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Abstract: For an effective field theory in the background of an evaporating black hole with spherical
symmetry, we consider non-renormalizable interactions and their relevance to physical effects. The
background geometry is determined by the semi-classical Einstein equation for an uneventful horizon
where the vacuum energy–momentum tensor is small for freely falling observers. Surprisingly, after
Hawking radiation appears, the transition amplitude from the Unruh vacuum to certain multi-
particle states grows exponentially with time for a class of higher-derivative operators after the
collapsing matter enters the near-horizon region, despite the absence of large curvature invariants.
Within the scrambling time, the uneventful horizon transitions towards a firewall, and eventually the
effective field theory breaks down.

Keywords: black hole; information loss paradox; effective theory

1. Introduction

The information loss paradox [1–3] has been puzzling theoretical physicists since the
discovery of Hawking radiation [4,5]. Nowadays, most people, including Hawking [6,7],
believe that there is no information loss at least for a consistent theory of quantum gravity
such as string theory. However, a persisting outstanding question is how string theory (or
any theory of quantum gravity) ever becomes relevant during the evaporation of black
holes1. That is, how does the low-energy effective theory break down in the absence of
high-energy events2 [2]?

If there is no high-energy event around the horizon, the effective theory is expected
to be a good approximation. However, it is incapable of describing the transfer of the
complete information inside arbitrary collapsing matter into the outgoing radiation. For
example, the information hidden inside a nucleus in free fall cannot be retrieved unless
there are events (e.g., scatterings) above the scale of the QCD binding energy3. This conflict
between an uneventful horizon and unitarity has been emphasized in Refs. [2,17], and it
has motivated the proposals of fuzzballs [18,19] and firewalls [17,20,21].

It has been shown [22] that the effective field theory of string theory breaks down in the
near-horizon regime due to stringy effects. The mechanism involved is not directly related
to the one studied here. More importantly, we emphasize that, to resolve the information
loss paradox, we must identify an abnormal process in the low-energy effective theory
as a warning or signal that the low-energy effective theory is breaking down. Otherwise,
how can we be sure that the application of low-energy effective theories to any problem at
arbitrarily low energies would not also break down unexpectedly?

In the modern interpretation of quantum field theories (see, e.g., §12.3 of Ref. [23]),
the effective Lagrangian (see Equation (44) below) includes all higher-dimensional local
operators which are normally assumed to be negligible at low energies because they are
suppressed by powers of 1/Mp, where Mp is the Planck mass (or the cut-off energy). It is
well known that, when there are Planck-scale curvatures, the higher-dimensional terms
cannot be ignored, and the effective field-theoretic description fails. However, no rigorous
proof has been given to show that a non-trivial spacetime geometry without large curvature
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cannot introduce significant physical effects through these non-renormalizable interactions.
In this paper, we show that there are indeed higher-dimensional interactions with large
physical effects in the near-horizon region where the curvature is small, and that this
eventually leads to the formation of a firewall and the breakdown of the effective field
theory within the time scale of the so-called “scrambling time” [24].

In the derivation of the firewall, we assume that the effective-field-theoretic derivation
of Hawking radiation is valid. (This assumes the presence of certain high-frequency
modes in the quantum fluctuation.) Hence, strictly speaking, the conclusion is that our
understanding of the Hawking radiation is incompatible with the uneventful horizon over
a time scale longer than the scrambling time.

Our work is reminiscent of the works in Refs. [25–27]. They considered the per-
turbative expansion around various classical black-hole backgrounds, and showed that
higher-order terms can be large after non-renormalizable terms in the gravity sector (e.g.,
RµνRµν corrections to the Einstein theory) are included in the effective theory. Although
there are resemblances in the physical picture, our work is different from theirs in the fol-
lowing two aspects. First, we need higher-derivative interaction terms for the matter field
in this work, yet what they needed was non-renormalizable terms for the gravitational field.
Second, they started with a smooth background and then found that it has a large quantum
correction. We assume, on the other hand, that the exact (already quantum-corrected)
background has a very small curvature. While it is possible that a gravitational collapse
induces Planckian events in the near-horizon region, we intend to show that, even for
an uneventful horizon (as it is assumed in the conventional model), there would still be
high-energy events predicted by a generic effective theory.

We construct in Section 2 the spacetime geometry for a dynamical black hole with
an uneventful horizon, including the back-reaction of the vacuum energy–momentum
tensor. “Uneventful” means that there is no high-energy event and the energy–momentum
tensor is small for freely falling observers comoving with the collapsing matter. We show
in Section 3 that, after the collapsing matter enters the near-horizon region, certain (higher-
dimensional) higher-derivative interaction terms, which are naively suppressed by powers
of 1/M2n

p (for n > 1), lead to an exponentially growing probability of transition to certain

multi-particle states from the Unruh vacuum within the time scale ∆t ∼ O
(

1
n a log a

`p

)
for

large n. Here, t is the time for distant observers, a is the Schwarzschild radius of the black
hole, and `p = 1/Mp is the Planck length. The created particles have high energies as a
firewall for freely falling observers. Eventually, the effective field theory breaks down. We
conclude in Section 4 with comments on potential implications of our results.

We use the convention h̄ = c = 1 in this paper.

2. Back-Reacted Geometry

In this section, we describe the geometry around the near-horizon region by reviewing
and extending the results of Refs. [28,29].

We consider the gravitational collapse of a null matter of finite thickness from the
infinite past. The spacetime geometry is determined by the expectation value 〈Tµν〉 of the
energy–momentum tensor through the semi-classical Einstein equation

Gµν = κ〈Tµν〉, (1)

where κ ≡ 8πGN .
Assuming spherical symmetry, the metric can be written in the form

ds2 = −C(u, v)dudv + r2(u, v)dΩ2. (2)

We shall consider an asymptotically flat spacetime and adopt the convention that
C(u, v)→ 1 at large distances.
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In the classical limit, 〈Tµν〉 = 0 for the space outside the matter, and the geometry is
described by the Schwarzschild metric:

C(u, v) = 1− a
r

, (3)

∂r
∂u

= − ∂r
∂v

= −1
2

(
1− a

r

)
, (4)

where a is the Schwarzschild radius.
The vacuum energy–momentum tensor 〈Tµν〉 leads to a quantum correction to this

solution via Equation (1). While the classical solution has a curvature tensor ∼ O(1/a2),
the vacuum energy–momentum tensor is κ〈Tµν〉 ∼ O(`2

p/a4) (see Equations (6)–(9) below).
Therefore, in the Einstein Equation (1), we can take `2

p/a2 as the dimensionless parameter
to treat the quantum correction perturbatively well outside the horizon where C(u, v)�
O(`2

p/a2). Such treatment has been widely applied to the study of black-hole geometry
in the literature. On the other hand, the geometry close to the horizon could be modified
more significantly.

For the conventional model, the Penrose diagram of the time-dependent geometry (in-
cluding the back reaction of the vacuum energy–momentum tensor) is given in Figure 1a4.
The apparent horizon becomes time-like due to the quantum effect. If the space-like singu-
larity at the origin is resolved by a UV-complete theory of quantum gravity, the Penrose
diagram could be modified as Figure 1b.

In Figure 1a,b, we show two light rays (diagonal orange lines) as the causal past of
two Hawking particles detected at future infinities. Regardless of whether there is an event
horizon, Hawking radiation appears whenever it is an exponential relation between the
affine parameter for ingoing light rays at the infinite past and the affine parameter for
outgoing rays at the infinite future [32–34].

We are concerned with the causal past of all Hawking radiation observed at large
distances over a period of time (bounded by the diagonal green dash lines in Figure 1)
through which the black-hole mass is reduced from an initial mass M0 to a small fraction
of it, but still large enough so that the effective theory is valid. In both Figure 1a,b, this
region of interest lies completely outside the event horizon, so the event horizon and the
singularity are both causally irrelevant to our study.

Following recent progresses [28,29,35], we give below the approximate solution to
the semi-classical Einstein equation in the near-horizon region for an adiabatic process.
It is characterized by two (generalized) time-dependent Schwarzschild radii a(u) and
ā(v) (see Equation (17) for their definitions)5. Both a(u) and ā(v) agree with the classical
Schwarzschild radius a in the limit `p/a→ 0.

2.1. Near-Horizon Region and Uneventful Condition

We start by reviewing the definition of the near-horizon region. Roughly speaking,
it is defined to be the region near and inside the trapping horizon but outside the col-
lapsing matter [29]. The surface of the collapsing matter is the inner boundary of the
near-horizon region. The outer boundary is slightly outside the trapping horizon where
the Schwarzschild approximation is valid. We will restrict our consideration to the early
stage of black-hole evaporation when the trapping horizon is timelike in the near-horizon
region (see Figure 2).
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(a) (b)

Figure 1. (a) is the Penrose diagram of the conventional model of black holes. The diagonal red line
represents the event horizon. (b) is the Penrose diagram for the dynamical black hole assuming that
the singularity at r = 0 is replaced by a region (the red blob) of Planckian curvature. In both Penrose
diagrams, the curved green stripe represents the collapsing matter, which is assumed to be falling at
the speed of light for simplicity. The blue curve represents the apparent horizon outside the matter,
and the gray shade the near-horizon region.

Figure 2. A part including the near-horizon region (gray shade) is excerpted and enlarged
from Figure 1a. Axes of the (u, v) coordinates are added to show the meaning of the notation
uah(v), uout(v), vah(u), and vout(u) for an example of a pair of u and v.

The definition of the outer boundary of the near-horizon region is clearly not unique.
Nevertheless, since the quantum correction is small when C(u, v)� O(`2

p/a2), or equiva-
lently, when r(u, v)− a � `2

p/a according to Equation (3), it is reasonable to define it by
the condition

r(uout(v), v)− ā(v) =
N`2

p

ā(v)
(N � 1), (5)
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where uout(v) is the u-coordinate of the outer-boundary of the near-horizon region for a
given value of v.6 The number N should be so large that the Schwarzschild metric with
the Schwarzschild radius ā(v) is a good approximation around the outer boundary, but
so small that the approximation (20) given below is good. (This range of N exists because
the second condition only requires N � a2/`2

p.) For a given value of u, the v-coordinate of
the outer boundary of the near-horizon region will be denoted by vout(u). It should be the
inverse function of uout(v): vout(uout(v)) = v.

