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Abstract: We reviewed the recent developments in the study of conformal field theories in generic
space time dimensions using the methods of the conformal bootstrap, in its analytic aspect. These
techniques are solely based on symmetries, particularly on the analytic structure and in the associa-
tivity of the operator product expansion. We focused on two applications of the analytic conformal
bootstrap: the study of the ε expansion of the Wilson–Fisher model via the introduction of a disper-
sion relation and the large N expansion of the maximally supersymmetric Super Yang–Mills theory
in four dimensions.
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1. Introduction

Conformal field theories (CFTs) are ubiquitous in theoretical physics, as they play
a crucial role in several setups spanning from statistical models and condensed matter
physics to holographic theories. The symmetry group associated to conformal transforma-
tions in d space–time dimensions1 highly constrains the structure of the observables in these
theories, completely fixing the space–time structure of two- and three-point correlators up
to a set of coefficients (the conformal dimensions and the so-called three-point function
coefficients). In contrast to ordinary quantum field theories, conformal field theories are
equipped with a convergent operator product expansion (OPE) whose radius of conver-
gence is finite. This structure allows us to write the product of two fields sitting in positions
close to each other, as a linear combination of fields at a middle point. In particular, when
inserted inside correlation functions, the OPE is particularly useful because it makes it
possible to express n point functions as a sum over (n− 1) point functions. By repetitively
using the OPE, it is then possible to reduce any n point function to a sum of two- and
three-point functions. In addition, the OPE is associative and this property is crucial to
obtain consistency conditions that constrain the two- and three-point coefficients, which is
the set of quantities determining the dynamics of a CFT.

This approach goes under the name of the conformal bootstrap. Despite the fact that
its original formulation goes back to the 1970s [1,2], a more recent numerical approach
revived the interest in it [3]. The main idea is to use the associativity of the OPE inside
four-point functions to be able to put numerical bounds on the conformal dimension and
the three-point function coefficient (OPE data) of the lightest operator present in the OPE
of the two operators appearing in the four-point function we started with. Over the years,
these techniques proved to be extremely efficient and achieved impressive results, as can be
seen in [4] for a recent review. This progress motivates a complementary analytic study of
the consistency conditions, which exploits the analytic structure of the equations together
with information on the OPE structure and additional symmetries, when present. This
approach gave a plethora of results, for instance in the large spin sector [5,6] and in large
N theories [7,8].
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In this note, we review mostly the latter, the analytic approach. Despite their emergent
simplicity, the crossing relations are very intricate equations, and in generic space–time
dimensions, it is extremely complicated to systematically find solutions. Recently, this has
been the focus of some investigations and it has become clear that an analytic approach
can be developed to give powerful results. In this approach, it is possible to implement
constraints that are more readily visible in Lorentzian rather than Euclidean signature.
Namely, by focusing on a Lorentzian limit which selects the contribution from operators
with large spin, crossing symmetry predicts their dimensions and three-point function
coefficients. More precisely, in Lorentzian signature, one can take a limit in which the
external operators are null separated. In this limit, the correlator develops singularities
which, by crossing symmetry, are mapped to the OPE data of large spin operators [5,6,9].
The knowledge of the singularities allows us to compute the OPE data as an expansion
in inverse powers of the spin. Crucially, this works on all orders, in practise allowing the
full OPE data to be reconstructed just from singular terms. This approach turns out to be
very efficient, particularly in large N theories where the corresponding singularities can be
systematically computed. In particular, we discuss two applications of the analytic method:
one based on the usage of a dispersion relation and the second one mainly targeted towards
the study of four-dimensional superconformal theories.

The structure of the paper is as follows. In Section 2, the basics of conformal field
theories are introduced, with a focus mostly on conformal bootstrap techniques and their
implications. In Section 3, a dispersion relation for conformal field theory is introduced
and the example of the correlators in the Wilson–Fisher models in d = 4− ε dimensions
is discussed. In Section 4, we introduced the basics of superconformal field theories,
mostly focusing on four-dimensional theories and on the classification of the operators. In
Section 5, we report the case of the four-dimensionalN = 4 super Yang–Mills theory and in
particular, we present the methodology and the results to obtain the most transcendental
piece of the graviton amplitudes in AdS5 × S5.

2. Basics of Conformal Field Theory

Conformal transformations are those transformations that locally preserve the angles
between the curves. Under a conformal transformation xµ → x′µ in a d-dimensional space
(µ = 1, 2, · · · d), the metric tensor transforms as

g′µν(x′) = σ(x)gµν(x) (1)

where the function σ(x) is known as the scale factor. Conformal transformations consist of
the following infinitesimal transformations:

• Translation: xµ → xµ + aµ

• Rotation: xµ → xµ + ω
µ
ν xν

• Dilatation: xµ → α xµ

• Special conformal transformation (SCT): xµ → xµ + 2xµ x · b− bµx2

where ωµν is an antisymmetric tensor and aµ, bµ are arbitrary vectors.
The finite conformal transformations corresponding to those infinitesimal ones along

with the generators are given by

Transformation Generator
Translation: x′µ = xµ + aµ Pµ = i∂µ

Rotation: x′µ = Λµ
ν xν Mµν = i(xµ∂ν − xν∂µ)

Dilatation: x′µ = λ xµ D = ixµ∂µ

SCT: x′µ = xµ−(x.x)
1−2(b.x)+(b.b)(x.x) Kµ = i(2xµxν∂ν − x2∂µ) .
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The generators form the conformal algebra, whose commutation relations in flat
spacetime gµν(x) = ηµν are:

[Mµν, Pα] = ηναPµ − ηµαPν

[Mµν, Kα] = ηναKµ − ηµαKν

[Mµν, Mρσ] = ηνρ Mµσ − ηµρ Mνσ + ηνσ Mρµ − ηµσ Mρν

[D, Pµ] = Pµ

[D, Kµ] = −Kµ

[Kµ, Pν] = 2ηµνD− 2Mµν .

(2)

All the commutators that are not written above vanish. The conformal group is
SO(d + 1, 1) or SO(d, 2) in Euclidean or Lorentzian signature, respectively.

Conformal field theory (CFT) is described by an infinite set of local operators specified
by their scaling dimension ∆ and spin ` in the symmetric traceless representation (`/2, `/2)
for the OPE of two scalar operators. It is customary to work with states that are eigenstates
of the dilatation operator:

D|∆〉 = i∆|∆〉 . (3)

Here, |∆〉 is a state that is created by the action of a local operator of scaling dimension
∆ at the origin on the vacuum:

|∆〉 = O(0)|0〉 . (4)

The states are in one-to-one correspondence with local operators in a CFT. Inserting a
primary operator at the origin generates a state with scaling dimension ∆ and this is the
so-called state-operator correspondence. In this article, we discuss unitary conformal field
theories, which have bounds for the operator scaling dimension:

∆ ≥
{

d− 2 + ` for ` > 0 ,
d−2

2 for ` = 0 .
(5)

In addition, the action of Pµ and Kµ on the eigenstates of the dilatation generator
increases and decreases the eigenvalue by unity, due to their mass dimensionality. If we
keep acting with Kµ on these states, we will eventually reach a state with negative scaling
dimension. For a unitary CFT, states with negative dimension are not allowed and we must
have Kµ|∆〉 = 0, after acting with Kµ a finite number of times. The operator that creates
this state is called a primary operator of dimension ∆. When acting n-times with Pµ on
primary operators, it is possible to generate a tower of operators with dimension ∆ + n.
These operators are called descendant operators.

