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Abstract: We numerically investigate the propagation of plane gravitational waves in the form
of an initial boundary value problem with de Sitter initial data. The full non-linear Einstein equations
with positive cosmological constant λ are written in the Friedrich–Nagy gauge which yields a well-
posed system. The propagation of a single wave and the collision of two with colinear polarization
are studied and contrasted with their Minkowskian analogues. Unlike with λ = 0, critical behaviours
are found with λ > 0 and are based on the relationship between the wave profile and λ. We find
that choosing boundary data close to one of these bifurcations results in a “false” steady state which
violates the constraints. Simulations containing (approximate) impulsive wave profiles are run
and general features are discussed. Analytic results of Tsamis and Woodard, which describe how
gravitational waves could affect an expansion rate at an initial instance of time, are explored and
generalized to the entire space–time. Finally we put forward boundary conditions that, at least locally,
slow down the expansion considerably for a time.

Keywords: gravitational plane waves; expanding universe; quantum back-reaction on inflation;
numerical evolution

1. Introduction

Space–times containing plane gravitational waves have seen extensive analytical
study over the years and many closed form solutions, which necessarily assume certain
symmetries or wave profiles, now exist and their properties are known (see [1] for an ex-
cellent overview). While there are a number of analytic solutions for the propagation and
collision of waves assuming a vanishing cosmological constant [2–7], the non-vanishing
cosmological constant analogues pale in number, and there are no closed form solutions
for colliding waves in this case.

Penrose’s cut-and-paste method [6,8], which cuts Minkowski space–time along a null
hyperplane, shunts one half along the same surface and then pastes the two halves back
together gives rise to a space–time with one impulsive gravitational wave (i.e., with a Dirac
delta function wave profile). This has been generalized to non-zero, constant curvature
backgrounds [9–14] where the wave fronts are topologically spherical for λ > 0 and
hyperboloidal for λ < 0. There do not exist, however, closed form solutions to the full
non-linear Einstein equations with λ 6= 0 that contain gravitational waves with plane
symmetric wave fronts.

De Sitter space–time, the unique solution to the Einstein vacuum equations with
constant positive scalar curvature, can be thought of as a model of a universe which is
expanding at an accelerated rate from the positive λ contribution. Quantum gravitational
back-reaction on inflation [15] allows for the creation of cosmic scale gravitational radiation,
where, if one does not account for their creation, can be modelled completely classically
through gravitational perturbations of de Sitter space–time [16,17]. It is theorized that
such a background of radiation may weaken the expansion and even halt it completely.
Analytical calculations have been done to explore this hypothesis by studying how an ex-
pansion parameter and its time derivative could be manipulated through such a field at
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an initial instance of time. The question of what happens away from this surface remains
unanswered, and attempting to answer this in the full non-linear regime analytically would
be very difficult, if not impossible.

In this paper, we numerically evolve the Einstein vacuum equations with positive
cosmological constant in plane symmetry with the goal of shedding light on the above
topics. To do so, we implement an initial boundary value problem following Friedrich
and Nagy [18], which is wellposed, and allows us to generate gravitational perturbations
through boundary conditions rather than solving the constraints. This framework has
already been implemented and numerically validated in previous work [19] for λ = 0.
We generalize this to an arbitrary cosmological constant as well as the inclusion of matter terms
through components of Φab = −(1/2)Rab + (1/8)Rgab and scalar curvature Λ = (1/24)R
for completeness. We follow the conventions of Penrose and Rindler [20,21] throughout.

2. Review of Plane Gravitational Waves with λ = 0

Here we briefly present the space–times of a single impulsive gravitational plane
wave and the collision of two, which are colinearly polarized, with λ = 0. This can be
accomplished by summarizing the Khan–Penrose solution [5], which describes the latter.

Figure 1 showcases the Khan–Penrose solution in null coordinates u, v, where the two
spatial dimensions that span the planes are suppressed, so that each point represents
a plane. Null curves are represented by lines with slope ±1 and the impulsive waves are
given by Ψ0 = δ(v), Ψ4 = δ(u), where δ is the Dirac delta function, so their path is given
by the dashed lines. These lines split the space–time into four regions. The lower region is
Minkowski space–time, the two side regions are space–times containing one propagating
wave only, and the top region is the interaction region after scattering. All four regions can
be represented by the single line element

ds2 =
2(1− p2 − q2)3/2√

1− p2
√

1− q2(pq +
√

1− p2
√

1− q2)2
dudv

−(1− p2 − q2)
(√1− p2 + q√

1− p2 − q

)(√1− q2 + p√
1− q2 − p

)
dx2

−(1− p2 − q2)
(√1− p2 − q√

1− p2 + q

)(√1− q2 − p√
1− q2 + p

)
dy2,

(1)

where p := u Θ(u), q := v Θ(v) and Θ is the Heaviside step function. The interaction
region contains a spacelike curvature singularity on the surface u2 + v2 = 1 and can be seen
as such due to the divergence of, for example, the Weyl invariant I. The region containing
only the Ψ0 wave is where u < 0 and v ≥ 0 and the line element Equation (1) reduces to

ds2 = 2dudv− (1 + q)2dx2 − (1− q)2dy2. (2)

This region and its Ψ4 counterpart contain a fold singularity along v = 1 resp. u = 1.
As Equation (2) can be transformed to Minkowski space–time by a coordinate transfor-
mation, one would think this is merely a coordinate singularity. However looking closer
one sees that this is not the case as there does not exist a C1 extension from this region
to v = 1 resp. u = 1 [22]. Further, it is found that a certain projection of the u = constant,
v = constant surfaces into Minkowski space in standard null coordinates converge at
v = 1. This has the consequence, which is discussed in more detail in Section 5.1, that
the spin-coefficients ρ and ρ′, which when positive, represent the converging of a null
geodesic congruence along la and na, respectively, diverge to positive infinity, showing
an ever strengthening contraction of null rays in both null directions.
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Figure 1. The structure of the Khan–Penrose solution.

