
universe

Communication

Continuous Gravitational-Wave Data Analysis with General
Purpose Computing on Graphic Processing Units

Iuri La Rosa 1,2,3,4,* , Pia Astone 5, Sabrina D’Antonio 6, Sergio Frasca 4, Paola Leaci 4, Andrew Lawrence Miller 7,
Cristiano Palomba 5, Ornella Juliana Piccinni 4,5 , Lorenzo Pierini 4,5 and Tania Regimbau 1,2

����������
�������

Citation: La Rosa, I.; Astone, P.;

D’Antonio, S.; Frasca, S.; Leaci, P.;

Miller, A.L.; Palomba, C.; Piccinni,

O.J.; Pierini, L.; Regimbau, T.

Continuous Gravitational-Wave Data

Analysis with General Purpose

Computing on Graphic Processing

Units. Universe 2021, 7, 218. https://

doi.org/10.3390/universe7070218

Academic Editor: Philippe Jetzer

Received: 28 May 2021

Accepted: 25 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire d’Annecy de Physique des Particules (LAPP), 9 Chemin de Bellevue, F-74940 Annecy, France;
regimbau@lapp.in2p3.fr

2 CNRS/IN2P3, 9 Chemin de Bellevue, F-74940 Annecy, France
3 Département Physique, Université Savoie Mont Blanc, 27 rue Marcoz, F-73000 Chambéry, France
4 Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma, Italy;

sergio.frasca@roma1.infn.it (S.F.); paola.leaci@roma1.infn.it (P.L.);
ornella.juliana.piccinni@roma1.infn.it (O.J.P.); lorenzo.Pierini@roma1.infn.it (L.P.)

5 INFN Sezione di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy; pia.astone@roma1.infn.it (P.A.);
cristiano.palomba@roma1.infn.it (C.P.)

6 INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy;
sabrina.dantonio@roma2.infn.it

7 Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain,
2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium; andrew.miller@uclouvain.be

* Correspondence: larosa@lapp.in2p3.fr

Abstract: We present a new approach to searching for Continuous gravitational Waves (CWs) emitted
by isolated rotating neutron stars, using the high parallel computing efficiency and computational
power of modern Graphic Processing Units (GPUs). Specifically, in this paper the porting of one
of the algorithms used to search for CW signals, the so-called FrequencyHough transform, on the
TensorFlow framework, is described. The new code has been fully tested and its performance on
GPUs has been compared to those in a CPU multicore system of the same class, showing a factor of
10 speed-up. This demonstrates that GPU programming with general purpose libraries (the those
of the TensorFlow framework) of a high-level programming language can provide a significant
improvement of the performance of data analysis, opening new perspectives on wide-parameter
searches for CWs.

Keywords: gravitational waves; data analysis; TensorFlow; GPU; hough transform; FrequencyHough

1. Introduction

Gravitational waves are a phenomenon described by Albert Einstein in his Theory of
General Relativity [1,2] as perturbations of space-time generated by a mass distribution
with time varying quadrupole moment: they propagate as variations of the space-time
metric, changing, in time, the proper distance between space-time points.

The first direct detection of gravitational waves by LIGO and Virgo collaborations [3]
has opened a new window into observing the Universe. All signals detected so far have
been produced by the inspiral and coalescence of binary systems made of two black holes or
neutron stars (e.g., [4]). These signals are transient by nature, that is, their duration is much
shorter (the order of seconds) than the detector typical observation time, whose observation
runs typically last for months. Neutron stars, however, can emit Continuous gravitational
Waves (CWs), as a consequence of an asymmetry with respect to the rotation axis.

The search for this class of signals is challenging, mainly because they are much
weaker than those from compact binary coalescences (see [3–6]). Moreover, for these long
lasting signals, the characteristic frequency is modulated by the Doppler effect due to
the Earth’s motion and the source orbital motion (for sources in binary systems), further
complicating the analysis [7,8].