In a CFT, the observables are the correlation functions of local operators. We can
write the product of two local operators φi(x1) and φj(x2) of scaling dimensions ∆i and ∆j,
respectively, as a sum over an infinite number of primary operators φk of scaling dimension
∆k. This is known as the operator product expansion (OPE):

φi(x1)φj(x2) =
∞

∑
k=0
Cijk(x1 − x2, ∂2)φk(x2) , (6)

where the coefficients Cijk depend on the positions of the operators φi, φj, φk as well as on
their scaling dimensions and spins. This is a convergent expansion that is valid for the
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finite separation of the operators x1 − x2. Conformal symmetry determines the coefficients
Cijk up to a numerical factor λijk:

Cijk(x, ∂) = λijk|x|∆k−∆i−∆j
(

1 + αxµ∂µ + βxµxν∂µ∂ν + σx2∂2 + · · ·
)

(7)

where α, β, σ are numbers completely fixed by conformal symmetry. We quote here these
numbers for the special case ∆i = ∆j and ∆k = ∆ and d space–time dimension:

α =
1
2

, β =
∆ + 2

8(∆ + 1)
, σ = − ∆

16(∆− d−2
2 )(∆ + 1)

. (8)

The coefficient λijk is known as the OPE coefficient.
The power of CFT lies in the fact that it fixes the one-, two- and three-point functions,

up to a set of coefficients ∆ and λijk, with a fixed space–time dependence:

〈φ(x)〉 = 0 , (9)

〈φi(x1)φj(x2)〉 =
δij

x∆i
12

, (10)

〈φi(x1)φj(x2)φk(x3)〉 =
λijk

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

, (11)

where ∆i is the scaling dimension of φi(x) and xij = xi − xj. Note that the coefficients of
the two-point function can be re-absorbed by redefining the fields and then the coefficients
of the three-point functions cannot be further re-absorbed. The three-point function is fixed
up to a constant λijk. To see that this λijk is the same number that appears in Equation (7),
we apply the OPE Equation (6) to a three-point function and use the fact that the two-point
function is non vanishing only when both operators are the same Equation (10). This kills
the sum in Equation (6) to one operator and we are left with the form Equation (11).

The numbers that specify a CFT, namely the spectrum or scaling dimensions and the
OPE coefficient of the operators, are known as the CFT data. If we know all of these CFT
data, then we can completely fix the theory. The higher point correlation functions can be
recursively computed reducing it to a lower point correlation function by using the OPE.
In Equations (9)–(11), the operators φi are scalars (` = 0), but conformal symmetry fixes
the correlators of spinning operators in a similar way.

Now let us consider the four-point function which is not fully fixed by conformal
invariance and therefore encodes the dynamical information of the CFT. If we consider
four identical scalars of scaling dimension ∆φ, inserted at four different points, it is possi-
ble, using conformal symmetry, to write the four-point function in terms of conformally
invariant cross-ratios defined as

u = z z̄ =
x2

12 x2
34

x2
13 x2

24
, v = (1− z) (1− z̄) =

x2
14 x2

23
x2

13 x2
24

. (12)

The four-point function takes the following form:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x
2∆φ

13 x
2∆φ

24

F(z, z̄)

=
1

x
2∆φ

13 x
2∆φ

24

(zz̄)−∆φ ∑
∆,`

C∆,`g(d)∆,`(z, z̄) (13)

where ∆ and ` denote the scaling dimension and spin of the operators O being exchanged.
The coefficients C∆,` are the square of the OPE coefficients λ2

φφO. We will use the term OPE

coefficient for C∆,` in what follows. The function g(d)∆,`(z, z̄) contains the contribution of
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a primary operator of dimension ∆ and all of its descendants. These are the conformal
blocks whose form is completely fixed by conformal symmetry. They satisfy a differential
equation derived from the conformal Casimir [10,11]. The conformal blocks are generally
complicated functions of cross-ratios and the explicit representation is known as an integral
representation. In even space-time dimension, some closed form expressions are known.
We quote the form of the conformal blocks in four dimensions below:

g(4)∆,`(z, z̄) =
zz̄

z− z̄

(
k ∆+`

2
(z)k ∆−`−2

2
(z̄)− k ∆+`

2
(z̄)k ∆−`−2

2
(z)
)

, (14)

where:

kβ(z) = zβ
2F1(β, β, 2β, z) . (15)

Here, 2F1 is a Gauss hypergeometric function. Inside the four-point function Equation (13),
we can fuse together operators (12) and (34). This is the s-channel expansion of the
correlator. We could have also expanded into the t-channel where we fuse (14) and (23),
or in the u-channel where we fuse (13) and (24). Since the OPE is associative, these three
expansions must be the same. This is the statement of crossing symmetry which is fully
equivalent to the associativity of the OPE, and results in the following equation:

F(z, z̄) = F(1− z, 1− z̄) = (zz̄)−∆φ F(1/z, 1/z̄) . (16)

This is the conformal bootstrap equation. The crossing symmetry is depicted in
Figure 1. The conformal bootstrap is a self-sustaining process that is supposed to continue
without any external input and entirely relies upon the symmetry of the CFT. We focus
on the CFT itself without worrying about a specific microscopic realisation and this is a
Lagrangian free approach. Equation (16) is a functional constraint on the CFT data and must
be satisfied for all values of the cross-ratios z, z̄. However, this is a complicated constraint
as it involves a double infinite sums over the operator spectrum and spin. It is not possible
to generically solve this equation analytically and extract the CFT data. There are several
approaches to extract the CFT data by solving Equation (16), both analytical and numerical.
One efficient method is the numerical one, which is a numerical procedure that allows
finding bounds on the CFT data for the operators appearing in the OPE decomposition,
by using the relation Equation (16) and other symmetries that the theory may possess, as
can be seen for instance in a recent review [4]. In the next sections, we discuss some of the
analytic methods to study the same relations [12].

∆, `
x1

x2

x4

x3

s-channel t-channel u-channel

∑
∆,`

= ∑
∆,` x3x2

∆, `

x4x1

= ∑
∆,`

∆, `

x4x2

x1 x3

Figure 1. Crossing symmetry as a different expansion in the three channels.

3. Dispersion Relation in CFT

In this section, we present a dispersion relation for the CFT four-point correlation
function following [12]. The dispersion relation makes it possible to construct a function
from the knowledge of its discontinuity. We will exploit the analytic properties together
with the crossing symmetry of the correlator Equation (16) and show that in perturbative
CFT, where we have an expansion of the CFT data in a perturbative parameter, the four-
point function only depends on the spectrum of the theory and the OPE coefficients of
certain low lying operators2.
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3.1. Analytic Structure of Conformal Blocks

Let us begin by analysing the analytic structure of the conformal blocks
in d dimensions [13]:

g(d)∆,`(z, z̄) = (zz̄)
∆−`

2 g̃(d)∆,`(z, z̄) , (17)

where:

g̃(d)∆,0(z, z̄) =
∞

∑
m,n=0

(
∆
2

)2

m

(
∆
2

)2

m+n

m!n!(∆ + 1− d
2 )m(∆)2m+n

zm z̄m(z + z̄− zz̄)n . (18)

is the conformal block for the scalar exchange operators. The conformal blocks for the
exchange of spinning operators can be obtained from the scalar blocks by a recursion
relation [13]. The sum over n in Equation (18) results in a hypergeometric function. One
can further use the Euler integral representation for the hypergeometric function and
rewrite Equation (18) in the following form

: g̃(d)∆,0(z, z̄) =
Γ(∆)

Γ2(∆
2 )

1∫
0

dt
2F1

(
∆
2 , ∆

2 , 1− d
2 + ∆, t(1−t)zz̄

1−t(z+z̄−zz̄)

)
t1− ∆

2 (1− t)1− ∆
2 (1− t(z + z̄− zz̄))

∆
2

. (19)

It was shown in [14] that Equation (19) is analytic when:

z, z̄ ∈ C \ (1,+∞) with (1− z)(1− z̄) ∈ C \ (−∞, 0) . (20)

In what follows, we will study the analyticity in the variable z and keep z̄ fixed to
some value between 0 and 1. Note that 0 < z̄ < 1 lies on the u-channel branch cut which is
on the boundary of the convergence region of the u-channel. It was shown in [15] that the
OPE converges in this regime in a distributional sense. Hence, the domain of analyticity in
z becomes:

z ∈ C \ (1,+∞) . (21)

The conformal blocks for the exchange of spinning operators inherit the same ana-
lytic properties as they are given in terms of Equation (18) by a recursion relation in `.
The conformal blocks have this specific structure in any space–time dimension.

