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Abstract: We analyze the issue of dynamical evolution and time in quantum cosmology. We emphasize
the problem of choice of phase space variables that can play the role of a time parameter in such a
way that for expectation values of quantum operators the classical evolution is reproduced. We show
that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the
super-Hamiltonian to be equal to unity in all of the phase space. We also discuss the question of switching
between different internal times as well as the Montevideo interpretation of quantum theory.

Keywords: classical and quantum cosmology; Wheeler-DeWitt equation; time

1. Introduction

The problem of “disappearance of time” in quantum gravity and cosmology is well
known and has a rather long history (see, e.g., References [1–3] and references therein). Let
us briefly recall the essence of the problem. Not all of the ten Einstein equations in the
four-dimensional spacetime contain the second time derivatives: four of them include only
the first time derivatives and are treated as constraints. The presence of such constraints is
connected with the fact that the action is invariant under the spacetime diffeomorphisms
group. To treat this situation, it is rather convenient to use the Arnowitt-Deser-Misner
formalism [4]. The Hilbert-Einstein Lagrangian of General Relativity contains the Lagrange
multipliers N and Ni, which are called lapse and shift functions. There are also the dynam-
ical degrees of freedom connected with the spatial components of the metric gij and with
the non-gravitational fields present in the universe. In order to use the canonical formalism,
one introduces the conjugate momenta and makes a Legendre transformation. Then, one
discovers that the Hamiltonian is proportional to the linear combination of constraints mul-
tiplied by the Lagrange multipliers [5]. Thus, the Hamiltonian vanishes if the constraints
are satisfied. This can be interpreted as an impossibility of writing down a time-dependent
Schrödinger equation. This problem can be seen from a somewhat different point of view. If
one applies the Dirac quantization procedure [6], then the constraint in which the classical
phase variables are substituted by the quantum operators should annihilate the quantum
state of the system under consideration. Gravitational constraints contain momenta, which
classically are time derivatives of fields, but their connection to the classical notion of
time vanishes in the quantum theory, where momenta are simply operators satisfying
commutation relations. The main constraint arising in General Relativity is quadratic in
momenta and gives rise to the Wheeler-DeWitt equation [5,7]. It is time-independent, but
we know that the universe lives in time. Where is it hidden?

Generally, all the explanations of the reappearance of time are based on the identifica-
tion of some combination of the phase space variables of the system under consideration (in
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our case, the whole universe) with the time parameter. Then, the Wheeler-DeWitt equation
is transformed into the Schrödinger-type equation with respect to this time parameter. As
is well known, in gauge theories or, in other words, in theories with first class constraints,
one should choose the gauge-fixing conditions (see, e.g., References [8,9]). If we choose a
time-dependent classical gauge-fixing condition, we can define a classical time parameter
expressed by means of a certain combination of phase variables. Some other variables
are excluded from the game by resolving the constraints. As a result, one obtains a non-
vanishing effective physical Hamiltonian that depends on the remaining quantized phase
space variables. This Hamiltonian governs the evolution of the wave function des! cribing
the degrees of freedom not included in the definition of time. Then, one can reconstruct a
particular solution of the initial Wheeler-DeWitt equation, corresponding to the solution
of the physical Schrödinger equation. The above procedure was elaborated in detail in
Reference [10], and, in Reference [11], it was explicitly applied to some relatively simple
cosmological models. It is important to note that, in this approach, the time parameter and
the Hamiltonian are introduced before the quantization of the physical degrees of freedom.

Another approach is based on the Born-Oppenheimer method [12–15], which was very
effective in the treatment of atoms and molecules [16]. This method relies on the existence
of two time or energy scales. In the case of cosmology, one of these scales is related to the
Planck mass and to the slow evolution of the gravitational degrees of freedom. The other
one is characterized by a much smaller energy and by the fast motion of the matter degrees
of freedom. The solution to the Wheeler-DeWitt equation is factorized into a product of
two wave functions. One of them has a semiclassical structure with the action satisfying
the Einstein-Hamilton-Jacobi equation and the expectation value of the energy-momentum
tensor serving as the source for gravity; the semiclassical time arises from this equation.
The second wave function describes quantum degrees of freedom of matter and satisfies
the effective Schrödinger equation. However, the principles of separation between these
two kinds of degrees of freedom in the two approaches described above are somewhat
different. The comparison of these approaches and attempts to establish correspondence
between them were undertaken in References [17–20].

We have already said that the very concept of time is in some sense classical. However,
the time parameter, which arises when we work with the Wheeler-DeWitt equation, is
a function of the phase space variables, which are quantum operators. Thus, we should
“freeze” the quantum nature of these variables when using them to introduce time, and
the time parameter should be such that expectation values of operators evolve classically.
Here, we arrive to the main question of this review, which was stimulated by the relatively
unknown paper by Asher Peres [21] with a rather significant title “Critique of the Wheeler-
DeWitt equation”. While we do not agree with the conclusions of this paper, we find it
thought-provoking and worth analyzing. The author of Reference [21] assumes that the
time parameter should be chosen in such a way that the classical equations of motion are
satisfied not only on the constraint surface but in all of the phase space. We will show that
this condition is neither necessary nor sufficient.

In Reference [21], just like in our papers [11,17], a very simple model was considered—
a flat Friedmann universe filled with a minimally coupled scalar field. Despite its simplicity,
this model appears to be rather instructive. In the recent paper, Reference [22], it is studied
in detail in the framework of the relational approach to quantum theory and quantum
gravity developed in the series of preceding papers [23–26]. In References [27,28], the
ideas of the relational or quantum reference frame approach are further developed. These
papers attracted attention of the authors of Reference [29], where their connection with the
Montevideo interpretation of quantum theory is studied [30–34].

The structure of this paper is the following: In the next section, we present for com-
pleteness some basic formulae of the Arnowitt-Deser-Misner formalism and the Dirac quan-
tization of gravity, arriving to the general form of the Wheeler-DeWitt equation. In the third
section, we present a simple toy model, which was analyzed by us in References [11,17],
as well as by Peres in Reference [21]. Section 3.1 contains the description of the classical
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dynamics of the model—a flat Friedmann universe filled with a minimally coupled mass-
less scalar field. In Section 3.2, we present the Hamiltonian formalism, Wheeler-DeWitt
equation and the gauge fixing procedure for this model in the spirit of References [10,11,17].
As is done in Reference [21], in Section 3.3, we introduce the time parameter by using
direct analysis of the Poisson brackets, without the super-Hamiltonian constraint. We
show that, in Reference [21], an essential additional free parameter was overlooked and
that our approach in References [10,11,17] corresponds to one choice of this parameter,
whereas, in Reference [21], a different choice was made. In Section 3.4, we reproduce the
results of 3.3 by using a canonical transformation and constructing the corresponding
generating function. In Section 3.5, we show that only our choice of the free parameter
and the explicit implementation of the super-Hamiltonian constraint permits to obtain
the quantum evolution that is in agreement with the classical one. Section 4 contains the
comparison of our results with those obtained in Reference [22] and the discussion of some
related questions. In the last section, we discuss the obtained results and possible future
directions of research.