In the conventional model of black holes, the horizon is assumed to be “unevent-
ful” [40–44]. This means that the vacuum energy–momentum tensor is not larger than
O(1/a4) for freely falling observers comoving with the collapsing matter. After the coor-
dinate transformation to the light-cone coordinates (u, v), the conditions for uneventful
horizons are given by [41,42]

〈Tuu〉 ∼ O(C2/a4), (6)

〈Tuv〉 ∼ O(C/a4), (7)

〈Tvv〉 ∼ O(1/a4), (8)

〈Tθθ〉 ∼ O(1/a2). (9)

This can be computed either by solving the geodesic equation for freely falling observers, or
by computing the transformation factor dU/du between the coordinate u and the light-cone
coordinate U suitable for the comoving observers (see Equation (54)).

The component 〈Tuu〉 (6) is nearly vanishing around the horizon because C � 1 there,
otherwise there would be a huge outgoing energy flux for observers comoving with the
collapsing matter7. On the other hand, in the large distance limit r → ∞ where C → 1,
〈Tuu〉 approaches O(1/a4) > 0, corresponding to Hawking radiation at large distances,
while 〈Tuv〉 ∼ 〈Tvv〉 ∼ 〈Tθθ〉 ∼ 0 in the asymptotically flat region, so the energy of the
system must decrease. This means that the ingoing energy flux 〈Tvv〉 must be negative
around the horizon for energy conservation. This negative ingoing energy is also the
necessary condition for the appearance of a time-like trapping horizon (see, e.g., Ref. [35]).
The outer boundary of the near-horizon region, which stays outside the trapping horizon,
is also time-like. Hence, any point (u, v) inside the trapping horizon satisfies

v < vah(u) < vout(u), u > uah(v) > uout(v), (10)

where vah(u) and uah(v) are the v and u coordinates of the trapping horizon at given u or
v, respectively (see Figure 2).

In this paper, we will only consider the range of near-horizon region in which

u− uout(v)� O(a3/`2
p), vout(u)− v� O(a3/`2

p). (11)

For our conclusion about the breakdown of the effective field theory, we will only need the
knowledge of the spacetime geometry in a much smaller neighborhood.

The energy–momentum tensor (6)–(9) for an uneventful horizon corresponds to the
Unruh vacuum and is often viewed as an implication of the equivalence principle. However,
we will see in Section 3 that an uneventful horizon always evolves into an eventful horizon
at a later time for a generic effective theory soon after the collapsing matter enters the
near-horizon region.
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2.2. Solution of C(u, v)

In this subsection, we review the solution of C(u, v) in the metric (2) [28,29]. Two
of the semi-classical Einstein equations Guv = κ〈Tuv〉 and Gθθ = κ〈Tθθ〉 can be linearly
superposed as [29]

∂u∂vΣ(u, v) =
C(u, v)

4r2(u, v)
+

κC(u, v)
8

(
〈Tµ

µ〉 − 6〈Tθ
θ〉
)

, (12)

where Σ is defined by

C(u, v) ≡ aeΣ(u,v)

r(u, v)
. (13)

For the Schwarzschild solution (3) and (4), Σ(u, v) becomes

Σ = log(r− a) ' v− u
2a
− 1 (14)

in the near-horizon region.
We shall carry out our perturbative calculation in the double expansion of `2

p/a2

and C(u, v). The red-shift factor C(u, v) is of O(`2
p/a2) around the trapping horizon, but

C(u, v) gets exponentially smaller as one goes deeper into the near-horizon region (see
Equations (13) and (14) above and Equation (20) below). With more focus on the deeper
part of the near-horizon region, every quantity is first expanded in powers of C(u, v), and
then the coefficients of each term in powers of `2

p/a2.
We expand Σ as

Σ = Σ0 + Σ1 + Σ2 + · · · , (15)

where Σ0 ∼ O(C0), Σ1 ∼ O(C), Σ2 ∼ O(C2), etc. At the leading order, Equation (12)
indicates

∂u∂vΣ0 = 0, (16)

where we have used Equations (7) and (9) to estimate 〈Tµ
µ〉 and 〈Tθ

θ〉.
Equation (16) can be easily solved by Σ0 = B(u) + B̄(v) for two arbitrary functions

B(u) and B̄(v). Without loss of generality, we can define a(u) and ā(v) by

a(u) = − 1
2B′(u)

, ā(v) =
1

2B̄′(v)
, (17)

so that

Σ0(u, v) = Σ0(u∗, v∗)−
∫ u

u∗

du′

2a(u′)
−
∫ v∗

v

dv′

2ā(v′)
. (18)

Comparing Equation (18) with the Schwarzschild case (14), we can see that a(u) and
ā(v) should be interpreted as generalizations of the notion of Schwarzschild radius for
the dynamical solution. Roughly speaking, one may interpret a(u) as the Schwarzschild
radius observed at the outer boundary of the near-horizon region along an infinitesimal
slice from u to u + du, and ā(v) the Schwarzschild radius observed at the outer boundary
along an infinitesimal slice from v to v + dv. (As the Schwarzschild metric is static, the
Schwarzschild radius can be determined on a single slice of the spacetime. However, in the
dynamical case, choosing a fixed u or a fixed v gives different geometries and thus different
Schwarzschild radii.) See Ref. [29] for more discussion. At the leading order, ā(v) agrees
with the mass parameter in the special case of the ingoing Vaidya metric (see Appendix A).
In the classical limit `2

p/a2 → 0, both a(u) and ā(v) approach the Schwarzschild radius a.
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More precisely, since ∂uΣ0 is independent of v, it can be identified with ∂uΣ at the
outer boundary of the near-horizon region (where the Schwarzschild solution is a good
approximation). Similarly, ∂vΣ is independent of u and it can also be determined this way.
We can think of a(u) and ā(v) as the Schwarzschild radii for the best fit of the Schwarzschild
metric on constant-u and constant-v slices in a small neighborhood around the boundary of
the near-horizon region. For a larger N (see Equation (5)), the Schwarzschild approximation
is better at the outer boundary of the near-horizon region, hence there should be a smaller
difference between a(uout(v)) and ā(v). In Appendix B, we derive the relation

a(uout(v))
ā(v)

' 1 +O
(

1
N

)
(19)

between a(u) and ā(v) at the boundary of the near-horizon region. The functional forms of
a(u) and ā(v) are determined by differential Equations (36) and (38) to be derived below.

It is then deduced from Equations (13), (15) and (18) that the solution of C(u, v) can
be approximated by [29]

C(u, v) ' C∗
r∗

r(u, v)
exp

[
−
∫ u

u∗

du′

2a(u′)
−
∫ v∗

v

dv′

2ā(v′)

]
[1 +O(C)], (20)

where C∗ ≡ C(u∗, v∗) and r∗ ≡ r(u∗, v∗) for an arbitrary reference point (u∗, v∗) in the
near-horizon region. For given u, since v < vout(u) inside the near-horizon region (10),
Equation (20) implies that C(u, v) < C(u, vout(u)), where C(u, vout(u)) can be estimated
by the Schwarzschild approximation (3) to be ∼ N`2

p/ā2, using Equation (5). Due to the
exponential form of C(u, v) (20), the value of C is exponentially smaller as we move deeper
inside the near-horizon region, i.e., for larger u− u∗ or larger v∗ − v.

The solution (20) above is merely a small deformation of the Schwarzschild solu-
tion (14) in the near-horizon region by allowing the Schwarzschild radius a to be position-
dependent. Nevertheless, we will show below that the dynamical nature of the geometry
can lead to a significant effect.

2.3. Solution of r(u, v)

The solution of r(u, v) in the metric (2) can be readily derived using the solution of
C(u, v) (20). We start by estimating the orders of magnitude of ∂ur and ∂vr. From the
definition of the Einstein tensor Guu for the metric (2):

Guu ≡
2∂uC∂ur

Cr
− 2∂2

ur
r

, (21)

the semi-classical Einstein equation Guu = κ〈Tuu〉 and Equation (6), we derive

∂u

(
∂ur
C

)
= − r

2C
Guu = − κr

2C
〈Tuu〉 ∼ O(`2

pC/a3), (22)

which can be integrated as

∂ur(u, v) = −κ

2
C(u, v)

∫ u

u∗
du′

r(u′, v)
C(u′, v)

Tuu(u′, v) +
C(u, v)
C(u∗, v)

∂ur(u∗, v). (23)

In this expression, we can choose u∗ = uout(v) so that (u∗, v) is located on the outer
boundary of the near-horizon region. The values of C(u∗, v∗) and ∂ur can thus be estimated
in the Schwarzschild approximation according to Equations (3) and (4), so the 2nd term
in Equation (23) is of O(C(u, v)). One can use C(u, v) (20) to check that the first term in
Equation (23) is much smaller than the 2nd term (see Appendix C). Thus, we find

∂ur(u, v) ∼ O(C(u, v)). (24)
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In a similar manner as Appendix C, we can use C(u, v) (20) again to derive from
Gvv = κ〈Tvv〉 and Equation (8) that

∂vr(u, v) =
κ

2
C(u, v)

∫ v∗

v
dv′

r(u, v′)
C(u, v′)

Tvv(u, v′) . O(`2
p/a2), (25)

where we chose v∗ = vah(u) so that the reference point (u, vah(u)) is located on the trapping
horizon, and used the condition ∂vr(u, vah(u)) = 0 on the trapping horizon.

