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Abstract: The principles of the electromagnetic fluctuation-induced phenomena such as Casimir
forces are well understood. However, recent experimental advances require universal and efficient
methods to compute these forces. While several approaches have been proposed in the literature, their
connection is often not entirely clear, and some of them have been introduced as purely numerical
techniques. Here we present a unifying approach for the Casimir force and free energy that builds
on both the Maxwell stress tensor and path integral quantization. The result is presented in terms
of either bulk or surface operators that describe corresponding current fluctuations. Our surface
approach yields a novel formula for the Casimir free energy. The path integral is presented both within
a Lagrange and Hamiltonian formulation yielding different surface operators and expressions for
the free energy that are equivalent. We compare our approaches to previously developed numerical
methods and the scattering approach. The practical application of our methods is exemplified by the
derivation of the Lifshitz formula.

Keywords: casimir forces; fluctuation induced interactions; stress tensor; path integral

1. Introduction

The interaction induced by quantum and thermal fluctuation of the electromagnetic
field is an everyday phenomenon that acts between all neutral objects, both on atomic
and macroscopic scales [1–5]. For the Casimir interaction between macroscopic bodies,
the last two decades have witnessed unparalleled progress in experimental observations
and the development of novel theoretical approaches [6,7]. In most of the recent theoreti-
cal approaches, the computation of Casimir forces between multiple objects of different
shapes and material composition has been achieved by the use of scattering methods or
the so-called TGTG formula [8–16]. These approaches have the advantage of relatively
low numerical effort; they are rapidly converging and can achieve in principle any desired
precision [17–22]. Another merit of these methods is the exclusion of UV divergencies by
performing the subtraction analytically before any numerical computation. Other efficient
approaches that have been developed before the scattering approaches include path inte-
gral quantizations where the boundary conditions at the surfaces are implemented by delta
functions [23]. These approaches are limited to scalar fields with Dirichlet or Neumann
boundary conditions [24], or the electromagnetic field with perfectly conducting boundary
conditions [25], with the exception of a similar approach for dielectric boundaries [26].
However, such analytical (and semi-analytical) methods have been restricted to symmetric
and simple shapes, like spheres, cylinders or ellipsoids [27–31]. Geometries where parts of
the bodies interpenetrate, such as those shown in Figure 1a, cannot be studied with scatter-
ing approaches. For general shapes and arbitrary geometries, new methods are needed.
Purely numerical methods based on surface current fluctuations have been developed [32],
but they rely on a full-scale numerical evaluation of matrices and their determinants, which
complicates these approaches when high precision of the force is required.
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Hence, there is a need to develop methods that predict Casimir interactions between
objects of arbitrary geometries composed of materials with arbitrary frequency-dependent
electromagnetic properties. The Casimir force can be viewed as arising from the interaction
of fluctuating currents distributions. In fact, these effective fluctuating electric and magnetic
currents can be considered to be localized either in the bulk of the bodies or just on their
surfaces. The surface approach relies on the observation that the electromagnetic response
of bodies can be represented entirely in terms of their surfaces, known as the “equivalence
principle”, which is based on the observation that many source distributions outside a
given region can produce the same field inside the region [33]. The surface approach
has been introduced in the literature as a method for a purely numerical computation
of Casimir interactions [32]. There are two different methods to implement the idea of
computing Casimir forces from fluctuating currents. One can either integrate the Maxwell
stress tensor over a closed surface enclosing the body, directly yielding the Casimir force,
or integrate over all electromagnetic gauge field fluctuations in a path integral, yielding
the Casimir free energy. We shall consider both approaches here.

Compared to scattering theory-based approaches, the surface formulation has the
advantage that it does not require the use of eigenfunctions of the vector wave equation
that are specific to the shape of the bodies. Hence, our approach is applicable to general
geometries and shapes, including interpenetrating structures. In fact, the power of the
surface approach has been demonstrated by numerical implementations in Reference [32],
where it was used to compute the Casimir force in complicated geometries.

In this paper, we present both the Maxwell stress tensor and path integral-based
approaches for the Casimir force and free energy in terms of bulk or surface operators. Our
main advancements are

• A new, compact and elegant derivation of the Casimir force from the Maxwell stress
tensor within both a T-operator approach and a surface operator approach;

• A new surface formula for the Casimir free energy expressed in terms of a surface operator;
• A new path integral-based derivation of a Lagrange and Hamiltonian formulation for

the Casimir free energy.

We also compare the approaches presented here to methods existing in the literature.
For the special case of bodies that can be separated by non-overlapping enclosing surfaces,
along which one of the coordinates in which the wave equation is separable is constant,
our approach is shown to be equivalent to the scattering approach. Our approaches also
show the general equivalence of the use of the Maxwell stress tensor in combination with
the fluctuation-dissipation theorem on one side and the path integral representation of the
Casimir force on the other side. As the most simple application of our approaches, we
re-derive the Lifshitz formula for the Casimir free energy of two dielectric slabs. Other
analytical applications of our approach will be presented elsewhere.

The geometries and shapes to which our approaches can be applied are shown in
Figure 1a. For comparison, in Figure 1b, we display non-penetrating bodies to which
scattering theory-based approaches are limited. In general, we assume a configuration
composed of N bodies with dielectric functions εr(ω) and magnetic permeabilities µr(ω),
r = 1, . . . , N. The bodies occupy the volumes Vr with surfaces Σr and outward pointing
surface normal vectors n̂r. The space with volume V0 in between the bodies is filled by
matter with dielectric function ε0(ω) and magnetic permeability µ0(ω).
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(a) (b)

Figure 1. Configuration of bodies: (a) general shapes and positions that can be studied with the
approaches presented in this work, (b) non-penetrating configurations that can be studied within the
scattering approach.

2. Stress-Tensor Approach
2.1. Bulk and Surface Expressions for the Force

Consider a collection of N magneto-dielectric bodies in vacuum. In the stress-tensor
approach, the (bare) Casimir force F(bare|r)

i on body r is obtained by integrating the expec-
tation value 〈Tij〉 of the Maxwell stress tensor

〈Tij(x)〉 =
1

4π

{
〈Ei(x)Ej(x)〉+ 〈Hi(x)Hj(x)〉 −

1
2

δij[〈Ek(x)Ek(x)〉+ 〈Hk(x)Hk(x)〉]
}

(1)

over any closed surface Sr drawn in the vacuum, which surrounds that body (but excludes
all other bodies):

F(bare|r)
i =

∮

Sr
d2σ n̂j(x)〈Tji(x)〉 , (2)

where n̂ is the unit normal oriented outside Sr, and the angular brackets denote the
expectation value taken with respect to quantum and thermal fluctuations. For a system in
thermal equilibrium at temperature T, the (equal-time) expectation values of the products of
field components (at points x and x′ in the vacuum region) are provided by the fluctuation-
dissipation theorem [34,35]:

〈Êi(x)Êj(x′)〉 = 2kBT
∞

∑
n=0

′ G(EE)
ij (x, x′; i ξn) ,

〈Ĥi(x)Ĥj(x′)〉 = 2kBT
∞

∑
n=0

′ G(HH)
ij (x, x′; i ξn) , (3)

where ξn = 2πnkBT/h̄ are the Matsubara imaginary frequencies, and the prime in the
summations mean that the n = 0 term is taken with a weight of one half. When the
r.h.s of the above equations are plugged into Equation (1), one obtains for 〈Tij(x)〉 a

formally divergent expression, since the Green functions G(αβ)
ij (x, x′; i ξn) are singular in the
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coincidence limit x = x′. This divergence can however be easily disposed of by noticing
that the Green’s functions admit the decomposition:

G(αβ)
ij (x, x′; i ξn) = G(αβ;0)

ij (x− x′; i ξn) + Γ(αβ)
ij (x, x′; i ξn) , (4)

where G(αβ;0)
ij (x− x′; i ξn) is the Green’s function of free space, while Γ(αβ)

ij (x, x′; i ξn) de-
scribes the effect of scattering of electromagnetic fields by the bodies. In the coincidence
limit, only G(αβ;0)

ij (x− x′; i ξn) diverges, while Γ(αβ)
ij (x, x′; i ξn) attains a finite limit. When the

decomposition in Equation (4) is used to evaluate the r.h.s. of Equation (1), one finds that
the expectation value of the stress tensor is decomposed in a way analogous to Equation (4):

〈Tij(x)〉 = 〈T(0)
ij (x)〉+ Θij(x) , (5)

where 〈T(0)
ij (x)〉 is the divergent expectation value of the stress tensor in empty space, and

Θij(x) is the finite expression

Θij(x) =
kBT
2π

∞

∑
n=0

′
[
Γ(EE)

ij (x, x; i ξn) + Γ(HH)
ij (x, x; i ξn)

−1
2

δij

(
Γ(EE)

kk (x, x; i ξn) + Γ(HH)
kk (x, x; i ξn)

)]
. (6)

Since the divergent contribution 〈T(0)
ij (x)〉 is independent of the presence of the bodies,

one can just neglect it and then one obtains the following finite expression for the Casimir
force on body r due to the presence of the other bodies,

F(r)
i =

∮

Sr
d2σ n̂j(x) Θji(x) . (7)

The further development of the theory starts from the observation that the dyadic
Green’s functions Γ(αβ)

ij (x, x′) (for brevity, from now on we shall not display the dependence
of the Green’s functions on the Matsubara frequencies ξn) can be expressed in two distinct
possible forms.

The first representation is general, since it is valid for arbitrary constitutive equations
of the magneto-dielectric materials constituting the bodies, which can possibly be non-
homogeneous, anisotropic, and non-local. For all points x and x′, it expresses Γ(αβ)

ij (x, x′) in

the form of an integral of the T-operator T̂ (for its definition, see Appendix B.1) over the
volume V occupied by all bodies:

Γ(αβ)
ij (x, x′) =

N

∑
r,r′=1

∫

Vr
d3y

∫

Vr′
d3y′G(αρ;0)

ik (x− y)T(ρσ)
kl (y, y′)G(σβ;0)

l j (y′ − x′) . (8)

The above formula has a simple intuitive interpretation, if one recalls that according to
its definition, the T-operator provides the polarization induced in the volume of the bodies
when they are immersed in the electromagnetic field generated by a certain distribution of
external sources.

The second representation is less general than Equation (8) because it applies only to
magneto-dielectric bodies that are (piecewise) homogeneous and isotropic 1. It expresses
Γ(αβ)

ij (x, x′) in the form of an integral of the surface operator M̂−1 defined in Equation (A44),



Universe 2021, 7, 225 5 of 34

over the union Σ =
⋃

Σr of the surfaces Σr of the bodies. For two points x and x′ both lying
in the vacuum region outside the bodies2, the surface representation of Γ(αβ)

ij (x, x′) reads:

Γ(αβ)
ij (x, x′) = −

N

∑
r,r′=1

∫

Vr
d3y

∫

Vr′
d3y′ δ(Fr(y)) δ(Fr′(y

′))

× G(αρ;0)
ik (x− y))

(
M−1

)(ρσ)

kl
(y, y′)G(σβ;0)

l j (y′ − x′) , (9)

where Fr(y) = 0 is the equation of the surface Σr. This representation also has a simple
intuitive meaning, if one considers that −M̂−1 (see Appendix B.2 for details) is defined as
the operator that provides the fictitious surface polarizations that radiate outside the bodies
the same scattered electromagnetic field as the one radiated by the physically induced
volumic polarization, in response to an external field. The derivations of Equations (8)
and (9) are presented in Appendix B. It is apparent that both representations have the
same mathematical structure, consisting of a two-sided convolution of a certain kernel
K(αβ)

ij (x, x′) with the free-space Green’s functions G(αβ;0)
ij (x− x′):

Γ(αβ)
ij (x, x′) =

∫

V
d3y

∫

V
d3y′G(αρ;0)

ik (x− y)K(ρσ)
kl (y, y′)G(σβ;0)

l j (y′ − x′) . (10)

The only difference between the two representations consists in the expression of K,
which in the case of Equation (8) is the three-dimensional kernel T(ρσ)

kl (y, y′) supported in
the volume V occupied by the bodies:

K(ρσ)
kl (y, y′) = T(ρσ)

kl (y, y′) , (11)

while in Equation (9) K is the two-dimensional kernel −
(

M−1)(ρσ)
kl (y, y′) supported on the

union Σ of their surfaces:

K(ρσ)
kl (y, y′) = −

N

∑
r,r′=1

δ(Fr(y)) δ(Fr′(y
′))
(

M−1
)(ρσ)

kl
(y, y′) (12)

In both cases, the above equation can be concisely written using the operator notation
described in Appendix A:

Γ̂ = Ĝ(0) K̂ Ĝ(0) . (13)

In Appendix C, we prove that the structure of the representation of Γ(αβ)
ij (x, x′) given

in Equation (10), allows to re-express the Casimir force Equation (7) in the following
remarkably simple form:

F(r)
i = 2kBT

∞

∑
n=0

′
∫

Vr
d3y

∫

V
d3y′

(
K(αβ)

l j (y′, y; i ξn)
∂

∂yi
G(βα;0)

jl (y− y′; i ξn)

)
. (14)

A crucial role in the derivation of Equation (14) is played by the fact that the kernel K
satisfies a set of reciprocity relations analogous to those satisfied by the Green’s functions:

K(ρσ)
kl (y, y′) = (−1)s(ρ)+s(σ)K(σρ)

lk (y′, y) , (15)

where s(E) = 0 and s(H) = 1. It is possible to verify that the reciprocity relations satisfied
by G(αβ;0)

ij (y− y′) and K(αβ)
ij (y, y′) ensure vanishing of the “self-force” F(self|r)

i :

F(self|r)
i = 2kBT

∞

∑
n=0

′
∫

Vr
d3y

∫

Vr
d3y′

(
K(αβ)

ij (y′, y; i ξn)
∂

∂yi
G(βα;0)

ji (y− y′; i ξn)

)
= 0 . (16)
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This implies that in Equation (14) the y′ integral is in fact restricted to V − Vr, in
accord with one’s intuition that the force on body r is due to the interaction with the other
bodies. It is possible to present Equation (14) in a more compact and symmetric form, by
defining the derivative ∂/∂xr of any kernel A(y, y′), with respect to rigid translations of
the r-th body:

∂

∂xr
A(y, y′) ≡ ψr(y)

∂

∂y
A(y, y′) + ψr(y′)

∂

∂y′
A(y, y′) , (17)

where ψr(y) is the characteristic function of Vr: ψr(y) = 1 if y ∈ Vr, ψr(y) = 0 if y /∈ Vr.
Using ∂/∂xr, we can rewrite Equation (14) as

F(r) = kBT
∞

∑
n=0

′
∫

V
d3y

∫

V
d3y′

(
K(αβ)

ij (y′, y; i ξn)
∂

∂xr
G(βα;0)

ji (y− y′; i ξn)

)
. (18)

The expression on the r.h.s. of the above formula can be compactly expressed using
the operator notation and the trace operation described in Appendix A:

F(r) = kBT
∞

∑
n=0

′ Tr
[
K̂(i ξn)

∂

∂xr
Ĝ(0)(i ξn)

]
. (19)

Depending on whether we use for the kernel K̂ the T-operator of Equation (8) or
rather the surface operator−M̂ of Equation (9), Equation (19) provides us with two distinct
but formally similar representations of the Casimir force, which is expressed either as an
integral over the volume V occupied by the bodies or as an integral over their surfaces
Σ. One feature of Equation (19) is worth stressing. Since the force is expressed as a trace,
Equation (19) can be evaluated in an arbitrary basis, leaving one with complete freedom
in the choice of the most convenient basis in a concrete situation. A representation of the
Casimir force in the form of a volume integral equivalent to Equation (19) was derived
in [11], while the surface-integral representation was obtained in [32]. Equation (19) can
be computed numerically for any shapes and dispositions of the bodies, by using discrete
meshes covering the bodies. An efficient numerical scheme based on surface-elements
methods is described in [32], where it was used to compute the Casimir force in complex
geometries, not amenable to analytical techniques.

2.2. Casimir Free Energy

In this section, we compute the Casimir free energy F of the system of bodies, starting
from the force formula Equation (19). We shall see that the T-operator and the surface-operator
approaches lead to two distinct but equivalent representations of the Casimir energy.

2.2.1. T-Operator Approach

Plugging into Equation (19) the expression of the T-operator Equation (A36), we find
that the Casimir force can be expressed in the form:

F(r) = kBT
∞

∑
n=0

′ Tr
(

T̂(i ξn)
∂

∂xr
Ĝ(0)(i ξn)

)
= kBT

∞

∑
n=0

′ Tr
[

1
1− χ̂ Ĝ(0)

∂

∂xr

(
χ̂ Ĝ(0)

)]
, (20)

where in the last passage, we made use of the fact that the polarization operator χ̂ defined
in Equation (A24) is invariant under a rigid displacement of the body. The r.h.s. of the
above equation can be formally expressed as a gradient:

F(r) = − ∂

∂xr
Fbare , (21)
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where Fbare is the bare free energy:

Fbare = kBT
∞

∑
n=0

′ Tr log[1− χ̂ Ĝ(0)] (22)

Unfortunately, Fbare is formally divergent. To obtain the finite Casimir free energy F ,
one has to subtract from Fbare the divergent self-energies F (r)

self of the individual bodies:

F (r)
self =

{
kBT

∞

∑
n=0

′ Tr log[1− χ̂r Ĝ(0)]
}

, (23)

where χ̂r = ψ̂rχ̂ψ̂r is the polarizability operator of body r in isolation. In the case of a
system composed by two bodies, the renormalized Casimir free energy can be recast in the
following TGTG form:

F = Fbare −F (1)
self −F

(2)
self = kBT

∞

∑
n=0

′ Tr log[1− T̂1 Ĝ(0) T̂2 Ĝ(0)] , (24)

where
T̂r =

1
1− χ̂r Ĝ(0)

χ̂r , (25)

is the T-operator of body r in isolation. To prove Equation (24), one notes that for each
Matsubara mode the operator identity holds:

(1− Ĝ(0)χ̂1)Ĝ(0)T̂1Ĝ(0)T̂2(1− Ĝ(0)χ̂2) = Ĝ(0)χ̂1Ĝ(0)χ̂2 . (26)

The above identity in turn allows to prove the following chain of identities:

Tr log[1− Ĝ(0)χ̂1] + Tr log[1− Ĝ(0) T̂1 Ĝ(0)T̂2] + Tr log[1− Ĝ(0)χ̂2]

= Tr log[(1− Ĝ(0)χ̂1)(1− Ĝ(0) T̂1 Ĝ(0)T̂2)(1− Ĝ(0)χ̂2)]

= Tr log[(1− Ĝ(0)χ̂1)(1− Ĝ(0)χ̂2)− (1− Ĝ(0)χ̂1)Ĝ(0) T̂1 Ĝ(0)T̂2(1− Ĝ(0)χ̂2)]

= Tr log[(1− Ĝ(0)χ̂1)(1− Ĝ(0)χ̂2)− Ĝ(0)χ̂1Ĝ(0)χ̂2] = Tr log[(1− Ĝ(0)(χ̂1 + χ̂2)]

= Tr log[1− Ĝ(0)χ̂] . (27)

Equating the first line with the last line, we obtain the identity:

Tr log[1− Ĝ(0)χ̂]
= Tr log[1− Ĝ(0)χ̂1] + Tr log[1− Ĝ(0) T̂1 Ĝ(0)T̂2] + Tr log[1− Ĝ(0)χ̂2] . (28)

Upon summing the above identity over all Matsubara modes (with weight one half
for the n = 0 term), and then multiplying it by kBT, we find:

F (1)
self +F

(2)
self +F = Fbare , (29)

which is equivalent to Equation (24). The energy formula Equation (24) was derived in [13]
using the path-integral method and in [11], using Rytov’s fluctuational electrodynam-
ics [36].

2.2.2. Surface Operator Approach

Now we derive the surface-operator representation of the Casimir energy. To do
that, we start from the surface-operator representation of the force, which is obtained by
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replacing K̂ in Equation (19) with minus the inverse of the surface operator M̂ defined in
Equation (A44):

F(r) = −kBT
∞

∑
n=0

′ Tr
[

M̂−1(i ξn)
∂

∂xr
Ĝ(0)(i ξn)

]
. (30)

This can also be written as:

F(r) = −kBT
∞

∑
n=0

′ Tr
[

M̂−1(i ξn)
∂

∂xr

(
Π̂Ĝ(0)(i ξn)Π̂

)]
, (31)

where Π̂ is the tangential projection operator defined in Appendix B.2. Now, one notes
the identity:

∂

∂xr

(
Π̂ Ĝ(0)(i ξn) Π̂

)
=

∂M̂
∂xr

, (32)

which is a direct consequence of Equation (A44) since

∂

∂xr

N

∑
s=1

Π̂s Ĝ(s) Π̂s = 0 . (33)

Plugging Equation (32) into Equation (31), we obtain:

F(r) = −kBT
∞

∑
n=0

′ Tr
[

M̂−1(i ξn)
∂

∂xr
M̂(i ξn)

]
, (34)

The r.h.s. of the above equation can be formally expressed as a gradient:

F(r) = − ∂

∂xr
F̃bare , (35)

where F̃bare is the bare free energy:

F̃bare = kBT
∞

∑
n=0

′ Tr log M̂(i ξn) . (36)

Similarly to what we found in the T-operator approach, the surface formula of the bare-
energy F̃bare is formally divergent. The finite Casimir free energy is obtained by subtracting
from F̃bare the limit F̃ (∞)

bare of the bare energy when the bodies are taken infinitely apart
from each other. From Equation (A44), one sees that in the limit of infinite separations, the
operator M̂ approaches the limit M̂∞

M̂∞ =
N

∑
r=1

M̂r , (37)

where
M̂r = Π̂r (Ĝ(r) + Ĝ(0)) Π̂r . (38)

Notice that the surface operator M̂r is localized onto the surface Σr of the r-th body.
This implies that:

M̂r M̂s = 0 , for r 6= s . (39)

Using Equation (37), we find that F̃ (∞)
bare is the formally divergent quantity:

F̃ (∞)
bare = kBT

∞

∑
n=0

′ Tr log M̂∞(i ξn) =
N

∑
r=1

kBT
∞

∑
n=0

′ Tr log M̂r(i ξn) ≡
N

∑
r=1
F̃ (r)

self . (40)
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The additive character of F̃ (∞)
bare allows to interpret F̃ (r)

self as representing the (infinite)
the self-energy of the bodies in the surface approach. Upon subtracting Equation (40) from
Equation (36), we arrive at the following formula for the Casimir energy:

F = kBT
∞

∑
n=0

′ log det
M̂(i ξn)

M̂∞(i ξn)
. (41)

An easy computation shows that

1
M̂∞

M̂ = 1 + ∑
r 6=s

1
M̂r
Ĝ(0)rs . (42)

where
Ĝ(0)rs = Π̂r Ĝ(0) Π̂s . (43)

Substitution of the above formula into Equation (41) results in the following surface
formula for the Casimir energy:

F = kBT
∞

∑
n=0

′ log det

[
1 + ∑

r 6=s

1
M̂r
Ĝ(0)rs

]
. (44)

In the simple case of two bodies, the above formula reduces to:

F = kBT
∞

∑
n=0

′Tr log
[

1− 1
M̂1
Ĝ(0)12

1
M̂2
Ĝ(0)21

]
. (45)

The surface formulas for the Casimir energy given in Equations (44) and (45) were
not known before and are presented here for the first time. Comparison of Equation (45)
with Equation (24) reveals the striking similarity of the T-operator and surface-approach
representations of the Casimir energy. Indeed we see that both formulas can be written in
the form:

F = kBT
∞

∑
n=0

′Tr log
[
1− K̂1 Ĝ(0)K̂2Ĝ(0)

]
, (46)

where K̂r is the kernel, which gives the scattering Green’s function of body r in isolation:

Γ̂r = Ĝ(0) K̂r Ĝ(0) . (47)

3. Equivalence of the Surface-Formula with the Scattering Formula for the
Casimir Energy

In the previous sections, we have shown that, both in the T-operator and in the
surface approaches, the Casimir energy F of two bodies can be expressed by the general
Equation (46). This formula is valid for any shape and relative dispositions of the two
bodies, and in particular for two interleaved bodies (see Figure 1a). Now we show that
when the two bodies can be enclosed within two non-overlapping spheres (see Figure 1b),
Equation (46) is the same as the well-known scattering formula [8–12]:

F = kBT
∞

∑
n=0

′tr log
[
1− T (1) U (12)T (2) U (21)

]
. (48)

where T (r) is the scattering matrix of body r (see Equation (A76) for the definition of T (r)),
U (rs) are the translation matrices defined in Equation (A82) and tr denotes a trace over
multipole indices.