2. The Arnowitt-Deser-Misner Formalism, Dirac Quantization and the
Wheeler-DeWitt Equation

To make the transition from the Lagrangian formalism to the Hamiltonian formalism,
one should break the relativistic covariance and introduce a variable that will play the role
of time. The 3+1 foliation of the pseudo-Riemannian manifold serves exactly this purpose
(see, e.g., Reference [35] for a very clear and detailed exposition of the 3+1 formalism). Con-
structing 3+1 foliation of the spacetime begins with an embedding of a three-dimensional
hypersurface into a four-dimensional spacetime. Such an embedding can be realized by
defining a scalar function t(p) on a four-dimensional manifold (here, p denotes a point on
the manifold). A hypersurface can then be defined as a level surface of this function. The
gradient of t(p) is a one-form that annihilates the vectors tangent to this hypersurface. The
vector field obtained from the contraction of this gradient with the contravariant spacetime
metric (we can call it ~∇t) is orthogonal to the tangent spaces of the hypersurface. If this
hypersurface is spacelike, then the orthogonal vector is timelike and can be normalized.
The normalized vector field is called the unit normal vector field and is denoted by~n.

We can now define the three-dimensional induced metric γij on the hypersurface by
using the pullback operation of the spacetime metric gµν to the three-dimensional hyper-
surface. The induced metric will play the role of phase space variables in the Hamiltonian
formalism of General Relativity. On the hypersurface, we define a covariant derivative D
associated with the induced three-metric γij. Then, one can introduce the corresponding
three-dimensional Riemann–Christoffel curvature tensor, which describes the internal
geometry of the hypersurface. To describe the position of a three-dimensional hypersurface
inside a four-dimensional spacetime, we also define an extrinsic curvature tensor. To this
end, one introduces the Weingarten transformation that maps a tangent vector ~u into the
covariant derivative ∇~u~n (associated with the metric gµν) of~n along ~u. To show that the
vector ∇~u~n is also tangent to the hypersurface, it is enough to prove that it is orthogonal to
the normal vector~n. In this section, it is convenient for us to use the spacetime signature
(−,+,+,+). Then, the unit normal vector satisfies the relation~n2 = −1; hence,

~n · ∇~u~n =
1
2
∇~u(~n

2) = 0.

By contracting the Weingarten operator with the induced metric, one obtains a symmetric
tensor, which we shall call the extrinsic curvature Kij:

Kijviuj ≡ −γijvi(∇~u~n)
j, (1)

where~v and ~u are tangent vectors, and i, j run over the spatial coordinates. In what follows,
Greek indices run over all spacetime coordinates, whereas Latin indices run only over
the spatial coordinates. As will be shown, the extrinsic curvature is related to the time
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derivatives of the induced metric and the corresponding conjugate momenta and, hence,
plays a very important role in the Hamiltonian formalism.

The next step is the construction of the projector from the spacetime to the hyper-
surface. This projector transforms any vector ~u into the vector ~u + (~u ·~n)~n. In the index
notation, this projector can be represented as

γα
β = δα

β + nαnβ. (2)

One can easily see that (2) acts as an identity operator for vectors tangent to the hyper-
surface, whereas it annihilates vectors orthogonal to the hypersurface. Obviously, the
projector can act not only on vectors, but also on arbitrary tensors. We can also introduce
an extension of tensors defined on the hypersurface by treating them as a tensors defined
in the spacetime. The principle is the following: the contraction of the extended tensor
with vectors should give the same result as the contraction of the original one if the vectors
are tangent to the hypersurface and give zero if at least one of the vectors is orthogonal to
the hypersurface.

Interestingly, the extended version of the induced metric can be obtained from (2) by
lowering its index with the spacetime metric,

γαβ = gαβ + nαnβ. (3)

For the extrinsic curvature, the extended expression has the following form:

Kαβ = −∇βnα − aαnβ, (4)

where the acceleration vector~a is defined as~a ≡ ∇~n~n.
Using the projector (2), one can find the difference between the covariant derivative

∇ and the covariant derivative D acting on the vector fields tangent to the hypersurface:

D~u~v = ∇~u~v + Kijviuj~n. (5)

This difference is directed along the vector normal to the hypersurface and depends on the
extrinsic curvature.

Now, we can try to express the four-dimensional curvature tensor in terms of the
three-dimensional Ricci tensor and the extrinsic curvature. The corresponding equations
are called Gauss-Codazzi relations. Using the Ricci identity for the covariant derivative D,

DµDνuα − DνDµuα = (3)Rα
βµνuβ, (6)

the analogous identity for the covariant derivative∇ and the projector (2), one can show that

γ
µ
α γν

βγ
γ
ρ γσ

δ Rρ
σµν = (3)Rγ

δαβ + Kγ
α Kδβ − Kγ

β Kαδ, (7)

where (3)Rγ
δαβ is the Riemann curvature tensor (also called intrinsic curvature) associated

with the induced metric γαβ. By contracting this identity with respect to the indices α and
γ, we obtain the following relation:

γ
µ
α γν

βRµν + γαµγ
ρ
βnνnσRµ

νρσ = (3)Rαβ + KKαβ − KαµKµ
β , (8)

where K ≡ Kµ
µ . Now, we can contract this relation with the contravariant induced metric

γαβ and obtain
R + 2nµnνRµν = (3)R + K2 − K j

i K
i
j, (9)

where we used that Kν
µKµ

ν = K j
i K

i
j.
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We can also apply the Ricci identity to the vector nα and project the result on the
hypersurface; this results in

γ
γ
ρ γ

µ
α γν

βnσRρ
σµν = DβKγ

α − DαKγ
β . (10)

By contracting this relation with respect to the indices α and γ, we obtain

γν
βnσRσν = DβK− DνKν

β. (11)

An embedding of a three-dimensional spacelike hypersurface into a four-dimensional
spacetime is not sufficient for the construction of the Hamiltonian formalism: one should
also know the time evolution of the embedded hypersurface. In other words, we need the
complete 3+1 foliation of the spacetime. Thus, we need to introduce a family of spacelike
hypersurfaces that cover the whole spacetime and are parametrized by the parameter t,
which we shall later identify with time. We start by defining the famous lapse function N
(this name was invented by J.A. Wheeler in 1964 [36]):

~n = −N~∇t. (12)

The lapse function plays a very important role in both the 3+1 foliation of a four-dimensional
spacetime and in the Hamiltonian formalism of General Relativity. It is also convenient to
introduce another vector field orthogonal to the spacelike hypersurfaces of the foliation,
the normal evolution vector ~m:

~m = N~n. (13)