As the linear combination (12) of the semi-classical Einstein equations Guv = κ〈Tuv〉
and Gθθ = κ〈Tθθ〉 is already satisfied by C(u, v) (20), only one more independent linear
combination of them is needed. We choose to look at

Guv ≡
C

2r2 +
2∂ur∂vr

r2 +
2∂u∂vr

r
= κ〈Tuv〉. (26)

Using Equations (7), (20), (24) and (25) to estimate the order of magnitude of each term in
this equation, we find it to be dominated by the two terms C/2r2 and 2∂u∂vr/r, so that

∂u∂vr(u, v) ' − C(u, v)
4r(u, v)

+O(`2
pC/a3). (27)

To integrate this, we suppose that the black hole evaporates in the time scale of
∆u, ∆v ∼ O(a3/`2

p) as usual [4,5]. Hence, the u and v derivatives of a(u) and ā(v) introduce
additional factors of O(`2

p/a3) because the two radii are approximately the Schwarzschild
radius. In addition, from Equations (24) and (25), the u and v derivatives of r(u, v) lead
to extra factors of O(`2

p/a3). On the other hand, with C(u, v) given by Equation (20),
its u and v derivatives produce only factors of −1/2a and 1/2ā, respectively. Thus, the
functions a(u), ā(v), and r(u, v) are approximately constant in comparison with C(u, v),
and Equation (27) can be solved by

∂ur(u, v) ' − ā(v)
2r(u, v)

C(u, v) + f1(u) +O(`2
pC/a2), (28)

∂vr(u, v) ' a(u)
2r(u, v)

C(u, v) + f2(v) +O(`2
pC/a2) (29)

for arbitrary functions f1(u) and f2(v). However, comparing the first Equation (28) with
Equation (24), we see that f1(u) has to vanish, because a function of u cannot go to 0 as fast
as C(u, v) in the limit (v∗− v)→ ∞. According to Equation (25), we find f2(v) . O(`2

p/a2).
The consistent solution to the two equations above is

r(u, v) ' r0(v) +
a(u)ā(v)

r0(v)
C(u, v) +O

(
`2

p

a
C

)
, (30)

where the function r0(v) can be determined as follows. First, in the classical limit, C = 1− a/r (3)
can be rewritten as r = a + rC ' a + aC near r ∼ a, which resembles Equation (30). Since
both a(u) and ā(v) coincide with the Schwarzschild radius a in the classical limit, we have
r0 = a in the limit as well. Therefore, turning on the quantum effect, we expect r0(v)
to be approximately equal to ā(v). To estimate the order of magnitude of the difference
r0(v)− ā(v), we plug the solution r(u, v) (30) into the condition (5) on the outer boundary
of the near-horizon region for u = uout(v). Then, we find the relation

r0(v)− ā(v) =

(
1− a(uout(v))ā(v)

r2
0(v)

)
N`2

p

ā(v)
. O

(
N`2

p

ā(v)

)
, (31)
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where we used Equations (3) and (5) to evaluate C(uout(v), v). Using Equation (31) in
Equation (30), we find

r(u, v) ' ā(v) + a(u)C(u, v) +O
(

N`2
p

a
C

)
(32)

' ā(v) +O
(

N`2
p

ā(v)

)
(33)

in the near-horizon region.
Let us now determine the time-evolution of the functions a(u) and ā(v). Plugging

Equations (20) and (32) back into the semi-classical Einstein equations Guu = κ〈Tuu〉 (with
Equation (21)), we can check that this equation is trivially satisfied at the leading order in
the `2

p/a2 expansion and does not impose any constraint on a(u). Similarly, we can see that
Gvv = κ〈Tvv〉 gives

ā′(v)
ā2(v)

− 2ā′′(v)
ā(v)

' κ〈Tvv(u, v)〉. (34)

As the left-hand side of this equation is u-independent, 〈Tvv(u, v)〉 is u-independent at
the leading order in the near-horizon region. Recall the uneventful condition (8) that
〈Tvv(u, v)〉must be negative and of O(1/a4). It can be expressed as

〈Tvv(u, v)〉 ' −
σ`2

p

κā4(v)
(35)

for some parameter σ ∼ O(1).
Now, we consider an adiabatic process [45] of Hawking radiation for which |ā′/ā| �

|ā′′|. Equation (34) then becomes

dā(v)
dv

' κā2(v)〈Tvv〉 ' −
σ`2

p

ā2(v)
, (36)

which determines the functional form of ā(v). The function a(u) is approximately equal to
ā(v) at u = uout(v) due to Equation (19), so

dā(v)
dv

' da(uout(v))
dv

=
duout(v)

dv
da(u)

du

∣∣∣∣
u=uout(v)

' da(u)
du

∣∣∣∣
u=uout(v)

, (37)

where we used Equation (A10). Using Equation (19) on the right-hand side of Equation (36),
we find

da(u)
du

' −
σ`2

p

a2(u)
. (38)

2.4. Near-Horizon Geometry

The solution for C (20) can now be further simplified using the solution for r (32) as

C(u, v) ' C(u∗, v∗)
ā(v∗)
ā(v)

exp
[
−
∫ u

u∗

du′

2a(u′)
−
∫ v∗

v

dv′

2ā(v′)

]
[1 +O(C)]. (39)

This and the solution of r(u, v) given by Equation (32) define the metric (2) for the geometry
of the near-horizon region, with ā(v), a(u) satisfying Equations (36) and (38).
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In the following, we will also need the Christoffel symbol of the metric (2):

Γu
uu =

∂uC(u, v)
C(u, v)

= − 1
2a(u)

[1 +O(C)], (40)

Γv
vv =

∂vC(u, v)
C(u, v)

=
1

2ā(v)

[
1 +O

(
`2

p

a2

)]
, (41)

with other components Γu
uv, Γv

uv, Γv
uu, Γu

vv vanishing.
Finally, note that the characteristic length scale for all curvature invariants is still ā, e.g.,

R ' 2
ā2 , RµνRµν ' 2

ā4 , RµνλρRµνλρ ' 4
ā4 , (42)

where µ, ν are only summed over the reduced 2D spacetime indices u, v. As we will see
below, nevertheless, the metric (32) and (39) together with the quantum effect of non-
renormalizable operators lead to a non-trivial physical effect.

3. Breakdown of Effective Theory

For the low-energy effective theory of, say, a 4D massless scalar field φ, we have
an action

S =
∫

d4x
√
−gL, (43)

with a Lagrangian density given as a 1/Mp-expansion:

L =
1
2

gµν∇µφ∇νφ +
a1

4!
φ4 + a2Rφ2 +

1
M2

p

[
b1(∇2φ)(∇2φ) + b2φ6 + b3(∇2R)φ2 + · · ·

]
+

1
M4

p

[
c1gµν(∇µ∇2φ)(∇ν∇2φ) + c2φ8 + c3(∇2R)(∇φ)2 + · · ·

]
+ · · · . (44)

(Assuming the symmetry φ→ −φ, we omit terms of odd powers of φ for simplicity.)
The dimensionless parameters a1, a2, b1, b2, · · · are the coupling constants in a perturbation
theory. Higher-dimensional terms are suppressed by higher powers of 1/Mp.

For a given physical state, it is normally assumed that all higher-dimensional (non-
renormalizable) interactions, which are suppressed by powers of 1/Mp, only have negligi-
ble contributions to its time evolution. We will show below that, since the effective-field-
theoretic derivation of Hawking radiation involves high-frequency modes of quantum
fluctuations, there are in fact higher-dimensional operators in the effective Lagrangian (43)
that contribute to large probability amplitudes of particle creation from the Unruh vacuum
in the near-horizon region. We will see that this particle creation makes the uneventful
horizon “eventful” or even “dramatic”.

3.1. Free-Field Quantization in the Near-Horizon Region

In this subsection, we introduce the quantum-field-theoretic formulation for the
computation of the amplitudes mentioned above. It is essentially the same as the standard
formulation for the derivation of Hawking radiation (see, e.g., Ref. [46]). The difference is
that we shall consider the background geometry given in Section 2, instead of the static
Schwarzschild background.

For a massless scalar field φ in the near-horizon region, we shall focus on its fluctuation
modes with spherical symmetry. It is convenient to define

ϕ(u, v) ≡ r(u, v)φ(u, v) (45)
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for the s-wave modes. For the metric (2), the free-field equation ∇2φ = 0 is equivalent to

∂u∂v ϕ− ∂u∂vr
r

ϕ = 0. (46)

According to Equations (27), (31) and (32), it becomes

∂u∂v ϕ +
C(u, v)

4ā2 ϕ ' 0 (47)

in the near-horizon region. The free-field equation is thus well approximated by

∂u∂v ϕ ' 0 (48)

deep inside the near-horizon region where C is exponentially small. Therefore, the general
solution there is given by

ϕ '
∫ ∞

0

dω

2π

1√
2ω

(
e−iωU(u)aω + eiωU(u)a†

ω + e−iωV(v) ãω + eiωV(v) ã†
ω

)
. (49)

Here, U(u) and V(v) are arbitrary functions of u and v, respectively. The creation and
annihilation operators {aω, a†

ω} and {ãω, ã†
ω} satisfy

[aω1 , a†
ω2
] = 2πδ(ω1 −ω2), [ãω1 , ã†

ω2
] = 2πδ(ω1 −ω2), (50)

with the rest of the commutators vanishing.
In principle, we can use any functions U(u) and V(v) as the outgoing and ingoing

light-cone coordinates. We shall choose the light-cone coordinates U and V so that the
vacuum |0〉 defined by

aω |0〉 = ãω |0〉 = 0 ∀ω ≥ 0 (51)

is the Minkowski vacuum of the infinite past before the gravitational collapse starts. This
is the vacuum which evolves into Hawking radiation at large distances after it falls in
from the past infinity, passes the origin, and then moves out [4,5]. We assume that this
vacuum |0〉 is the quantum state of the near-horizon region. It is equivalent to the Unruh
vacuum—the vacuum state for freely falling observers at an uneventful horizon [47].