To prove equivalence of Equation (46) with Equation (48), one starts from the obser-
vation that the trace operation in Equation (46) involves evaluating the Green functions
↔
G
(αβ;0)

(y, y′) at points y and y′, one of which (call it y1) belongs to body 1, while the other
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(call it y2) belongs to body 2. For two bodies that can be separated by non-overlapping
spheres, it is warranted that |y1 − X1| < |y2 − X1| and |y2 − X2| < |y1 − X2|, where X1
and X2 are the positions of the centers of the spheres S(1) and S(2), respectively, and
d = |X2 − X1| is their distance. This condition satisfied by y1 and y2 ensures that it is

legitimate to express
↔
G
(αβ;0)

(yr, ys) (with r 6= s = 1, 2) by the partial-wave expansion (see
Appendix D):

↔
G
(αβ;0)
(yr, ys) = λ(−1)s(β) ∑

plm
Φ(α|reg)

plm (yr − Xr)⊗Φ(β|out)
pl−m (ys − Xr)

= λ (−1)s(β) ∑
plm

∑
p′ l′

Φ(α|reg)
plm (yr − Xr)⊗U (rs)

pl;p′ l′(d)Φ(β|reg)
p′ l′−m(ys − Xs) , (49)

where Φ(reg/out)
plm (yr −Xr) are a basis of regular and outgoing spherical waves with origin at

Xr. When the above expansion is substituted into Equation (46) and the trace is evaluated,
one finds that F can be recast in the form:

F = kBT
∞

∑
n=0

′ tr log[1−N ] . (50)

where N is the matrix of elements:

Nplm;p′ l′m′ ≡ ∑
p′′ l′′

∑
p′′′ l′′′m′′′

∑
p′′′′ l′′′′

U (21)
pl,p′′ l′′(d) U

(12)
p′′′ l′′′ ;p′′′′ l′′′′(d)

× λ ∑
α,µ

(−1)s(α)
∫

V1

d3y1

∫

V1

d3y′1 Φ(α|reg)
p′′ l′′−m(y1 − X1) ·

↔
K

(αµ)

1 (y1, y′1) ·Φ
(µ|reg)
p′′′ l′′′m′′′(y

′
1 − X1)

× λ ∑
β,ν

(−1)s(ν)
∫

V2

d3y2

∫

V2

d3y′2 Φ(ν|reg)
p′′′′ l′′′′−m′′′(y2 − X2) ·

↔
K

(νβ)

2 (y2, y′2) ·Φ
(β|reg)
p′ l′m′ (y

′
2 − X2) .

Recalling the formula Equation (A79) for the scattering matrices T (r) of the two bodies,
we see that N is the matrix:

N = U (21)(d) T (1)U (12)(d) T (2) . (51)

Upon substituting the above expression into the r.h.s. of Equation (50), and using
cyclicity of the trace, we see that Equation (50) indeed coincides with the scattering formula
Equation (48).

4. Path Integral Approach

As in the previous sections, we consider again N dielectric bodies occupying the
volumes Vr, r = 1, . . . , N, bounded by surfaces Σr. Their electromagnetic properties are
described by the dielectric functions ε(r) and magnetic permeability µ(r). The bodies are
embedded in a homogeneous medium occupying the outside volume of the bodies, V0,
with dielectric function ε(0) and magnetic permeability µ(0).

In the Euclidean path integral quantization of the electromagnetic field, the Casimir
free energy at finite temperature T can be obtained as

F = −kBT
∞

∑
n=0

′ log
Z(κn)

Z∞(κn)
, (52)

where the sum runs over the Matsubara momenta κn = 2πnkBT/h̄c, with a weight of 1/2
for n = 0. The partition function Z is given by a path integral that we shall derive now.
The partition function Z∞ describes the configuration of infinitely separated bodies and
subtracts the self-energies of the bodies from the bare free energy. In the following two
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sections, we shall derive both a Lagrangian and a Hamiltonian path integral expression of
the partition function. In both cases, we employ a fluctuating surface current approach. A
path integral approach that is based on bulk currents can be found, e.g., in Reference [10].

4.1. Lagrange Formulation

The action of the electromagnetic field coupled to bound sources Pind in the absence
of free sources is in general given by

SEM =
∫

d3x
[

1
2

(
εxE2 − 1

µx
B2
)
+ Pind · E

]
. (53)

In the following, we express the action in terms of the gauge field A choosing the
transverse or temporal gauge with A0 = 0. The functional integral will then run over A
only. The electric field is given by E = ikA→ −κA and the magnetic field by B = ∇×A.
Then the action in terms of the induced sources at fixed frequency κ is given by

Ŝ[A] = −1
2

∫

R3
d3x

[
A2εxκ2 +

1
µx

(∇×A)2
]
− κ

N

∑
r=1

∫

Vr
d3x A · Pr , (54)

for fluctuations A of the gauge field, and induced bulk currents Pr inside the objects. The
inverse of the kernel of the quadratic part of this action is given by the Green tensor G(x, x′),
which is defined by

∇× 1
µx
∇×

↔
G
(AA)

(x, x′) + εxκ2 ↔G
(AA)

(x, x′) = 4π 1 δ(x− x′) . (55)

For spatially constant ε and µ with body r, this yields the free Green’s tensor

↔
G
(AA;r)

(x, x′) = µr

(
1− 1

εrµrκ2∇⊗∇
)

e−
√

εrµrκ|x−x′ |

|x− x′| , (56)

which is symmetric, reflecting reciprocity. From the relation between the gauge field A and

the electric field E follows the relation −κ2
↔
G
(AA;r)

(x, x′) =
↔
G
(EE;r)

(x, x′), which allows to
compare the results below to those of the stress-tensor-based derivation.

Next, we define the classical solutions Ar of the vector wave equation in each region
Vr, obeying

∇×∇×Ar + εrµrκ2Ar = −κµrPr (57)

We use this definition together with the fact that A has no sources inside Vr, i.e.,
obeys above wave equation with vanishing right-hand side, to rewrite the source terms of
Equation (54) as

−κ
∫

Vr
d3x A · Pr =

∫

Vr
d3x A ·

[
1
µr
∇×∇×Ar + εrκ2Ar

]
(58)

=
1
µr

∫

Vr
d3x [A · (∇×∇×Ar)− (∇×∇×A) ·Ar]

=
1
µr

∫

Vr
d3x [∇ · ((∇×Ar)×A)−∇ · ((∇×A)×Ar)]

=
1
µr

∫

Σr
d3x [nr · ((∇×Ar)×A)− nr · ((∇×A)×Ar)]

=
1
µr

∫

Σr
d3x [A · (nr × (∇×Ar)) + (∇×A) · (nr ×Ar)] .

Now we have to consider the electric field E = −κA only on the surfaces Σr. However,
the values of the electric field E and its curl∇× E are those when the surface is approached
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from the inside, denoted by E− and (∇× E)−. It is important to realize that in the above
surface integral, A and∇×A multiply vectors that are tangential to the surface, and hence
only the tangential components of A and ∇×A contribute to the integral. Hence, we can
use the continuity conditions of the tangential components of E and H,

nr × E− = nr × E+ ,
1
µr

nr × (∇× E)− =
1

µ0
nr × (∇× E)+ , (59)

to write the source terms as

−κ
∫

Vr
d3x A · Pr =

1
µr

∫

Σr
d3x[A− · (nr × (∇×Ar)) + (∇×A)− · (nr ×Ar)]

=
∫

Σr
d3x
[

1
µr

A+ · (nr × (∇×Ar)) +
1

µ0
(∇×A)+ · (nr ×Ar)

]
, (60)

where the first form applies to A inside the objects and the second form to A outside the
objects. There is another advantage of having expressed the latter integrals in terms of the
values of A and ∇×A when the surfaces are approached from either the outside or the
inside of the objects. In the region V0, the field A ≡ A0 is fully determined by its values on
the surfaces Σr and the dielectric function ε0 and permeability µ0, which are constant across
V0. When integrating out A0, in fact, one computes the two-point correlation function of
A+ and (∇×A)+ on the surfaces Σr, and hence the behavior of A0 inside the regions Vr
with r > 0 is irrelevant. Following the same arguments for A ≡ Aα inside the objects, the
behavior of Ar outside of region Vr is irrelevant for computing the correlations of A− and
(∇×A)− on the surfaces Σr. Hence, we can replace in the action Ŝ[A, {Ar}] the spatially
dependent εx by ε0 when the coupling of A0 to the surface fields Ar is represented by the
second line of Equation (60), and similarly replace εx by εr when the coupling of Ar to the
surface fields Ar is represented by the first line of Equation (60).

That this is justified can also be understood as follows. The field A0 in region V0 can
be expanded in a basis of functions that obey the wave equation with ε0. The same can be
done for Ar in the interior of each object, i.e., Ar can be expanded in a basis of functions
that obey the wave equation with εr in Vr. For each given set of expansion coefficients in
V0 there are corresponding coefficients within each region Vr that are determined by the
continuity conditions at the surfaces Σr. The functional integral over A then corresponds to
integrating over consistent sets of expansion coefficients that are related by the continuity
conditions. The two-point correlations of A+ and (∇×A)+ on the surfaces Σr are then
fully determined by the integral over the expansion coefficients of A0 in V0 only, and
the interior expansion coefficients play no role. Equivalently, the two-point correlations
of A− and (∇×A)− on the surfaces Σr are then fully determined by the integral over
the expansion coefficients of Ar in Vr only, and now the exterior expansion coefficients
are irrelevant. Hence, in the functional integral, the integration of A can be replaced by
N + 1 integrations over the fields Ar, r = 0, . . . , N, where each Ar is allowed to extend
over unbounded space with the action for a free field in a homogeneous space with εr, µr.
However, it is important that the correct of the two possible forms of the surface integral in
Equation (60) is used. The multiple counting of degrees of freedom that results from N + 1
functional integrations poses no problem since the (formally infinite) factor in the partition
function cancels when the Casimir energy is computed from Equation (52).

With this representation, we can write the partition function as a functional integral
over A, separately in each region Vr, and the surface fields Ar on body r, leading to the
partition function

Z(κ) =
N

∏
r=0

∫
DAr

N

∏
r=1

∫
DAr exp

[
−βŜ[{Ar}, {Ar}]

]
. (61)
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with the action

Ŝ[{Ar}, {Ar}] = −1
2

N

∑
r=0

∫

R3
d3x
[

A2
r εrκ2 +

1
µr

(∇×Ar)
2
]

(62)

+
N

∑
r=1

∫

Σr
d3x

[
1
µr

A0(nr × (∇×Ar)) +
1

µ0
(∇×A0)(nr ×Ar)

]

+
N

∑
r=1

∫

Σr
d3x

[
1
µr

Ar(nr × (∇×Ar)) +
1
µr

(∇×Ar)(nr ×Ar)

]

Now, the fluctuations A can be integrated out easily, noting that the two point cor-
relation function 〈Ar(x)Ar′(x′)〉 = 0 for all r, r′ = 0, . . . , N with r 6= r′, and for equal-
region correlations

〈Ar,j(x)Ar,k(x
′)〉 =

↔
G
(AA;r)

jk (x, x′) (63)

〈(∇×A)r,j(x)Ar,k(x
′)〉 =

[
∇×

↔
G
(AA;r)]

jk
(x, x′) (64)

〈Ar,j(x)(∇×A)r,k(x
′)〉 = −

[↔
G
(AA;r)

×∇
]

jk
(x, x′) =

[
∇×

↔
G
(AA;r)]

jk
(x, x′) (65)

〈(∇×A)r,j(x)(∇×A)r,k(x
′)〉 = −

[
∇×

↔
G
(AA;r)

×∇
]

jk
(x, x′)

=

[
∇×∇×

↔
G
(AA;r)]

jk
(x, x′) (66)

where ∇ always acts on the argument x of
↔
G
(AA;r)

and the notation ∇×
↔
G
(AA;r)

means

that ∇ acts column-wise on the tensor
↔
G
(AA;r)

whereas
↔
G
(AA;r)