Universe 2021, 7, 218. https://doi.org/10.3390/universe7070218 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-0107-1540
https://orcid.org/0000-0001-5478-3950
https://doi.org/10.3390/universe7070218
https://doi.org/10.3390/universe7070218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7070218
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7070218?type=check_update&version=1

Universe 2021, 7, 218 2 of 12

The amplitude of the wave emitted by a neutron star, which is modelled as an asym-
metric ellipsoid-shaped body, rotating with frequency fr around one of its principal axes of
inertia, is given by [7,9]

h0 =
4π2 f 2

0 G
c4r

Iε '

' 10−26
(

I
1038kg m2

)(
1 kpc

r

)(
fr

100 Hz

)2(ε

10−6

)
,

(1)

where ε is the star’s ellipticity, which is a measure of its degree of asymmetry, I is its
moment of inertia with respect to the rotation axis, r is the distance from the source to
Earth, G is the gravitational constant and c the speed of light in vacuum. In the second line
of Equation (1), a parametrization of the signal amplitude is given with typical parameters
for a neutron star. The emission mechanism we are considering in this paper is driven by
the asymmetry of the source with respect to the rotational axis, given by the ε parameter,
and is such that the signal frequency is twice the rotational frequency: f0 = 2 fr [10,11].
Other emission mechanisms exist but are not considered for the kind of analysis described
in this paper [12–15].

Considering a stationary rotating compact star, which loses energy only via gravi-
tational waves, the emitted gravitational flux LGW is equal to the rotational energy loss,
LGW = Ėr = π2 I f ḟ , and the rotational f frequency will decrease in time. Given the
smallness of this effect, with a good accuracy we can consider the signal frequency to vary
linearly in time, that is, with a constant spindown (i.e., the time frequency first derivative ḟ).
Consequently, the signal shape will be a sinusoidal function with frequency following at
the first order the equation:

f (t) = f0 + k ḟ (t− t0), (2)

with k being a constant that parametrizes the first derivative of the frequency, usually called the
spindown parameter. Equation (2) will appear as a straight line across the time-frequency domain.

The number of neutron stars observed by electromagnetic emission is &2500 [16],
but a population of about∼108–109 [17] unseen objects of the same kind is expected to exist
in our galaxy. Since, in principle, a fraction of them could emit gravitational waves within
the sensitivity band of the gravitational-wave detectors, the search for CWs is split into two
main classes (plus some intermediate cases): coherent searches for known neutron stars
and all-sky searches over a wide portion of the search parameter space (consisting of the
position in the sky, the star rotation frequency and frequency derivatives for isolated stars,
plus the orbital parameters for the sources in binary systems); see, for example, [18,19] for
thorough reviews.

The main challenge in all-sky searches is the computational cost of the data analysis,
which is so far unaffordable with respect to the cited compact binary coalescence searches,
if we want to adequately cover the search parameter space with a coherent method. To this
purpose, hierarchical analysis algorithms (so-called pipelines) have been developed (see [6]
and references therein).

Nevertheless, the analyses are still very challenging from a computational point of
view. Hence, the fast evolution of parallel computing on Graphical Processing Units
(GPUs) appears to be promising: in recent years, GPU technology has been developed
well, with devices able to carry out a fast increasing amount of floating point operations
per second. Moreover, as in the case of CW searches, they are extremely efficient for the
computation of highly parallelizable algorithms.

We present the porting on GPUs of the core of the CW all-sky search algorithm called
FrequencyHough [7],using the TensorFlow framework [20] as a high-level, general purpose
numerical computation library. We will show that the performances of the porting can
reduce by an order of magnitude the time needed for a full all-sky analysis. Thanks to
such an improvement, we have already deployed the GPU-based FrequencyHough code

Universe 2021, 7, 218 3 of 12

to analyze data from the third observing scientific LIGO-Virgo detectors, and the related
results will be disclosed in an upcoming observational paper.

2. Continuous-Wave Search

The search for CWs is challenging because the signals are weak compared to the noise
floor. If we do not know the sky position of the source, as happens with all-sky searches,
detecting CWs is even more difficult because of the dimension of the search parameter
space: the Doppler modulation due the Earth’s motion will modulate the characteristic
frequency time law of a signal (Equation (2)) from an isolated neutron star, depending on
the source position [21].

In this paper, we consider one of the standard search pipelines to search for CWs, that
is, the mentioned FrequencyHough [7]. In particular we focus on the section that identifies
the signal candidates and estimates their parameters, through an implementation of the
so-called Hough transform (see Figure 1 which summarizes the core of the pipeline).

Briefly, the pipeline starts from a database of short Fourier transforms (FFT), computed
from chunks of the data with a given duration TFFT [7]. The most significant peaks are
selected in the equalized spectra from each FFT, producing a collection of time-frequency
peaks that we refer to as peakmap. The peakmaps are stored in files that will be used as
input for the FrequencyHough step of the pipeline, and they cover the full time of the
detector observational run and a frequency interval of 1 Hz for f < 128 Hz and of 5 Hz for
f ∈ [128, 2048] Hz.