The relation between the coordinates U and u can be derived easily by considering
the special case when the collapsing matter is a spherical thin shell at the speed of light,
and identifying U with the retarded light-cone coordinate of the flat Minkowski spacetime
inside the collapsing shell [40,48] as follows:8. The trajectory of the areal radius Rs(u) =
r(u, vs) of the thin shell (where vs is the v-coordinate of the thin shell) satisfies

dRs

dU
= −1

2
, (52)

where we used r(U, V) = (V −U)/2 in the flat space. It also satisfies

dRs

du
= ∂ur(u, vs) ' −

1
2

C(u, vs), (53)

following Equations (32), (38) and (39). The two equations above imply

dU(u)
du

' C(u, vs), (54)

and hence the conditions (6)–(9) simply mean that TUU ∼ TUV ∼ TVV ∼ Tθθ ∼ O(1/a4).
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We decompose the field φ = ϕ/r (49) into the outgoing and ingoing modes. In the
near-horizon region, the outgoing modes can be expanded in two bases:

φout(u, v) =
∫ ∞

0

dω

2π

1√
2ω

1
r(u, v)

(
e−iωU(u)aω + eiωU(u)a†

ω

)
(55)

=
∫ ∞

0

dω

2π

1√
2ω

1
r(u, v)

(
e−iωucω + eiωuc†

ω

)
. (56)

The two expressions above are related by the coordinate transformation (54) and the
creation and annihilation operators {cω, c†

ω} satisfy

[cω1 , c†
ω2
] = 2πδ(ω1 −ω2), [cω1 , cω2 ] = [c†

ω1
, c†

ω2
] = 0. (57)

They are related to {aω, a†
ω} via a Bogoliubov transformation

cω =
∫ ∞

0
dω′

(
Aωω′ aω′ + Bωω′ a

†
ω′

)
, (58)

c†
ω =

∫ ∞

0
dω′

(
A∗ωω′ a

†
ω′ + B∗ωω′ aω′

)
. (59)

The equality between Equations (55) and (56) determines the coefficients Aωω′ and
Bωω′ as

Aωω′ =
1

2π

√
ω

ω′

∫ ∞

−∞
du eiωu−iω′U(u), Bωω′ =

1
2π

√
ω

ω′

∫ ∞

−∞
du eiωu+iω′U(u). (60)

For the vacuum state |0〉 defined by Equation (51), it is natural to define a 1-particle state

|ω〉a ≡
√

2ωa†
ω |0〉. (61)

On the other hand, we also consider the 1-particle state

|ω〉c ≡ N
√

2ω cω |0〉 = N
∫ ∞

0
dω′

√
ω

ω′
Bωω′ |ω′〉a, (62)

which is a superposition of the 1-particle states |ω′〉a.
In the calculation below, we will need to evaluate the quantity c〈ω|φ|0〉, and hence we

have to estimate the matrix Bωω′ appearing in Equation (62). As we will see, only a short
time scale ∆u ∼ O(a log a/`p) is relevant to our calculation below (see Equation (100)).
Within this time scale, the black-hole mass does not change much so that a(u) remains
roughly the same value that we will simply denote by a. Therefore, from Equations (38),
(39) and (54), we have approximately

U(u) ' Uh − c0e−
u
2a (63)

for an arbitrary constant Uh, and c0 is determined by Equation (54) to be

c0 = 2aC(u∗, vs)e
u∗
2a . (64)

The Bogoliubov coefficients can be approximated by9

Aωω′ '
a
π

√
ω

ω′
e−iω′Uh

(
1

ω′c0

)−i2aω

eπaωΓ(−i2aω), (65)

Bωω′ ' e2iω′Uh e−2πaω Aωω′ . (66)
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One then deduces from Equations (65) and (66) that∫ ∞

0
dω′′ Aωω′′A

∗
ω′ω′′ '

δ(ω−ω′)

1− e−4πaω
, (67)∫ ∞

0
dω′′ Aωω′′Bω′ω′′ ' 0. (68)

The normalization factor N defined in Equation (62) is fixed by the condition

c〈ω|ω′〉c = 4πωδ(ω−ω′) (69)

(following Equations (62), (66), (67) and (69)) to be

N =
√

e4πaω − 1. (70)

Then, we find

c〈ω|φ|0〉 ' 1
N r

e−iωu. (71)

In Equation (51), we have introduced the (U, V) coordinates as the light-cone coordi-
nates used to define the Minkowski vacuum of the infinite past |0〉. Therefore, it is natural
to identify the V-coordinate in the same approximation scheme as

V ' Vh + 2ae
v−vs

2a , (72)

so that we have

C ' dU
du

dV
dv

, (73)

which leads to

ds2
(2D) ' −dUdV. (74)

This means that the (U, V) coordinates are those of a freely falling observer who describes
the spacetime locally as flat. Note that the (U, V) coordinates take essentially the same
form as the usual Kruskal coordinates. They play the role of the Kruskal coordinates in the
dynamical spacetime.

For the ingoing modes, we have

φin(u, v) =
∫ ∞

0

dω′

2π

1√
2ω′

1
r(u, v)

(
e−iω′V(v) ãω′ + eiω′V(v) ã†

ω′

)
, (75)

and there are counterparts of the equations shown above for the outgoing modes. In
particular, we can define the 1-particle states

|ω〉ã ≡
√

2ωã†
ω |0〉. (76)

However, we will not need the operators c̃ω, c̃†
ω defined with respect to the light-cone

coordinates (u, v) for the ingoing modes.

3.2. Transition Amplitude

In general, the effective Lagrangian (44) includes all local invariants. As examples, we
consider a class of higher-dimensional, higher-derivative local observables of dimension
[M]2n+k+l+1:
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Ô{m}l ≡ gµ1ν1 · · · gµnνn
(
∇µ1 · · · ∇µn φ1

)(
∇ν1 · · · ∇νm1

φ2

)(
∇νm1+1 · · · ∇νm1+m2

φ2

)
· · ·

· · ·
(
∇νn−mk+1 · · · ∇νn φ2

)
φl

3 (k, m1, · · · , mk ≥ 1; l ≥ 0), (77)

where n ≡ ∑k
i=1 mi. The fields φ1, φ2, and φ3 are all massless scalars, and all equations for

φ in Section 3.1 apply to φ1, φ2 and φ3. (The calculation below will be essentially the same
if φ1 = φ2 = φ3.)

Due to the dynamical background, this operator (77) introduces a time-dependent
perturbation to the free field theory. The corresponding interaction term in the action (43) is

λ{m}l

M2n+k+l−3
p

∫
d4x
√
−g Ô{m}l , (78)

where λ{m}l is a coupling constant of O(1). We shall consider its matrix element

M{m}l ≡
λ{m}l

M2n+k+l−3
p

∫
V

dx4√−g 〈 f |Ô{m}l |i〉 (79)

integrated over a spacetime region V , where |i〉 is the Unruh vacuum and | f 〉 is a multi-
particle state to be defined below.

For V = (t0, t1)×space (t is a time coordinate), the matrix element (79) can be inter-
preted as the transition amplitude from the initial state |i〉 at t = t0 to the final state | f 〉
at t = t1 in the first-order time-dependent perturbation theory. We will show below that
M{m}l becomes exponentially large when the collapsing matter enters deeply inside the
near-horizon region.

One might naively think that such a transition amplitude must be small since the
initial state |i〉 is the Unruh vacuum. As the typical length scale is O(a) for the small
curvature (42), one expects thatM{m}l is ∼O((`p/a)2n+k+l−3) by dimensional analysis.
However, it turns out thatM{m}l becomes large as a joint effect of the peculiar geometry
in the near-horizon region and the quantum fluctuation of the matter field.

The Hilbert space of the perturbative quantum field theory is the tensor product of
the Fock spaces of the three fields φ1, φ2 and φ3. The initial state is the tensor product of
the Unruh vacuum for each field,

|i〉 ≡ |0〉 ⊗ |0〉 ⊗ |0〉. (80)

The final state of interest is of the form

| f 〉 ≡ |ω〉c ⊗ |ω′1, · · · , ω′k〉ã ⊗ |ω1, ω2, · · · , ωl〉ã. (81)

Here, |ω〉c is the superposition (62) of outgoing modes of φ1, |ω′1, · · · , ω′k〉ã the k-particle
state as a generalization of the 1-particle state (76) for the ingoing modes of φ2, and
|ω1, ω2, · · · , ωl〉ã the l-particle state of the ingoing modes of φ3, respectively.

We shall choose

ω ∼ O(1/a) (82)

for the state |ω〉c. Notice that the prediction of the spectrum of Hawking radiation relies on
a field-theoretic calculation of 〈0|c†

ωcω′ |0〉 = c〈ω|ω′〉c/(2
√

ωω′N 2). If the state |ω〉c is not
well-defined in the low-energy effective theory at least for ω ∼ O(1/a), our understanding
of Hawking radiation would be reduced to almost nothing. This state |ω〉c must be allowed
in the effective theory; otherwise, the existence of Hawking radiation would be dubious.
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On the other hand, the values of ω′1, · · · , ω′k and ω1, ω2, · · · , ωl will not play an
important role in showing the matrix element (79) to be large. We shall simply choose

ω′1 ' ω′2 ' · · · ' ω′k ' ω1 ' ω2 ' · · · ' ωl ' 0 (83)

for simplicity.
Due to the s-wave reduction, all the spacetime indices µi, νi are either u or v, and

each factor of guv contributes a factor of C−1(u, v). The covariant derivatives ∇u, ∇v in-
volve derivatives ∂u, ∂v, which contribute factors of frequencies ω, ω′1, · · · , ω′k, ω1, · · · , ωl .
Hence, the transition amplitude is the integral of a polynomial in ω, ω′1, · · · , ω′k, ω1, · · · , ωl ,

apart from an overall factor including e−iωuei ∑k
a=1 ω′avei ∑l

i=1 ωiv. To show that the tran-
sition amplitude (79) is large, it is sufficient to focus on a term with given powers of
ω, ω′1, · · · , ω′k, ω1, · · · , ωl , as they are independent free parameters. We shall focus on the
terms with the largest power of ω but independent of ω′1, · · · , ω′k, ω1, · · · , ωl . It is

M{m}l ∼
λ{m}l`

2n+k+l−3
p

N ωn
∫
V

dudv
1

Cn−1
1

rl−1

[
k

∏
i=1

(
∇mi

v
1
r

)]
e−iωu. (84)

The expression (84) for the transition amplitudeM{m}l tells us that the integral over
V is dominated by the contribution of the region where ∂Vr is large and C is small. On
the other hand, it is unclear why a small conformal factor C, which has no particular
local meaning for a freely falling observer, leads to a large transition amplitude. To
understand the reason why the transition amplitude is large from the viewpoint of freely
falling observers, we will rewrite this expression (84) in the next subsection in terms of the
coordinates (U, V) suitable for freely falling observers.

3.3. Comments on the AmplitudeM{m}l
We study here the properties of the amplitude (84) and explain the strategy of its

evaluation for the next subsection.

3.3.1. Amplitudes in the Static Background

Before we estimateM{m}l (84) for the dynamical background, we check that it van-
ishes for any static background, including the Schwarzschild metric. Let t be the time
coordinate with translation symmetry, the functions C, r, and the Christoffel symbol are
all independent of t. The only t-dependence in M{m}l is thus the exponential factor
e−iωu ∝ e−iωt, so we have

M{m}l ∝
∫ t1

t0

dt′ e−iωt′ =
e−iωt1 − e−iωt0

−iω
. (85)

for V = (t0, t1)× space. The transition amplitude is non-zero as an artifact of the boundaries
at t0 and t1. It vanishes, for instance, if ω is quantized to satisfy the periodic boundary
condition. Hence, unless the time-dependence of the dynamical background is taken into
account, the transition amplitudeM{m}l vanishes for suitable boundary conditions. Note
that, ifM{m}l 6= 0, it means that particles (and hence their energies) are created out of the
vacuum in V ;M{m}l = 0 is simply a consequence of energy conservation in the region
with time-translation symmetry.