×∇ means that ∇ acts

row-wise on the tensor
↔
G
(AA;r)

. We obtain for the partition function

Z(κ) =
N

∏
r=1

∫
DAr exp

[
− β

2

(
N

∑
r=1

∫

Σr
d3x

∫

Σr
d3x′Ar(x)Lr(x, x′)Ar(x′)

+
N

∑
r,r′=1

∫

Σr
d3x

∫

Σr′
d3x′Ar(x)Mrr′(x, x′)Ar′(x

′)

)]
. (67)
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with the kernels

Lr(x, x′) =
1

µ2
r

[
∇×∇×

↔
G
(AA;r)

(x, x′)(nr × ~· )(n′r ×~· )

+ ∇×
↔
G
(AA;r)

(x, x′)(nr × (∇× ~· ))(n′r ×~· )

+ ∇×
↔
G
(AA;r)

(x, x′)(nr × ~· )(n′r × (∇′ ×~· ))

+
↔
G
(AA;r)

(x, x′)(nr × (∇× ~· ))(n′r × (∇′ ×~· ))
]

Mrr′(x, x′) =
1

µ2
0
∇×∇×

↔
G
(AA;0)

(x, x′)(nr × ~· )(n′r′ ×~· )

+
1

µ0µr
∇×

↔
G
(AA;0)

(x, x′)(nr × (∇× ~· ))(n′r′ ×~· )

+
1

µ0µr′
∇×

↔
G
(AA;0)

(x, x′)(nr × ~· )(n′r′ × (∇′ ×~· ))

+
1

µrµr′

↔
G
(AA;0)

(x, x′)(nr × (∇× ~· ))(n′r′ × (∇′ ×~· )) (68)

where
↔
G
(AA;r)

(x, x′) is the free Green function of Equation (56), and the arrow over the
placeholder · indicates to which side of the kernel M acts. This notation implies that the
derivatives are taken before the kernel is evaluated with x and x′ on the surfaces Σr.

4.2. Hamiltonian Formulation

The representation of the partition function in the previous subsection sums over
all configurations of the surface fields Ar, and the action depends both on Ar and the
tangential part of its curl, which is functionally dependent on Ar. Hence, the situation is
similar to classical mechanics where the Lagrangian depends on the trajectory q(t) and
its velocity q̇(t). The Lagrangian path integral runs then over all of path q(t) with q̇(t)
determined by the path automatically. To obtain a representation in terms of a space
of functions that are defined strictly on the surfaces Σr only, it would be useful to be
able to integrate over Ar and its derivatives independently. In classical mechanics, this is
achieved by Lagrange multipliers that lead to a Legendre transformation of the action to
its Hamiltonian form. Here the situation is similar. To see this, it is important to realize
that the bilinear form described by Lr is degenerate on the space of functions over which
the functional integral runs, i.e.,

∫
Σr

d3x
∫

Σr
d3x′A(x)Lr(x, x′)A(x′) = 0 for all A(x) that are

regular solutions of the vector wave equation ∇×∇×A+ εrµrκ2A = 0 inside region Vr.

With a basis {A(reg,r)
ν (x)} for this functional space, the elements of Lr can be expressed as

Lr(ν, ν′) =
∫

Σr
d3x

∫

Σr
d3x′A(reg,r)

ν (x)Lr(x, x′)A(reg,r)
ν′ (x′)

=
1

µ2
r

∫

Σr
d3x

[
(∇×Aν′(x))

(
nr ×A(reg,r)

ν (x)
)
+Aν′(x)

(
nr ×

(
∇×A(reg,r)

ν (x)
))]

=
1

µ2
r

∫

Vr
d3x
[
Aν′(x)

(
∇×∇×A(reg,r)

ν (x)
)
−A(reg,r)

ν (x)(∇×∇×Aν′(x))
]

= 0 (69)
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where we used the relations of Equation (58), and defined

Aν′(x) =
∫

Σr
d3x′

[
∇×

↔
G
(AA;r)

(x, x′)
(

n′r ×A(reg,r)
ν′ (x′)

)

+
↔
G
(AA;r)

(x, x′)
(

n′r ×
(
∇′ ×A(reg,r)

ν′ (x′)
))]

, (70)

and made use of the fact that Aν′(x) is also a solution of the vector wave equation inside
Vr. This implies that the kernel Lr can be ignored in the above functional integral over
regular waves Ar inside the objects.

However, the appearance of the kernel Lr is important in what follows. Let us consider
the part of the action Ŝ[{Ar}, {Ar}] which, after functional integration over Ar, generates
the kernel Lr. It is given by

Sr =−
1
2

∫

R3
d3x

[
A2

r εrκ2 +
1
µr

(∇×Ar)
2
]

+
1
µr

∫

Σr
d3x [Ar(nr × (∇×Ar)) + (∇×Ar)(nr ×Ar)] . (71)

The exponential of this action can be written as a functional integral over two new
vector fields Kr and K′r that are defined on the surfaces Σr and are tangential to the surfaces,

exp(−βSr)

= Zr

∮
DKrDK′r exp

{
− β

2
1

µ2
r

∫

Σr
d3x

∫

Σr
d3x′

[
Kr(x) · ∇ ×∇×

↔
G
(AA;r)

(x, x′) ·Kr(x′)

+ Kr(x) · ∇ ×
↔
G
(AA;r)

(x, x′) ·K′r(x′) + K′r(x) · ∇ ×
↔
G
(AA;r)

(x, x′) ·Kr(x′)

+ K′r(x) ·
↔
G
(AA;r)

(x, x′) ·K′r(x′)
]

+
1
µr

∫

Σr
d3x

[
Ar ·

(
(nr × (∇×Ar))−K′r

)
+ (∇×Ar) ·

(
(nr ×Ar −Kr)

)]}
(72)

where Zr is some normalization coefficient, and we have used
∮
DKrDK′r to indicate that

the functional integral extends only over vector fields that are tangential to the surface Σr.
This representation shows that Ar acts as a Lagrange multiplier. Integration over this field
removes the imposed constraints between the dependent tangential fields nr ×Ar, nr ×
(∇×Ar) by replacing them with the independent tangential fields Kr and K′r, respectively.

Substituting Equation (72) for each object into the expression for the partition in
Equation (61), we obtain with Kr = (Kr, K′r) the partition function

Z(κ) =
∫
DA0

N

∏
r=1

∮
DKr (73)

× exp[−βSeff[A0, {Kr}]] exp

[
− β

2

N

∑
r=1

∫

Σr
d3x

∫

Σr
d3x′Kr(x)L̂r(x, x′)Kr(x

′)

]

with the kernel from Equation (72),

L̂r(x, x′) =
1

µ2
r


∇×∇×

↔
G
(AA;r)

(x, x′) ∇×
↔
G
(AA;r)

(x, x′)

∇×
↔
G
(AA;r)

(x, x′)
↔
G
(AA;r)

(x, x′)


 , (74)
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and with the effective action

Seff[A0, {Kr}] =
1
2

∫

R3
d3x
[

A2
0ε0κ2 +

1
µ0

(∇×A0)
2
]

+
N

∑
r=1

∫

Σr
d3x

[
1
µr

A0K′r +
1

µ0
(∇×A0)Kr

]
, (75)

where we have integrated out Ar for r = 1, . . . , N, constraining the functional integral over
Ar to be replaced by the substitutions nr×Ar → Kr and nr× (∇×Ar)→ K′r. Integrating
out A0, finally yields

Z(κ) =
N

∏
r=1

∮
DKr exp

[
− β

2

(
N

∑
r=1

∫

Σr
d3x

∫

Σr
d3x′Kr(x)L̂r(x, x′)Kr(x

′)

+
N

∑
r,r′=1

∫

Σr
d3x

∫

Σr′
d3x′Kr(x)M̂rr′(x, x′)Kr′(x

′)

)]
, (76)

with the additional kernel

M̂rr′(x, x′) =




1
µ2

0
∇×∇×

↔
G
(AA;0)

(x, x′) 1
µ0µr′

∇×
↔
G
(AA;0)

(x, x′)

1
µ0µr
∇×

↔
G
(AA;0)

(x, x′) 1
µrµr′

↔
G
(AA;0)

(x, x′)


 . (77)

It should be noted again that the functional integral in Equation (76) runs over tan-
gential vector fields Kr, K′r defined on the surfaces Σr only. The kernels L̂ and M̂ can be
combined into the joint kernel

N̂rr′ = L̂rδrr′ + M̂rr′ . (78)

Since N̂ acts in the path integral only on tangential vectors, the projections of N̂ on the
tangent space of the surfaces Σr have to be taken. Let tr,1(x), tr,2(x) be two tangent vector
fields that span the tangent space of Σr at x. The 4× 4 matrix kernels then become

L̃r,mn(x, x′) = tr,m(x)L̂r(x, x′)tr,n(x′)

=
1
µr

(
(tr,m(x).∇)(tr,n(x′).∇)gr − tr,m(x).tr,n(x′)∇2gr −(tr,m(x)× tr,n(x′)).∇gr

−(tr,m(x)× tr,n(x′)).∇gr − 1
εrµrκ2 (tr,m(x).∇)(tr,n(x′).∇)gr + tr,m(x).tr,n(x′)gr

)

and

M̃rr′ ,mn(x, x′) = tr,m(x)M̂rr′(x, x′)tr′ ,n(x
′)

=
1

µ0



(tr,m(x).∇)(tr,n(x′).∇)g0 − tr,m(x).tr,n(x′)∇2g0 − µ0

µr′
(tr,m(x)× tr,n(x′)).∇g0

− µ0
µr
(tr,m(x)× tr,n(x′)).∇g0 − µ0

ε0µrµr′κ2 (tr,m(x).∇)(tr,n(x′).∇)g0 +
µ2

0
µrµr′

tr,m(x).tr,n(x′)g0




which expresses all kernels in terms of tangential and normal derivatives of the scalar
Green function gr(|x− x′|) = e−

√
εrµrκ|x−x′ |/|x− x′|. These expressions simplify when an

orthonormal basis tr,1(x), tr,2(x), nr(x) = tr,1(x)× tr,2(x) is used. The Casimir free energy
is then given by

F = −kBT
∞

∑
n=0

′ log det
[

N̂(κn)N̂−1
∞ (κn)

]
, (79)

where the determinant runs over all indices, i.e., x, x′ located on the surfaces Σr, and r,
r′ = 1, . . . , N. The kernel N̂∞ is obtained from the kernel N̂ by taking the distance between
all bodies to infinity, i.e, by setting M̂rr′ = 0 for all r 6= r′. In the following we shall again
denote the form of the partition function in Equation (67) as Lagrange representation, and
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the one of Equation (76) as a Hamiltonian representation. By a simple computation, one
can verify that the Hamiltonian representation of the Casimir free energy in Equation (79)
is indeed equivalent to the surface formula Equation (44).

5. Application: Derivation of the Lifshitz Theory

As a simple example to demonstrate the practical application of the surface formula-
tions, we consider two dielectric half-spaces, one covering the region z ≤ z1 = 0, with the
surface Σ1 and dielectric function ε1 and magnetic permeability µ1, and the other covering
the region z ≥ z2 = H, with the surface Σ2 and dielectric function ε2 magnetic permeability
µ2. We shall consider both the Lagrange and Hamiltonian representation in the following.