3. The Equations
3.1. General Setup

We write the Einstein equations in the form of an IBVP following Friedrich and Nagy [18]
with the additional imposition of a pair of commuting space-like Killing vectors that represent
our plane symmetry. Further, we include matter coming from an energy momentum tensor
Tab. A detailed explanation of this process in vacuum with vanishing cosmological constant
has been laid out in [19]. We only give a brief summary here, emphasising the differences
when including a non-vanishing cosmological constant and matter.

The Einstein equations take the form

Φab + (3Λ− 1
2

λ)gab = 4πTab, (3)

where
Rab = 6Λgab − 2Φab, (4)

and Λ and Φab correspond to the trace and tracefree part of the Ricci tensor Φab and λ is
the cosmological constant.

To start setting up our gauge, we first assume our space–time can be foliated by planes.
We then define the coordinates t, z for time and the direction of wave propagation, re-
spectively, both being constant within the planes. Using the holonomic basis we define
the null tetrad

la =
1√
2

(
(1 + B)(∂t)

a + A(∂z)
a
)

, (5)

na =
1√
2

(
(1− B)(∂t)

a − A(∂z)
a
)

, (6)

ma = ξ(∂x)
a + η(∂y)

a, (7)

where A, B, ξ, η are functions of (t, z) only. This leads to the metric

g = dt2 − 2
B
A

dtdz− 1− B2

A2 dz2 +
2

(ξη̄ − ξ̄η)2 (η dx− ξ dy)
(
η̄ dx− ξ̄ dy

)
. (8)

To obtain equations for the metric functions and find algebraic relations for the spin-
coefficients (due to the plane symmetry assumption) we apply the commutator equations
(see [20] Equation (4.11.11)) to the coordinates. To obtain equations for the spin-coefficients
we use the curvature equations (see [20] Equation (4.11.12)). To obtain equations and alge-
braic relations for the components of the Weyl tensor Cabcd, Φab and Λ, we use the equations
coming from the Bianchi identity (see [20] Equations (4.12.36–4.12.41)).
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The algebraic conditions are found to be

ρ = ρ̄, ρ′ = ρ̄′, κ = κ′ = α = β = τ = τ′ = 0, (9)

Ψ1 = Ψ3 = 0, Ψ2 = σσ′ − ρρ′ + Λ + Φ11, (10)

Φ01 = Φ10 = Φ12 = Φ21 = 0. (11)

Following Friedrich and Nagy, we set

ε =
1
2
(ρ− ρ′ + F− µ), γ =

1
2
(ρ− ρ′ + F + µ), (12)

where the free function F = χ + i f is a freely specifiable gauge source function and
µ is taken as a system variable. χ is the mean extrinsic curvature of the z = constant
hypersurfaces and f determines the rotation of the ma frame vector along (∂t)a.

The geometrical interpretation of the new variable µ can be explained in the gauge
F = ρ′ − ρ, which is the gauge used for most of our results and turns out to be the Gauß
gauge. While predisposed to develop caustics, an expanding universe, which we consider
here, acts to counter this. The fact we are in the Gauß gauge can be seen immediately by
noticing that the only non-vanishing component of the acceleration of the unit time-like
vector (∂t)a along itself is proportional to

γ + γ̄ + ε + ε̄ = F + F̄ + 2(ρ− ρ′) = 0 (13)

for this choice of F. The “acceleration” za∇azb of the space-like unit vector za := A(∂z)a

along itself is proportional to µ + µ̄, which gives an interpretation for the real part of µ.
The imaginary part just corresponds to a phase change of ma.

It is found that the equations for η, ξ decouple from the others, and as they are
superfluous to the results subsequently presented we do not include them in the system.

The evolution equations are
√

2∂t A = (µ + µ̄) A, (14a)
√

2∂tB = (2ρ− 2ρ′ + F + F̄) + (µ + µ̄)B, (14b)
√

2∂tρ = 3ρ2 + σσ̄ + ρ(F + F̄) + Φ00 −Φ11 − 3Λ, (14c)
√

2∂tρ
′ = 3ρ′2 + σ′σ̄′ − ρ′(F + F̄)−Φ11 + Φ22 − 3Λ, (14d)

√
2∂tσ = 4ρσ− ρ′σ + ρσ̄′ + σ(3F− F̄) + Ψ0, (14e)

√
2∂tσ

′ = 4ρ′σ′ − ρσ′ + ρ′σ̄− σ′(3F− F̄) + Ψ4, (14f)
√

2∂tµ = µ2 + µµ̄− 3(ρ− ρ′)2 + (µ + µ̄)(ρ + ρ′)− σσ̄− σ′σ̄′ + 2σσ′

− (ρ− ρ′)(F̄ + 3F)− F2 − FF̄−
√

2A∂zF−
√

2B∂tF

−Φ00 + 2Φ11 −Φ22 − 6Λ, (14g)

(1− B)∂tΨ0 − A∂zΨ0 =
√

2
(
(2ρ− ρ′ + 2F + 2µ)Ψ0 + σ(3Ψ2 + 2Φ11) + σ̄′Φ00

)
, (14h)

(1 + B)∂tΨ4 + A∂zΨ4 =
√

2
(
(2ρ′ − ρ− 2F + 2µ)Ψ4 + σ′(3Ψ2 + 2Φ11) + σ̄Φ22

)
, (14i)
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while the constraints take the form