For every point in the sky, which is also discretized, the Doppler effect is corrected: a
double sinusoidal pattern in the peakmap, due to the superposition of orbital and rotational
Earth Doppler-shifts, becomes a straight line over the whole observation time.

Figure 1. A scheme that shows the steps of the full FrequencyHough pipeline. They are summarized
in Section 2 and described in detail in [7]. The FrequencyHough transform and the candidate selection,
highlighted in red, are the parts of the pipeline that have been ported on GPUs.

The peaks are then fed to the FrequencyHough transform algorithm (for details see
Section 2.1). This step of the analysis is crucial because it produces the set of candidates,
that is, significant points in the signal frequency–frequency time derivative space, and rep-
resents the main computational burden of the whole pipeline. Once we have selected the
candidates from both detectors, they are stored in files where their parameters are saved
(sky coordinates, frequency, spindown), and this is the final output of the FrequencyHough
transform step.

After the candidates collection and storage, their parameter space position is refined
and their number is reduced, by clustering those below a certain distance in the parameter

Universe 2021, 7, 218 4 of 12

space and, most importantly, by matching the coincidence scheme between two or more
detectors. The selected candidates are fed to a follow-up analysis in order to finally discard
them or claim a detection [7].

2.1. Hough Transform

The FrequencyHough transform is a special implementation of CW searches of the
so-called Hough transform, a pattern-recognition method [22] that was conceived for the
study of subatomic particle tracks in bubble chambers, where curved tracks are divided,
with good approximation, in sufficiently small line segments.

Considering an image where the line is formed by a series of co-linear black points
with a pure white background, the detection of a track using the Hough transform consists
of the transformation of the input image into another image (that we refer to as “the Hough
map”), where a point with coordinates (x, y) is converted into a straight line, whose slope
and intercept are given by the point coordinates in the input image. If we take a sequence
of points along a straight track with equation y = mx + q, they will be represented in the
Hough map by straight lines with changing slopes and intercepts, forming an intersecting
family of lines. The coordinates of the incidence point in the Hough space will be the
parameter values (m, q) of the line in the coordinate space (see Figure 2 for an example).
Then, the Hough transform translates a straight line in the input coordinate space into
points in the parameter space and allow us to measure the parameters of straight lines in
the input images.

0 50 100 150 200 250
q

0.65

0.43

0.21

0

0.21

0.43

0.65

m

Parameters space

0

20

40

60

80

100

120

0 50 100
x

0

50

100

150

200

250

y

Input space

r

s

s

r

Figure 2. Example of the Hough transform of two straight lines with different slopes. In the left plot,
the lines are drawn in the x-y input plane, while in the right plot their parameters are shown as being
computed by the Hough transform: each line in the input space is translated into a family of straight
lines intersecting in their relative parameter space points.

Since we work with digitized images, the parameter space is discretized. The Hough
map will then be a 2D histogram, where each pixel will have a count depending on how
many lines are entered into that parameter space region. A given pixel in the map records
the number of lines passing through it and the number count in each pixel will provide
information on the significance of a point in the parameter space, within the error given by
the image resolution (i.e., the bin sizes of the input space) .

The Hough transform can be generalized in the following ways: (i) enhancing or
reducing the resolution of the Hough map (to have either better precision on the parameter
estimation or to reduce the computation load); (ii) using any N-dimensional manifold as
input space and an M-dimensional manifold as parameter space, searching for curves
rather than straight lines [23–25].

2.2. FrequencyHough Transform

The FrequencyHough transform is particularly well suited to searching for continuous
gravitational waves [7,26]. As already stated, it starts with an input peakmap where the

Universe 2021, 7, 218 5 of 12

Doppler effect due to the Earth’s motion has been corrected. The transformation is from the
peaks of the detector frequency/time plane to the gravitational wave frequency/spindown
parameters plane.

With intrinsic frequency f0 and spindown ḟ as parameters of a given neutron star
waveform, and t0 as an arbitrary reference time, the expected path in the peakmap at first
order is given by the time law in Equation (2) [26]:

f = f0 + ḟ (t− t0). (3)

Keeping in mind that the frequency bins in the peakmap have a width ∆ f = 1/TFFT,
we enhance the resolution of the parameters in the FrequencyHough map by ten times:
∆ f ′ = ∆ f /10. A peakmap point is then transformed into a stripe between two parallel
straight lines with a width given by the relation

f − ∆ f /2− t ḟ < f0 < f + ∆ f /2− t ḟ . (4)

Then, for every row (i.e., along the spindown dimension), the FrequencyHough map is
computed with a differential method: all the elements of one of the two edges, that is, those
that match the relation f0 = f −∆ f /2− t ḟ , are increased by 1. Once this step is carried out,
the elements on the other edge of the stripe are decreased by 1, straightforwardly using
array slicing to immediately identify the elements matching f0 = f + ∆ f /2− t ḟ (we just
take the elements found in the first step and move by the number of bins corresponding
to ∆ f). Finally, the row is cumulatively summed. An example is shown in Figure 3,
where a straight line has been superimposed onto a portion of a peakmap and then the
FrequencyHough has been run on it.