The conformal blocks Equation (17) have a branch cut for z < 0 that originates from
the non-integer powers of z. The blocks have another branch cut for z > 1 originating
from g̃. The analytic structure of the conformal block is depicted in Figure 2. Note that the
discontinuity of the branch cut due to the overall power in the second line of Equation (13)
is much simpler, which results in:

Disc
z< 0

(zz̄)−∆φ g(d)∆,`(z, z̄) = −2isin π(∆φ −
∆− `

2
)(|z|z̄)−∆φ+

∆−`
2 g̃(d)∆,`(z, z̄) , (22)

where we define the discontinuity of a function f (z) as

Disc
z

f (z) ≡ lim
α→0+

f (z + iα)− f (z− iα) . (23)

We will see how Equation (22) plays a key role in the CFT dispersion relation in the
next sections.
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z̄

z

1

zα g̃

Figure 2. Analytic structure of the conformal blocks from power (left) and hypergeometric
function (right).

3.2. Crossing Symmetry and Dispersion Relation

In this section, we exploit the analytic properties and crossing symmetry of the
conformal correlator to present a dispersion relation. As a first step, we introduce a pole at
a generic point z′ and write the correlator Equation (13) as the residue of this pole using
Cauchy’s residue theorem:

F(z, z̄) =
1

2πi

∮
z

dz′
1

z′ − z
F(z′, z̄) . (24)

The analytic structure of this correlator follows from the analytic structure of the
conformal blocks as discussed in the previous section. Now, we deform the contour to
wrap around the branch cuts on the real axis as shown in Figure 3. In order to determine
the arc contribution at z = ∞, we have to consider the Laurent series expansion of F(z, z̄),
which is given by the u-channel OPE:

F(z, z̄) = ∑
∆,`

C∆,`g(d)∆,`(1/z, 1/z̄) , g(d)∆,`(z, z̄) = (zz̄)
∆−`

2 (δ`,0 + O(z) + O(z̄)) . (25)

z z̄ 1

z′

Figure 3. Contour deformation for the dispersion relation.

Note that due to the overall prefactor z
∆−`

2 , only primary operators with ∆− ` ≤ 0
contribute to the arc at infinity. However, for unitary CFTs in d > 2, the unitary bound
Equation Equation (5) shows that identity (∆ = 0, ` = 0) is the only such operator that



Universe 2021, 7, 247 8 of 24

contributes to the arc and its arc contribution is 13. This results in the following dispersion
relation:

F(z, z̄) = 1 +
1

2πi

∞∫
−∞

dz′
1

z′ − z
Disc

z′
F(z′, z̄) . (26)

Now, we use the crossing symmetry Equation (16) to express the discontinuity at z > 1
in terms of the simpler discontinuity at z < 0:

Disc
z> 1

F(z, z̄) = −Disc
z< 0

F(1− z, 1− z̄)
∣∣∣z→1−z
z̄→1−z̄

= −Disc
z< 0

F(z, z̄)
∣∣∣z→1−z
z̄→1−z̄

. (27)

This can be used to rewrite the integral on the positive real axis in Equation (26) in
terms of an integral on the negative real axis:

∞∫
1

dz′
1

z′ − z
Disc

z′
F(z′, z̄) =

0∫
−∞

dz′
1

z′ − (1− z)
Disc

z′
F(z′, 1− z̄) , (28)

Putting these together, we obtain the following dispersion relation:

F(z, z̄) = 1 +

 1
2πi

0∫
−∞

dz′
1

z′ − z
Disc

z′
F(z′, z̄) + (z, z̄)→ (1− z, 1− z̄)

 . (29)

This shows that the correlator in a unitary CFT is determined by its discontinuity at
z < 0 together with crossing symmetry.

Let us see how the dispersion relation can be applied to compute correlators in a
mean field theory in d dimensions. We assume that the identity operator is present in
the OPE of the operators. Now, we show how the identity operator in the s channel
reproduces the mean field theory correlator. The s channel identity is given by 1

(zz̄)∆φ
,

whose discontinuity is:

Disc
z< 0

(zz̄)−∆φ = −2isin π∆φ(|z|z̄)−∆φ . (30)

Using Equation (29), we obtain the following mean field theory correlator:

FMF(z, z̄) = 1 +
1

(zz̄)∆φ
+

1
((1− z)(1− z̄))∆φ

. (31)

Note that plugging Equation (30) into Equation (29) will yield a finite result for
0 < ∆φ < 1. For ∆φ ∈ N, the prefactor in Equation (30) vanishes. The discontinuity in
that case, coming from a pole, is a delta function and can be thought of as a distribution
around z = 0 which finally yields the same result as in Equation (31). However, one
needs to analytically continue ∆φ in order to obtain Equation (31) for generic values of
∆φ. This analytic continuation is justified in perturbation theory where we have analytic
control. The way to obtain the analytic continuation in general is to consider a subtracted
dispersion relation which is not what we did. In that sense, the use of this dispersion
relation is limited.

Now, we can decompose Equation (31) into conformal blocks:

FMF(z, z̄) =
1

(zz̄)∆φ

(
1 +

∞

∑
n=0

∞

∑
`=0

CMF
n,` g(d)2∆φ+2n+`,`(z, z̄)

)
, (32)
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to reproduce the mean field theory OPE coefficients [16]:

CMF
n,` =

(1 + (−1)`)(∆φ − d
2 + 1)2

n(∆φ)2
n+`

`!n!(`+ d
2 )n(2∆φ + n− d + 1)n(2∆φ + 2n + `− 1)`(2∆φ + n + `− d

2 )n
. (33)

Note that only even spin operators appear in the OPE when we study the correlator
of four identical scalar operators.

We will now study perturbative CFT, where we have an expansion around the mean
field theory in the perturbative parameter ε. The exchanged operators in the operator
product expansion of φ× φ contain double trace operators of the schematic form [φφ]n,` ∼
φ2n∂`φ with bare dimension 2∆φ + 2n+ `. We begin by expanding the CFT data as follows:

∆n,` = 2∆φ + 2n + `+ εγ
(1)
n,` + ε2γ

(2)
n,` + O(ε3) ,

Cn,` = CMF
n,` + εC(1)

n,` + ε2C(2)
n,` + O(ε3) . (34)

This results in the following expansion of the correlator:

F(z, z̄) = FMF(z, z̄) + εF(1)(z, z̄) + ε2F(2)(z, z̄) + O(ε3) . (35)

The leading order correction to the correlator is given by

F(1)(z, z̄) = (zz̄)−∆φ

∞

∑
n=0

∞

∑
`=0
even

(
C(1)

n,` + C(0)
n,`γ

(1)
n,`∂ε

)
g(d)2∆φ+2n+`,`(z, z̄) , (36)

where ∂εg(d)2∆φ+2n+`,`(z, z̄) is the derivative of g(d)2∆φ+2n+`,`(z, z̄) with respect to ε. We compute
the discontinuity of Equation (36) at z < 0 using Equation (22):

Disc
z< 0

F(1)(z, z̄) = πi(zz̄)−∆φ

∞

∑
n=0

∞

∑
`=0
even

C(0)
n,`γ

(1)
n,` g(d)2∆φ+2n+`,`(z, z̄) . (37)

Using Equation (29), we can compute the correlator F(1)(z, z̄). Since Equation (37)
determines the correlator from the dispersion relation, it follows that the CFT correlator
in perturbative settings is entirely determined by the spectrum γ

(1)
n,` at that order and the

OPE coefficient C(0)
n,` at the previous order in the CFT. As a next step we can decompose

the correlator into conformal blocks and extract the OPE coefficient C(1)
n,` . This process is

summarised in Table 1.

Table 1. Input and output for the dispersion relation.