If we start at the hypersurface parameterized by t and move along an integral curve of the
vector field ~m, denoting the change of the curve’s parameter by δt, we will find ourselves
at the hypersurface parameterized by t + δt. One can obtain different useful relations
involving the vector fields ~n and ~m and the lapse function N. The acceleration a can be
expressed as

aα = Dα ln N. (14)

The Lie derivative of the induced metric along the normal evolution field is

L~mγαβ = −2NKαβ, (15)

while the Lie derivative of the induced metric along the unit normal field is

L~nγαβ = −2Kαβ. (16)

Now, we can complete the expression for R in terms of (3)R, the extrinsic curvature
and the lapse function. We apply the Ricci identity to the normal unit vector and project
the result two times on the hypersurface and one time on the normal direction. As a result,
we obtain

γαµγν
βnρnσRµ

ρνσ =
1
N

L~mKαβ +
1
N

DαDβN + KαµKµ
β . (17)

Combining this equation with Equation (8), we obtain

γ
µ
α γν

βRµν = − 1
N

L~mKαβ −
1
N

DαDβN + (3)Rαβ + KKαβ − 2KαµKµ
β . (18)

Taking the trace of this equation with respect to the metric γ gives

R + nµnνRµν = (3)R + K2 − 1
N

L~mK− 1
N

DiDi N. (19)
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Now, we can combine this equation with Equation (9) and arrive at the following expression:

R = (3)R + K2 + KikKij − 2
N

L~mK− 2
N

DiDi N. (20)

However, to transition to the Hamiltonian formalism, one should use the explicit
time derivatives of field variables. Thus, we shall identify the parameter t, defining the
hypersurfaces of the 3+1 foliation, with time. Then, we can introduce the vector field ∂

∂t .
This vector field is tangent to the integral curves, which are the curves along which the
three spatial coordinates are constant. The action of this vector field on the gradient of the
function defining 3+1 foliation is equal to unity, but, at the same time, it is not necessarily
orthogonal to the spacelike hypersurfaces. Thus, we can write the following identity

∂

∂t
= N~n + ~N, (21)

where ~N is the shift vector field. This vector field is orthogonal to the normal and the
components of the metric in terms of the coordinates t and xi, where i = 1, 2, 3, are given
by the expression

ds2 = −(N2 − Ni Ni)dt2 + 2Nidtdxi + γijdxidxj. (22)

The components of the contravariant metric are

g00 = − 1
N2 , gi0 =

Ni

N2 , gij = γij − Ni N j

N2 . (23)

The determinant of the four-dimensional metric is

g = −N2γ. (24)

From Equation (21), it follows that the Lie derivative of a tensor field along the normal
evolution vector ~m is

L~mT = L ∂
∂t

T − L~NT. (25)

Using (25), it is easy to show that

L~mKij =

(
∂

∂t
− L~N

)
Kij, (26)

and

Kij = −
1

2N

(
∂γij

∂t
− Di Nj − DjNi

)
. (27)

From Equation (27), we see that the time derivative of the spatial metric is related to the
extrinsic curvature. Now, the Hilbert-Einstein action∫

d4x
√
−gR (28)

can be expressed as

S =
∫

dt
∫

d3x
√

γN((3)R + KijKij − K2). (29)

We can finally make the Legendre transformation to transition to the Hamiltonian formal-
ism. The time derivatives of the lapse and shift functions are not present in the action; thus,
they will play the role of Lagrange multipliers. The corresponding conjugate momenta
are equal to zero and should remain equal to zero during the evolution. The momenta
conjugate to the components of the three-metric γij are defined as usual,



Universe 2021, 7, 219 7 of 23

πij =
∂L
∂γij

=
√

γ(Kγij − Kij). (30)

We can resolve Equation (30) with respect to the extrinsic curvature:

Kij =
1√
γ

(
1
2

γijγklπ
kl − γikγjlπ

kl
)

. (31)

Using (27) and (31), we find

∂γij

∂t
= Di Nj + DjNi +

N√
γ
(2γikγjlπ

kl − γklγijπ
kl). (32)

Now, using (29)–(32), we can calculate the Hamiltonian density

H = πij ∂γij

∂t
−L = NH⊥ + Ni Hi, (33)

where

H⊥ =
1√
γ

(
γikγjl −

1
2

γijγkl

)
πijπkl −√γ(3)R, (34)

Hi = −γikDjπ
jk − γijDkπ jk. (35)

The expression (34) represents the super-Hamiltonian constraint, which has a rather
complicated structure. The expressions (35) are the supermomenta constraints and are
responsible for the independence of the geometry of the three-dimensional spatial sections
of the spacetime on the particular choice of spatial coordinates. These constraints consti-
tute a system of first class constrains, i.e., the Poisson brackets between them are again
proportional to the constraints. Namely, they have the following form:

{H⊥(~x), H⊥(~y)} =
∂δ(~x,~x)

∂xi (γij(~x)Hj(~x) + γij(~y)Hj(~y)),

{Hi(~x), H⊥(~y)} = H⊥(~y)
∂δ(~x,~y)

∂xi ,

{Hi(~x), Hj(~y)} = Hi(~x)
∂δ(~x,~y)

∂xi + Hi(~y)
∂δ(~x,~y)

∂xj . (36)

Remarkably, if we add an action of matter fields to the action (28), the structure of the Hamil-
tonian density will not changed and will still be proportional to the linear combination
of constraints. The super-Hamiltonian constraint will acquire an additional term equal to
the energy density of the corresponding field, while the supermomenta will acquire terms
equal to the mixed temporal-spatial components of the corresponding energy-momentum
tensor [37–39].

To quantize the theory, we should substitute all the phase space variables with the
corresponding operators and the Poisson brackets (36) with the corresponding commu-
tators. Naturally, such a substitution raises the question of consistency of the quantum
version of the relations (36). In string and superstring theories, analyzing this question
resulted in the discovery of the dimensionalities of spacetimes where these theories can
be consistently realized. The corresponding analysis in General Relativity is more com-
plicated and the number of works concerning this topic is rather limited. Here, we can
mention Reference [40], where the Hamiltonian BFV-BRST method of the quantization of
the constrained systems [41–43] was applied to analyze the system (36) in relatively simple
models in quantum cosmology.

If one considers simple models where it is possible to choose a coordinate system
in such a way that the shift functions and the corresponding supermomenta constraints
are absent, then the problem of the consistency of the quantized relations (36) vanishes,
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and it is necessary to consider only the super-Hamiltonian constraint. As we have already
explained in the Introduction, applying the operator version of this constraint to the wave
function of the universe gives the Wheeler-DeWitt equation. However, even in this case,
we stumble upon some technical and conceptual problems. Thus, the rest of this paper will
be devoted to the analysis of these problems based on the consideration of a very simple
model—a flat Friedmann universe filled with a massless scalar field.