0 = C1 :=
√

2A∂zρ− (1− 3B)ρ2 − (1− B)σσ̄ + ρ(µ + µ̄ + 2ρ′)

+ ρB(F + F̄)− (1− B)Φ00 − (1 + B)Φ11 − 3(1 + B)Λ, (15a)

0 = C2 :=
√

2A∂zρ′ + (1 + 3B)ρ′2 + (1 + B)σ′σ̄′ − ρ′(µ + µ̄ + 2ρ)

− ρ′B(F + F̄) = (1− B)Φ11 + (1 + B)Φ22 + 3(1− B)Λ, (15b)

0 = C3 :=
√

2A∂zσ + (1 + B)ρσ̄′ − 2(1− 2B)ρσ + (1− B)ρ′σ

+ σ(3µ− µ̄) + Bσ(3F− F̄)− (1− B)Ψ0, (15c)

0 = C4 :=
√

2A∂zσ′ − (1− B)ρ′σ̄ + 2(1 + 2B)ρ′σ′ − (1 + B)ρσ′

− σ′(3µ− µ̄)− Bσ′(3F− F̄) + (1 + B)Ψ4. (15d)

To supplement the above, the divergence free condition on the energy-momentum tensor
(equivalently the Bianchi identity, which are given in [20], see Equation 4.12.40) gives

(1− B)∂tΦ00 + (1 + B)(∂tΦ11 + 3∂tΛ)

=
√

2(2ρ + µ + µ̄ + F + F̄)Φ00 + 4
√

2ρΦ11

+ A(∂zΦ00 − ∂zΦ11 − 3∂zΛ), (16a)

(1 + B)∂tΦ22 + (1− B)(∂tΦ11 + 3∂tΛ)

=
√

2(2ρ′ + µ + µ̄− F− F̄)Φ22 + 4
√

2ρ′Φ11

+ A(∂zΦ11 − ∂zΦ22 + 3∂zΛ). (16b)

Considering only the vacuum equations with cosmological constant, i.e., Φab = 0,
Equations (16a) and (16b) are identically satisfied and Equations (14a)–(14i),
Equations (15a)–(15d) comprise a closed system of equations, where the evolution equa-
tions are symmetric hyperbolic and the constraints propagate. When matter terms are
present and one takes into account Equations (16a) and (16b), it is still found that the above
system is symmetric hyperbolic and the constraints propagate. The resulting subsidiary
system is

√
2∂tC1 = (6ρ + F + F̄)C1 + σ̄C3 + σC3, (17a)
√

2∂tC2 = (6ρ′ − F− F̄)C2 + σ̄′C4 + σ′C4, (17b)
√

2∂tC3 = (4σ + σ̄′)C1 − σC2 + (4ρ− ρ′ + 3F− F̄)C3 + ρC4, (17c)
√

2∂tC4 = (4σ′ + σ̄)C2 − σ′C1 + (4ρ′ − ρ− 3F + F̄)C4 + ρ′C3. (17d)

In order to close the system, one must in general couple it to equations describing
the evolution of matter. There is a lot of freedom in this choice and it depends very much on
the physical situation one wants to model. In general this choice will alter the principal part
and, as a consequence, symmetric hyperbolicity and constraint propagation could be lost.

Two useful quantities are now introduced for monitoring the behaviour of the evolved
space–time. First we note that the extrinsic curvature of our t = constant surfaces is
Kab = −hc

ahd
b∇ctd, where hab = gab − tatb is the induced three-metric on the surfaces and

ta = (1− B2)−1/2(dt)a is the unit conormal. We then define a local expansion parameter
proportional to the mean extrinsic curvature Ka

a as

H := −1
3

Ka
a =

√
2(B2 − 1)(B(F + F̄) + µ + µ̄ + 2(ρ + ρ′))− 2A∂zB

6(1− B2)3/2 , (18)

which is used to monitor the expansion rate of the space–time along the time coordinate
vector field. The Weyl scalar curvature invariants are useful tools for identifying whether
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a singularity is a curvature singularity. In the absence of matter and with our plane
symmetry assumptions, the real part of CabcdCabcd is the Weyl scalar curvature invariant

I := 2Ψ0Ψ4 + 6Ψ2
2. (19)

We define the wave profile

p(x) =

32a sin(bx)8 0 < x <
π

b
0 otherwise

, (20)

where b = 35π/4 so that the area of the profile is a =
∫ π/b

0 p(x)dx and the amplitude is
32a. We take a as a measure of the strength of the wave. The boundary conditions for Ψ0
and Ψ4 will make use of p(x) and are chosen in the subsequent sections.

3.2. De-Sitter Space–Time

We investigate a variety of cases of plane gravitational waves propagating in de Sitter
space–time (dS). The unperturbed metric in inflationary coordinates can be written [23]

ds2 = dt2 − A−2
0 e2Ht(dx2 + dy2 + dz2), H2 = λ/3, (21)

which covers half of the space–time and matches our setup for plane symmetry. This
represents an expanding universe of the FLRW type. The appearance of A0 := A(0, z) is
used to scale the spatial directions and will be useful later. It is useful to write dS in terms
of null coordinates as

ds2 = e2Ht
(

2du dv− (dx2 + dy2)
)

(22)

= 2
(√

2− H(u + v +
√

2)
)−2(

2du dv− (dx2 + dy2)
)

, (23)

with transformations

u =
1√
2
[H−1(1− e−Ht)− A−1

0 (1 + z)], (24)

v =
1√
2
[H−1(1− e−Ht)− A−1

0 (1− z)]. (25)

The Minkowskian analogue of the above can be found in the limit H → 0.
In our formalism Equation (21) gives the initial data

A = A0, ρ = ρ′ = µ = ±
√

λ/6, (26)

with the remaining system variables, gauge quantities and matter terms vanishing. We will
use the negative non-vanishing initial data, corresponding to a future expanding universe,
and set Φab = 0.