Input Output (Correlator) OPE Data

Identity: ∆ = 0, ` = 0 F(0)(z, z̄) CMF
n,`

CMF
n,` , γ

(1)
n,` F(1)(z, z̄) C(1)

n,`

CMF
n,` , C(1)

n,` , γ
(1)
n,` , γ

(2)
n,` F(2)(z, z̄) C(2)

n,`

· · · · · · · · ·

3.3. Computing Wilson–Fisher Correlator Using Dispersion Relation

In this section, we discuss how the dispersion relation Equation (29) can be applied
to compute the four-point correlation function in Wilson–Fisher φ4 theory in d = 4− ε
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dimensions as a perturbative expansion in ε. The Wilson–Fisher theory is described by the
Lagrangian:

S =
∫

ddx
(

1
2
(∂φ)2 +

gµε

4!
φ4
)

(38)

where µ is the energy scale and we have a fixed point for the coupling g∗ = 16π2

3 ε + O(ε).
The correlator in the theory can be computed by perturbatively evaluating Feynman dia-
grams in the ε-expansion. Here, we will compute the correlator 〈φφφφ〉 using Equation (29).
The correlation function and the CFT data contain the same amount of information. How-
ever, it may not always be possible to resum the CFT data and obtain a closed form
expression for the correlator. It is easier to extract the CFT data from the closed form
expression of the correlator. We will see that the dispersion relation allows us to directly
compute the correlator without resumming the CFT data. In perturbative CFT, this can be
thought of as an alternative way of computing the correlator using the inputs (spectrum)
from the Feynman diagrams. The inputs we need here can be obtained from the two-point
function which is much simpler to compute than the four-point function.

We expand the CFT data in ε using the input from Wilson–Fisher theory:

∆φ = 1− 1
2

ε +
1

108
ε2 + O(ε3) , (39)

∆0 = 2∆φ +
1
3

ε +
8

81
ε2 + O(ε3) , (40)

∆` = 2∆φ + `− 1
9`(`+ 1)

ε2 + O(ε3) ` > 0 . (41)

From Equation (33), it is evident that only operators φ∂µ1 · · · ∂µ`
φ appear in the OPE

up to O(ε):

CMF
n,` =

(1 + (−1)`)(∆φ)`
2

`!(2∆φ + `− 1)`
δn,0 + O(ε2) . (42)

Since the anomalous dimensions of ` > 0 operators start at O(ε2), only the ` = 0
operator will contribute to the discontinuity of the correlator at O(ε). The associated
discontinuity from ∆0 is given by

Disc
z< 0

F(1)(z, z̄) =
2
3

πi(zz̄)−1g2,0(z, z̄) =
2
3

πi
log(1− z̄)− log(1− z)

z− z̄
. (43)

Using Equation (29), we obtain:

F(1)(z, z̄) =
1

3(z− z̄)

(
log(zz̄) log

(
1− z̄
1− z

)
− 2Li2(z) + 2Li2(z̄)

)
. (44)

This corresponds to the contact diagram Figure 4. The correlator Equation (44) can be
decomposed into conformal blocks to obtain the following OPE coefficient:

C(1)
n,` = −2

3
δn,0δ`,0 . (45)

x2

x3

x4

x1

Figure 4. Contact diagram at O(ε).
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Now, we proceed to compute the correlator at the next order. Since we are only
interested in the terms having discontinuity at z < 0 we expand the correlator as follows:

F(z, z̄) = C0

(
1
2
(γ

(1)
0 ε + γ

(2)
0 ε2) log(zz̄)(1 + ε∂ε) +

1
8
(γ

(1)
0 )2ε2 log(zz̄)2

)
g̃(4−ε)

∆0,0 (z, z̄) (46)

+
∞

∑
`=2
even

1
2

C`γ
(2)
` ε2 log(zz̄)g̃(4−ε)

∆`,` (z, z̄) + continuous at z < 0 . (47)

The discontinuity of F(z, z̄) at O(ε2) reads:

Disc
z< 0

F(2)(z, z̄) = πi
(

C(1)
0 γ

(1)
0 + CMF

0 γ
(2)
0 + 1

2 CMF
0 (γ

(1)
0 )2 log(−zz̄) + CMF

0 γ
(1)
0 ∂ε

)
g̃(4)2,0 (z, z̄)

+ 2πi
∞

∑
`=2
even

Γ(`+ 1)2

Γ(2`+ 1)
γ
(2)
` g̃(4)2+`,`(z, z̄) . (48)

We can evaluate the ` sum above using the explicit form for the conformal blocks in
four dimensions:

g̃(4)2+`,`(z, z̄) =
k`+1(z)− k`+1(z̄)

z− z̄
(49)

where kβ(z) is defined in Equation (15). This results in:

∞

∑
`=2
even

Γ(`+ 1)2

Γ(2`+ 1)`(`+ 1)
g̃(4)2+`,`(z, z̄) =

1
z− z̄

(
log(1− z) +

1
4

log(1− z)2 + Li2(z)

− log(1− z̄)− 1
4

log(1− z̄)2 − Li2(z̄)
)

. (50)

Then, we evaluate the first order expansion of the conformal block using the expression
for general dimension:

∂ε g̃(4)2,0 (z, z̄) =
1

z− z̄

(
2
3
(Li2(z)− Li2(z̄)) +

1
2

(
Li2
( z̄

z
)
− Li2

( z
z̄
)
+ Li2

(
z(1−z̄)
z̄(1−z)

)
− Li2

(
z̄(1−z)
z(1−z̄)

))
+

1
2

log
(

1−z
1−z̄

)(4
3
− log(z− z̄)− log(z̄− z) + log(zz̄) +

1
2

log((1− z)(1− z̄))
))

. (51)

Putting all the terms together in Equation (48), we finally compute the correlator from
Equation (29):

F(2)(z, z̄) =
1

z− z̄

[
− 1

12
log
( z

z̄
)
log2

(
1−z
1−z̄

)
− 1

12
log2((1− z)(1− z̄))log

( z
z̄
)

+ log
(

1−z
1−z̄

)(10
81

log(zz̄) +
1

12
log2( z

z̄
)
− 1

36
log2(zz̄)− 1

9
log((1− z)(1− z̄))log(zz̄)

)
− 1

18
(Li2(z)− Li2(z̄))

(
4 log((1− z)z) + 4 log((1− z̄)z̄)− 40

9

)
(52)

+
1
3

((
Li2
( z̄−z

z̄−1
)
+

1
4

log2
(

1−z
1−z̄

))
log(zz̄)−

(
Li2
( z̄−z

z̄
)
+

1
4

log2
( z

z̄

))
log((z− 1)(z̄− 1))

)
+

1
3

(
Li3
( z̄−z

z̄
)
− Li3

( z−z̄
z
)
+ Li3

( z−z̄
z−1
)
− Li3

( z̄−z
z̄−1
)
+ Li3

(
z−z̄

z(1−z̄)

)
− Li3

(
z̄−z

z̄(1−z)

))]
.

This correlator corresponds to the diagrams in Figure 5.
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x1

x2

x3

x4

+ permutations + x4 + permutationsx2

x3

x1

Figure 5. Diagrams at O(ε2).

Now, we decompose the correlator into conformal blocks to evaluate the OPE coeffi-
cients which is in agreement with [17]:

C(2)
` =

(1 + (−1)`)Γ(`+ 1)2

Γ(2`+ 1)
`(`+ 1)(H2` − H`−1)− 1

9`2(`+ 1)2 , (53)

and [18]:

CMF
n,` + ε2C(2)

n,` =

 (1+(−1)`)Γ(`+2)2

Γ(2`+3)
`2+3`+8

24(`+1)(`+2)

(
ε
3
)2

+ O(ε3) , n = 1 ,

O(ε4) , n > 1 .
(54)

Here, H` is the harmonic number of order `.
To summarize, in this section, we show that it is possible to use a dispersion relation

which, together with crossing symmetry, specifies the OPE coefficients as a function of the
conformal dimension, in theories that admit a perturbative expansion.