5.1. Lagrange Representation

We compute the matrix elements of the kernels L and M of Equation (68) in the basis
of transverse vector plane waves, given by

M1,k‖ = ∇×
(

e−ik‖x‖+p1zẑ
)
= (−iky, ikx, 0)e−ik‖x‖+p1z (80)

N1,k‖ =
1
κ
∇×∇×

(
e−ik‖x‖+p1zẑ

)
=

1
κ
(−ikx p1,−iky p1, k2

‖)e
−ik‖x‖+p1z (81)

M2,k‖ = ∇×
(

e−ik‖x‖−p2(z−H)ẑ
)
= (−iky, ikx, 0)e−ik‖x‖−p2(z−H) (82)

N2,k‖ =
1
κ
∇×∇×

(
e−ik‖x‖−p2(z−H)ẑ

)
=

1
κ
(ikx p2, iky p2, k2

‖)e
−ik‖x‖−p2(z−H) (83)

with pr =
√

εrµrκ2 + k2
‖ and the sign of z is fixed so that the waves are regular inside the

half-spaces. Note that we include here a z dependence to be able to compute the curl on
the surfaces. For the Green tensor, we use the representation

↔
G
(AA;r)

(x, x′) =
∫

q
eiq(x−x′) 1/(εrκ2)

εrµrκ2 + q2




εrµrκ2 + q2
x qxqy qxqz

qyqx εrµrκ2 + q2
y qyqz

qzqx qzqy εrµrκ2 + q2
z




≡
∫

q
eiq(x−x′) µrG̃r(κ, q)

εrµrκ2 + q2 , (84)

which yields after the curl operations

∇×
↔
G
(AA;r)

(x, x′) =
∫

q
eiq(x−x′) µr

εrµrκ2 + q2




0 −iqz iqy
iqz 0 −iqx
−iqy iqx 0




≡
∫

q
eiq(x−x′) µrG̃′r(q)

εrµrκ2 + q2 (85)

∇×∇×
↔
G
(AA;r)

(x, x′) =
∫

q
eiq(x−x′) µr

εrµrκ2 + q2




q2
y + q2

z −qxqy −qxqz

−qxqy q2
x + q2

z −qyqz
−qxqz −qyqz q2

x + q2
y




≡
∫

q
eiq(x−x′) µrG̃′′r (q)

εrµrκ2 + q2 . (86)
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We also need the following expressions for the operators that appear in the kernels,
acting on the basis functions, which are tangential to the surfaces. On surface Σ1 we have

ẑ×M1,k‖ = (−ikx,−iky, 0)e−ik‖x‖ ≡ um1e−ik‖x‖ (87)

ẑ×N1,k‖ =
1
κ
(iky p1,−ikx p1, 0)e−ik‖x‖ ≡ un1e−ik‖x‖ (88)

ẑ×∇×M1,k‖ = (iky p1,−ikx p1, 0)e−ik‖x‖ ≡ vm1e−ik‖x‖ (89)

ẑ×∇×N1,k‖ =
1
κ
(ikxε1µ1κ2, ikyε1µ1κ2, 0)e−ik‖x‖ ≡ vn1e−ik‖x‖ (90)

and similarly on surface Σ2,

ẑ×M2,k‖ = (−ikx,−iky, 0)e−ik‖x‖ ≡ um2e−ik‖x‖ (91)

ẑ×N2,k‖ =
1
κ
(−iky p2, ikx p2, 0)e−ik‖x‖ ≡ un2e−ik‖x‖ (92)

ẑ×∇×M2,k‖ = (−iky p2, ikx p2, 0)e−ik‖x‖ ≡ vm2e−ik‖x‖ (93)

ẑ×∇×N2,k‖ =
1
κ
(ikxε2µ2κ2, ikyε2µ2κ2, 0)e−ik‖x‖ ≡ vn2e−ik‖x‖ . (94)

It is straightforward to show that the matrix elements of Lr in the above basis all
vanish, as the basis functions are regular solutions of the vector wave equation. This
observation is in agreement with the above finding that the kernel Lr is degenerate on the
space of those solutions. We proceed with the computation of the elements of kernel M.
We find for the case r = r′,

Mrr(k‖, k′‖) =
∫

Σr
d3x

∫

Σr
d3x′

(
M
N

)

r,k‖

(x)Mrr(x, x′)
(

M
N

)

r,k′‖

(x′) (95)

= δ(k‖ + k′‖)
∫ ∞

−∞

dqz

2π

[
1

µ2
0

(
um
un

)

r,k‖

G̃′′0 (k‖, qz)

(
um
un

)

r,−k‖

+
1

µ0µr

(
vm
vn

)

r,k‖

G̃′0(k‖, qz)

(
um
un

)

r,−k‖

+
1

µ0µr

(
um
un

)

r,k‖

G̃′0(k‖, qz)

(
vm
vn

)

r,−k‖

+
1

µ2
r

(
vm
vn

)

r,k‖

G̃0(κ, k‖, qz)

(
vm
vn

)

r,−k‖

]
µ0

ε0µ0κ2 + k2
‖ + q2

z
eiqz(z−z′)

| z,z′→zr

= δ(k‖ + k′‖)
µ0k2

‖
2p0




µ2
0 p2

r−µ2
r p2

0
(µ0µr)2 0

0 − ε2
0 p2

r−ε2
r p2

0
ε0µ0




≡ δ(k‖ + k′‖)Mrr(k‖)

and for the case r 6= r′ we get
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Mrr′(k‖, k′‖) =
∫

Ωr
d3x

∫

Ωr′
d3x′

(
M
N

)

r,k‖

(x)Mrr′(x, x′)
(

M
N

)

r′ ,k′‖

(x′) (96)

= δ(k‖ + k′‖)
∫ ∞

−∞

dqz

2π

[
1

µ2
0

(
um
un

)

r,k‖

G̃′′0 (k‖, qz)

(
um
un

)

r′ ,−k‖

+
1

µ0µr

(
vm
vn

)

r,k‖

G̃′0(k‖, qz)

(
um
un

)

r′ ,−k‖

+
1

µ0µr′

(
um
un

)

r,k‖

G̃′0(k‖, qz)

(
vm
vn

)

r′ ,−k‖

+
1

µrµr′

(
vm
vn

)

r,k‖

G̃0(κ, k‖, qz)

(
vm
vn

)

r′ ,−k‖

]
µ0

ε0µ0κ2 + k2
‖ + q2

z
eiqz(−1)r H

= δ(k‖ + k′‖)
k2
‖

2µ0 p0

(
(µ0 p1−µ1 p0)(µ0 p2−µ2 p0)

µ1µ2
0

0 −(ε0 p1 − ε1 p0)(ε0 p2 − ε2 p0)
µ0
ε0

)
e−p0 H ,

≡ δ(k‖ + k′‖)Mrr′(k‖) ,

where the sign in eiqz(−1)r H determines upon integration over qz the sign of the terms
∼ iqz. The vanishing of the off-diagonal elements reflects the fact that the two polarizations
described by the basis functions M and N do not couple for planar surfaces. The total
kernel M can be written as

M(k‖) =

k2
‖

2p0




µ2
0 p2

1−µ2
1 p2

0
µ0µ2

1
0 (µ0 p1−µ1 p0)(µ0 p2−µ2 p0)

µ0µ1µ2
e−p0 H 0

0 − ε2
0 p2

1−ε2
1 p2

0
ε0

0 − (ε0 p1−ε1 p0)(ε0 p2−ε2 p0)
ε0

e−p0 H

(µ0 p1−µ1 p0)(µ0 p2−µ2 p0)
µ0µ1µ2

e−p0 H 0 µ2
0 p2

2−µ2
2 p2

0
(µ0µ2

2)
0

0 − (ε0 p1−ε1 p0)(ε0 p2−ε2 p0)
ε0

e−p0 H 0 − ε2
0 p2

2−ε2
2 p2

0
ε0




The Casimir free energy is given by

F = kBT
∞

∑
n=0

′
∫ d2k‖

(2π)2 log det
[

MM−1
∞ (k‖)

]
κ=κn

(97)

in terms of the determinant of the matrix

MM−1
∞ (k‖) =




1 0 µ2
µ1

µ0 p1−µ1 p0
µ0 p2+µ2 p0

e−p0 H 0

0 1 0 ε0 p1−ε1 p0
ε0 p2+ε2 p0

e−p0 H

µ1
µ2

µ0 p2−µ2 p0
µ0 p1+µ1 p0

e−p0 H 0 1 0

0 ε0 p2−ε2 p0
ε0 p1+ε1 p0

e−p0 H 0 1




which has four dimensions due to two sets of basis functions (polarisations) M and N per
surface. This yields the final result

F = kBT
∞

∑
n=0

′
∫ dk‖

(2π)2 log
[(

1− (ε0 p1 − ε1 p0)(ε0 p2 − ε2 p0)

(ε0 p1 + ε1 p0)(ε0 p2 + ε2 p0)
e−2p0 H

)

×
(

1− (µ0 p1 − µ1 p0)(µ0 p2 − µ2 p0)

(µ0 p1 + µ1 p0)(µ0 p2 + µ2 p0)
e−2p0 H

)]

κ=κn

. (98)

This result is in agreement with the Lifshitz formula [37].

5.2. Hamiltonian Representation

Now we derive the Lifshitz expression for the free energy of two dielectric half-spaces
in the Hamiltonian representation. Since the kernels L̂ and M̂ of Equations (74) and (77) act
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on vector fields that are tangential to the surfaces, we need to compute the matrix elements
in a basis of tangential vectors tr,1(x) and tr,2(x) that span the tangent space of surface Σr
at position x. For a planar surface, one can simply set tr,1(x) = x̂1 and tr,2(x) = x̂2. For
a given pair of positions x, x′ on the surface and fixed surface indices r, r′ we obtain the
following 4× 4 dimensional matrices

L̂r(x, x′) = 1
µ2

r

(
x̂1
x̂2

)
∇×∇×

↔
G
(AA;r)

(x, x′) ∇×
↔
G
(AA;r)

(x, x′)

∇×
↔
G
(AA;r)

(x, x′)
↔
G
(AA;r)

(x, x′)



(

x̂1
x̂2

)

≡ 1
µ2

r




x̂1.∇×∇×
↔
G
(AA;r)

(x, x′).x̂1 x̂1.∇×∇×
↔
G
(AA;r)

(x, x′).x̂2 x̂1.∇×
↔
G
(AA;r)

(x, x′).x̂1 x̂1.∇×
↔
G
(AA;r)

(x, x′).x̂2

x̂2.∇×∇×
↔
G
(AA;r)

(x, x′).x̂1 x̂2.∇×∇×
↔
G
(AA;r)

(x, x′).x̂2 x̂2.∇×
↔
G
(AA;r)

(x, x′).x̂1 x̂2.∇×
↔
G
(AA;r)

(x, x′).x̂2

x̂1.∇×
↔
G
(AA;r)

(x, x′).x̂1 x̂1.∇×
↔
G
(AA;r)

(x, x′).x̂2 x̂1.
↔
G
(AA;r)

(x, x′).x̂1 x̂1.
↔
G
(AA;r)

(x, x′).x̂2

x̂2.∇×
↔
G
(AA;r)

(x, x′).x̂1 x̂2.∇×
↔
G
(AA;r)

(x, x′).x̂2 x̂2.
↔
G
(AA;r)

(x, x′).x̂1 x̂2.
↔
G
(AA;r)

(x, x′).x̂2




= 1
µr

∫
q

e
iq‖(x‖−x′‖)

p2
r+q2

z




q2
y + q2

z −qxqy 0 −iqz

−qxqy q2
x + q2

z iqz 0

0 −iqz 1 + q2
x

εrµrκ2
qxqy

εrµrκ2

iqz 0 qxqy
εrµrκ2 1 +

q2
y

εrµrκ2




= 1
µr

∫
q‖

e
iq‖(x‖−x′‖)

2pr




q2
y − p2

r −qxqy 0 ∓pr

−qxqy q2
x − p2

r ±pr 0

0 ∓pr 1 + q2
x

εrµrκ2
qxqy

εrµrκ2

±pr 0 qxqy
εrµrκ2 1 +

q2
y

εrµrκ2




,

where we set x = (x‖, 0) and x = (x‖, H) for surfaces 1 and 2, respectively. We determined
the sign of the terms ∼ iqz from the qz-integration by the observation that z, z′ have to be
taken to the surface with z− z′ staying inside the object. The upper (lower) sign of pr
refers to r = 1 (r = 2).