3. Flat Friedmann Universe with a Massless Scalar Field
3.1. Classical Dynamics

Let us consider the simplest toy model—a flat Friedmann universe with the metric

ds2 = N2(t)dt2 − a2(t)dl2, (37)

where N is, as usual, the lapse function, and a(t) is the scale factor. (In this section, we shall
use a different convention for the signature of the spacetime to simplify the comparison with
the papers [17,21].) This universe is filled with a massless spatially homogeneous scalar
field φ(t) minimally coupled to gravity. For this minisuperspace model, the Lagrangian
can be written as

L = − L3M2 ȧ2a
2N

+
L3φ̇2a3

2N
, (38)

where M is a conveniently rescaled Planck mass, and L is a length scale, introduced to
provide the correct dimensionality for the Lagrangian. It will be convenient to use another
parametrization of the scale factor

a(t) = eα(t). (39)

Then,

L = − L3M2α̇2e3α

2N
+

L3φ̇2e3α

2N
. (40)

The variation of the Lagrangian (40) with respect to the lapse function N gives the first
Friedmann equation

M2α̇2 = φ̇2, (41)

while its variation with respect to φ gives the first integral of the Klein-Gordon equation

L3φ̇e3α

N
= pφ = const. (42)

Here, pφ is the conjugate momentum, which is conserved during the classical time evolution
of our universe. It will be convenient to choose the cosmic time t as a time parameter,
which is equivalent to fixing N = 1. Upon substituting Equation (42) into Equation (41),
we find that, for the expanding universe and 0 ≤ t ≤ ∞,

e3α = 3
|pφ|
ML3 t, (43)

and for the contracting universe, when −∞ < t ≤ 0,

e3α = −3
|pφ|
ML3 t. (44)

In what follows, we will consider the expanding universe and choose the positive sign for
pφ without losing generality.
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3.2. Hamiltonian formalism, Wheeler-DeWitt Equation, and the Gauge Fixing Procedure

On introducing the conjugate momenta pφ (see Equation (42)) and

pα = − L3M2α̇e3α

N
, (45)

and making the Legendre transformation, we see that the Hamiltonian is

H = N

(
− p2

αe−3α

2M2L3 +
p2

φe−3α

2L3

)
= NH, (46)

where H is nothing but the super-Hamiltonian constraint. From Equations (41), (42), and (45),
it is obvious that the Hamiltonian is constrained to vanish:

H = 0. (47)

The action in the Hamiltonian form is

S =
∫

dt(pαα̇ + pφφ̇− NH). (48)

On performing the procedure of the Dirac quantization of the system with con-
straints [6], we obtain the Wheeler-DeWitt equation:

Ĥ|Ψ〉 = 0. (49)

Here, the operator Ĥ arises when we substitute the phase space variables by the corre-
sponding operators and fix some particular operator ordering, and |Ψ〉 is the quantum
state of the universe. Now, we shall choose the simplest operator ordering, such that

Ĥ = e−3α̂

(
− p̂2

α

2M2L3 +
p̂2

φ

2L3

)
. (50)

It will be convenient to consider the quantum state |Ψ〉 in the (α, pφ) representation. Thus,
the Wheeler-DeWitt equation will have the following form:(

∂2

∂α2 + M2 p2
φ

)
Ψ(α, pφ) = 0. (51)

The general solution of this equation is

Ψ(α, pφ) = ψ1(pφ1)e
iM|pφ |α + ψ1(pφ2)e

−iM|pφ |α. (52)

We are going to derive the effective Schrödiger equation for the physical wave function
and the physical Hamiltonian following the recipe described in detail in References [10,11].
First of all, we have to introduce a time-dependent gauge-fixing condition. Let us try to
use the following one:

ξ(α, pα, t) =
L3M2e3α

3pα
− t = 0. (53)

This gauge condition coincides with the classical solution of the Friedmann equation,
giving the dependence of the scale factor a on the cosmic time t. Then, on requiring the
conservation of the gauge condition in time and using the equation

dξ

dt
=

∂ξ

∂t
+ N{ξ, H} = 0, (54)
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where the curly braces mean the Poisson brackets, one can easily see that the lapse function
is equal to unity as it should be. If we solve the constraint (47) and use the gauge-fixing
condition (53) to define the time, the action (48) can be written in the following form

S =
∫

dt(pφφ̇− Hphys), (55)

where the physical Hamiltonian is

Hphys =
Mpφ

3t
. (56)

The corresponding Schrödiger equation is

i
∂ψphys(pφ, t)

∂t
= Hphysψphys(pφ, t) =

Mpφ

3t
ψphys(pφ, t). (57)

The solution of this equation is

ψphys(pφ, t) = ψ̃(pφ)e−
iMpφ

3 ln t. (58)

Using Equation (53), one can express the time t as a function of the variables α and pφ;
hence, we come back to one of the two branches of the general solution of the Wheeler-
DeWitt equation (52). Let us note that the probability density ψ̃∗ψ̃ corresponding to the
function (58) does not depend on the cosmic time t, and this function can be normalized.

Interestingly, we can take one of the branches of the general solution of the Wheeler-
DeWitt equation and express the variable α as a function of time and of the variable pφ. On
considering this function as the physical wave function satisfying the Schrödinger equation,
we can calculate its partial time derivative to find the physical Hamiltonian. The results
will coincide with those of Equation (56). Note that, to obtain these results, we have used
the super-Hamiltonian constraint.

3.3. Introducing Time without Using the Super-Hamiltonian Constraint

In Reference [21], the author considers the same model in slightly different notations.
We will analyze his approach using our notations. The main feature of the approach
developed in Reference [21] is the requirement that the time parameter, as a combination of
phase space variables, should be such that its Poisson bracket with the super-Hamiltonian
is equal to 1 not only on the constraint surface but on all of the phase space. Note that
this is not the case for the time parameter chosen in Reference [17] and described in the
preceding subsection. Let us now consider our arguments from this point of view and
compare them with those in Reference [21].

We would like to introduce a time parameter by identifying it with some function
of phase space variables. It would be convenient to choose it in such a way that the time
parameter coincided with the cosmic time, which is equivalent to the fixing of the lapse
function N = 1. This fixation of the time parameter is equivalent to the gauge fixing of
the type

χ(t, α, pα, φ, pφ) = t− χ̃(α, pα, φ, pφ) = 0. (59)

By taking the time derivative of Equation (59), we obtain the condition of the gauge
conservation

1 = N{χ̃,H}, (60)

where {, } is the classical Poisson bracket.
Thus, to have N = 1, we should choose the function χ̃ in such a way that

1 = {χ̃,H}. (61)
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Obviously the choice of the function χ̃ is not unique. We can choose a function that depends
only on geometrical variables α and pα. Let us try the following:

χ̃(α, pα) = −
L3M2e3α

3pα
. (62)

As we have seen in Section 3.1, the classical solution of the Friedmann equation of the
model under consideration is

a(t) = a0t1/3, (63)

or
α(t) = ln a0 +

1
3

ln t, α̇ =
1
3t

. (64)

Substituting Equation (64) into Equation (45) with N = 1 gives

pα = −
L3M2a3

0
3

. (65)

From (64), (65), and (62), we can confirm that

χ̃(α, pα) = t. (66)

Calculating the Poisson bracket of the function χ̃(α, pα) with the super-Hamiltonian (46),
we obtain

{χ̃,H} = 1
2

(
1 +

M2 p2
φ

p2
α

)
, (67)

which is different from 1. However, if we use the constraint H = 0, we see that on the
constraint surface our Poisson bracket is equal to 1. Now, we can consider the function
χ̃(α, pα) as a new phase space variable T and find its conjugate momentum. The momentum

pT = − p2
αe−3α

L3M2 (68)

satisfies the relation
{T, pT} = 1, (69)

as it should be. Besides,

{T, φ} = {T, pφ} = {pT , φ} = {pT , pφ} = 0.