4. Basics of Superconformal Field Theory

We will now see what changes in this description when a theory is not only conformal
invariant but also supersymmetric and we enter the realm of superconformal field theories
(SCFTs). The presence of additional symmetry will even further constrain the spectrum of
these theories and it will further help the analysis of correlation functions, unveiling new
and interesting properties. From this moment onwards, we will focus on d = 4 space–time
dimensions, which will be relevant for the following4.

When supersymmetry (SUSY) is in play, one needs to change and generalize the
commutation relations in (2) to allow for the presence of supersymmetry generators,
namely the supercharges Qi

α and Q̄i α̇, with α, α̇ = 1, 2 being the spinor indices. The index
i takes values from 1 to N , which corresponds to the amount of supersymmetry; in four
space–time dimensions and restricting to theories whose particles have spin up to 1, N
ranges from 1 to 4, where the latter corresponds to maximal supersymmetry. By studying
the interplay between these supercharges and the conformal generators, one realises that
in order to have a closed algebra, it is necessary to add some other fermionic generators,
the conformal supercharges S α

i and S̄iα̇.
Supersymmetry usually comes together with an additional symmetry that allows to

rotate between supercharges, which is known as R-symmetry. Its generators Ri
j organise in

a u(N ) algebra forN = 1, 2, 3 or a su(4) algebra forN = 4. A distinguishing characteristic
of SCFTs is that in this case, the R-symmetry it is not an outer automorphism of the Poincaré
SUSY algebra, as it happens in the non-conformal supersymmetric case, but it is really part
of the algebra, as it commutes with the conformal subalgebra and acts non-trivially on the
supercharges. All in all, the combination of conformal generators, Q’s, S’s and Ri

j defines a
simple Lie superalgebra: su(2, 2|N ) forN = 1, 2, 3 and psu(2, 2|4) forN = 4. They contain,
respectively, as bosonic subalgebras so(4, 2)× su(N )R× u(1)R and so(4, 2)× su(4)R, where
in the first term of both expressions, we recognize the usual conformal algebra in four
dimensions. We will label operators based on how they transform under this subset: we
will specify their conformal dimension ∆, Lorentz quantum numbers (j, j̄) and R-symmetry
charges, encoded in the Dynkin labels of su(N )R and u(1)R charge when present.
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Operators can be further organised into superconformal primaries (or superprimaries)
and superdescendants. An operator O is a superprimary if:

S α
i |O〉 = 0 , S̄iα̇|O〉 = 0 . (55)

Since schematically {S, S} ∼ K, a superprimary is in particular a conformal primary,
but we notice that the converse is not true. This implies that in a given superconformal
representation, we can potentially find many conformal primaries. Superdescendants are
obtained from a superprimary by acting with the Q’s, also in this case, the usual notion of
conformal descendant is recovered thanks to the relation {Q, Q} ∼ P. The combination of
a superprimary and all its descendants forms a superconformal multiplet.

The last thing left to discuss is how the unitarity bounds in Equation (5) change in
the presence of SUSY. It can be argued that the presence of additional symmetry should
determine even stronger constraints.

Suppose that there exists an unitarity bound given by some function f (j, j̄, R), where
R stands for R-symmetry quantum numbers, then we can distinguish [20,21]:

• Superprimaries with ∆O > f (j, j̄, R) which give rise to long multiplets. In general, a
long multiplet contains 24N states;

• Operators at the unitarity bound and operators with ∆O < f (j, j̄, R), but still allowed
for specific spins and R-charges. These form short multiplets, so called because they
obey some “shortening conditions” that are concretely realized in the fact that they
are annihilated by a certain amount of Q’s and Q̄’s, and hence, the multiplet can
only contain a reduced number of states. These operators are often called BPS and
their dimension, being determined by Lorentz and R-symmetry quantum numbers, is
protected against quantum corrections5.

5. N= 4 Super Yang–Mills

In this section, we will analyse how the bootstrap techniques have been employed to
study and powerfully constrain the spectrum and correlators of N = 4 super Yang–Mills
(SYM) theory in four dimensions. One reason to study such theories is that, through the
AdS/CFT correspondence [22–25], it is holographically related to Type IIB string theory on
AdS5×S5, where the CFT should be thought as living on the AdS boundary. The precise
form of the duality reads

4d N = 4 SYM with SU(N) gauge group
and Yang–Mills coupling constant gYM

10d Type IIB string theory on AdS5× S5

with string length
√

α′, gs coupling and
radius L = LAdS5 = LS5

g2
YM = gs

g2
YMN = L4

α′ 2

One of the checks that have been made to justify and investigate the validity of this
correspondence is verifying that the symmetries present on the two sides actually match.
Furthermore, indeed, restricting to the bosonic part of the superconformal group, we find
that the SO(2, 4) conformal symmetry is reproduced by the isometries of AdS5, while the
R-symmetry group SO(6)R ' SU(4)R is recovered as the isometries of the five-sphere.

The AdS/CFT correspondence is conjectured to hold for any value of the parameters
characterising the two theories and listed beforehand. However, it is useful to study
two particular limits [26], which are the ones most widely used; for this purpose, let us
introduce the ’t Hooft coupling λ ≡ g2

YMN [27]. First of all, let us take N to infinity while
keeping λ fixed; in this limit, usually called ’t Hooft limit, the large N limit of the SCFT is
mapped to weak coupling string perturbation theory, where each correction in powers of
N−2 should be interpreted as a specific genus in the corresponding gs expansion. Then, we
can further take λ → ∞, but still less than N: in this second regime, the correspondence
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reduces to the one between strongly coupled N = 4 SYM and Type IIB supergravity on
weakly curved AdS5×S5.

Now, that we introduced the general framework in whichN = 4 SYM can be inserted,
let us delve further into the spectrum and properties of this theory.

5.1. Operators and Spectrum

N = 4 SYM is believed to be, even if it is not yet proved, the unique theory with the
maximal possible amount of supersymmetry6 in four dimensions. The massless elementary
fields of the theory are a gauge vector Aµ, four Weyl fermions λa

α (a = 1 . . . 4 , α = 1, 2)
and six real scalars φi (i = 1 . . . 6). They can all be rearranged to form a supermultiplet,
the gauge multiplet, and as the name suggests, they transform into the adjoint of the SU(N)
gauge group. Under the R-symmetry group, Aµ is a singlet, λa

α transforms into the 4 of
SU(4)R and φi into the fundamental of SO(6)R or equivalently as a rank 2 antisymmetric
tensor of SU(4)R.

Given the fundamental constituents of the theory, it is possible to write explicitly a
Lagrangian [26,28] and verify that this is indeed a conformal invariant and supersymmetric,
at least classically. Quite remarkably, N = 4 SYM does not suffer from any perturbative
UV divergences7 at the loop level, and as a consequence, there is no need to introduce any
scale during the renormalisation procedure, and hence, the β function vanishes identically
in the full quantum theory. This tells us that N = 4 SYM is exactly a superconformal field
theory and PSU(2, 2|4) is a full quantum symmetry.

To classify the spectrum of the theory, we should construct all possible local, gauge
invariant operators made of the canonical fields introduced above. Among these are
superprimary operators, as defined in Section 4, which can be constructed as the symmetric
product of the elementary scalars φi. The simplest configuration leads to single trace
operators of the form:

str(φi1 · · · φin) , (56)

where we are taking the symmetrized trace (str) over SU(N), which makes the operator
symmetric under the SO(6)R indices as well. In general, Equation (56) defines a reducible
representation and one has to further distinguish between the trace and the traceless part
of it. In the easiest example, by doing so, we can differentiate between the Konishi operator,
∑i tr(φiφi), and O2 = trφ{iφj}, where {ij} singles out the traceless part. The products of
these single trace operators constitute multi-trace operators.

