the other methods and to reduce biases as the other methods had fewer
variables to consider. Still, this study does not discredit the fact that it is an established
method in the field of hydrology; however, it is just not adequate for our use in this
study. The DFA method, over the years, has been stated as one of the most accurate fractal
methods [10,12,14], and apparently it still is. It was found that the DFA method offered
the most accurate measurement of Hurst exponent of time series compared to the other
methods in this test. Not only that, but it also boasts the least amount of standard error
compared to the others, at ±0.01 across all measurements. Therefore, going forward, we
utilized the DFA method to characterize the various cases of quiet and disturbed days, in
the form of short-term datasets, as well as long-term.

3.3. Characterization of Geomagnetic Data during Various Cases of Quiet and Disturbed Days

Figure 3 illustrates a sample of the DFA visualizations for several quiet and disturbed
days analyzed in this section. Table 4 shows all the Hurst exponent measurement results
of various short-term data of disturbed and quiet days. There are three classifications of
events of which results we would compare against one another, namely Disturbed Day (all
major events in one particular year), Disturbed Day, and Quiet Day. All H-component data
were sourced from DAV and LKW stations and analyzed using DFA imposed with spectral
limit of 2.7788< log τ < 4.334 (τ = 6 h until τ = 10 min) following the approach made by
previous studies [14,24].
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Table 4. The results of the short-term data analyses utilizing the DFA method. All results are in the parameter of Hurst
exponent (H). Orange highlights indicate persistence tendencies, while green highlight indicates anti-persistence tendencies.

Disturbed Day (All Major Events in
One Year; Days with Dst < −200 nT) Disturbed Day Quiet Day

Station 2013 2015 17/03/2013 23/06/2015 26/03/2013 04/06/2015
DAV 0.56 ± 0.03 (3d) 0.58 ± 0.01 (7d) 0.62 ± 0.03 0.63 ± 0.05 0.36 ± 0.03 0.36 ± 0.03
LKW 0.69 ± 0.04 (3d) 0.74 ± 0.02 (5d) 0.68 ± 0.03 0.69 ± 0.05 0.38 ± 0.03 0.41 ± 0.04

The first class, the ‘Disturbed Day (all major events in one year)’, is the analysis of days
with major geomagnetic events, namely days with Dst < −200 nT- in the year 2013 and
2015, utilizing the H-component data from DAV and LKW stations. All of the disturbed
days’ data were concatenated into one single dataset according to its year and station,
subject to each station’s availability of data, causing the variety of the datasets’ length to be
analyzed using DFA. All of the measurements of the Hurst exponent for all datasets in this
class showed persistence tendencies, with data from LKW in particular yielding far higher
levels of Hurst exponent compared to DAV station.

The second class, the ‘Disturbed Day’, is the analysis of two days in which the low-
est point happened to be during a particular major geomagnetic event in the year 2013
and 2015. The geomagnetic events chosen were the moderate geomagnetic storm of
17 March 2013 which happened during the March equinox, and the intense geomagnetic
storm of 23 June 2015 which happened during the June solstice. All of the measurements
of the Hurst exponent for all datasets in this class showed persistence tendencies, with
data from LKW in particular yielding slightly higher levels of Hurst exponent compared to
DAV station.

The third class, the ‘Quiet Day’, is the analysis of two quiet days which happened to
be in the same period as the preceding analyses of the March equinox of 2013 and the June
solstice of 2015. The days chosen were 26 March 2013 and 4 June 2015, both of which were
the quietest day of each respective month. All of the measurements of the Hurst exponent
for all datasets in this class showed anti-persistence tendencies, with data from LKW in
particular yielding slightly higher levels of Hurst exponent compared to DAV station.

Overall, the results clearly established that disturbed days showed persistence ten-
dencies while quiet days showed anti-persistence tendencies. This finding reaffirms the
long standing theory that disturbed days generally has a higher level of scaling exponent
compared to quiet days [12,14,60,61], resulting in a higher level of Hurst exponent. The
higher level of Hurst exponent also indicates that the entropy of geomagnetic data strongly
decreases during disturbed period [62,63]. It was also found that the results from LKW
station were slightly higher than that of DAV station, with different levels of deviation
for each class. The results of LKW station tend to deviate further from the results of DAV
station in multiple day analyses compared to single day analyses, of which deviations still
exist but negligible compared to the former. This deviation may be caused by the difference
in the geographic state of each station [64,65], in that DAV and LKW stations are located in
different parts of the Southeast Asia region, with LKW station located in the west while
DAV station is located in the east. Further study utilizing geomagnetic and local wind
data from different longitude sector, such as South America and India, is needed to draw a
conclusion to confirm this hypothesis.