There are at least two origins for time dependence: (a) the collapsing matter that
results in the black hole, and (b) the time-dependent geometry of the slowly evaporating
black hole. We will see that either one is sufficient to result in a large amplitudeM{m}l .
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3.3.2. Large Amplitudes in Dynamical Background

When the back-reaction of Hawking radiation is included, the factor

1
Cn−1

1
rl−1

[
k

∏
i=1

(
∇mi

v
1
r

)]
(86)

in the transition amplitude (84) has no time-translation symmetry, so its integral with the
phase e−iωu is in general non-zero.

Naively, even thoughM{m}l (84) is no longer exactly 0, one might still expect that it
is negligible due to the overall factor `2n+k+l−3

p . However, this factor can be compensated
by C−n+1 in Equation (86), since the conformal factor C can be arbitrarily close to 0 deep
inside the near-horizon region. According to the solution of C (39), a displacement of u or
v by a small amount 2ka log(a/`p)/(n− 1) is enough to compensate a factor of (`p/a)k.

The claim that the matrix element can become large due to a small C is unsettling
because the appearance of the arbitrarily small conformal factor C relies on the choice of the
(u, v) coordinate system. If we use the Kruskal coordinate (U, V) (given by Equations (63)
and (72)), the metric becomes locally Equation (74); the conformal factor is 1. A natural
question is then: How can the amplitude become large? As the operator Ô{m}l (77) is
by definition a scalar, its integral over a given region of spacetime is independent of the
choice of coordinates. To understand the physics better, let us first answer this question by
analyzingM{m}l in terms of (U, V).

For the locally flat metric (74), we have ∇U = ∂U and ∇V = ∂V . When we rewrite the
amplitude (84) in terms of the (U, V) coordinate system, it becomes

M{m}l ∼
2πλ{m}l

M2n+k+l−3
p

∫
V

dUdV r2(gUV)n〈 f |(∂n
Uφ1)

[
k

∏
i=1

(∂mi
V φ2)

]
φl

3|i〉

∼
2π(−2i)nNλ{m}l

M2n+k+l−3
p

∫
V

dUdV
∫ ∞

0
dωU

√
ω

ωU
B∗ωωU

ωn
U

rl−1

[
k

∏
i=1

∂
mi
V

1
r

]
eiωUU

' α{m}l

∫ ∞

0
dωU ωn−1−i2aω

U A{m}l(ωU), (87)

where

α{m}l ≡ 2(−2i)naωNλ{m}lΓ(i2aω) e−πaωc−i2aω
0 `2n+k+l−3

p , (88)

A{m}l(ωU) ≡
∫
V

dUdV
1

rl−1

[
k

∏
i=1

∂
mi
V

1
r

]
eiωU(U−Uh). (89)

To derive this expression, we have used Equations (80) and (81) for the states |i〉, | f 〉,
Equation (77) for the operator Ô{m}l , and Equations (50), (55), (61), (62), (65), (66) and (83)
to evaluate the matrix element. This is simply Equation (84) written in terms of the Kruskal
coordinates.

Indeed, the expression (87) does not explicitly involve any exponentially growing
factor. To see how the factor C−(n−1) in Equation (84) is hidden in the expression above,
we should carry out the integration over ωU . The ωU-integral of the form∫ ∞

0
dωU ωm−i2aω

U eiωU(U−Uh) (90)

in Equation (87) (with m = n− 1) can be evaluated using the saddle point approximation.
The saddle point is

ωUs = −
(

ω +
im
2a

)(
dU
du

)−1
, (91)
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where we have used Equation (63). It is important to note that ωUs is large when the
blue-shift factor (dU/du)−1 is large.

The integral over ωU in Equation (87) is thus approximately∫ ∞

0
dωU ωm−i2aω

U eiωU(U−Uh) ∼ ωm+1−i2aω
Us eiωUs(U−Uh)

=

[
−
(

ω +
im
2a

)(
dU
du

)−1
]m+1−i2aω

e−m+i2aω, (92)

up to a factor of O(1).
On the other hand, the factor (dV/dv)−n+1 appears from

dV

[
k

∏
i=1

∂
mi
V

1
r

]
= dv

(
dV
dv

)−(n−1)
[

k

∏
i=1
∇mi

v
1
r

]
(93)

in Equation (87), where n ≡ ∑k
i=1 mi. Thus, dU/du in Equation (92) (for m = n− 1) and

dV/dv in Equation (93) produce the hidden factor C−(n−1) according to Equation (73).
This explains how the large factor C−(n−1) arises in the calculation in terms of the (U, V)-
coordinates10.

Strictly speaking, the region V of integration needs to be infinitely large so that the
Fourier transform with respect to ωU is well defined. For a finite V , we should use a
suitable complete basis of functions in V . A simple example is when V is a rectangular
region with periodic boundary conditions such that eiωUU can be used as the basis, but
ωU is discretized (see, e.g., Equation (A22)). In this case, we should first integrate over
(U, V) to find A{m}`(ωU) (89), assuming that ωU is properly discretized, and then replace∫ ∞

0 dωU in Equation (87) by a sum ∑ωU
over discretized values of ωU . For a sufficiently

large region V , the sum over ∑ωU
should be well approximated by the integral, so we

expect that the conclusion above for infinite V remains qualitatively correct for a finite
V . In Appendix D, we consider the discretization of ω for a finite region and carry out
the explicit calculation of the transition amplitude to demonstrate the general expectation
described above.

3.4. Example: Thin Shell andM{1···1}0
To demonstrate explicitly that the magnitude of the amplitude (87) becomes large as

the collapsing matter falls further inside the near-horizon region (so that the conformal
factor C becomes small), we study a simple example here. We consider a thin shell
collapsing at the speed of light along the curve V = Vs and investigate a special class of
higher-derivative interactions

Ô{1···1}0 ≡ gµ1ν1 · · · gµnνn
(
∇µ1 · · · ∇µn φ1

)
(∇ν1 φ2) · · · (∇νn φ2). (94)

This is the case of Ô{m}l (77) with mi = 1 for i = 1, · · · , k = n and l = 0, and we assume
n > 2.

In terms of the time coordinate T defined by

T ≡ U + V
2

, (95)

we choose V to be a rectangle (T0, T1)× (r0, r1) which covers a large space (see Figure 3). It
can be divided into the following four parts: (i) the space outside the near-horizon region
(V > Vs and r � a), (ii) the near-horizon region (V > Vs and r ∼ a), (iii) the thin shell
(V = Vs), and (iv) the flat space inside the shell (V < Vs).
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Figure 3. The shaded rectangle is the region V defining the transition amplitude. The blue dash
curve for V > Vs is the outer trapping horizon, and the inner trapping horizon coincides with the
collapsing thin shell at the speed of light (the red line at V = Vs). The contribution of this domain V
to the matrix element is dominated by a neighborhood of the point (Us, Vs).

In Appendix D, we evaluate the order of magnitude ofM{1···1}0 as

M{1···1}0 ∼
2π(2n− 1)(n− 3)!λ{1···1}0e−πaωζ(−(n− 3− i2aω))`3n−3

p

2n−2 sinh(2πaω)a3n−3 ×

× (T1 − T0)

a
C−(n−2)(us, vs), (96)

up to a factor of O(1). The dominant contribution comes from the neighborhood of the
point A in Figure 3, where A is the corner with the maximal value us of u and minimal
value vs of v along the trajectory of the collapsing shell in V (recall Equation (10) and see
Figure 3). This implies that the shape of the region V is not important11.

We note that the conformal factor C(us, vs) inM{1···1}0 scales by a factor of e−∆/2a

under a shift in us by ∆. It implies that the amplitude (96) is exponentially larger when the
collapsing shell is deeper inside the near-horizon region.

C−1(T1− T0) is the time duration of the region V for a distant observer, and we will be
interested in a duration of time of the order of the scrambling time, ∆t ∼ a log(a/`p) [24].
Here, we assume that

C−1(T1 − T0)/a & O(1). (97)

Hence, for ω ∼ 1/a and n > 2 but not too large12, and the transition amplitude (96)
can be estimated as

M{1···1}0 ∼
`3n−3

p

a3n−3
C−1(us, vs)(T1 − T0)

a
C−(n−3)
∗ e(n−3) us−u∗+v∗−vs

2a

&
`n+3

p

an+3 e(n−3) us−u∗+v∗−vs
2a . (98)

Here, we have chosen the reference point (u∗, v∗) to be located on the trapping horizon
so that

C∗ ≡ C(u∗, v∗) ∼ O
(
`2

p

a2

)
, (99)

which comes from Equations (3) and (5). Therefore, the matrix elementM{1···1}0 is larger
than O(1) when

us − u∗ + v∗ − vs ≥ 2
(

n + 3
n− 3

)
a log(a/`p). (100)
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For example, let us take the reference point to be the point where the shell crosses the
trapping horizon (the trapping horizon emerges at this moment u = u∗) so that v∗ = vs.
Then, the matrix element becomes larger than O(1) after an elapse of time ∆u ≡ us − u∗
of the same order of magnitude as the scrambling time O(a log(a/`p)). (This is consistent
with the range of the near-horizon region (10)).

A large matrix elementM{1···1}0 implies a large transition amplitude from |i〉 (80) to
| f 〉 (81). As the thin shell falls further deep under the apparent horizon, the energy flux of
the created outgoing particles in | f 〉 grows exponentially. This can be identified with the
firewall [17,20,21] because the saddle-point frequency ωUs is trans-Planckian with respect
to comoving observers. (There will be more discussion on this in the next subsection.)
According to Equation (100), it should appear within the scrambling time after the shell
enters the apparent horizon. In fact, we will see below that the transition amplitudes
become large for many other higher-derivative interactions even before the condition (100)
is met.

Finally, we discuss the contribution of the region within the collapsing matter to
the amplitudeM{m}l . In the case above, the region within the thin shell is the subspace
V = Vs, and it has no contribution to Equation (96) because the delta function δ(V −Vs)
does not appear (see Appendix D). For a generic matter distribution, however, a higher
energy density is expected to induce a larger transition amplitude for a generic higher-
derivative operator. However, since the matter distribution is arbitrary, its contribution to
the amplitude is under little constraint.