As anticipated in Section 4, it is convenient to classify states/operators according to
the unitary representations of the bosonic subalgebra:

so(1, 3)︸ ︷︷ ︸
(j, j̄)

× so(1, 1)︸ ︷︷ ︸
∆

× su(4)R︸ ︷︷ ︸
[q,p,q̄]

. (57)

In addition to these quantum numbers, we will specify whether they satisfy some
shortening conditions. Interesting types of operators that will be relevant for what fol-
lows are:

• Identity operator, which is a singlet of R symmetry and it has ∆ = 0 = `;
• 1

2 -BPS operators, scalars annihilated by half of the supercharges. They can either be
single trace operators:

Op(x) = str(φ{i1(x) · · · φip}(x)) p ≥ 2 ,

symmetric traceless tensors transforming in the [0, p, 0] or multi-trace operators:

O(p1···pn)(x) =
[
Op1(x) · · · Opn(x)

]
[0,p,0] ∑ pi = p ,
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where [ ][q,p,q̄] stands for projection into the corresponding SU(4)R representation.
Their dimension ∆ = p is protected from quantum corrections and supersymmetry
completely fixes their three-point functions [26,29–34].

• 1
4 -BPS operators

[
Op1(x) · · · Opn(x)

]
[q,p,q], with Dynkin labels [p, q, p] and protected

dimension ∆ = 2p + q and 1
8 -BPS operators, multi-trace operators in the [q, p, q + 2m]

having fixed dimension ∆ = p + 2q + 2m. Both these types are genuinely BPS only in
the free theory and mix with descendants of non-BPS operators when interactions are
turned on.

• Long operators can transform into a generic [q, p, q̄] R-symmetry representation, as
their dimension is not protected but nonetheless subject to the unitarity bound:

∆ ≥ max
(

2 + 2j +
3
2

q + p +
q̄
2

, 2 + 2 j̄ +
3
2

q̄ + p +
q
2

)
. (58)

In light of the AdS/CFT correspondence, it is possible to establish a dictionary between
these operators and fields in the dual AdS, after having compactified along S5 [22,35]. Single
trace operators Op are mapped to single particle states, in particular O2, which is dual to
the scalar of the graviton supergravity multiplet, whileOp≥3 correspond to its Kaluza Klein
modes. The masses of these supergravity scalars are completely fixed by the conformal
dimension of their duals as m2 = ∆(∆− 4). Multi-trace operators, on the other side, are
mapped to threshold multiparticle bound states in AdS. Let us conclude by mentioning
that it can be shown that some other non-BPS operators, such as the Konishi multiplet,
scale as λ1/4: these operators correspond to massive string modes that decouple in the
supergravity regime λ→ ∞, which is the one we are mainly interested in.

5.2. Stress Tensor Multiplet Correlators

As we were mentioning before, the two- and three-point functions of 1
2 -BPS operators

are completely fixed by superconfomal symmetry and do not receive quantum corrections
thanks to some non renormalisability theorems [36–41]. The four-point function instead
enjoys only partial renormalisability and therefore it does depend on the coupling constant
but just through a trivial function [42–46]. Thanks to this property, the four-point function
of any superdescendant is determined by the one of the corresponding superprimary.
Therefore, it is enough to study the correlators of superprimaries, in general, easier since
they involve scalars, to constrain correlators of superdescendants. This turns out to be
incredibly useful if one wants to study supergravity. Studying graviton amplitude amounts
to compute correlators of the stress tensor is generally difficult to do. However, the stress
tensor belongs, together with R-symmetry and super currents, to a 1

2 -BPS multiplet, whose
superprimary is the O2 single trace operator introduced before. Thus, we can focus on
〈O2(x1)O2(x2)O2(x3)O2(x4)〉 and that is why we will devote the rest of the section to its
analysis. In particular, we will see how to “bootstrap” this correlator, meaning employing
all the available symmetries to constrain its form and obtaining information about the
spectrum of our theory [45–49].

O2 is a scalar of protected dimension ∆ = 2 and it transforms into the [0, 2, 0] = 20′

representation of an R-symmetry group, thus as a symmetric traceless tensor. To ensure
this one can introduce SO(6), null vectors ti, i = 1 . . . 6, t · t = 0 and rewrite:

O2(x, t) = titjtr(φi(x)φj(x)) . (59)

As already mentioned, it is the superconformal primary of the supermultiplet to which
the stress energy tensor belongs.

Conformal symmetry on its own already partially fixes the form of its four-point
function to be:
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〈O2(x1, t1)O2(x2, t2)O2(x3, t3)O2(x4, t4)〉 =
(

t1 · t2 t3 · t4

x2
12x2

34

)2

F (ti, u, v) , (60)

where u and v are the conformal cross ratios introduced in Equation (12). Then, we can
enforce SU(4)R symmetry: this imposes constraints on the possible representations that
can be exchanged in the OPE:

[0, 2, 0]⊗ [0, 2, 0] = [0, 0, 0]︸ ︷︷ ︸
1

⊕ [1, 0, 1]︸ ︷︷ ︸
15

⊕ [0, 2, 0]︸ ︷︷ ︸
20′

⊕ [2, 0, 2]︸ ︷︷ ︸
84

⊕ [0, 4, 0]︸ ︷︷ ︸
105

⊕ [1, 2, 1]︸ ︷︷ ︸
175

. (61)

Such decomposition allows us to rewrite:

F (ti, u, v) = ∑
0≤m≤n≤2

Anm(u, v)Ynm(σ, τ) ,

Ynm(σ, τ) =
Pn+1(y)Pm(ȳ)− Pm(y)Pn+1(ȳ)

y− ȳ
,

(62)

where n, m label the six representations [n − m, 2m, n − m] exchanged in Equation (61).
The functions Ynm are SO(6)R harmonics, which can be written in terms of Legendre
polynomials Pn and depend on the polarization cross ratios [49]:

σ =
t1 · t3 t2 · t4

t1 · t3 t2 · t4
= αᾱ =

(1 + y)(1 + ȳ)
4

, (63)

τ =
t1 · t4 t2 · t3

t1 · t3 t2 · t4
= (1− α)(1− ᾱ) =

(1− y)(1− ȳ)
4

. (64)

Notice that for the correlator of four, dimension two, operators F is a polynomial of
degree 2 in σ and τ.

Since we are considering the correlation function of identical operators, we need to
impose invariance under permutations of all external operators. This translates into the
following crossing equations for the function F :

F (u, v, σ, τ) =
(u

v

)2
τ2F

(
v, u,

σ

τ
,

1
τ

)
1↔ 3 exchange

= F
(

u
v

,
1
v

, τ, σ

)
1↔ 2 exchange

(65)

These requirements can be read as well as consistency conditions for the Anm(u, v),
which admits an expansion in the usual conformal blocks8:

Anm(u, v) = ∑
∆,`

A∆
nm , `u

∆−`
2 g̃∆,`(u, v) , (66)

where the 4D conformal blocks have been defined in Equations (14) and (17)9. Notice
that the sum runs over the spin ` because in the OPE of two scalars, the exchanged
operators can only be symmetric traceless Lorentz tensors, for which j = j̄ = `

2 with
` even. As already discussed before expanding, conformal blocks allow us to packing
together the contribution of each conformal primary and all its descendants. However, in
the presence of supersymmetry10, we would like to expand the correlator in such a way
that each supermultiplet contributes to the OPE as a whole; in other words, we would
like to find some superconformal blocks condensating the contribution of each superprimary
and all its descendants. This is in general very hard, however, it is possible in this case by
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fully exploiting the power of superconformal invariance and solving superconformal Ward
identities. These identities can be phrased as [49]

F (z, z̄, α, ᾱ)
∣∣∣
ᾱ= 1

z̄

= f (z, α) , (67)

with analogous requirements for α↔ ᾱ, z↔ z̄. The function f encodes the contribution
from the protected sector of the theory, namely from all the possible short and semi-short
representations that can be exchanged in the OPE, and for this reason, can be completely de-
termined by free field theory results. It has to satisfy the consistency condition f (z, 1/z) = k,
where k is a generic constant and in light of this, it can be rewritten as

f (z, α) = k +
(

α +
1
z

)
f̂ (z, α) . (68)

In a complementary interpretation [46,50], f (z, α) arises from the appearance of an
additional chiral structure, which is a general property of N = 2 superconformal field
theories but can be extended to N = 4 as well. In this picture, f (z, α) can be understood as
a correlator of a two-dimensional auxiliary chiral algebra.