Now, we can make the canonical transformation from α, pα to T, pT, without involving the
variables pφ and φ. This gives us an opportunity to write the reduced physical Hamiltonian as

Hphys = −pT = − p2
αe−3α

L3M2 . (70)

Using Equations (62), (66), and (46), we can rewrite the expression (70) as follows (up to a sign)

Hphys = −pT =
Mpφ

3t
. (71)

Thus, we have reproduced the formula obtained in Section 3.2.
In Reference [21], Peres considered the same model (in slightly different notations and

with different normalizations and variables). He wanted to introduce the time parameter
that would coincide with the cosmic time and looked for the function of the phase space
variables whose Poisson bracket with the Hamiltonian is equal to 1. This function would
play the role of the cosmic time. To find this function, he solved the second-order equa-
tions of motion of the model, without using the super-Hamiltonian constraint (first-order



Universe 2021, 7, 219 12 of 23

equation of motion). Thus, his time parameter should be represented by the phase space
variables everywhere and not only on the constraint surface. Otherwise, he says, the
method would not be consistent.

In practice, one can find the corresponding function without solving equations of
motion, but by simply looking for the function of the phase space variables whose Poisson
bracket with the super-Hamiltonian is equal to 1 everywhere. Obviously, such a function
cannot depend only on the geometrical phase variables α and pα, but should also depend
on pφ. After some calculations, we find the following function

TP =
2M2L3e3α

3(Mpφ − pα)
. (72)

One can easily check that its Poisson bracket with the super-Hamiltonian is equal to unity
in all of the phase space and not only on the constraint surface. If we resolve the constraint
and choose the appropriate sign, i.e., Mpφ = −pα, (72) transforms into the function T
introduced earlier (see (62)). There is also another function

TP1 = − 2M2L3e3α

3(Mpφ + pα)
. (73)

Its Poisson bracket with the super-Hamiltonian is identically equal to one. It coincides with
our function T if we resolve the constraint as Mpφ = pα.

Now, let us look for the momentum conjugate to the new phase space coordinate TP:
by requiring that {TP, PTP} = 1, we obtain

PTP =
e−3α

M2L3

(
−1

2
p2

α + Ap2
φ +

(
M
2
− A

M

)
pφ pα

)
, (74)

where A is a free real parameter. Note that, in Reference [21], the existence of this additional
freedom of choice is overlooked, and the conjugate momentum has a definite expression
without free parameters.

In Reference [21], the super-Hamiltonian is represented as a sum of two terms. One
of these terms coincides with the momentum PTP given by the expression (74), whereas
the remaining term does not depend on PTP . It is this second term that plays the role of
the physical Hamiltonian. Such an interpretation is based on the following reasoning. The
action of the super-Hamiltonian on the quantum state is equal to zero. The conjugate
momentum PTP can be represented as

PTP = −i
∂

∂TP
. (75)

Then, from

H|ψ〉 = (PTP + Hphys−P)|ψ〉 =
(
−i

∂

∂TP
+ Hphys−P

)
|ψ〉 = 0, (76)

it follows that
i

∂

∂TP
|ψ〉 = Hphys−P|ψ〉. (77)

Thus, we have obtained the Schrödinger equation where TP plays the role of time and
Hphys−P is the physical Hamiltonian. Explicitly,

Hphys−P = H− PTP =
e−3α(M2 − 2A)pφ(Mpφ − pα)

2L3M3 . (78)
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We can get rid of the factor e−3α using our new variable TP:

e−3α =
2M2L3

3TP(Mpφ − pα)
. (79)

Substituting the expression (79) into Equation (78) gives the following expression for the
physical Hamiltonian

Hphys−P =
(M2 − 2A)pφ

3Mt
, (80)

where t ≡ TP.
The expression (80) has some interesting features.

1. It has the same structure as the expression (71); namely, it is proportional to the
momentum pφ and inversely proportional to the cosmic time parameter t.

2. The expression for the time parameter as a function of phase space variables was
obtained without using the constraintH = 0.

3. The combination of the phase variables representing the cosmic time parameter was
chosen in such a way that its Poisson bracket with the super-Hamiltonian is equal to
1 in all of the phase space and not only on the constraint surface.

4. There is a free parameter A in the expressions (74) and (80). The existence of such a
freedom was not noticed in Reference [21]. Indeed, one can see that the expression for
PTP and, hence, for Hphys−P in Reference [21], corresponds to the choice

A = −M2

2
.

Our physical Hamiltonian (71) arises if we choose

A = 0.

5. Although we did not use the classical constraint to introduce the time parameter
as a function of the phase space variables, when defining the physical Hamiltonian,
we used the fact that the quantized super-Hamiltonian eliminates the physical state.

Let us stress that it is our physical Hamiltonian (71) that is compatible with the
corresponding classical evolution of the model.

So far, we have demonstrated that the whole family of reduced physical Hamiltonians,
which depend on a free parameter A, corresponds to the same choice of the classical cosmic
time parameter. How can this parameter be fixed? Let us write the Schrödinger equation
for the Hamiltonian (80):

i
∂ψ(pφ, t)

∂t
=

(M2 − 2A)pφ

3Mt
ψ(pφ, t). (81)

Its solution is

ψ(pφ, t) = ψ(pφ) exp

(
−i

(M2 − 2A)pφ

3M
ln t

)
, (82)

where the function ψ(pφ) should satisfy the normalizability condition∫
dpφψ∗(pφ)ψ(pφ) = 1. (83)

The expectation value of the momentum

〈pφ〉 ≡ 〈ψ(pφ, t)|pφ|ψ(pφ, t)〉 =
∫

dpφ pφψ∗(pφ)ψ(pφ) (84)
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does not depend on time, just like its classical analogue. What happens with the expectation
value of the scalar field φ?