On the other hand, even if the prefactor in Equation (98) is much smaller (say, by a
factor of `2(n−1)

p /a2(n−1) as it would be if only the contribution of the time dependence of
the near-horizon geometry outside the collapsing shell is included, see Appendix D), the
amplitude still becomes large within a period of time of the same order of magnitude as
the scrambling time. For this reason, we shall focus on the contribution of the vacuum
geometry outside the collapsing shell in the near-horizon region. The conclusion about the
scrambling time should be valid for generic matter configuration13.

3.5. Firewall

Now, we consider another class of operators different from the example above. We
show that the matrix element becomes huge at the moment when the collapsing matter
enters the near-horizon region, and this corresponds to the firewall.

Consider the operators

Ô{n/2,n/2}0 ≡ gµ1ν1 · · · gµnνn
(
∇µ1 · · · ∇µn φ1

)(
∇ν1 · · · ∇νn/2 φ2

)(
∇νn/2+1 · · · ∇νn φ2

)
, (101)

which is Ô{m}l with k = 2, m1 = m2 = n/2 and l = 0. (n > 2 and n is even.) The
corresponding matrix element (87) is given by Equations (88) and (89) as

M{n/2,n/2}0 ∼ `2n−1
p

∫
dωU ωn−1−i2aω

U

∫
dUdV r

(
∂n/2

V
1
r

)2
eiωU(U−Uh). (102)

As we commented at the end of Section 3.4, when higher-derivatives of the quantum
fields are involved, the contribution of the matter to the matrix element depends on the
details of the matter configuration. To avoid this uncertainty, in this section, we will focus
on the contribution of the near-horizon region, even though the contribution of the region
occupied by the collapsing matter can be larger.

Using the equation

∂m
V

1
r
'
(

dV
dv

)−m (m− 1)!
(−2ā)m−1

σ`2
p

ā2r2 , (103)
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derived from Equations (32), (36) and (72), we evaluate Equation (102) as

M{n/2,n/2}0 ∼
`7

p

a7

(
C−1(us, vs)(T1 − T0)

a

)
e(n−3) us−u∗+v∗−vs

2a . (104)

The derivation is essentially the same as that of Equation (96) in Appendix D, but only
with the contribution of the near-horizon region taken into consideration.

For a reasonably long period of time C−1(T1 − T0) & a (97) for the region V from the
viewpoint of a distant observer (which is an extremely short time (T1 − T0) for a freely
falling observer), the amplitudeM{n/2,n/2}0 is larger than O(1) as long as

us − u∗ + v∗ − vs ≥
14

n− 3
a log(a/`p). (105)

This is a smaller lower bound than Equation (100) for n > 4 but still the same order of
magnitude as the scrambling time for finite n.

The final state | f 〉 for the exponentially increasing transition amplitude includes the
outgoing mode |ω〉c (62), which is a superposition of 1-particle states |ωU〉a for freely
moving observers. For comoving observers, the dominant frequency ωU of these 1-particle
states is the saddle point (91) with the magnitude

|ωU | ∼ |ω|
(

dU
du

)−1
∼ a

`2
p

e(u−u∗+v∗−vs)/2a, (106)

which is trans-Planckian at u = us well before Equation (105) is satisfied. Hence, the large
matrix elements imply the presence of a firewall as a flux of trans-Planckian particles in the
comoving frame.

Before the effective theory breaks down, there are particle creations with exponentially
increasing probability, although the prediction of a firewall as a Planckian energy flux is
not reliable. Depending on the UV-theory (or some of the coupling constants λ{m}l at large
n), the energy flux of the created particles may or may not become Planckian before the
effective theory breaks down. It is possible that the UV theory admits a new effective
theory that will become appropriate to describe what happens afterwards.

3.6. Viewpoint of Freely Falling Observers

The saddle point approximation (91) shows that the matrix elementM{m}l is domi-
nated by contributions of trans-Planckian modes |ωU〉a. The physical reason behind this
is clear. The Hawking radiation is dominated by modes with frequencies ω ∼ O(1/a) at
large distances. Tracing these wave packets backwards to the near-horizon region, they are
blue-shifted to trans-Planckian frequencies ωU .

If the trans-Planckian modes are removed from the effective theory, the matrix el-
ements would not become large, but it also implies that there would be no Hawking
radiation either. This is reminiscent of the trans-Planckian problem [50].

Note that we have chosen to consider the 1-particle state cω |0〉 in the final state | f 〉
because our understanding of the spectrum of Hawking radiation relies on the quantity
〈0|c†

ωcω |0〉, which demands that the state cω |0〉 be well-defined. If the amplitudeM{m}l
is considered ill-defined because of its involvement with the trans-Planckian modes, the
spectrum of Hawking radiation is also ill-defined. While the derivation of Hawking
radiation assumes that the free-field approximation is good, the matrix elementsM{m}l
can be interpreted as perturbative corrections to the calculation of the spectrum 〈0|c†

ωcω |0〉
of Hawking radiation by higher-derivative interactions. LargeM{m}l means that Hawking
radiation is largely corrected.

Therefore, assuming Hawking radiation and the uneventful horizon, we cannot avoid
the large matrix elements, leading to the breakdown of the low-energy effective theory. On
the other hand, it is possible that, in a self-consistent model, there is a moderately large
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energy flux around the horizon (so that it is not uneventful but also no trans-Planckian
modes) so that a low-energy effective description is still valid [51]. Alternatively, another
logical possibility is that Hawking radiation stops while the horizon remains free of the
Planckian firewall. More rigorously, what we have shown is the incompatibility between
Hawking radiation and uneventful horizon in the effective-field-theoretic description.

Incidentally, as an effort to resolve the trans-Planckian problem, there have been
proposals of alternative derivations of Hawking radiation which assume non-relativistic
dispersion relations such that the energy is bounded from above to be cis-Planckian [52–54].
They reproduce the same spectrum of Hawking radiation, but this does not completely
resolve the trans-Planckian problem [55] as the wave numbers can still be arbitrarily
large. In the context of this paper, it is reasonable to expect that, since the wave number
is still allowed to go to infinity, there are higher-dimensional operators (which are no
longer required to be Lorentz-invariant) that produce large transition amplitudes, and
the low-energy effective theory still breaks down. While this remains to be rigorously
proven, what we have shown is at least that, for relativistic low-energy effective theories,
Hawking radiation (which necessarily includes trans-Planckian modes) is in conflict with
the assumption of an uneventful horizon.

Notice that one should not simply dismiss quantum modes with ωU > Mp as an
attempt to solve the trans-Planckian problem. There are infinitely many freely falling
frames at different velocities. They are related to one another via a local Lorentz boost

U → U′ =
√

1 + w
1− w

U, V → V′ =
√

1− w
1 + w

V (107)

for a relative velocity w. A constraint like ωU < Mp has no locally invariant meaning, as it
can always be violated for any non-zero frequency after a boost. In contrast, our calculation
is invariant under general coordinate transformations.

Our work distinguishes itself from previous discussions on the trans-Planckian prob-
lem in two clear aspects. First, we focus only on locally Lorentz-invariant quantities,
acknowledging the fact that a trans-Planckian frequency can be cis-Planckian to another
observer. Second, the time-dependence of the geometry (due to the collapsing shell and
the evaporation—including the back-reaction of the vacuum energy–momentum tensor)
is mostly ignored in previous works on the trans-Planckian problem, but it is absolutely
crucial for our conclusion, as explained above in Section 3.3.1.

The choice of a freely falling frame is related to the interpretation of the origin of
the large matrix elements. In our calculations, the origin of the largeness of the matrix
element is the largeness of C−1. Equivalently, according to Equation (73), it is the largeness
of (dU/du)−1 in the saddle point (91) and/or (dV/dv)−1 in the derivative ∂V . Which
one, (dU/du)−1 or (dV/dv)−1, is large? The answer depends on the choice of the freely
falling frame14. A local Lorentz boost Equation (107) changes (dU/du)−1 and (dV/dv)−1

simultaneously, making one bigger and the other smaller.
A large (dU/du)−1 implies a large dominant frequency ωUs (91) of the 1-particle states

|ωU〉 for freely falling observers, and a large (dV/dv)−1 means a large V-derivative of
the areal radius r ' r0(v) (30), i.e., a fast deformation of the background geometry. (The
magnitude of dr/dv is as small asO(`2

p/a2), but dr/dV can be larger if (dV/dv)−1 is large.)
The collision between the outgoing quantum fluctuation |ωU〉a and the ingoing geometric
deformation r0(v) defines a Lorentz invariant energy scale. When this Lorentz invariant
becomes too large, the effective theory breaks down.

4. Discussion and Conclusions

In this work, we showed that Hawking radiation is incompatible with the uneventful
horizon. Assuming the validity of the effective-theoretic derivation of Hawking radiation,
the higher-dimensional operators in the effective action change the time evolution of the
Unruh vacuum in the near-horizon region of the dynamical black hole so that it evolves
into an excited state with many high-energy particles for freely falling observers. The
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uneventful horizon transitions to an eventful horizon (the firewall), and ultimately the
effective theory breaks down.

We emphasize that we have only used the semi-classical Einstein equation and the
conventional formulation of the quantum field theory for the matter field. The only novel
ingredients are (i) the explicit solution of the metric in the near-horizon region and (ii) the
consideration of higher-dimensional operators in the effective theory.

For the first item (i), we used the metric given by Equations (20) and (32) as a solution
to the semi-classical Einstein equation for the energy–momentum tensor (6)–(9) of the un-
eventful horizon. As a result of the negative ingoing energy flux Tvv, the trapping horizon is
time-like [35], with the causal structure of the near-horizon region satisfying Equation (10).
This is crucial for the exponential form of the red-shift factor C(u, v) to lead to the exponen-
tially large transition amplitudes after the matter enters the near-horizon region.

We also emphasize the importance of the dynamical nature of the background ge-
ometry. Had we used the static Schwarzschild solution for the background geometry, the
conformal factor would still have the exponential form, but the matrix elements would
be negligible.