A generic solution of the Ward identity in Equation (67) can be written as

F (u, v, σ, τ) = F| f̂ (z, z̄, α, ᾱ) + (1− zα)(1− z̄α)(1− zᾱ)(1− z̄ᾱ)G(z, z̄) , (69)

F| f̂ = −k +
(1− z̄α)(1− zᾱ)[ f (z, α) + f (z̄, ᾱ)]− (1− zα)(1− z̄ᾱ)[ f (z, ᾱ) + f (z̄, α)]

(z− z̄)(α− ᾱ)
.

G(z, z̄) contains the dynamical information of the theory and encodes the contribution
from long supermultiplets. In the special case of external dimension p = 2, it does not
depend on the SU(4)R cross ratios. Remarkably, it is possible for it to find a decomposition
in superconformal blocks:

G(u, v) = ∑
∆,`

A∆,`u
∆−`

2 g̃∆+4,`(u, v) , (70)

where it turns out that a superconformal block is just a usual block with a shift by 4 in the
dimension. The exchanged operators are long supermultiplets whose lowest dimension op-
erator is a singlet of SU(4)R. Furthermore, the function f̂ (z, α) admits a similar expansion:

f̂ (z, α) =
∞

∑
`=0

b0,` g̃`+2(z)P0(y) +
∞

∑
`=−1

b1,` g̃`+2(z)P1(y) , (71)

where the coefficients bi,`+2 are known [49] and we introduced sl(2) blocks g̃`(z) =(
1
2 z
)`

2F1(`, `, 2`, z). Here, only short representations, whose dimension can be fixed in
terms of the spin, contribute. These decompositions in superconformal blocks make mani-
fest the contributions of the various types of multiplets. However, there is still an intrinsic
ambiguity due to the fact that at the unitarity threshold, long multiplets decompose into
short and semi-short ones and in a non-interacting theory, there is no way to distinguish
truly protected from unprotected contributions. It is indeed common to further distinguish:

G(u, v) = Gshort(u, v) +H(u, v) , (72)
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where we stripped out the contributions coming from the protected sector in Gshort(u, v),
which is explicitly known, as can be seen in [46]. H(u, v) can still be expanded as in
Equation (70):

H(u, v) = ∑
∆,`

` even

a∆,`u
∆−`

2 g̃∆+4,`(u, v) , (73)

where now the sum is over unprotected long operators, singlet of R-symmetry, with ∆ ≥
`+ 2 and a∆,` ≥ 0, as expected from unitarity.

The crossing conditions in Equation (65) becomes:

v2H(u, v)− u2H(v, u) = −v2Gshort(u, v) + u2Gshort(v, u)− (u2 − v2)− u− v
c

, (74)

where c = N2−1
4 is the central charge of the theory and Gshort is linear in 1/c.

To date, we have seen how symmetries give stringent constraints on the form of the
four-point function and can already give information about the protected spectrum of
the theory. However, there are still undetermined data hidden in H and one would like
to find a way to study the dimensions and the squared OPE coefficients a∆,` appearing
there. Various approaches have been pursued in the years, from numerical bootstrap
techniques [45,46,51–53] to the more analytic ones [54–66], involving the use of modern
tools such as the Lorentzian inversion formula [9,67,68], large spin perturbation theory [5]
and unitarity methods [8,69]. These studies have shed some light on the spectrum of long
operators in N = 4 and they have provided non-trivial tests of the AdS/CFT correspon-
dence, especially in the large N (or equivalently large c = N2−1

4 ) limit and at infinite ’t
Hooft coupling λ. In this limit, the interacting part of the correlator can be expanded as

H(z, z̄) =
∞

∑
κ=0

H(κ)(z, z̄)
cκ

, (75)

where each term maps to a (κ − 1) loop in the dual gravity amplitude11.
As discussed before, in this regime, corresponding to the supergravity approxima-

tion, all string modes become infinite massive and we are left with protected single
trace operators and long multi-particle ones, which are dual to multi-trace operators
in the dual picture. The latter receive corrections both to their dimensions and OPE
coefficients at large N. Among them, the only ones with a non-zero anomalous dimen-
sion and three-point coefficient already at order c−1 are double trace operators12. They
are constructed from the product of 1

2 -BPS operators and they take the schematic form
[OpOp]n,` = (Op2n∂µ1 . . . ∂µ`

Op − traces) and at leading order, and they assume their
classical dimension is ∆ = 2p + 2n + `. Their OPE data admit an expansion similar to
Equation (75):

τn,` = 4 + 2n +
1
c

γ
(1)
n,` +

1
c2 γ

(2)
n,` + . . . , (76)

an,` = a(0)n,` +
1
c

a(1)n,` +
1
c2 a(2)n,` + . . . , (77)

where we introduced the twist τ = ∆− ` and we denoted with γ(κ) the anomalous dimen-
sion at order c−κ . Notice that for fixed n and ` there, can be more than one superconformal
primary with the same twist and transforming in the same
SU(4)R representation.
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By plugging Equations (76) and (77) in the expression forH(u, v) in Equation (73), we
can express the singleH(κ) in terms of anomalous dimensions and corrections to the OPE
coefficients. The first few terms are given by

H(0) = ∑
n,`

un+2a(0)n,` g̃2n+8,`(z, z̄) , (78)

H(1) = ∑
n,`

un+2
(

a(0)n,`γ
(1)
n,`∂n + a(1)n,` +

1
2

log u a(0)n,`γ
(1)
n,`

)
g̃2n+8,`(z, z̄) , (79)

H(2) = ∑
n,`

un+2
{

a(0)n,`

(
1
2
(γ

(1)
n,` )

2∂2
n + γ

(2)
n,`∂n

)
+ a(1)n,`γ

(1)
n,`∂n + a(2)n,` (80)

+
1
2

log u
[

a(0)n,`γ
(2)
n,` + a(1)n,`γ

(1)
n,` + a(0)n,` (γ

(1)
n,` )

2∂n

]
+

1
8

log2 u a(0)n,` (γ
(1)
n,` )

2
}

g̃2n+8,`(z, z̄) .

The quantity in the first line can be derived from disconnected diagrams in free field
theory and allows to fix:

a(0)n,` =
π(`+ 1)(`+ 2n + 6)Γ(n + 3)Γ(`+ n + 4)

2(2`+4n+9)Γ(n + 5
2 )Γ(`+ n + 7

2 )
. (81)

An explicit expression is also known at order c−1 in terms of so-called D
function [13,70]:

H(1)(u, v) = −u2D2422(z, z̄) = h(u, v) log u + h̃(u, v) , (82)

where both h and h̃ admit an expansion in power of u if we allow for negative powers in
h̃(u, v). By matching h(u, v) with the logarithmic part in Equation (79), one can extract the
anomalous dimension of double trace operators at order c−1:

γ
(1)
n,` = −

(n + 1)(n + 2)(n + 3)(n + 4)
(`+ 1)(2n + `+ 6)

, (83)

and analogously, from h̃, one can obtain:

a(1)n,` =
1
2

∂n

(
a(0)n,`γ

(1)
n,`

)
. (84)

Going to a higher order, we inevitably run into problems due to mixing among de-
generate double trace operators, since all operators of the form [O2O2]n,`, [O3O3]n−1,`, . . . ,
[On+2On+2]0,` will equally contribute to Equation (76). In light of this, the tree level in-
formation only fixes for us the averages, over all these degenerate states, of the various
OPE data; however, at one loop (and higher), powers and products of these data appear,
so that computing them requires unmixing the different contributions. Therefore, let us
introduce an additional index I to account for the degeneracy and define new On,`,I with
I = 1, . . . , n+ 1 to be eigenfunctions of the dilatation operator. Solving this mixing problem
then requires computing a(κ)n,`,I and γ

(κ)
n,`,I for each index I, order-by-order in the large c

expansion. Remarkably, this has been done at order c0 and partially at c−1 by studying
mixed correlators 〈OpOpOqOq〉 in [54–56,59], providing as with explicit expressions for

a(0)n,`,I and γ
(1)
n,`,I .