〈φ〉 ≡ 〈ψ(pφ, t)|φ|ψ(pφ, t)〉 = i
∫

dpφψ∗(pφ, t)
∂ψ(pφ, t)

∂pφ

= 〈φ〉t=1 +
M2 − 2A

3M
ln t, (85)

where

〈φ〉t=1 ≡ i
∫

dpφψ∗(pφ, t)
dψ(pφ, t)

dpφ

is the expectation value at t = 1.
Let us now find the classical evolution of the scalar field φ. Using the Lagrangian (40) and

making variation with respect to the lapse function N, we obtain the following constraint in
the Lagrangian formalism

M2α̇2 = φ̇2. (86)

Note that this constraint does not depend on the choice of the time parametrization. Let us
choose the solution as follows

φ̇ = Mα̇. (87)

We have already mentioned that α̇ = 1
3t (see Equation (64). Thus,

φ̇ =
M
3t

. (88)

We see that (88) and (85) are compatible if A = 0, i.e., if the reduced Hamiltonian is equal
to our Hamiltonian (71).

3.4. Hamilton-Jacobi Type Equation and the Choice of the Time Parameter and of the Hamiltonian

As a matter of fact, the author of Reference [21] gives his definition of time and of
the Hamiltonian using the solution of the Hamiltonian-Jacobi type equation and not the
method of direct construction of new canonical variables, which we used in the preceding
subsection. One can try to find out if the solution of the corresponding partial differential
equation can fix these variables in an unambiguous way. We will show in this subsection
that this not the case and that the arbitrariness, which was not noticed in Reference [21], is
still present.

Let us introduce the volume variable

v ≡ a3 ≡ e3α. (89)

In terms of this variable, the Lagrangian (38) is as follows:

L = − L3M2v̇2

18Nv
+

L3φ̇2v
2N

. (90)

We can put N = 1 because we will be looking for the time parameter that coincides with the
cosmic time (the author of Reference [21] calls it “auxiliary time τ”). After this, we can write
the Euler-Lagrange equation with respect to v, which is nothing but the second Friedmann
equation:

2v̈v− v̇2 +
9p2

φ

L3M2 = 0, (91)

where we have used the relation
φ̇ =

pφ

L3v
. (92)
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Now, we can find the solution of the second Friedmann Equation (91) without using the
first Friedmann equation (the super-Hamiltonian constraint). With the initial condition
v(0) = 0, the solution is

v(t) = Kt2 + 3
pφ

L3M
t, (93)

where K is an arbitrary constant. Using the expression (93), we can calculate explicitly the
expression for the super-Hamiltonian. Indeed,

v̇ = 2Kt + 3
pφ

L3M
. (94)

Then,

pv = − L3M2

9
v̇
v

, (95)

and

H = − 9
2M2L3 vp2

v +
1

2L3

p2
φ

v
= −2

9
KL3M2. (96)

Thus, we see that the super-Hamiltonian does not depend on time and is proportional to
the constant K. If we take into account the first Friedmann equation, or, in other words
the super-Hamiltonian constraint, the constant K should be equal to zero. Note that the
dependence of the volume on time given by Equation (93) arises naturally in the universe
filled with dust and a massless scalar field, which behaves as a stiff matter (see, e.g.,
Reference [44]). On the other hand, this behavior arises in the generalized unimodular
theory of gravity [45], where the lapse function is treated not as a Lagrange multiplier but as
a certain function of the determinant of the spatial metric. If one chooses the lapse function
to be a constant (or in other words, chooses a gauge fixing condition corresponding to
the cosmic time), an effective dust arises in the universe. If the lapse function is inversely
proportional to the determinant of the spatial metric, one has the unimodular theory of
gravity, and an effective cosmological constant appears [46,47].

Now, using Equations (93)–(95), we can easily express the time parameter t as a
function of the phase variables v, pv and pφ:

t =
2M2L3v

3(Mpφ − 3vpv)
. (97)

It is easy to check that this expression coincides with the Formula (72), which we obtained
by simply looking for the combination of the phase variables whose Poisson bracket with
the super-Hamiltonian equals to 1 in all of the phase space. Note that the constant K does
not enter into this expression.

The next step is to find the canonical momentum conjugate to the new coordinate
given by the expression (97). In the preceding subsection, we did it using the definition of
the Poisson bracket. In Reference [21], the author constructed the corresponding canonical
transformation. For this purpose the generating function of the type F1 (see, e.g., Refer-
ence [48]) was used. The generating function can be written as S(q, Q), where q are the old
coordinates, while Q are the new coordinates. Then,

pk =
∂S
∂qk , (98)

Pµ =
∂S

∂Qµ . (99)
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Now, as a first new coordinate we choose the coordinate T, which coincides with the
expression of the right-hand side of Equation (97). It will be convenient for us to go back to
our old variable α. Thus,

T =
2M2L3e3α

3(Mpφ − pα)
. (100)

As a second new coordinate we choose

Q = pφ. (101)

Obviously, the Poisson bracket between the expressions (100) and (101) is equal to zero.
From Equation (100), we have

pα = MQ− 2
3

M2L3e3α

T
. (102)

The generating function for which we are looking depends on four variables:

S = S(α, φ, T, Q). (103)

Thus,

pα =
∂S
∂α

= MQ− 2
3

M2L3e3α

T
. (104)

The general solution of this equation is

S(α, φ, T, Q) = MQα− 2
9

M2L3e3α

T
+ S̃(φ, T, Q). (105)

We can impose an additional constraint on the function S̃. The partial derivative of the
generating function with respect to φ should give us pφ = Q. Hence,

∂S
∂φ

=
∂S̃
∂φ

= pφ = Q. (106)

Then,
S̃ = φQ + S̄(T, Q). (107)

We still have some freedom of choice for the function S̄(T, Q). To make the comparison
with the results of the preceding two subsections simpler, let us choose it as follows:

S̄(T, Q) =
2
3

(
M
2

+
A
M

)
Q ln T, (108)

where A is an arbitrary constant.
Now, we can find the momentum PT using the Formula (99):

PT = − ∂S
∂T

= −2
9

M2L3e3α

T2 − 2
3

(
M
2

+
A
M

)
Q
T

. (109)

It is easy to check that, if we go back to the old phase space variables α, φ, pα, pφ, the
Formula (109) coincides with the Formula (74). Thus, using the canonical transformation
and the generating function we came to the same result as was obtained by the direct study
of the corresponding Poisson brackets. Naturally, the effective physical Hamiltonian is
given by the Formula (80).