About the item (ii), we considered the quantum effect of the higher-dimensional
operators Ô{m}l (77) for n > 2. These are non-renormalizable operators that are normally
ignored in the low-energy effective theory because they are suppressed by powers of 1/Mp.
However, we found that these operators induce large transition amplitudes related to the
creation of particles from the Unruh vacuum, in contrast with renormalizable operators.
A lot of the high-energy particles are created for freely falling observers, resulting in the
firewall. This invalidates the conditions (6)–(9) for an uneventful horizon.

Note that no local curvature invariants of the dynamical background are found to
be large in the near-horizon region. The high-energy events only arise from the higher-
dimensional terms in the effective action, and their origin is a joint effect of the higher-
derivative interactions and the peculiar geometry of the near-horizon region.

Assuming a persisting Hawking radiation, together with higher-dimensional op-
erators, there is a firewall, and the equivalence principle is violated in the sense that a
freely-falling observer sees particles with high energy. Indeed, the equivalence principle
is in general violated by higher-derivative interactions. This has been shown for classical
electromagnetism [56]. Although the equivalence principle is violated, general covariance,
including the local Lorentz transformation (107), is preserved.

Until now, we have restricted our discussions to the standard application of a generic
low-energy effective theory to the process of black-hole formation and evaporation, without
assuming that there is no information loss. Our calculation shows that the uneventful
horizon and Hawking radiation are incompatible beyond the scrambling time, hence the
conventional model is incompatible with a generic effective theory. However, we have
not yet commented much on how the information is preserved. If one carefully analyzes
the information loss paradox, one finds that it involves two different questions. The
first question is “How can the conventional model based on the low-energy effective theory be
wrong?”. This paper is devoted to answering this question. The second question is “What
is the new mechanism missing in the effective theory that avoids information loss?”. We have
intentionally refrained ourselves from making concrete proposals about the answer to the
second question, because we think it is conceptually important to distinguish these two
questions. Nevertheless, let us briefly comment now on potential resolutions to the 2nd
question below.

If there is a firewall, the trans-Planckian scattering between the firewall and the collaps-
ing matter cannot be ignored. It is possible that, through such trans-Planckian scatterings,
the information of the collapsing matter is transferred into the outgoing particles, and
information is preserved. A priori, this process involves Planckian events that demands a
theory of quantum gravity. However, an interesting proposal was made in Refs. [57,58],
where, remarkably, only low-energy particles are needed to describe this unitary process
through the proposal of the “anti-podal identification”.
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Another possibility is that we abandon the assumption of uneventful horizon (6)–(9)
from the beginning. It is then still possible that a consistent low-energy effective the-
ory describes an evaporating black hole. A self-consistent scenario is perhaps one that
would have no horizon or trapped region, such as the model proposed in Refs. [51,59,60]
(see also [61–67]). It is also recently argued that a consistent quantum theory of grav-
ity should always admit the VECRO [68], which will likely modify the conventional
energy–momentum tensor.

To conclude, we have shown that Hawking radiation and uneventful horizon cannot
coexist with each other over the scrambling time. The low-energy effective theory breaks
down as a result of time evolution from the Unruh vacuum towards the firewall due to
higher-derivative interactions. How information is preserved is still a problem, but it is no
longer a paradox.
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Appendix A. Ingoing Vaidya Metric

We consider the ingoing Vaidya metric as an example to demonstrate the meanings of
the generalized Schwarzschild radii a(u) and ā(v). The ingoing Vaidya metric

ds2 = −
(

1− a0(v)
r

)
dv2 + 2dvdr + r2dΩ2, (A1)

where a0(v) is proportional to the mass parameter of the black hole, is a spherically
symmetric solution to the Einstein equation for the energy–momentum tensor

Tvv =
a′0(v)
κr2 , (A2)

with all other components (Tvr, Trr, Tθθ , etc.) vanishing. For a′0(v) ∼ O(`2
p/a2

0), the energy–
momentum tensor satisfies the uneventful-horizon condition (6)–(9), hence the metric (A1)
is just a special case of the general solution (20), (32) in the near-horizon region.

To put the metric (A1) in the form of Equation (2), we plug r = r(u, v) into the metric
(A1) and demand that it agrees with Equation (2). It is

2(∂ur)dudv +

[
2(∂vr)−

(
1− a0(v)

r

)]
dv2 = −Cdudv, (A3)

which means that

∂ur = −1
2

C, (A4)

∂vr =
1
2

(
1− a0(v)

r

)
. (A5)
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It is then easy to check that the solution of r (33) satisfies both conditions above at the leading
order of the κ-expansion, in which |a′(u)|, |ā′(v)| ∼ O(`2

p/a2)� 1, via the identification

ā(v) = a0(v). (A6)

Therefore, ā(v) can be identified with the Schwarzschild radius a0(v) of the ingoing Vaidya
metric at the leading order.

On the other hand, the parameter a(u) is not directly fixed by the ingoing Vaidya
metric because the form of the metric (2) is invariant under a coordinate transformation
u→ u′ = u′(u). The u-coordinate in the solution (20), (33) has been chosen such that, on
the outer-boundary of the near-horizon region, it agrees with the u coordinate used in the
Schwarzschild solution (3), (4). This is realized in Equation (19), which relates a0(v) to
a(u) there.

Appendix B. Relation between a(u) and ā(v)

Here, we derive the relation (19) between the Schwarzschild radii a(u) and ā(v) on
the outer boundary of the near-horizon region. Take the v-derivative of Equation (5), which
defines the location of the outer boundary of the near-horizon region, we find

∂r
∂u

duout(v)
dv

+
∂r
∂v
− dā

dv
= −

N`2
p

ā2(v)
dā
dv

. (A7)

Use Equations (3)–(5) to estimate ∂r/∂u and ∂r/∂v as

∂r
∂u
' − ∂r

∂v
' −1

2

(
1− a

r

)
' −

N`2
p

2a2 . (A8)

Then, together with Equation (38), the equation above becomes

N
2

(
1− duout(v)

dv

)
+ σ '

Nσ`2
p

a2 , (A9)

which implies that
duout(v)

dv
' 1 +

2σ

N
, (A10)

assuming that N � a2/`2
p.

Next, we take the v-derivative of C(uout(v), v) according to Equation (20);

d
dv

C(uout(v), v) '
[
− 1

2a(uout(v))
duout(v)

dv
+

1
2ā(v)

− ∂vr(uout(v), v)
r(uout(v), v)

]
C(uout(v), v), (A11)

which should agree with the Schwarzschild approximation of the same quantity

d
dv

(
1− a(uout(v))

r(uout(v), v)

)
' d

dv

(
N`2

p

a2(uout(v))

)
∼ O

(
`4

p

a5

)
. (A12)

This agreement at the leading order of the `2
p/a2 expansion means

a(uout(v))
ā(v)

' duout(v)
dv

' 1 +
2σ

N
. (A13)

where we used Equation (A7) and dropped the last term of Equation (A11) as a higher-
order term.
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Appendix C. Order-of-Magnitude of the First Term in Equation (23)

Using Equations (6), (20), and r/a ∼ O(1), the first term in Equation (23) can be
estimated as

−κ

2
C(u, v)

∫ u

u∗
du′

r(u′, v)
C(u′, v)

Tuu(u′, v) ∼ O
(
`2

pC(u, v)
∫ u

u∗
du′ C(u′, v)

1
a3

)
∼ O

(
`2

p

a3 C(u, v)C(u∗, v)
∫ u

u∗
du′ e

−
∫ u′

u∗
du′′

2a(u′′)

)
, (A14)

where we assumed that the range (u− u∗)� O(a3/`2
p) so that the Schwarzschild radius a

remains the same order of magnitude. (This assumption is consistent with the range (11).)
The integral above can then be estimated as

∫ u

u∗
du′ e

−
∫ u′

u∗
du′′

2a(u′′) '
∫ u

u∗
du′ e−

u−u∗
2a . O(a). (A15)

In the evaluation of Equation (23), we have taken u∗ = uout(v) so that (u∗, v) lies
on the outer boundary of the near-horizon region. Then, we can use Equations (3) and
(5) to evaluate C(uout(v), v) ' N`2

p/a2 � 1. Following Equation (A14), the first term in
Equation (23) is estimated as

−κ

2
C(u, v)

∫ u

u∗
du′

r(u′, v)
C(u′, v)

Tuu(u′, v) . O
(
`2

p

a2 C(u, v)C(u∗, v)

)

� O
(
`2

p

a2 C(u, v)

)
. (A16)

On the other hand, the second term in Equation (23) is of O(C). Therefore, the first term is
negligible in comparison.

Appendix D. Calculation ofM{1···1}0
We evaluate M here by using the expression (89) for A{1···1}0:

A{1···1}0 =
∫
V

dUdV r
(

∂V
1
r

)n
eiωU(U−Uh). (A17)

We consider the spacetime region V as shown in Figure 3. Equation (A17) includes all
the contributions from the regions (i)–(iv).

As the areal radius r has different functional forms inside and outside the shell, the
factor ∂V(1/r) appearing in Equation (A17) is of the following form:

∂V
1
r
' −∂Vrin

r2 Θ(Vs(U)−V)− ∂Vrout

r2 Θ(V −Vs(U)), (A18)

where Vs(U) is the V-coordinate of the collapsing thin null shell and rin (rout) the areal
radius inside (outside) the shell. The step function Θ(Vs −V) selects the region inside the
shell, and Θ(V −Vs) that outside the shell.

In the flat space inside a collapsing shell, we have

r = rin(U, V) ≡ (V −U)/2 + ξ, (A19)

where ξ ≡ (Uh −Vh)/2. The value of ξ is fixed by the continuity of r across the thin shell
when it is deep inside the near-horizon region, using Equations (63), (72) and (33).
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According to Equation (A19), ∂Vrin = 1/2. We derive ∂Vrout from Equations (19), (32),
(36), (63), (72) and (73) as

∂Vrout '
(

˙̄a(v) +
1
2

C
)(

dV
dv

)−1
' −

σ`2
p

ā

(
2

V −Vh

)(
1− (Uh −U)(V −Vh)

8σ`2
p

)
(A20)

in the near-horizon region. Using Equation (72), we see that V −Vh = 2a on the shell at
v = vs. On the other hand, Uh −U becomes arbitrarily small deep inside the near-horizon
region.

The step functions in Equation (A18) divide the integral (A17) into two parts:

A{1···1}0 = A(inside)
{1···1}0 +A

(outside)
{1···1}0 . (A21)

A(inside)
{1···1}0 is the contribution from the region (iv), and A(outside)

{1···1}0 is that from the regions (i)
and (ii). Note that there is no contribution from (iii) due to the absence of δ(V − Vs) in
Equation (A18).