A closer look to Equation (80) shows us that this knowledge is sufficient to completely
reconstruct one piece of the correlator, namely the leading log u one:

H(2)(u, v)
∣∣∣
log2 u

=
1
8 ∑

n,`

n+1

∑
I=1

(zz̄)n+2a(0)n,`,I(γ
(1)
n,`,I)

2 g̃2n+8,`(z, z̄) , (85)
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where this expression can be explicitly resummed in terms of logarithms and polyloga-
rithms times some rational functions [55]. However, the importance and relevance of this
term is not limited to the possibility of computing it, which is still quite extraordinary;
rather, it relies on the fact that this is enough to extract information on γ(2) and eventually
reconstruct the full four-point function H(2) [55–57]. We will now try to briefly discuss
how this is concretely realised.

First of all, it is possible to show that in the small v limit, Equation (85) behaves as

H(2)(u, v)
∣∣∣
log2 u

∼ p(u, v) log2 vs. + p̃(u, v) log vs. + regular terms , (86)

where p and p̃ are known polynomials. Now remember that at order c−2 and higher, the
crossing symmetry condition Equation (74) simply reads v2H(k≥2)(u, v) = u2H(k≥2)(v, u).
Putting these two together, we have that in the first term of Equation (86), which is crossing
symmetric on its own, p(u, v) should satisfy:

v2 p(u, v) = u2 p(v, u) , (87)

while the second term is schematically mapped to:

v2H(2)(u, v)
∣∣∣
log2 u log v

crossing←−−−−−−−−→ u2H(2)(v, u)
∣∣∣
log2 v log u

⊂

1
2 (a(0)n,`γ

(2)
n,` + a(1)n,`γ

(1)
n,` + a(0)n,` (γ

(1)
n,` )

2∂n)g̃2n+8,`

This diagram tells us that through crossing, p̃(u, v) contains information about the un-
known one loop anomalous dimensions and gives us a concrete procedure to extract them.

The other interesting property of Equation (85) is that it is the only term with a
non-vanishing double discontinuity appearing in the correlator at this order. The double
discontinuity, dDisc for short, is defined as the difference between the Euclidean correlator
and its two possible analytic continuations around z̄ = 1, keeping z fixed:

dDiscH(z, z̄) ≡ H(z, z̄)− 1
2
(
H	(z, z̄) +H�(z, z̄)

)
. (88)

Using this definition, it is not difficult to check that when applying dDisc to positive
integer powers of (1− z̄), log(1− z̄) and their product, we obtain zero, hence the only
piece surviving in H(2) is the one proportional to log2(1 − z̄). Through crossing, this
corresponds to the log2 u term we are considering and for which we know an explicit
expression. The reason why this quantity is so interesting and that the idea that it can
be fixed by the leading log term in Equation (85) is so appealing is that dDisc represents
the only necessary ingredient of the Lorentzian inversion formula [9], which provides
an alternative and parallel way to extract the full OPE data and to reconstruct entirely
the correlator.

At the same time, the discussion in terms of dDisc opens new ways of interpreting CFT
correlation functions, especially in relationship with their dual gravity amplitudes. It has
been shown, and explicitly checked at one loop [57], that it is possible to relate the double
discontinuity of H in a certain kinematic limit, called flat space limit [7,59,71–75], to the
discontinuity of the corresponding supergravity amplitude computed in R10. At order c−2,
this can be nicely summarised as

a(0)(γ(1))2 ∼ dDiscH(2) flat space⇐====⇒
limit

. (89)



Universe 2021, 7, 247 21 of 24

On the RHS, we pictured the one-loop graviton amplitude as its Feynman diagram
(sum over all other permutations is understood); the dashed vertical lines, cutting the
diagram in two parts, reflect the fact that we are taking a discontinuity [76].

Establishing a connection between dDisc and discontinuities represents another im-
portant building block in the more general attempt to understand how unitary techniques,
well known and established in the amplitude context, can be adapted and translated for
CFT correlation functions [8,69,77]. For these purposes, it would be interesting to check
this correspondence and generalise the previous discussion to higher orders in the 1/c
expansion. This program has been initiated in [65,66], and here it has been shown that from
two loops onward, the knowledge of a(0)n,`,I and γ

(1)
n,`,I is no longer sufficient to completely fix

the correlator, but it is still interesting and can suggests new interplays between correlators
and amplitude singularities. Let us focus onH(3) for simplicity, as this has an expansion in
conformal blocks analogous to Equations (79) and (80). In particular, as it happens at one
loop, there is a term depending only on tree level OPE data, namely:

H(3)(u, v)
∣∣∣
log3 u

=
1
48 ∑

n,`

n+1

∑
I=1

(zz̄)n+2a(0)n,`,I(γ
(1)
n,`,I)

3 g̃2n+8,`(z, z̄) , (90)

which can be resummed by giving an expression in terms of functions that are generaliza-
tions of classical polylogarithms. In contrast to the case c−2, this term does not saturate
the full dDisc, andH(3) indeed contains a term proportional to log2 u, which depends on
OPE data (such as γ(2)) for which the mixing has not yet been solved. This fact prevents
us from being able to fully reconstruct the correlation function. At the same time, there is
another important source of complication that comes from the appearance of higher trace
operators in the terms of the correlator with non-vanishing double discontinuity starting at
order c−3. In particular, at two loops, triple trace operators start mixing with the double
trace ones we considered so far, so one should in principle find a way to treat them and to
disentangle their contributions from the known ones in order to constrain the form of the
four-point function.

Nonetheless, the expression in Equation (90) finds a specific counterpart in the dual
supergravity amplitude: it can be shown that the dDisc restricted to the leading log term can
be mapped to a “double-cut” of the planar two-loop four graviton amplitude. Pictorially,
this reads

a(0)(γ(1))3 ∼ dDiscH(3)
∣∣∣
log3 u

flat space⇐====⇒
limit

. (91)

Similar conclusions can be drawn to all order in the large c expansion.
To conclude, let us briefly mention related studies that can be found in the liter-

ature. Similar analyses to the one presented above were performed in Mellin space
in [60–63,78]. More generic configurations of the correlator have been considered, for in-
stance by allowing for external operators with different pi [54,58,64,79–82]. Finally, 〈O2O2O2O2〉
was investigated separately from the strict supergravity limit in a series of works [59,83–85]
where α′ or equivalently 1√

λ
string corrections were also taken into account.
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Notes
1 In this note, we will mostly deal with d > 2 dimensional conformal field theories.
2 In this context, the meaning of low lying refers to the dimension of the operators in the OPE.
3 Note that this does not work for d = 2 correlators where there is no gap in the spectrum.
4 It is possible to prove that SCFTs can exist only for d ≤ 6, for d ≥ 7 is indeed not possible to construct any Lie superalgebras

satisfying certain consistency conditions [19,20].
5 The precise relation can be inferred by simple reasoning. Let us assume that the operator we want to consider is a superprimary,

then in particular it holds S|O〉 = 0. In addition, it has to be annihilated by at least one supercharge, namely Q|O〉 = 0. This
implies:

0 = {S, Q}|O〉 = (Mµν + D + Ri
j)|O〉 ∼ (Mµν + ∆ + R)|O〉 ,

whereMµν encodes the Lorentz quantum numbers.
6 If we restrict to quantum field theories containing at most spin 1 particles.
7 Instantons corrections are believed to be UV finite as well.
8 In the literature, this expansion is also called conformal partial wave expansion or conformal partial wave amplitude.
9 With respect to these expressions, we suppressed the superscript (d = 4) in the definition of the blocks since it is assumed that

we are working in four dimensions.
10 All operators in a superconformal multiplet must have the same anomalous dimension.
11 H(0) maps to the disconnected part of the amplitude
12 The other multi-trace operators get corrections at order c−2 and higher.
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