Analogously, for kernel M we get for the case r = r′

M̂rr(x, x′) =
(

x̂1
x̂2

)



1
µ2

0
∇×∇×

↔
G
(AA;0)

(x, x′) 1
µ0µr
∇×

↔
G
(AA;0)

(x, x′)

1
µ0µr
∇×

↔
G
(AA;0)

(x, x′) 1
µ2

r

↔
G
(AA;0)

(x, x′)



(

x̂1
x̂2

)

=
∫

q

µ0 eiq‖(x‖−x′‖)

p2
0 + q2

z




q2
y+q2

z

µ2
0

− qxqy

µ2
0

0 − iqz
µ0µr

− qxqy

µ2
0

q2
x+q2

z
µ2

0

iqz
µ0µr

0

0 − iqz
µ0µr

1
µ2

r

(
1 + q2

x
ε0µ0κ2

)
1

µ2
r

qxqy
ε0µ0κ2

iqz
µ0µr

0 1
µ2

r

qxqy
ε0µ0κ2

1
µ2

r

(
1 +

q2
y

ε0µ0κ2

)




=
∫

q‖

µ0 eiq‖(x‖−x′‖)

2p0




q2
y−p2

0
µ2

0
− qxqy

µ2
0

0 ±p0
µ0µr

− qxqy

µ2
0

q2
x−p2

0
µ2

0

∓p0
µ0µr

0

0 ±p0
µ0µr

1
µ2

r

(
1 + q2

x
ε0µ0κ2

)
1

µ2
r

qxqy
ε0µ0κ2

∓p0
µ0µr

0 1
µ2

r

qxqy
ε0µ0κ2

1
µ2

r

(
1 +

q2
y

ε0µ0κ2

)




(99)

and for r 6= r′,
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M̂rr′(x, x′) =
(

x̂1
x̂2

)



1
µ2

0
∇×∇×

↔
G
(AA;0)

(x, x′) 1
µ0µr′
∇×

↔
G
(AA;0)

(x, x′)

1
µ0µr
∇×

↔
G
(AA;0)

(x, x′) 1
µrµr′

↔
G
(AA;0)

(x, x′)



(

x̂1
x̂2

)

=
∫

q

µ0 eiq‖(x‖−x′‖)∓iqz H

p2
0 + q2

z




q2
y+q2

z

µ2
0

− qxqy

µ2
0

0 − iqz
µ0µr′

− qxqy

µ2
0

q2
x+q2

z
µ2

0

iqz
µ0µr′

0

0 − iqz
µ0µr

1
µrµr′

(
1 + q2

x
ε0µ0κ2

)
1

µrµr′
qxqy

ε0µ0κ2

iqz
µ0µr

0 1
µrµr′

qxqy
ε0µ0κ2

1
µrµr′

(
1 +

q2
y

ε0µ0κ2

)




=
∫

q‖

µ0 eiq‖(x‖−x′‖)

2p0




q2
y−p2

0
µ2

0
− qxqy

µ2
0

0 ∓p0
µ0µr′

− qxqy

µ2
0

q2
x−p2

0
µ2

0

±p0
µ0µr′

0

0 ∓p0
µ0µr

1
µrµr′

(
1 + q2

x
ε0µ0κ2

)
1

µrµr′
qxqy

ε0µ0κ2

±p0
µ0µr

0 1
µrµr′

qxqy
ε0µ0κ2

1
µrµr′

(
1 +

q2
y

ε0µ0κ2

)




e−p0 H (100)

where again the upper (lower) sign everywhere refers to r = 1 (r = 2). For the kernel M̂ we
determined the sign of the terms ∼ iqz from the qz-integration by the observation that z, z′

have to be taken to the surface with z− z′ staying outside the object. When combining the
kernels L̂ and M̂ into the joint kernel Nrr′ = L̂rδrr′ + M̂rr′ , it is diagonal in q‖-space with
the blocks N(q‖) on the diagonal given by the 8× 8 matrix shown in Figure 2.

The Casimir free energy is given by

F = kBT
∞

∑
n=0

′
∫ d2q‖

(2π)2 log det
[

NN−1
∞ (q‖)

]
κ=κn

(101)

in terms of the determinant of the above matrix where N∞ is the matrix with H → ∞,
i.e., the matrix N with the off-diagonal 4× 4 blocks ∼ e−p0 H vanishing. This yields the
final result

F = kBT
∞

∑
n=0

′
∫ d2q‖

(2π)2 log
[(

1− (ε0 p1 − ε1 p0)(ε0 p2 − ε2 p0)

(ε0 p1 + ε1 p0)(ε0 p2 + ε2 p0)
e−2p0 H

)

×
(

1− (µ0 p1 − µ1 p0)(µ0 p2 − µ2 p0)

(µ0 p1 + µ1 p0)(µ0 p2 + µ2 p0)
e−2p0 H

)]
, (102)

which is again identical to the Lifshitz formula. Note that in the Hamiltonian approach
there is no need to express the kernels in a basis for the space of functions that are regular
solutions of the wave equation inside the objects. However, the number of fields per surface
is now doubled compared to the Lagrangian approach, resembling the situation in quantum
mechanics where the Hamiltonian path integrals run over the canonical coordinates q and
p independently.
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1
9

N(qk) =

0
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q2
y�p2

1

2p1µ1
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0 � 1

2µ1

� qxqy

2p1µ1

q2
x�p2

1

2p1µ1

1
2µ1

0

0 � 1
2µ1

1
2p1µ1

⇣
1 +

q2
x

✏1µ12

⌘
1

2p1µ1

qxqy

✏1µ12

1
2µ1

0 1
2p1µ1

qxqy

✏1µ12
1

2p1µ1

⇣
1 +

q2
y

✏1µ12

⌘
0

0

q2
y�p2

2

2p2µ2
� qxqy

2p2µ2
0 1

2µ2

� qxqy

2p2µ2

q2
x�p2

2

2p2µ2
� 1

2µ2
0

0 1
2µ2

1
2p2µ2

⇣
1 +

q2
x

✏2µ22

⌘
1

2p2µ2

qxqy

✏2µ22

� 1
2µ2

0 1
2p2µ2

qxqy

✏2µ22
1

2p2µ2

⇣
1 +

q2
y

✏2µ22

⌘

1
CCCCCCCCCCCCCCCCCA

(II.68)

+
µ0

2p0

0
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q2
y�p2

0

µ2
0

� qxqy

µ2
0

0 p0

µ0µ1

q2
y�p2

0

µ2
0

e�p0H � qxqy

µ2
0

e�p0H 0 � p0

µ0µ2
e�p0H

� qxqy

µ2
0

q2
x�p2

0

µ2
0

� p0

µ0µ1
0 � qxqy

µ2
0

e�p0H q2
x�p2

0

µ2
0

e�p0H p0

µ0µ2
e�p0H 0

0 p0

µ0µ1

1
µ2

1

⇣
1 +

q2
x

✏0µ02

⌘
1

µ2
1

qxqy

✏0µ02 0 � p0

µ0µ1
e�p0H 1

µ1µ2

⇣
1 +

q2
x

✏0µ02

⌘
e�p0H 1

µ1µ2

qxqy

✏0µ02 e�p0H
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Figure 2. Matrix N(q‖) forming the diagonal blocks of the matrix N.



Universe 2021, 7, 225 23 of 34

6. Conclusions

To date, analytical and purely numerical approaches to compute Casimir interactions
have been developed independently, and it remained an open question if and how they are
related. Analytical methods build on ideas from scattering theory and hence require an
expansion of the Green function and bulk or surface operators in terms of special functions
that are solutions of the wave equation. Hence, the very existence of such functions and the
convergence of the expansion limit these approaches to sufficiently symmetric problems.
Purely numerical approaches, such as that developed in [32], can be applied to basically
arbitrary geometries but the numerical effort can be extremely high. Hence, it appeared
useful to us to study the relation between these approaches in order to develop methods
that can serve as semi-numerical approaches that combine the versatility of the purely
numerical approaches with the smaller numerical effort of analytical methods. Hence, we
have presented in this work a new compact derivation of formulas for the Casimir force,
which is based both on bulk and surface operators that also enable analytical evaluations.
This we have demonstrated for the simplest case of two dielectric slabs. Further semi-
analytical implementations of our approaches are underway.

Our Hamiltonian path integral representation is equivalent to the one derived by
Johnson et al. as a purely numerical approach using Lagrange multipliers to enforce the
boundary conditions in the path integral. Interestingly, the here-presented derivation of this
representation from a Lagrangian path integral demonstrates the relation of this approach
to the scattering approach when the T-matrix is defined, as originally by Waterman, by
surface integrals of regular solutions of the wave equation over the bodies’ surfaces [38].
This shows the close connection of these approaches, motivating further research in the
direction of new semi-analytical methods to compute Casimir forces.
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Appendix A. Dyadic Green’s Functions and Notations

It is well known [34] that the expectation values of quantum fields in systems in
thermal equilibrium can be expressed, via the Matsubara formalism, in terms of the
analytic continuation to the positive imaginary axis of the appropriate Green’s functions.
Along the imaginary axis, response functions have a simpler behavior than along the
real frequency axis. For example, it can be shown that the electric and the magnetic
permittivities of a magneto-dielectric medium are real-valued and positive definite for
imaginary frequencies [39]. In the same manner, retarded Green’s functions are real-valued
for positive imaginary frequencies. In this Appendix, we briefly review their definitions
and main properties.

To be specific, consider a system consisting of a collection of possibly spatially dis-
persive magneto-dielectric bodies in vacuum, occupying the (non-overlapping) regions of
space V1, . . . , VN . We let V0 be the vacuum region that separates the bodies. The electro-
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magnetic response of the system is described by the following real-valued and positive
definite frequency-dependent electric and magnetic permittivities

εij(x, x′; i ξ) =
N

∑
r=0

ψr(x)ε
(r)
ij (x, x′; i ξ)ψr(x′) ,

µij(x, x′; i ξ) =
N

∑
r=0

ψr(x)µ
(r)
ij (x, x′; i ξ)ψr(x′) , (A1)

where ε
(0)
ij (x, x′; i ξ) = µ

(0)
ij (x, x′; i ξ) = δijδ

(3)(x− x′) is the permittivity of the vacuum.

For local media, εij(x, x′; i ξ) = εij(x)δ(3)(x − x′), and µij(x, x′; i ξ) = µij(x)δ(3)(x − x′).
The principle of microscopic reversibility [40] requires that the permittivities satisfy the
symmetry relations:

εij(x, x′; i ξ) = εji(x′, x; i ξ) ,

µij(x, x′; i ξ) = µji(x′, x; i ξ) . (A2)

The imaginary-frequency Maxwell’s Equations are:

−∇× E = κ(B + 4π Mext) ,

∇×H = κ(D + 4π Pext) , (A3)

where κ = ξ/c, Pext and Mext are the external polarization and magnetization, and

Di(x) =
∫

R3
d3x′ εij(x, x′; i ξ) Ej(x′) ,

Bi(x) =
∫

R3
d3x′ µij(x, x′; i ξ) Hj(x′) . (A4)

At the boundary separating media r and s, the tangential components of E and H are
continuous:

n̂× [E(r) − E(s)] = n̂× [H(r) −H(s)] = 0 , (A5)

where n̂ is the unit normal to the boundary. The dyadic Green’s functions G(αβ)
ij (x− x′; i ξn)

are defined such that:

E(x) =
∫

R3
d3x′

[↔
G
(EE)

(x, x′; i ξ) · Pext(x′) +
↔
G
(EH)

(x, x′; i ξ) ·Mext(x′)
]

,

H(x) =
∫

R3
d3x′

[↔
G
(HE)

(x, x′; i ξ) · Pext(x′) +
↔
G
(HH)

(x, x′; i ξ) ·Mext(x′)
]

. (A6)

It can be shown [33] that the Green’s function satisfies the reciprocity relations:

G(αβ)
ij (x, x′; i ξ) = (−1)s(α)+s(β) G(βα)

ji (x′, x; i ξ) , (A7)

where s(E) = 0 and s(H) = 1.
In a local medium:

εij(x, x′; i ξ) = δ(3)(x− x′) εij(x; i ξ) ,

µij(x, x′; i ξ) = δ(3)(x− x′) µij(x; i ξ) . (A8)
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In a local medium, it is possible to express the three Green’s function
↔
G
(EH)

(x, x′; i ξ),
↔
G
(HE)

(x, x′; i ξ) and
↔
G
(HH)

(x, x′; i ξ) in terms of the electric Green’s function
↔
G
(EE)

(x, x′; i ξ), as:

↔
G
(HE)

(x, x′; i ξ) = −1
κ

↔
µ
−1
(x, i ξ)

→
∇×

↔
G
(EE)

(x, x′; i ξ) , (A9)

↔
G
(EH)

(x, x′; i ξ) = −1
κ

↔
G
(EE)

(x, x′; i ξ)×
←
∇‘
↔
µ
−1
(x′, i ξ) , (A10)

↔
G
(HH)

(x, x′; i ξ) =
1
κ2

↔
µ
−1
(x, i ξ)

→
∇×

↔
G
(EE)

(x, x′; i ξ)×
←
∇‘
↔
µ
−1
(x′, i ξ)

− 4π
↔
µ
−1
(x, i ξ) δ(3)(x− x′) , (A11)

where
←
∇‘ denotes derivation w.r.t. x′, acting from right. The electric Green function solves

the differential Equation:

~∇×
[↔

µ
−1
(x, i ξ)~∇×

↔
G
(EE)

(x, x′; i ξ)

]
+ κ2↔ε (x, i ξ)

↔
G
(EE)

(x, x′; i ξ) = −4πκ2 ↔1 δ(3)(x− x′) .