Before evaluating the contributions inside and outside the collapsing shell to the
transition amplitude, we note that the spacetime is divided into two parts here as A(inside)

{1···1}0

and A(outside)
{1···1}0 by a physical object—the null shell. This is in contrast with the calculation

of matrix elements in which the spacetime is divided into two parts by the event horizon.
Since the event horizon has no local physical meaning, it was found in Ref. [49] that the
contributions of the two parts of the spacetime cancel to a large extent in the calculation of
certain matrix elements.

On the other hand, in the near-horizon region, it is unlikely to have generic cancellation
between A(inside)

{1···1}0 and A(outside)
{1···1}0 because only the region outside the shell depends on the

mass. As we will see below, the large difference between ∂Vrin and ∂Vrout across the null
shell in the near-horizon region leads to a significant contribution to the amplitudeA{1···1}0.

To define a complete basis of functions in this region, we impose the periodic boundary
conditions in T for convenience (T is defined in Equation (95)). The frequency ωU is thus
quantized as

ωU ∈
2πZ

T1 − T0
. (A22)

The integral over V can be easily carried out using the following formula:

∫ x1

x0

dx f (x)eiωU x ' f (x1) eiωU x1 − f (x0) eiωU x0

iωU
, (A23)

where we assumed that ∣∣∣∣ f ′′(x)
f ′(x)

∣∣∣∣, ∣∣∣∣ f ′′′(x)
f ′(x)

∣∣∣∣1/2

, · · · � ωU . (A24)

This will be a good approximation because the integral over ωU will be dominated by a
trans-Planckian value ∼ ω(dU/du)−1 with ω ∼ 1/a (82). We will apply this formula (A23)
to integrals over the variables V and T below.

The shell is collapsing at the speed of light at V = Vs, with the areal radius

r = Rs(T) ≡ Vs − T + ξ, (A25)
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assuming that Rs(T) ∈ (r0, r1) for T ∈ (T0, T1). Now, we evaluate Ainside using Equa-
tions (A17), (A18), (A19) and (A23), we find

A(inside)
{1···1}0 = 2

∫ T1

T0

dT
∫ Vs

T+r0−ξ
dV r

(
−1
2r2

)n
eiωU(2T−V−Uh)

' 2
(
−1
2

)n ∫ T1

T0

dT
1
−iωU

[
1

R2n−1
s (T)

eiωU(2T−Vs−Uh) − 1
r2n−1

0

eiωU(T−r0−Uh+ξ)

]
.

Note that the 2nd term in the integral on the right-hand side has no contribution due to the
condition (A22). Hence, using Equations (A22) and (A23) again, we obtain

A(inside)
{1···1}0 ' 2

(
−1
2

)n 1
2ω2

U

[
1

R2n−1
s (T1)

− 1
R2n−1

s (T0)

]
eiωU(2T1−Vs−Uh)

'
(
−1
2

)n 1
ω2

U

(2n− 1)
R2n

s (T0)
(T1 − T0) eiωU(2T1−Vs−Uh)

∼
(
−1
2

)n (2n− 1)
a2n

(T1 − T0)

ω2
U

eiωU(2T1−Vs−Uh), (A26)

where, in the 2nd last line, we used

R−(2n−1)
s (T1)− R−(2n−1)

s (T0)

T1 − T0
≈ dR−2n+1

s
dT

∣∣∣∣
T0

= − (2n− 1)
R2n

s (T0)
(A27)

for T1 − T0 � a, and, in the last line, we have used Rs(T0) a as the typical order of
magnitude on the shell.

Similarly, letting V1(T) denote the upper bound of the V-integration corresponding to
r = r1 � a, we have, for n > 2,

A(outside)
{1···1}0 ' 2

∫ T1

T0

dT
∫ V1(T)

Vs
dV r

(
−∂Vr

r2

)n
eiωU(2T−V−Uh)

∼ 2
∫ T1

T0

dT
ā

iωU

(
−

σ`2
p

ā3

)n(
2

Vs −Vh

)n
(

1− n(Uh − 2T + Vs)(Vs −Vh)

8σ`2
p

)
eiωU(2T−Vs−Uh),

where Rs is replaced by ā as an order-of-magnitude estimate, and we have used Equa-
tion (A20) (and the Taylor expansion of its n-th power) as well as Equation (A23). Here,
the spacetime at V = V1(T) is far away the near-horizon region, and the contribution is
negligible due to r = r1 � a compared to that from V = Vs. The spacetime at V = Vs is
inside the near-horizon region, and Equation (A20) has been used. Using Equations (A22)
and (A23) again for the integration over T, we find

A(outside)
{1···1}0

∼ − ā
ω2

U

(
−

σ`2
p

ā3

)n(
2

Vs −Vh

)n[(
1− n(Uh − 2T + Vs)(Vs −Vh)

8σ`2
p

)
eiωU(2T−Vs−Uh)

]T1

T0

∼ (−1)n−1 nσn−1`
2(n−1)
p

2ā4n−2
(T1 − T0)

ω2
U

eiωU(2T1−Vs−Uh), (A28)

where we used Vs −Vh = 2a according to Equation (72)15.
Thus, A(outside)

{1···1}0 is negligible in comparison with A(inside)
{1···1}0. The origin of this hierarchy

is the large difference in ∂Vr inside and outside the shell mentioned above. If the shell is not
in the near-horizon region, but far away from the horizon (r � a), A(outside)

{1···1}0 and A(inside)
{1···1}0
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would be of the same order of magnitude and have the possibility of a large cancellation
between them.

Plugging A{1···1}0 back into Equation (87), the integral
∫

dωU should be replaced by
the sum over ωU = 2πm/(T1 − T0) with m ∈ Z+ as∫ ∞

0
dωU ωn−3−i2aω

U e−iωU(Uh−Us)

→
∞

∑
m=1

2π

(T1 − T0)

(
2πm

T1 − T0

)n−3−i2aω

e−i 2πm
T1−T0

(Uh−Us)

=

(
2π

T1 − T0

)n−2−i2aω

PolyLog(−(n− 3− i2aω), e−i 2π
T1−T0

(Uh−Us))

∼ ζ(−(n− 3− i2aω))Γ(n− 2− i2aω)(Uh −Us)
−(n−2−i2aω), (A29)

where Us ≡ 2T1 − V is the U-coordinate of the collapsing shell at T1. In the expression
above, we have assumed that (T1 − T0)� (Uh −Us) = 2aC(us, vs). This is consistent with
the consideration of a scrambling time for a distant observer.

Using the identity

Γ(ib)Γ(−ib) =
π

b sinh(πb)
(A30)

and

C(us, vs) =
dU
du

(us) '
Uh −Us

2a
, (A31)

where us is the u-coordinate of the point (T = T1, r = Rs(T1)), the transition amplitude
(87) is found to be

M{1···1}0

∼
4(2n− 1)λ{1···1}0aωΓ(i2aω)Γ(n− 2− i2aω)e−πaωζ(−(n− 3− i2aω))`3n−3

p

a2n
(T1 − T0)

(Uh −Us)n−2

∼
2π(2n− 1)(n− 3)!λ{1···1}0e−πaωζ(−(n− 3− i2aω))`3n−3

p

2n−2 sinh(2πaω)a3n−3
(T1 − T0)

a
C−(n−2)(us, vs) (A32)

up to a factor of O(1).
One might suspect that the origin of the large amplitude is the δ-function energy

density of the thin shell. A shell with a smooth energy density could in principle lead to a
smaller A(inside)

{1···1}0, but, as mentioned above, even the contribution of the vacuum energy is
sufficient to induce a large amplitude within the scrambling time. The conclusion is robust
because of the exponential behavior of C(u, v).

Notes
1 Other outstanding questions about the paradox include whether Hawking radiation is thermal, and how its entanglement

entropy should be computed. There is significant recent progress in these directions [8–15].
2 A “high-energy event” refers to a physical observable at an energy scale higher than the cutoff energy of the low-energy effective

theory.
3 There is no clear inconsistency in a unitary evaporation without high-energy events [16] if there are no small particles like nuclei.

However, we will show below that a firewall still arises under general assumptions.
4 See, e.g., Figure 1 in Ref. [30]—our near-horizon region is denoted region III in this paper (excluding the part when the black hole

is microscopic). See also Figure 2 in Ref. [31].
5 The solution is consistent with previous studies on special cases [28,36–39].
6 It is equally natural to use the condition r(u, vout(u))− a(u) = N`2

p/a(u) instead of Equation (5). This different choice would not
make any essential difference in the discussion below.
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7 Using Equation (54) below, we obtain 〈TUU〉 ' C−2〈Tuu〉, where U is the light-cone coordinate suitable for freely falling observers.
〈TUU〉 would become very large for C � 1 unless 〈Tuu〉 ∝ C2 as in Equation (6).

8 If the collapsing shell is not thin, it only introduces negligible corrections to the relation between U and u in the near-horizon
region.

9 See, for example, Ref. [46].
10 There may be other factors of C to a positive power in the calculation of the amplitude, but we will see that, generically, with a

sufficiently large order of derivatives, the amplitude involves a negative power of C.
11 It was pointed out in Ref. [49] that a large matrix element is obtained (for an operator without higher derivatives) when only the

space outside the event horizon is integrated over, but it is merely an artifact of the boundary condition at the event horizon, and
this large contribution is cancelled by the space inside the event horizon. Here, we take V to cover the four different regions
(i)–(iv) to rule out the possibility that the matrix element becomes large due to an artificial boundary condition.

12 For large n, the amplitude is further enhanced by other factors in Equation (96).
13 The potential cancellation between the contribution from the time-dependent matter distribution and that from the time-

dependent vacuum geometry generically requires fine tuning (see Appendix D for more discussion).
14 For a freely falling observer comoving with the collapsing matter, the v-coordinate of the observer in this frame is roughly

constant. The (U, V) coordinates suitable for the observer are given by Equations (63) and (72), and the transition amplitude
increases with the retarded time u mostly due to the increase in (dU/du)−1 rather than that in (dV/dv)−1.

15 We can use Equation (4) to derive ∂Vrout '
(

dV
dv

)−1
∂r
∂v '

1
2
(
1− a

r
)
, where Equation (72) is used to deduce dV/dv = 1 at v = vs.
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