Table 5 shows all the Hurst exponent measurement results of various long-term data
of quiet and disturbed period. For this part of the long-term data analysis, only DAV
station data were utilized as this study only focused on comparing two conditions: the
long-term quiet day data during low solar activity, the quiet period; and the long-term
disturbed day data during intermediate and high solar activity, the disturbed period.
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Table 5. Results of the long-term data analyses utilizing the DFA method. Orange highlights indicate
persistence tendencies.

Period Quiet Period Disturbed Period

Year/Case 2009 (60d) 2013 (59d) 2013 (42d)
(A-Index > 25) 2015 (60d) 2015 (58d)

(A-Index > 25)
H 0.51 ± 0.03 0.55 ± 0.02 0.55 ± 0.02 0.55 ± 0.01 0.55 ± 0.01

The DFA result of 60 quiet days in the year 2009 yielded the Hurst exponent measure-
ment of 0.51 ± 0.03, showing persistence tendencies that bordered on random tendencies
(H = 0.50). This finding is in line with the findings of Wanliss [12] and a couple of studies
preceding it [66,67] in which these authors argued that the value of the Hurst exponent
for the quiet time shall be around H ' 0.50. It is surmised that the random tendencies
of the H-component data are caused by the nature of the geomagnetic data itself which
is completely random and barely changes unless there is an external influence that acts
upon it. The year 2009 itself was a year of low solar activity, suggesting that external influ-
ences were scarce and inconsequential compared to that of high solar activity. Therefore,
geomagnetic activities during this time were generally random.

The DFA of 59 disturbed days in the year 2013 and 42 disturbed days that had A-index
level above 25 in the year 2013 yielded the same level of Hurst exponent at 0.55 ± 0.02.
For the DFA of 60 disturbed days in the year 2015 and 58 disturbed days that had A-
index level above 25 in the year 2015, both analyses also yielded the same level of Hurst
exponent at 0.55 ± 0.01. While both years showed persistence tendencies, the periods of
solar activity in which both years were situated—intermediate solar activity for the year
2013 and high solar activity for the year 2015—caused little to no difference in the Hurst
exponent. These findings reaffirm that disturbed days generally has a higher level of Hurst
exponent compared to that of quiet days.

One last thing worth noting in our observations is that the value of Hurst exponent
for analyses with shorter length of H-component datasets tend to skew extremely to either
having persistence or anti-persistence tendencies, while longer H-component datasets tend
to have value nearing random tendencies. Hence, it is surmised that as the H-component
dataset gets longer, it tends to have more random tendencies, as evidenced by our findings.
This particular characteristic may have a potential to be utilized in geomagnetic storm
monitoring, particularly in the Southeast Asia region, using fractal analysis of real-time
geomagnetic data as fractal analysis on short-term real-time geomagnetic data may indicate
whether geomagnetic storm is still ongoing or otherwise, or showing potential to subside
in the near future by referring to the Hurst exponent of the geomagnetic data.

4. Conclusions

In this work, we have analyzed the long-term quiet day H-component data of the
Southeast Asia geomagnetic equatorial region during low, intermediate, and high levels
of solar activity. We found that multifractal scaling exists in all of the data analyzed,
signifying that the data exhibit fractal properties. We also found the existence of spectral
peaks that were present at 6, 8, 12, and 24 h, which were marked throughout all of the
years analyzed. This shows that there are external factors that drive the fluctuations of
geomagnetic activity that are not limited to solar activity. The Detrended Fluctuation
Analysis (DFA) method was found to be the best method to characterize fractal behavior
of geomagnetic data. It was found that disturbed days generally showed a higher level
of Hurst exponent compared to quiet days. As for the long-term data, disturbed days
generally showed a higher level of Hurst exponent compared to quiet days, which had a
value near H ' 0.50. This particular characteristic indicates that the Hurst exponent may
have a potential to be utilized with geomagnetic data in monitoring geomagnetic storms in
the Southeast Asia region. Additionally, we suggest future studies to identify whether the
value of Hurst exponent will vary during different events that perturb daily variations of
geomagnetic data such as earthquakes (lithospheric events) and solar flares (space events).
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