In the case of a homogeneous isotropic medium, this Equation can be solved explicitly:

G(EE)
ij (x− x′; i ξ) = −

(
1
ε

∂2

∂xi∂x′j
+ µ κ2 δij

)
g0(x− x′) , (A12)

From Equations (A9)–(A11), one then gets:

G(HH)
ij (x− x′; i ξ) = −

(
1
µ

∂2

∂xi∂x′j
+ ε κ2 δij

)
g0(x− x′) , (A13)

G(HE)
ij (x− x′; i ξ) = −κ εijk

∂

∂xk
g0(x− x′) , (A14)

G(EH)
ij (x− x′; i ξ) = −κ εijk

∂

∂x′k
g0(x− x′) , (A15)

where

g0(x− x′) =
e−κ
√

εµ|x−x′ |

|x− x′| . (A16)

is the Green’s function of the scalar Helmoltz Equation in free space:
(
∇2 − ε µ κ2

)
g0(x− x′) = −4π δ(3)(x− x′) , (A17)

It is convenient to introduce a compact notation for the fields and the Green’s functions.
We collect the fields and the sources into six-rows column-vectors:

Φ ≡
(

Φ(E)(x)
Φ(H)(x)

)
=

(
E(x)
H(x)

)
,

D ≡
(
D(E)(x)
D(H)(x)

)
=

(
D(x)
B(x)

)
,

Kext ≡
(

K(E)
ext (x)

K(H)
ext (x)

)
=

(
Pext(x)
Mext(x)

)
. (A18)
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The defining Equations of the Green’s functions Equation (A6) can then be interpreted
as defining the action of the linear operator Ĝ onto the vector Kext:

Φ = Ĝ Kext . (A19)

With this notation, the reciprocity relations Equation (A7) are expressed by the opera-
tor Equation:

ĜT = Ŝ Ĝ Ŝ , (A20)

where Ŝ is the 6× 6 diagonal matrix of elements S(αβ)
ij = (−1)s(α)δαβδij. The electric and

the magnetic permittivities in Equation (A1) can be both collected into the permittivity
operator ε̂. Equation (A1) becomes:

ε̂ =
N

∑
r=0

ψ̂r ε̂(r) ψ̂r , (A21)

where the operator ψ̂r is

ψ̂r ≡ ψ
(αβ)
r|ij (x, x′) = δαβ δij δ(3)(x− x′)ψr(x) . (A22)

The constitutive Equations (A4) are expressed as:

D = ε̂ Φ . (A23)

For later use, it is convenient to define the polarization operator χ̂:

χ̂ ≡ 1
4π

(
ε̂− 1̂

)
. (A24)

Equation (A1) implies that the polarizability χ of a collection of bodies is:

χ̂ =
N

∑
r=1

χ̂(r) , (A25)

where χ̂(r) is the polarizability of body r. Clearly χ̂(r) is supported in the volume Vr. This
implies:

χ̂(r)χ̂(s) = 0 , if r 6= s . (A26)

Finally, we define the trace operation Tr of any operator Â:

TrÂ = ∑
i

∑
α

∫

V
d3yA(αα)

ii (y) . (A27)

Appendix B. Derivation of Equation (10)

In this Appendix, we derive the volumic and surface representations, Equation (8)
and Equation (9), respectively, for the scattering Green function Γ(αβ)

ij (x, x′).

Appendix B.1. Volumic Representation

Let Φext = Ĝ(0)Kext be the external field generated by a certain distribution of external
sources Kext. If one or more magneto-dielectric bodies are exposed to the field Φext, they
get polarized, and we let Kind be the induced polarization field. The polarization field Kind
depends linearly on the external field Φext:

Kind = T̂ Φext . (A28)
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The above equation defines the T-operator of the system. The definition of the T-
operator implies that the scattered field Φsc produced by the bodies is:

Φsc = Ĝ(0)Kind = Ĝ(0)T̂Φext = Ĝ(0)T̂Ĝ(0)Kext . (A29)

However, by definition of Γ̂:
Φsc = Γ̂ Kext . (A30)

A comparison of the above two equations gives:

Γ̂ = Ĝ(0)T̂ Ĝ(0) , (A31)

which coincides with Equation (8).
Now we show that the T-operator can be expressed in terms of the polarizability

operator χ̂. Indeed, by definition of polarizability it holds:

Kind = χ̂ Φtot , (A32)

where the total field Φtot = Φext + Φind is the sum of the external field and of the induced
field Φind = Ĝ0Kind generated by Kind. Therefore:

Kind = χ̂(Φext + Φind) = χ̂(Φext + Ĝ(0)Kind) . (A33)

Using Equation (A28) to eliminate Kind from the previous equation, we find:

T̂ Φext = χ̂(1̂ + Ĝ(0)T̂)Φext . (A34)

Since the above equation holds for an arbitrary distribution of sources Kext, i.e., for an
arbitrary external field Φext, it implies the operator identity:

T̂ = χ̂(1̂ + Ĝ(0)T̂) . (A35)

The above relation constitutes an equation of Lippmann–Schwinger form, which
determines the T-operator. Its formal solution is:

T̂ =
1

1− χ̂ Ĝ(0) χ̂ = χ̂
1

1− Ĝ(0) χ̂
. (A36)

Appendix B.2. Surface Representation

In this section, we derive the surface formula Equation (9) of the scattering Green’s
function . The existence of this representation is a direct consequence of the equivalence
principle [33] of classical electromagnetism. This principle is applicable to bodies con-
stituted by homogeneous and isotropic magneto-dielectric materials whose electric and
magnetic permeabilities are of the form3:

εij(x, x′; i ξ) = δij δ(3)(x− x′)
N

∑
r=0

ψr(x)ε(r)(i ξ)ψr(x′) ,

µij(x, x′; i ξ) = δij δ(3)(x− x′)
N

∑
r=0

ψr(x)µ(r)(i ξ)ψr(x′) . (A37)

The equivalence principle expresses the scattered field in terms of fictitious equivalent
currents in a homogeneous medium replacing the scatterer. Let Φ be the electromagnetic
field that solves the Maxwell Equations (A3), with the constitutive Equation (A4) and
the permittivities ε and µ as in Equation (A37), subjected to the boundary conditions
Equation (A5) on the surfaces of N bodies in a vacuum. According to the equivalence
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principle, there exist tangential surface polarizations Ksurf concentrated on the union Σ of the
surfaces Σr of the bodies: such that the field Φ can be expressed as

Φ = ψ̂0(Φ(0+) + Ĝ(0) Ksurf) +
N

∑
r=1

ψ̂r(Φ(r+) − Ĝ(r) K(r)
surf) , (A38)

where K(r)
surf = ψ̂rKsurf is the restriction of the surface current to the surface Σr of the r-th

body, Ĝ(r), r = 0, 1, . . . N is the Green’s functions of an infinite homogeneous medium
having constant electric and magnetic permittivities equal to ε(r)(i ξ) and µ(r)(i ξ), respec-
tively, and

Φ(r+) = Ĝ(r) K(r)
ext , (A39)

is the external field generated by K(r)
ext. The Green’s functions Ĝ(r) are obtained by replacing

ε and µ by ε(r)(i ξ) and µ(r)(i ξ), respectively, in Equations (A12)–(A15). The equivalence
principle shows [33] that the surface currents K(r)

surf coincide with the tangential values of
the field Φ on the surface Σr:

K(r)
surf ≡

(
K(r|E)

surf (x)
K(r|H)

surf (x)

)
= δ(Fr(x))

(
n̂× Ĥ(x)
−n̂× Ê(x)

)
, r = 1, . . . , N (A40)

In concrete applications of the surface current method to scattering problems, the
surface current Ksurf is unknown. However, it can be uniquely determined a posteriori
by imposing the requirement that the field Φ in Equation (A38) has continuous tangential
components across the boundaries of the N bodies. This requirement leads to the following
set of Equations:

Π̂r(Φ(0+) + Ĝ(0) Ksurf) = Π̂r(Φ(r+) − Ĝ(r) K(r)
surf) , (A41)

where Π̂r is the surface operator, which acts on the field Φ(x) by projecting it onto the
tangential plane to Σr at x:

↔
Πr(x, x′) = δ(3)(x− x′) δ(Fr(x))

[↔
1 − n̂(x)⊗ n̂(x)

]
, r = 1, . . . , N (A42)

Equation (A41) can be recast in the form:

M̂ Ksurf =
N

∑
r=1

Π̂r(Φ(r+) −Φ(0+)) , (A43)

where M̂ is the surface operator

M̂ = Π̂ Ĝ(0) Π̂ +
N

∑
r=1

Π̂r Ĝ(r) Π̂r , (A44)

where Π̂ = ∑N
r=1 Π̂r . The operator M̂ is invertible [41]. Equation (A43) then determines

the unique surface current Ksurf that solves the boundary-value problem:

Ksurf = M̂−1
N

∑
r=1

Π̂r(Φ(r+) −Φ(0+)) (A45)

Note that according to its definition, M̂−1 acts on tangential fields defined on the
union Σ of the surfaces Σr of the bodies and returns as a result a tangential polarization
field Ksurf defined on Σ. Suppose now that the external sources Kext are localized in the
vacuum region V0:

Kext = K(0)
ext . (A46)
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Since Φ(r+) = 0, Equation (A45) now gives:

Ksurf = −M̂−1 Φ(0+) = −M̂−1 Ĝ(0) K(0)
ext . (A47)

According to Equation (A38), the scattered field Φ(0)
(sc) = ψ̂0 Φ(sc) in the vacuum region

V0 is:
Φ(0)

(sc) = Ĝ
(0) Ksurf = −Ĝ(0) M̂−1 Ĝ(0) K(0)

ext . (A48)

The above equation shows that when x and x′ belong to V0, the scattering Green’s
function is:

Γ̂ = −Ĝ(0) M̂−1 Ĝ(0) . (A49)

We thus see that in the vacuum outside the bodies Γ̂ has precisely the form of
Equation (13), with

K̂ = −M̂−1 . (A50)

Appendix C. Proof of the Force Formula Equation (14)

In this Appendix, we demonstrate the force formula Equation (14). The simple
proof presented below holds for smooth kernels K(ρσ)

kl (y, y′). Unfortunately, the kernels

K(ρσ)
kl (y, y′) involved in both the volume and the surface representations of the scattering

Green’s functions lack the necessary smoothness. Indeed the T-operator in Equation (8)
is in general discontinuous on the surfaces of the bodies. As to the surface operator M̂ in
Equation (9), it is a singular kernel supported on the surfaces of the bodies. Fortunately,
it is possible to remedy this difficulty by representing the kernel K(ρσ)

kl (y, y′) as the limit

of a one-parameter family of smooth real kernels K̃(ρσ)
kl (y, y′; λ) that are supported on an

arbitrarily small open neighborhood O of the domain of the original kernel K(ρσ)
kl (y, y′) :

K(ρσ)
kl (y, y′) = lim

λ→0
K̃(ρσ)

kl (y, y′; λ) . (A51)

The approximating kernels K̃(ρσ)
kl (y, y′; λ) can be so defined as to satisfy the reciprocity

relations Equation (15)4:

K̃(ρσ)
kl (y, y′; λ) = (−1)s(ρ)+s(σ)K̃(σρ)

lk (y′, y; λ) , (A52)

where we recall that s(α) is defined such that s(E) = 0 and s(H) = 1. It thus holds:

Γ(αβ)
ij (x, x′) = lim

λ→0
Γ̃(αβ)

ij (x, x′; λ) , (A53)

where we set

Γ̃(αβ)
ij (x, x′; λ) ≡

∫

O
d3y

∫

O
d3y′G(αρ;0)

ik (x− y)K̃(ρσ)
kl (y, y′; λ)G(σβ;0)

l j (y′ − x′) . (A54)

For brevity, below we shall omit writing the parameter λ, and we shall consider the
λ→ 0 limit only at the end. In the first step, we use reciprocity relations satisfied by the
free-space Green function to rewrite Equation (A54) as:

Γ̃(αβ)
ij (x, x′) =

∫

O
d3y

∫

O
d3y′G(αρ;0)

ik (x− y)K̃(ρσ)
kl (y, y′)(−1)s(σ)+s(β)G(βσ;0)

jl (x′ − y′) . (A55)

Next, one notes that, by virtue of the reciprocity relations Equation (A52), the real
kernel (−1)s(σ)K̃(ρσ)

kl (y, y′) is symmetric, and therefore, it can be diagonalized:

(−1)s(σ)K̃(ρσ)
kl (y, y′) = ∑

m
wmK(ρ)

m|k(y)K(σ)
m|l(y

′) , (A56)
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where the eigenvalues wm are non-vanishing real numbers, and the eigenvectors K(ρ)
m|k(y) are

real smooth fields supported in O. By plugging the above expansion into Equation (A55),
we see that Γ̃(αβ)

ij (x, x′) can be expressed as:

Γ̃(αβ)
ij (x, x′) = (−1)s(β) ∑

m
wmΦ(α)

m|i(x)Φ(β)
m|j(x

′) , (A57)

where Φ(α)
m|i(x) are the real fields:

Φ(α)
m|i(x) =

∫

O
d3yG(αρ;0)

ik (x− y)K(ρ)
m|k(y) . (A58)

Now one notes that the fields Φ(α)
m|i(x) are well defined in all space, and by construction

they satisfy the following euclidean-time Maxwell Equations:

−∇× Em = κ(Hm + 4π Mm) , (A59)

∇×Hm = κ(Em + 4π Pm) , (A60)

where we set Φm ≡ (Em, Hm), Km ≡ (Pm, Mm) and κ = ξn/c. When the expansion

Equation (A57) is substituted into Equation (6), we find for the dyad
↔
Θ the following expression:

↔
Θ = 2kBT

∞

∑
n=0

′∑
m

wm

[↔
Θ

(EE)
m −

↔
Θ

(HH)

m

]
, (A61)

where

↔
Θ

(EE)
m =

1
4π

[
Em ⊗ Em −

E2
m
2
↔
1
]

, (A62)

↔
Θ

(HH)

m =
1

4π

[
Hm ⊗Hm −

H2
m

2
↔
1
]

. (A63)

It is worth noticing that the minus sign that multiplies
↔
Θ

(HH)

m in Equation (A61) is a
direct consequence of the factor (−1)s(β) in the r.h.s. of Equation (A57). At this point, we
use the divergence theorem to convert the surface integral in Equation (7), giving the force
F(r), into a volume integral. That gives:

F(r) =
∫

Or
d3y∇ ·

↔
Θ = 2kBT

∞

∑
n=0

′∑
m

wm

∫

Or
d3y∇ ·

[↔
Θ

(EE)
m −

↔
Θ

(HH)

m

]
. (A64)

where Or is the portion of O included within the surface Sr. By using standard identities
of vector calculus, and the Maxwell Equations satisfied by the fields (Em, Hm) one finds:

∇ ·
[↔

Θ
(EE)
m −

↔
Θ

(HH)

m

]
= κEm ×Mm − Em(∇ · Pm) + κHm × Pm + Hm(∇ ·Mm)

= (∇×Hm)×Mm − Em(∇ · Pm)− (∇× Em)× Pm + Hm(∇ ·Mm) . (A65)

Upon substituting the r.h.s. of the above equation into the r.h.s. of Equation (A64)
we get

F(r)
i = 2kBT

∞

∑
n=0

′∑
m

wm

∫

Or
d3y
[

Pm|j∂iEm|j −Mm|j∂i Hm|j
]

. (A66)

If the fields Em and Hm are expressed in terms of the sources Pm and Mm, via
Equation (A58) one can recast the r.h.s. of the above equation in the form:

F(r)
i = 2kBT

∞

∑
n=0

′∑
m

wm

∫

Or
d3y

∫

O
d3y′(−1)s(α)K(α)

m|j(y)
∂

∂yi
G(αβ;0)

jk (y− y′)K(β)
m|k(y

′)
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= 2kBT
∞

∑
n=0

′
∫

Or
d3y

∫

O
d3y′K̃(βα)

kj (y′, y; λ)
∂

∂yi
G(αβ;0)

jk (y− y′) , (A67)

where in the last passage, we made use of Equation (A56), and restored the dependence of
K̃ on the parameter λ. By taking the limit λ → 0 of the r.h.s., we see that Equation (A67)
reproduces the formula for force in Equation (14).

Appendix D. Partial Wave Expansion and the Scattering Matrix

The Green’s function
↔
G
(αβ;0)

(x, x′) admits an expansion in partial waves in any co-
ordinate system in which the vector Helmoltz Equation is separable. When spherical
coordinates are used, the partial-wave expansion takes the form of an infinite series over
spherical multipoles:

↔
G
(αβ;0)

(x, x′) = (−1)s(β) λ ∑
ilm

[
θ(|x| − |x′|)Φ(α|out)

ilm (x)⊗Φ(β|reg)
il−m (x′)

+ θ(|x′| − |x|)Φ(α|reg)
ilm (x)⊗Φ(β|out)

il−m (x′)
]

, (A68)

where λ = −4π κ3, i = M, N and (lm) are, respectively, polarization and multipole indices.

The partial waves Φ(α|out/reg)
ilm (x) are defined as follows. For the electric field, they are: [10]:

Φ(E|out/reg)
Mlm (x) =

1√
l(l + 1)

∇× x φ
(out/reg)
lm (x, κ) , (A69)

Φ(E|out/reg)
Nlm (x) =

i
κ
∇×Φ(E|out/reg)

Mlm (x, κ) , (A70)

where φ
(reg/out)
lm (x, κ) are the following regular and the outgoing spherical waves:

φ
(reg)
lm (x, κ) = il(κ|x|)Ylm(x̂) , (A71)

φ
(out)
lm (x, κ) = kl(κ|x|)Ylm(x̂) . (A72)

Here, il(z) =
√

π/2zIl+1/2(z) is the modified spherical Bessel function of the first
kind, and kl(z) =

√
π/2zKl+1/2(z) is the modified spherical Bessel function of the third

kind. Notice the relation:

Φ(E|out/reg)
Mlm (x) =

i
κ
∇×Φ(E|out/reg)

Nlm (x) . (A73)

According to Maxwell Equations, the magnetic partial waves Φ(H|reg/out)
ilm (x) are ob-

tained by taking a curl of the electric waves:

Φ(H|reg/out)
ilm (x) ≡ −1

κ
∇×Φ(E|reg/out)

ilm (x) . (A74)

However, using the two relations Equations (A70) and (A73), one finds:

Φ(H|reg/out)
ilm (x) = i Φ(E|reg/out)

τ(i)lm (x) . (A75)

where τ(M) = N, τ(N) = M.
Next, we define the scattering matrix T (r) of an isolated object r placed in vacuum.

Let
↔
Γ
(αβ)

r (x, x′) be the scattering part of the Green’s function of body r in isolation. The
scattering matrix T (r) is defined such that at all points (x, x′) lying outside a sphere S(r)
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containing the body in its interior and centered at the point Xr,
↔
Γ
(αβ)

r (x, x′) has the partial
wave expansion:

↔
Γ
(αβ)

r (x, x′) = (−1)s(β)λ ∑
plm

∑
p′ l′m′

Φ(α|out)
plm (x− Xr)⊗Φ(β|out)

p′ l′−m′(x
′ − Xr) T (r)

plm,p′ l′m′ , (A76)

The fact that all Green’s functions
↔
Γ
(αβ)

r (x, x′) can be expressed in terms of a single
scattering matrix T (r) follows from Equation (A74), together with the following identi-

ties satisfied by
↔
Γ
(αβ)

r (x, x′) at all points in the vacuum outside the body, which in turn
result from the identities of Equations (A9)–(A11) satisfied by the full Green’s functions
↔
G
(αβ)

(x, x′) in the presence of body r:

↔
Γ
(HE)
r (x, x′; i ξ) = −1

κ

→
∇×

↔
Γ
(EE)
r (x, x′; i ξ) ,

↔
Γ
(EH)

r (x, x′; i ξ) = −1
κ

↔
Γ
(EE)
r (x, x′; i ξ)×

←
∇‘ ,

↔
Γ
(HH)

r (x, x′; i ξ) =
1
κ2

→
∇×

↔
Γ
(EE)
r (x, x′; i ξ)×

←
∇‘ . (A77)

Now we prove that the scattering matrix is given by the matrix elements of the operator
K̂r of body r defined in Equation (47), taken between two regular partial waves. To see this,
one notes that for any two points (x, x′) outside the sphere S(r), it is legitimate to replace
Ĝ(0) in Equation (47) by its partial wave expansion Equation (A68). This substitution results
in the expansion:

↔
Γ
(αβ)

r (x, x′) = −(−1)s(β)λ2 ∑
plm

∑
p′ l′m′

Φ(α|out)
plm (x− Xr)⊗Φ(β|out)

p′ l′−m′(x
′ − Xr)

×∑
µν

(−1)s(µ)
∫

Vr
d3y

∫

Vr
d3y′Φ(µ|reg)

pl−m (y− Xr) ·
↔
K

(µν)

r (y, y′) ·Φ(ν|reg)
p′ l′m′ (y

′ − Xr) . (A78)

A comparison of Equation (A76) with Equation (A78) gives the desired formula:

T (r)
plm,p′ l′m′ = ∑

µν

(−1)s(µ)λ
∫

Vr
d3y

∫

Vr
d3y′

× Φ(µ|reg)
pl−m (y− Xr) ·

↔
K

(µν)

r (y, y′) ·Φ(ν|reg)
p′ l′m′ (y

′ − Xr) , (A79)

which indeed shows that T (r)
plm,p′ l′m′ is the matrix element of the operator K̂r between two

partial waves. Note that in the T-operator approach, T (r)
plm,p′ l′m′ is expressed by an integral

of the body’s T-operator T̂r over the body’s volume Vr, while in the surface approach it is
an integral of the surface operator −M̂−1

r over the boundary Σr of the body.
Now we define the translation matrices U (ij)(d). Consider two points X1 and X2 in

space that differ by a displacement of magnitude d along the z-axis:

X2 − X1 = d ẑ . (A80)
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The translation matrix U (21)(d) is defined such that at all points x whose distances
from X1 and X1 are both smaller than d (i.e., |x− X2| < d and |x− X1| < d) it holds:

Φ(E|out)
p′ l′m′ (x− X2) = ∑

pl
U (21)

p′ l′ ;pl(d)Φ(E|reg)
plm (x− X1) , (A81)

Φ(E|out)
p′ l′m′ (x− X1) = ∑

pl
U (12)

p′ l′ ;pl(d)Φ(E|reg)
plm (x− X2) , (A82)

It can be shown that the relation holds:

U (21)(d) = U (12)†(d) . (A83)

By applying the operator L = −(i/κ)∇× to both members of the Equation (A82),
and recalling the definition of the magnetic partial waves Equation (A74) one finds:

Φ(H|out)
p′ l′m′ (x− X2) = ∑

pl
U (21)

p′ l′ ;pl(d)Φ(H|reg)
plm (x− X1) , (A84)

Φ(H|out)
p′ l′m′ (x− X1) = ∑

pl
U (12)

p′ l′ ;pl(d)Φ(H|reg)
plm (x− X2) (A85)

which shows that the translation matrices of the magnetic partial waves coincide with
those for the electric partial waves.

Notes
1 This restriction is not so severe in practice, since the vast majority of Casimir experiments use test bodies that can be

modelled in this way.
2 A representation analogous to Equation (9) also exists when one or both points belong to the regions occupied by

bodies, but we shall not display it since the surface integral expressing the force in Equation (7) involves only points
x in the vacuum region.

3 Bodies that are only piecewise homogeneous can also be considered by a slight generalization of the homogeneous
case.

4 For example, one can set K̃(ρσ)
kl (y, y′; λ) = λ−6 ∫

V d3x
∫

V d3x′ f ((y − x)/λ) f ((y′ − x′)/λ)K(ρσ)
kl (x, x′), where f (x) is any

rotationally invariant, smooth non-negative function, supported in a ball of unit radius centered in the origin, such
that

∫
d3x f (x) = 1.
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