We incorporate into the system null coordinates u(t, z), v(t, z) which satisfy la∇au = 0
and na∇av = 0, respectively. Their initial and boundary data are fixed by
Equations (24) and (25) so that when no wave is present we reproduce the same null
coordinates as in Equation (21) when F is chosen appropriately. The above expressions
for u, v were chosen so that initially u(0,−1) = 0 = v(0, 1). Having u, v available allows
us to define the semi-invariant coordinates (T, Z) by T :=

√
2(v + u) and Z :=

√
2(v− u)

with which we can produce Penrose–Carter diagrams, i.e., diagrams where null curves
are lines with slope ±1. When in exact dS, as t → ∞ we obtain T → 2(H−1 − A−1

0 ) and
Z → 2zA−1

0 .
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4. Numerical Setup

We utilize the Python package COFFEE [24], which contains all the necessary func-
tionality to perform a numerical evolution using the method of lines. We discretize the z-
direction into equi-distant points in the interval [−1,1] and approximate the z-derivative
using Strand’s finite difference stencil [25] which is fourth order in the interior, third order
on the boundary and has the summation-by-parts property [26]. We march in time using
the explicit fourth order Runge-Kutta scheme with a timestep determined by ∆t = c ∆z,
where ∆z is the step size in the z-direction and c is the CFL constant. Unless otherwise
stated we take c = 0.5. Boundary conditions are imposed using the Simultaneous Approxi-
mation Term (SAT) method [27] with τ = 1. This particular selection of numerical methods
within COFFEE has proven to be numerically sound for a variety of different systems (see
for example [19,28]). In the subsequent situations, all constraints are verified to converge at
the expected order everywhere.

5. A Single Wave
5.1. An Analytical View

Before analyzing the numerical results, it is worthwhile to perform a small analytic study
of the propagation of one wave when either Minkowski or de Sitter initial data are taken.

Firstly, the evolution equations for ρ and σ (Equations (14c) and (14e)), which have
a close relationship to Sachs’ optical equations, give with vanishing Φab

√
2∂tρ = ρ(F + F̄) + 3ρ2 + σσ̄− 3λ, (27)
√

2∂tσ = σ(3F− F̄ + 4ρ− ρ′) + ρσ̄′ + Ψ0. (28)

For the case of Minkowski initial data, which is obtained by setting λ = 0 in the de
Sitter initial data, and where we choose F(t, z) = 0 to extend the exact gauge of dS to the
whole space–time, we find the following: The introduction of a non-zero Ψ0 on the right
boundary causes σ to become non-zero there. This in turn causes ρ to become non-zero.
As ∂tρ > 0, we find that ρ will inevitably diverge. Further, one can see by looking at
the evolution equations for the primed spin-coefficients, all primed spin-coefficients stay
zero throughout the space–time, due to the forever zero Ψ4. Further, this implies that
Ψ2 = 0 everywhere and thus the Weyl invariant I given by Equation (19) also remains zero
everywhere. These are well known result for propagation of a single plane gravitational
wave in Minkowski space–time, see [1] for an overview (in a different gauge).

The case of expanding de Sitter initial data, with non-vanishing λ and again choosing
F(t, z) = 0, is quite different. A non-zero Ψ0 leads to a non-zero σ as before, but now
a non-zero σ leads to a non-zero σ′ as well as a non-zero ρ. This non-zero σ′ then makes ρ′

and even Ψ4 non-zero, implying the non-linear back-reaction effect is realized. This in turn
leads to a non-zero Weyl invariant. The added complexity of the non-zero λ, which couples
all system variables together in a complicated, non-linear way, stops us from concluding
statements analogous to the Minkowski case as above, emphasising the need for numerics.

5.2. Numerical Analysis

We now fix λ = 3 and choose the boundary conditions to be

Ψ4(t,−1) = 0, Ψ0(t, 1) = p(v(t)), (29)

where p(v) has the area of the wave packet as a parameter, and the change of area is
realized by a change in amplitude. We perform evolutions with wave areas a taking
the values 1.67, 1.6765, 1.6769105, 1.6769106, 1.676912, 1.67695, 1.68 for reasons that will
become apparent shortly. In all these cases, once the wave has entered and subsequently
left the computational domain, the space–time is fully excited in that all system variables
have evolved away from their original values.
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For the case of four smallest values of a we find that the space–time asymptotes back
to the de Sitter space–time everywhere. This indicates that the wave has been wiped
out by the accelerated expansion, already in stark contrast to the Minkowskian analogue
where a future singularity is guaranteed. Figure 2 shows a contour plot of Ψ0 andH over
the entire space–time. It is clear thatH decreases due to the addition of the gravitational
wave, but then settles back down to its original value of one. The only remaining effect
after the wave has passed is the time delay between different regions of space–time, such
as the left and right boundaries.

(a) Ψ0 (b)H

Figure 2. Contour plots of Ψ0 andH plotted with respect to the semi-invariant T and Z coordinates where a = 1.67. The
dashed line represents the last timeslice and the crossed lines are u = 0 and v = 0.