3.5. Can the Choice A 6= 0 Correspond to Some Classical Evolution?

At the end of Section 3.3, we saw that, if A is different from zero (for example, if
A = −M2

2 , as was implicitly chosen in Reference [21]), then the quantum evolution is not
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compatible with the classical: the time derivative of the expectation value of the field is
given by

d〈φ〉
dt

=
M2 − 2A

3Mt
, (110)

instead of
d〈φ〉

dt
=

M
3t

. (111)

We can ask if the classical counterpart of (110) exists in the theory where the super-
Hamiltonian constraint is not imposed. To answer this question, let us recall that the
relation between the momentum pφ, the time derivative of the scalar field φ̇ and the
volume v = a3 = e3α,

pφ = L3vφ̇, (112)

does not depend on imposing the super-Hamiltonian constraint and follows simply from the
Klein-Gordon equation for the scalar field. By combining Equations (110) and (112), we obtain

v(t) =
3pφ M

L3(M2 − 2A)
t. (113)

On the other hand, from the second Friedmann equation and the Klein-Gordon equation, we
obtain the expression (93). We see that it cannot coincide with (113) unless A = 0.

4. Switching Internal Times and the Montevideo Interpretation of Quantum Theory

In the recent paper by Reference [22], the author considers the same simple model that
we discussed in the preceding section. His approach to the problem of time and related
problems in quantum gravity was laid out in References [23–26]. The author states that the
question of the quantum notion of general-relativistic covariance received little attention;
he addresses this question by using quantum reference frames. One of the main points of
Reference [22] is the explicit and detailed study of switching between different internal
times. The toy model is very convenient from this point of view. Indeed, all the calculations
can be done analytically, and the obtained formulae are rather simple. There is also another
advantage: the symmetry between the logarithm of the scale factor and the scalar field.
This symmetry is especially clear if one looks at the super-Hamiltonian constraint (46)–(47),
which we can conveniently rewrite as follows:

p2
α −M2 p2

φ = 0. (114)

Generally, we find an essential correspondence between the approaches of Refer-
ences [10,11,17,22] and Section 3.2 of the present paper. Indeed, Ref. [22] uses a method that
“identifies a consistent reduction procedure that maps the Dirac quantized theory to the
various reduced quantized versions of it to different choices of quantum reference systems.
It identifies the physical Hilbert space of the Dirac quantization as a reference-system-
neutral-quantum superstructure and the various reduced quantum theories as the physics
described relative to the corresponding choice of reference system.” Hence, the quantum
state annihilated by the Dirac constraint (or, in other words, satisfying the Wheeler-DeWitt
equation) does not have a direct physical interpretation. This opinion coincides with ours.
We also stressed that the physical (probabilistic) interpretation arises when we construct
the time parameter from a part of the phase space variables and this parameter, as well
as its conjugate momentum, are excluded from the effective Hamiltonian by using the
constraint. Let us note that the author of Reference [22] also uses the constraint at all the
stages of his procedure, in contrast to the author of Reference [21].

Because of the symmetry of our model, there are four natural ways to introduce a
time parameter or, in other words, a quantum clock [22]. One can choose a function of
the scale factor as a time variable, and, in this case, the wave function will depend on the
scalar field, or one can consider the scalar field as a quantum clock. Two other choices
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arise when we use Equation (114) to exclude the momentum conjugate to the time variable
from the effective Hamiltonian. In the language of Reference [22], it is called “trivialize the
constraint to the internal time to render it redundant”.

In Section 3.2, the function of the scale factor was chosen to be the internal time. Let
us try to describe the switching between different internal times in our terms. We assign
the role of time to a suitable function of the scalar field φ. Solving jointly the Friedmann
Equation (41) and the Klein-Gordon Equation (42) gives

φ(t) =
M
3

ln
t
t0

, (115)

where t0 is a constant. Now, we can introduce a new canonical variable

T = T0 exp
(

3φ

M

)
; (116)

its conjugate momentum is

pT =
Mpφ

3T0
exp

(
−3φ

M

)
=

Mpφ

3T
. (117)

Using the algorithm described in Section 3.2 and the constraint (114), we obtain the follow-
ing effective physical Hamiltonian:

Hphys−pα
= ± pα

3t
, (118)

where the sign “±” corresponds to the two options existing in the quadratic form of the
constraint (114). It is easy to see that the form of the Hamiltonian (118) is quite similar
to that of (56). Likewise, the solution of the corresponding Schrödinger equation ψ(pα, t)
has the structure quite similar to that of (58). The switching between two choices of time
gives similar results due to the symmetry and simplicity of the model as was noted in
Reference [22]. The two options—the time related to purely geometric characteristic of the
universe and the time connected with the scalar field—look quite natural in this model.
However, other choices also exist. For example, instead of α and φ, we can introduce a
different pair of canonical variables:

T = T0 exp
(

3
2M

(φ + Mα)

)
,

β = Mα. (119)

The conjugate momenta are

pT =
2Mpφ

3T0
exp

(
− 3

2M
(φ + Mα)

)
,

pβ = −pφ +
pα

M
. (120)

Implementing the procedure described above, we arrive at the effective Hamiltonian

Hphys−pβ
=

Mpβ

3t
, (121)

which again has the same form as Hamiltonians considered before.
We should mention that the internal time parameters that do not mix the geometrical

variable α and the matter variable φ look more natural and are more convenient for work
with. However, it is not always so. When one considerers the models where the scalar field
is non-minimally coupled to gravity, it is more convenient to introduce an internal time
parameter that mixes the geometrical and the matter variables; see, e.g., References [49,50].
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Further elaboration of the procedure of switching between internal times [27,28] has
some implications for the Montevideo interpretation of quantum mechanics [29]. To discuss
this topic, let us first recapitulate the main features of this interpretation [30–34].

As with all interpretations of quantum mechanics, the main target of the Montev-
ideo interpretation is the problem of measurement. This problem can be formulated as
the necessity to understand how the principle of superposition and the linearity of the
Schrödinger equation can be reconciled with the fact that, in every measurement, we see
only one outcome. The Copenhagen interpretation suggests that there are two realms—the
quantum and the classical—and there is a complementarity between them. The Montevideo
interpretation is based on the principle that the quantum description of reality is the only
fundamental one. This is akin to the Many-Worlds interpretation of quantum mechan-
ics [51,52]. The distinguishing feature of the Montevideo interpretation is its attention to the
notion of time in quantum theory. The clear distinction is made between the quantum clock,
which is connected with some quantum variable and is an operator, and the coordinate
time. It is important that there are quantum limits on the precision of the time measurement
by quantum clocks. First of all, there is the well-known time-energy uncertainty relation
or Mandelstam-Tamm relation [53]. Besides, the presence of gravity implies that there
are additional constraints on the resolution of quantum clocks. Thus, according to the
Montevideo interpretation, while the quantum system has a unitary evolution with respect
to the coordinate time, its evolution with respect to the quantum clock is non-unitary, and a
pure state transforms into a mixed one. This means that the corresponding density matrix
evolves not according to the quantum Liouville (von Neumann) equation but according to
the equation with some additional terms of the Lindblad type [54,55]. This equation has
the following form

∂ρ(T)
∂T

= i[ρ(T), H] + σ(T)[H, [H, ρ(T)]] + · · · , (122)

where T is a quantum clock time. It is written in Reference [29] that the Inclusion of
the of quantum gravitational notion of time in the spirit of the papers [27,28] makes the
construction based on the Montevideo interpretation more solid. In this connection we
see an interesting technical problem. Can we starting with different definitions of internal
time, like those considered in Reference [22] and in the present paper, to obtain the forms
of the function σ(T) responsible for the non-unitary evolution of the density matrix? It
would be curios to see how it works at least for simple toy models.

Before finishing this section, we would like to say once again that from the point of
view of classification of different interpretations of quantum mechanics, the Montevideo
interpretation is rather close to the Everett interpretation but with a special emphasis on
the role of time and gravitational effects. Besides, the branching that arises in the Everett
interpretation as a result of a measurement-like process becomes approximate. On the other
hand, the Montevideo interpretation can be considered as one of the approaches to the
synthesis of gravity and quantum theory. Investigations of a possible influence of gravita-
tional effects on quantum physics have a rather long history [56–61]. The authors proposing
the Montevideo interpretation stress that they do not modify quantum mechanics. They
simply consistently take into account the gravitational effects, which results in resolution
of some long-standing problems of quantum theory. An interesting example of quite a
different attitude to the problem of synthesis between quantum theory and gravity is the
recently proposed Correlated Worldline Theory [62–65]. In the framework of this theory,
the generalized equivalence principle is implemented and new path integrals representing
the generating functionals are obtained. The linearity of the quantum theory disappears,
but is restored in the limit when the gravitational interaction is switched off. Thus, we see
another interesting problem here: what happens with the notion of time in this new theory?
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5. Discussion

In this review various ideas concerning the problem of time in quantum gravity and
cosmology were studied by using a simple model of a flat Friedmann universe filled with a
massless minimally coupled scalar field. This model was studied in a relatively old paper,
Reference [21], and in some new works [11,17,22]. Why does this model attract the attention
of researchers? It is very simple, and all the calculations can be done analytically for classical
and quantum dynamics. At the same time, most of the problems can be seen by looking at
this simple example. What would change if we included a non-vanishing mass? As we can
see from the pioneering paper of Reference [66], even classical dynamics becomes very rich
and there are no exact solutions. One can also consider scalar fields with other potentials.
For example, for a constant potential one can find the exact solutions of the Wheeler-DeWitt
equation [11]; the same is true for an exponential potential [67]. However, these more
complicated minisuperspace models give almost no additional insight. The same can be
said about more realistic models, which contain anisotropies or/and perturbations. To
introduce an internal time or a quantum clock, one usually uses macroscopic variables,
such as the scale factor and the homogenous mode of a scalar field. Thus, one can try to
understand the basic features of the internal time by playing with relatively simple models,
which we tried to do in the present review.

Upon analyzing the method of introduction of time without using the super-
Hamiltonian constraint, we found a flaw in the calculations of Reference [21] and demon-
strated that some freedom of choice of variables was overlooked. One can represent (at
least partially, but it was enough for our analysis) this freedom by a single parameter A.
Choosing this parameter as A = 0 gives the evolution of the quantum average of the scalar
field that coincides with its classical counterpart; with any other choice (including the
one implicitly made in the Reference [21]) there is not a sensible classical counterpart. On
the other hand, the correct expression for the effective Hamiltonian was obtained in the
framework of the formalism where the super-Hamiltonian constraint was used at all the
stages of the problem [10,11,17]. Thus, it can be concluded that the introduction of new
variables with the desired value of the Poisson brackets in all of the phase space is ne! ither
necessary nor sufficient for a reasonable treatment of the Wheeler-DeWitt equation.

Nevertheless, the paper written by A. Peres is, certainly, thought-provoking because it
makes the reader think about such complicated questions as the problem of time in quan-
tum cosmology, the correct treatment of the Wheeler-DeWitt equation, the transition to the
Hamiltonian formalism in theories that possess reparametrization invariance, and, last but
not least, the complicated interrelations between the classical and quantum theories. The
author of Reference [21] advocates the Copenhagen interpretation of quantum mechanics.
He writes: “On the other hand, quantum theory, unlike general relativity, is not a “theory of
everything”. Its mathematical formalism can be given a consistent physical interpretation
only by arbitrarily dividing the physical world into two parts: the system under study,
represented by vectors and operators in a Hilbert space, and the observer (and the rest of
the world), for which a classical description is used”. The reference to the famous paper by
Niels Bohr [68] is given in the Introduction of Reference [21].

In all the calculations and considerations of Section 3 of the present paper, the treat-
ment of time as a classical variable and the comparison between the classical and quantum
evolutions are used. At the same time, a different point of view becomes more and more
popular among researchers working in quantum cosmology. It is related to the many-
worlds interpretation of quantum mechanics [51,52] and to the idea that the quantum
theory is the only fundamental theory. The classical behavior emerges only in some limits
and contexts (see, e.g., Reference [69] for a recent review). If we accept the fundamental
character of the quantum theory, we should expect the appearance of some quantum
properties of time, considering that the time parameter in quantum gravity and cosmology
is a combination of quantum operators. Here, this “quantumness” was in a way frozen, but
this phenomenon can hardly have a universal character. Is it possible to see some flashes
revealing the true quantum nature of time?
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Let us note that ideas concerning this quantum nature of time were already discussed
in some works. For example, in Reference [70], a simple cosmological model, similar to
that in the present paper but with the massive scalar field, was considered. Using the Born-
Oppenheimer approach, the authors factorized the solution of the Wheeler-DeWitt equation
into two parts: one depending only on the geometrical variables (scale factor), and the
other depending also on the matter variables and the perturbations of the homogeneous
background. The purely geometrical part of the wave function is responsible for the
emergence of time, while the other part describes the quantum evolution of the matter
degrees of freedom with respect to this time parameter. It was discovered that, to make this
definition of time reasonable, it is necessary to use some kind of course-graining procedure.
Without this procedure the time variable behaves in a strange, oscillatory way.

The idea of Reference [70] was further developed in Reference [71], where the attempt
to construct a “non-semiclassical” wave function of the universe was undertaken, and the
possible observable effects, such as the influence of this non-classicality on the spectrum of
the cosmic microwave background, were predicted.

Some interesting features of time and causality in quantum gravity were studied in Refer-
ences [72–74]. As is known, when introducing the higher-derivative terms in the gravitational
action to make it renormalizable, one encounters the problem of unitarity. To resolve this
problem, the author of References [72–74] introduduces particles which he calls “fakeons”. The
propagators of these particles are not of Feynman type, and the standard notion of causality
is not valid for them. Thus, one can say they live in a “different time”. This is even more
evident in References [75,76]. To study the structure of the propagator of the graviton, the
authors introduce the notion of the so-called “Merlin modes”, which live in a time that runs
backwards. These states are highly unstable, their appearance does not break the causality on
the observable distances.

In our opinion, the question of genuine quantum nature of time and its relation to the clas-
sical evolution is one of the most interesting and challenging problems of quantum cosmology.
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