To see how the representation of the null directions la and na in the coordinate basis
change during the simulation, we look at the metric functions A and B. It is seen that A→ 0
as in the exact de Sitter case, representing the exponential expansion, and although initially
B increases to some value less than one, it asymptotes back to zero. Notably, the rate at
which A → 0 and B → 0 causes the dtdz metric coefficient to asymptote to a constant
non-zero value and the dz2 metric coefficient to diverge to positive infinity. The fact that A
and B never actually reach zero implies our gauge remains regular.

For the four largest values of a we find that the simulation crashes after some time due
to A→ 0 and B→ 1 in finite time on the right boundary, the same as in the Minkowskian
case. Figure 3 shows how this affects the relevant frame vectors there, where we note
the relationships

ta := ∂a
t =

1√
2

(
la + na

)
, za := A∂a

z =
1√
2

(
(1− B)la − (1 + B)na

)
, (30)

where ta and za are normalised. The left diagram is with respect to the {la, na} null
basis defined in the tangent space and exemplifies the fact that ta = ∂a

t and is always
normalised to one. It also showcases that the evolution of za can cause trouble. This
can be seen by noting that as B → 1 the z = constant surfaces become characteristic.
The right diagram looks at another potential issue, this time in our (T, Z)-coordinates.
In this case ta is no longer given by a vertical line, but la and na remain as lines with slope
±1 from the definition of u and v. The “shrinking” of the na and the “growing” of la is due
to both coefficients of na in the coordinate basis approaching zero, and enforces that ta is
proportional to the sum of the two and that their normalisation conditions are maintained.
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Figure 3. Two diagrams showcasing how the vectors la, na, ∂a
t and ∂a

z behave on the right boundary
when a future singularity occurs.

This behaviour affects the expansion rate H and we find it decreases and actually
diverges to −∞ on the right boundary, as shown in Figure 4.

(a) I (b)H

Figure 4. Contour plots of I andH plotted with respect to the semi-invariant T and Z coordinates where a = 3. The dashed
line represents the last timeslice.

The features discussed above indicate that for these larger wave areas, the expansion
rate of the space–time is not strong enough to overcome the contractivity of the wave, and
a future singularity is formed. In the Minkowski case the analogue is a fold singularity
as discussed in Section 5.1. In our de Sitter case, Figures 4 and 5 show that the Weyl invariant
I is diverging on the right boundary (and similarly close to the right boundary), unlike
the Minkowski case, and adds emphasis to the classification of a curvature singularity.

Figure 5. The Weyl invariant I along the right boundary with a = 3 for multiple z-resolutions which
all fall within the same drawn curve.
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A final note is that changing the polarization of the wave, implemented by replacing
p(x) with eiφ p(x) for some real constant φ, does not affect the expansion rate or Weyl
invariant as seen in Figures 2, 4 and 5.

5.3. Critical Behaviour

An obvious question has been raised: What is the critical behaviour when the ingoing
wave has the critical wave area ac that separates these two distinct futures? One can
obtain ac by using a simple binary search. For λ = 3 this is found to be 1.67691055 <
ac < 1.67691056.

Figure 6 shows ρ and σ along the right boundary for various wave areas close to ac. It is
clear that as a→ ac an interval appears where ρ and σ are constant in time and the interval
becomes longer the closer a is to ac. This indicates that a special critical behaviour may exist.

(a) ρ (b) σ

Figure 6. Plots of ρ and σ along the right boundary for different wave areas close to ac. The curves
corresponding to the first four values of a from smallest to largest are the curves asymptoting back
to their initial values from left to right. The curves corresponding to the larger four values of a from
smallest to largest are the curves which diverge from right to left.

All system variables except A become constant in a finite t-interval on the boundary
which becomes larger the closer to ac we take our wave area, and µ, ρ, ρ′, σ, σ′ take on
values different than their initial ones. This implies a steady state solution, different from
the de Sitter space–time. It turns out we can solve for unconstrained steady state solutions
(but with A a function of time) algebraically by setting all time derivatives except A to zero
in our evolution system, as well as taking Ψ0 = Ψ4 = F = 0. One of these solutions is
found to match the values we see numerically. However, this exact solution does not satisfy
the constraint equations, and is thus a “false” steady state. This can be seen explicitly during
our evolution, by noticing that the constraints do not converge and are wildy violated
during this steady state period, see Figure 7. This is a consequence of our free evolution
scheme, which by definition, is “free” from enforcing the constraints to be satisfied. It is
found that the only free steady state solution (with A varying in time) that also satisfies
the constraints in the case of a positive cosmological constant with Ψ0 = Ψ4 = F = 0 is
the de Sitter space–time.

The fact that no critical behaviour exists for this wave profile ansatz will be important
when attempting to find a solution where the expansion is halted with gravitational
radiation, and will be discussed in detail in Section 7.
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Figure 7. A convergence test for the constraint C1 along the right boundary for the case of a single
wave where a = 1.6769105 and λ = 3.

5.4. An Impulsive Wave

Many analytical solutions describing gravitational waves in the literature have an im-
pulsive wave profile, i.e., Ψ0 = δ(v) where v is a null coordinate, which is a consequence
of the cut-and-paste method of Penrose [6]. An example is the propagation of a single
impulsive gravitational plane wave with λ = 0 given by Equation (2), where Ψ2 = 0 = Ψ4.
To date, an exact solution for a single propagating plane gravitational wave with λ > 0
has not been found. One cannot use Penrose’s cut-and-paste method to find such a so-
lution because this leads to wavefronts that are spherical or hyperboloidal when λ > 0
or λ < 0, respectively [14]. Thus, to try shed some light toward an analytic solution, we
numerically evolve our system with λ > 0 and with one ingoing wave, whose wave profile
approximates the Dirac delta function. We set Ψ0(v, 1) = q(v) where

q(x) =

a sin(bx)8 0 < x <
π

b
0 otherwise

, (31)

where b = 35πa /128 and q(x) has the property that lim
a→∞

q(x) = δ(x). We also change our

gauge and fix F by the condition that ∂tB = 0. This matches the gauge of the exact solution
given by Equation (2) and yields F = ρ′ − ρ. We choose a = 128, 256, 512, 1024, populate
our spatial interval z ∈ [−1, 1] with 6401 equi-distant points to accurately resolve these
steep wave profiles and choose λ = 0.6 and λ = 1.2 to exemplify futures that do and do
not have a singularity, respectively.

For λ = 1.2, to see the effect of the limit a→ ∞, Figure 8 shows the Weyl components
along z = 0. These seem to indicate that in this limit, they all vanish for v > 0 along z = 0.
By inspection it is clear that this happens along any z = constant curve once the wave
has past and thus in the whole region v > 0. Further, all system variables asymptote back
to dS after the wave has past, and no singularity is formed. Note the numerical error
in Figure 8a just before t = 1. This is due to the steep wave profile and its interaction with
the left boundary propagating back into the computational domain. This phenomenon is
discussed in detail in Section 6.3.
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(a) Ψ0 (b) Ψ2

(c) Ψ4

Figure 8. Plots along z = 0 of Ψ0, Ψ2 and Ψ4 as a→ ∞ with λ = 0.6.

Figure 9 shows the Ψ2 and Ψ4 components along the right boundary for λ = 0.6 and
λ = 1.2, where a future singularity is formed when λ = 0.6.

(a) Ψ2 for λ = 0.6 (b) Ψ2 for λ = 1.2

(c) Ψ4 for λ = 0.6 (d) Ψ4 for λ = 1.2

Figure 9. Plots along z = 1 of Ψ2 and Ψ4 as a→ ∞ with λ = 0.6 and λ = 1.2.

Like in the λ = 0 case this is a curvature singularity. It is much easier to see this in the
λ > 0 case as the Weyl invariant I diverges to positive infinity.
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6. Two Waves

We now present results pertaining to the scattering of two colinearly polarized grav-
itational waves. The setup is analogous to the single wave case of Section 5 with the ex-
ception of the boundary condition for Ψ4, which is now taken to be Ψ4(t,−1) = p(u(t)).
We continue to use the gauge F = ρ′ − ρ which corresponds to the gauge used in the
Khan–Penrose solution for colliding colinearly polarized impulsive gravitational plane
waves with λ = 0 [5]. It is found that many features are similar to the case of one wave.

6.1. Comparison against λ = 0

The general behaviour can be explained by looking at contour plots of I in Figure 10
for varying λ (so that we can see how λ > 0 differs from λ = 0) and fixing a = 1 in the wave
profiles. If λ is small enough (λ = 0 or λ = 0.06), we obtain a future curvature singularity.
As λ gets larger (λ = 0.6), the expansion increases the time before this singularity occurs. If we
increase λ more (λ = 6), we get to the situation where the expansion has wiped out the waves
and the effect of their scattering on the curvature, and we asymptote back to dS again.

(a) λ = 0 (b) λ = 0.06

(c) λ = 0.6 (d) λ = 6

Figure 10. Penrose–Carter contour plots of the Weyl invariant I for the case of colliding waves with varying λ.

Figure 11 shows the expansion rateH decreasing the most in the centre of the collision,
u = v, where the Weyl invariant I attains a local maximum (in time and space).
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(a) λ = 0.06 (b) λ = 6

Figure 11. Penrose–Carter contour plots of the expansion rateH for the case of colliding waves with varying λ.

6.2. Critical Behaviour

Now we fix λ = 0.6 and see how varying the area of the wave profile a affects things.
We find the following three scenarios, where a1 and a2 are given later in the section, and
are found with binary search:

1 a / a1: Asymptote back to dS.
2 a1 / a / a2: µ→ ∞ but I → 0.
3 a ' a2: µ→ ∞ and I → ∞.

Only in case 3 do ρ, ρ′, σ, σ′ diverge, in the other two they asymptote back to their
initial values. Due to the evolution equation

√
2∂t A = (µ + µ̄)A, in cases 2 and 3 we

have that A → ∞ also, causing the t, z portion of the line element to approach dt2, caus-
ing an infinite contraction in the z-direction. This is represented in la and na as shown
in Figure 12, where the t = constant surfaces approach being null. Further, as we discov-
ered in Section 3.1, the real part of µ is essentially the acceleration of the unit conormal
to the z = constant surfaces and the fact that this acceleration diverges to negative infinity
agrees with the contraction in this direction.

We are in the Gauß gauge, and along spatially constant curves, which are in this
case geodesics, the proper time and the time t are equivalent. Our gauge can then be
thought of as adapted to free falling observers. This then lends the physical interpretation
of the caustic singularity in case 2. The three possible futures occurring after the interaction
of the gravitational waves with these observers can then be described as follows:

• Case 1: The gravitational contraction is not strong enough to cause the timelike
geodesics to converge or the curvature to diverge.

• Case 2: The gravitational contraction is strong enough to cause the timelike geodesics
to converge and create a coordinate singularity. However, it is not strong enough
to cause the curvature to diverge and this goes back to zero.

• Case 3: The gravitational contraction is strong enough to cause both the timelike
geodesics to converge and the curvature to diverge, resulting in a physical curva-
ture singularity.

It is noted that in the gauge B = 0 the characteristic speeds of the waves are ±A.
In the cases where A→ ∞ we decrease the CFL number c dynamically to avoid instabilities
and settle with smaller timesteps instead.

As we now have two bifurcations, which we call a1 and a2, it remains to be seen
whether these will have critical behaviours.
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Figure 12. The effect of A→ ∞ as t→ ∞ on the null vectors along a z = constant curve.

We find, again using binary search, that approximately a1 ≈ 0.852548. Unlike
in Section 5.3, the constraints do not diverge as our simulations use a wave profile with
area a closer to a1. Figures 13 and 14 show that the expansion rate drops to around 25%
of its original value at its minimum, for a long time, before asymptoting back to dS again.
This implies that we can cause, with just two colliding waves, the expansion rate to locally
decrease substantially for a certain period, without causing a future singularity. Further,
it is noticed that although µ differs substantially in the above cases, ρ, ρ′, σ and σ′ change
very little, and if drawn differ by an amount smaller than the drawn curve.

(a)H (b) I

Figure 13. The expansion rateH and Weyl invariant I with a ≈ a1 and λ = 0.6.

(a) A (b)H

Figure 14. The metric function A and the expansion rateH with λ = 0.6 along u = v equiv. z = 0 for multiple values of a
close to a1.

We find, again using binary search, that approximately a2 ≈ 0.9595, and find that
taking a close to this value results in the constraints remaining well behaved. Figure 15
shows that the Weyl invariant I diverges for a > a2, goes to zero for a < a2 and goes to some
other value when a ≈ a2. In all these cases µ diverges to infinity and thus so does A. This
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implies that to maintain a stable evolution our timestep must decrease to compensate, and
the simulations shown in Figure 15 stop when the timestep becomes smaller than 1e-8. It is
likely that the simulation with a = 0.9595 does not converge to some constant value other
than zero, but rather we cannot march in time far enough to see it either diverge to infinity
or approach zero.

(a) (b)

Figure 15. (a) The Weyl invariant I with λ = 0.6 along u = v, i.e., z = 0, for multiple values of a close to a2 and (b) a contour
plot of I for a = 0.9595.

6.3. Impulsive Waves

As in Section 5.4 we mimic the Dirac delta function wave profiles of the λ = 0
solutions. For colliding waves, this is when Ψ0 = δ(v) and Ψ4 = δ(u). We thus choose our
wave profiles as Ψ0(v, 1) = q(v), Ψ4(u,−1) = q(u), where q(x) is given in Equation (31)
and approximates the Dirac delta function. Our results in Section 6.2 indicate that we
should explore three possible regions, namely regions where we asymptote back to dS, µ
diverges but not I, and where I diverges. These still exist for the approximately impulsive
wave profiles and are exemplified by choosing λ = 6, 0.72 and 0.6, respectively.

Figure 16 shows Ψ2 and Ψ4 over time along u = v for the different values of λ.
In particular, we see that they do not converge to zero for u, v > 0 as a→ ∞ as in the case
of one wave. This is to be expected from comparison with the Khan–Penrose solution,
which already has non-vanishing Ψ0, Ψ2 and Ψ4 in the region after scattering, as well as a
theorem by Szekeres [29].

Of particular note is the abrupt change in sign of the first time derivative of Ψ4
for λ = 0.72. This sharp turn, which is smooth with a small enough timestep, does
not appear this distinctly in any other system variables, except for Ψ0 due to symmetry.
Figure 17 shows that this turning point occurs not only at some point along u = v but
along an entire null surface which follows the characteristic of Ψ4 from the point where
the left boundary hits v = 0. This is the result of the vanishing boundary condition for Ψ4
on the left boundary being in disagreement with the non-vanishing Ψ4 tail generated
by Ψ0 as it passes through the boundary. While at first sight it makes sense to impose
a no ingoing radiation condition, this is blatantly unphysical when the evolution itself
creates ingoing modes. Between the boundary condition and the evolution equation it is
the latter which is fundamental. The boundary condition is nearly completely free to choose
and is put in “by hand”. A common question in a non-linear regime with boundaries
that contain both ingoing and outgoing modes is then: How does one make consistent
the “corner condition”, i.e., the physical compatibility between data on a timeslice induced
via evolution and the boundary data to yield a physically meaningful result? The answer
is simply that there is no clear way to prescribe boundary conditions that match the values
in the interior unless one already has an exact solution.
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(a) Ψ2 for λ = 0.06 (b) Ψ4 for λ = 0.06

(c) Ψ2 for λ = 0.72 (d) Ψ4 for λ = 0.72

(e) Ψ2 for λ = 6 (f) Ψ4 for λ = 6

Figure 16. Plots along u = v equiv. z = 0 of Ψ2 and Ψ4 as a→ ∞ with λ = 0.6, 0.72 and 6.

Figure 17. A contour plot of Ψ4 for a = 128 and λ = 0.72 in the case of colliding impulsive waves.

7. Suppressing the Expansion with a Train of Waves

In [17], the rate of change of an expansion rate parameter HTW with respect to time on
a space-like initial value surface (IVS) was calculated to be N(H2 − (1/3)KabKab), where
N is the lapse in their coordinate system, Kab is the extrinsic curvature to the IVS and
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H is as per our definition of dS in inflationary coordinates. They hypothesize that there
should be no reason why initial data cannot be chosen to satisfy KabKab > 3H2 so that
the expansion is slowed down and even completely halted1. We can investigate this
numerically without solving the constraints by simply choosing dS initial data together
with a variety of boundary conditions and seeing how the space–time evolves. We thus
explore how a train of waves, generated by choosing the boundary conditions for Ψ0 and
Ψ4 appropriately, might accomplish this.

To do so, we fix λ = 0.6 and define a new function

pstream(x) =

32a cos(c x2)8 sin(b x)8 0 < x <

√
π

2c
0 otherwise

, (32)

where a = 0.894, b = 3129π/128000, c = 1/3 and we choose Ψ0(v, 1) = p(v), Ψ4(u,−1) =
p(u). These constants were chosen through trial and error to give the largest decrease in the
expansion while maximizing the interval of time this occurred, before either a singularity
is formed or the space–time starts to approach dS again. The cosine factor has the effect
of decreasing the amplitude of the wave until it completely vanishes at ct2 = π/2. This is
to hold off a future singularity forming, while still decreasing the expansion rateH.

Figure 18 shows the expansion rateH and Weyl invariant I as contour plots. We see
that the expansion rate slowly declines across the entire spatial domain and after a long
time (t ≈ 14), forms a coordinate singularity as in case 2. This Weyl invariant shows clearly
where the collision regions are, and after a time the waves begin to drag more and more
curvature along with them as a tail.

(a)H (b) I

Figure 18. Our expansion rateH and the Weyl invariant I where boundary conditions were chosen using Equation (32) and
with λ = 0.6.

Figure 19 shows just how long we can decrease the expansion for, while holding off
forming a singularity. Note that along a spatially constant curve the simulation time t
is the proper time of a free falling observer along this curve, and so when we talk about
trying to maximize the length of time before a singularity occurs, it is inherently physical.
In previous sections we have found that if a singularity was to form after a collision of two
waves (with our wave profile), this happens after a few t. However here, we can decrease
the expansion considerably, without forming a singularity, for up to t = 13. We cannot,
however, find boundary conditions that lower the expansion rate to zero without very
quickly forming a singularity. It is certainly possible that such finely tuned boundary
conditions exist, but our studies suggest that they would be very special.

1 N is a lapse and should always be positive.
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Figure 19. Our expansion rate H along z = 0 where boundary conditions were chosen using
Equation (32) and with λ = 0.6.

8. Summary and Discussion

In this paper we have put forward the full non-linear Einstein equations with cos-
mological constant and non-vanishing energy momentum with the assumption of plane
symmetry. These equations were realized through the Newman-Penrose formalism and
the imposition of the Friedrich–Nagy gauge, leading to a wellposed initial boundary value
problem with timelike boundaries. We specialized to vacuum where λ > 0 and chose
initial data to be that induced by the de Sitter space–time in inflationary coordinates. This
allowed the exploration of how this space–time is affected by gravitational perturbations,
which we generated through appropriate boundary conditions for Ψ0 and Ψ4.

It was found that when only one of the waves was non-vanishing the space–time either
wiped out the wave via expansion, or the wave was too strong and a future singularity
was produced. The bifurcation was studied and did not produce any critical behaviour.
The wave profile was taken to approximate the Dirac delta function to analogize with
a known exact solution for λ = 0.

With both waves non-vanishing, and in the physically motivated Gauß gauge, we found
three distinct situations: The waves were not strong enough to cause a contraction of our
timelike curves to create a singularity, a coordinate singularity is formed but the curvature
remains finite, or a curvature singularity is formed. The second case shows that we can
create a singularity where the Weyl invariant I does not diverge, but our expansion parameter
diverges to negative infinity along, and close to, the surface u = v. The critical behaviour of
the two bifurcations separating these futures was explored. Impulsive wave profiles were
approximated and it was shown that two bifurcations occur in this case as well.

We encountered two numerical pitfalls during our exploration. Firstly, our free evolu-
tion resulted in a false steady state solution close to the bifurcation of the single wave case.
As we chose our wave area closer to the bifurcation value, our free evolution approached
a steady state (while A was still evolving in time) that did not satisfy the constraints. This
happened even though the constraints were satisfied and converged above and below
this critical value, showing how careful one must be in monitoring constraints during
a free evolution. Secondly, we found that the combination of the evolution system and our
non-radiating boundary conditions became unphysical in the colliding wave case after
the waves left the computational domain through the boundaries. This was due to the
backreaction of the waves creating tails of ingoing radiation, at odds with the bound-
ary conditions. This is, however, independent of the fact that our system is wellposed
and numerically stable. The question as to how one could “guess” the right boundary
conditions is delicate and creates a problem that all non-linear simulations, in particular
in numerical relativity, face.

We presented how the above situations affected the local expansion rateH, which was
taken to be the mean extrinsic curvature of our timeslices up to a constant factor. It was
shown that for the case of two waves colliding, we could decrease H substantially for a
long period of time, where the cut-off was determined by numerical limitations, before
the space–time asymptoted back to dS. We could do a similar thing with a continuous stream
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of waves, making the expansion rate drop more uniformly over the computational domain.
This showcased the potential to lower the expansion rate over a wider spatial interval.

While we were not able to find boundary conditions that completely halted expansion
for a period before either asymptoting back to de Sitter space–time or forming a singularity,
we could still lower it substantially for a long time. Even so, our results do not violate
the hypothesis of Tsamis and Woodard’s, namely that our universe may be in an unstable
gravitationally bound state. It would be interesting to see whether, with further testing, we
may be able to find boundary conditions that do completely halt expansion for a period.
This may be possible with a continuous stream of Ψ0 and Ψ4 waves, but would require
a much more delicate tuning of the boundary conditions. We leave this for future work.

Now that exploration toward the behaviour of plane gravitational waves with λ > 0
has started and details have been uncovered, it would also be interesting to see whether
one can use the results as hints toward an exact solution for impulsive waves. For the case
of one propagating impulsive wave, knowing that the Weyl components vanish in the
region after the wave has passed should already be a good start.
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