0 6 12 18 24 30
0 (×10 3 + 80Hz)

8.0

6.0

4.0

2.0

0.0

2.0

4.0

6.0

8.0

(1
0

1
0
H
z/
s)

Frequency-Hough map

0

20

40

60

80

100

0 24 48 72 96 120
t (hours)

0

6

12

18

24

30

(×
1

0
3

+
8

0
H
z)

Peakmap

f

f

f

p

p

Figure 3. Example of a peakmap with real data (from LIGO Livingston O2 run [27]) and a
straight line superimposed directly on the peakmap to naively simulate a pulsar signal with ref-
erence frequency f0 ' 80 Hz taken at mid time period of the peakmap, and spindown parameter
ḟ ' −3.67× 10−10 Hz/s.

Exactly like the naive example in Figure 2, every point in the input is transformed
into a straight line (in this case into a belt between two lines), and the aligned points of the
straight line produce belts in the FrequencyHough map that converge in the parameters of
the input line, allowing us to identify it when searching for the pixel in the FrequencyHough
map with the highest number count.

For all-sky searches, the size of the parameter space given by the sky grid is crucial.
For each input peakamp, the number of sky points depend on its maximum frequency and
on the FFT duration [7]. In Figure 4, we show the sky resolution versus the frequency for
the four bands used for the standard FrequencyHough analysis.

Universe 2021, 7, 218 6 of 12

To cover all parameter space across the full frequency range, millions of core hours are
necessary for a typical analysis over several months of data. GPU parallelism could support
a significantly higher computation efficiency, allowing us to run a much deeper analyses.

0 250 500 750 1000 1250 1500 1750 2000
Frequency (Hz)

0

50

100

150

200

250

300

Nu
m

be
r o

f p
oi

nt
s (

×1
03)

Number of sky points as a function of frequency

TFFT = 8192s
TFFT = 4096s
TFFT = 2048s
TFFT = 1024s

Figure 4. Plots of the number of points in the sky grid generated for the FrequencyHough search,
as a function of frequency.

3. General Purpose Computing on GPUs

A GPU is a device created and developed to perform computations with an extremely
high parallelism and the best possible efficiency.

After very fast technological development, GPUs currently have hundreds and even
thousands of cores and several GB of dedicated RAM: thanks to GPUs, the processing
power for floating point calculations has exploded in the last ten years, and the use of
GPUs in many different fields, from scientific research to economics and so on, gave birth
to General Purpose computing on GPUs (GPGPU). At the present time, GPUs are no
longer created with the sole purpose of building 3D animation, but specifically for big
data computations, and GPUs for data centers dedicated to massive scientific calculations
are an established reality. Within this context, with the creation of the CUDA [28] and
OpenCL [29] frameworks, software development of algorithms for scientific research that
is able to exploit the computation power of this new technology is finally affordable.

TensorFlow

TensorFlow [20] is a framework for high-level GPGPU programming that works with
a symbolic paradigm and a syntax similar to high-level scientific programs/languages,
such as Matlab [30], or numerical Python libraries like Numpy [31]. Despite having been
originally developed for machine learning and neural networks, TensorFlow works well
for a wide variety of purposes and, specifically, for scientific data analysis. The main
reasons are that, apart from the neural network dedicated part, it has many functions for
numerical computations, statistics and tensorial operations, which are developed to run
very efficiently on GPUs with a high scalability for multi-GPU systems.

TensorFlow uses the dataflow paradigm, where a program is modeled as a graph
of operations where the data flow through. The central units of data in TensorFlow are
N-dimensional arrays called tensors. Operations on tensors are represented by nodes in a
graph, while the edges are the input/output tensors, which link the operations of the flow.

A simple example of the performance of TensorFlow on a single GPU, compared to
Numpy on a single multi-thread CPU system, is shown in Figure 5, where the time execu-
tion of the random generation of two matrices with increasing size, and a matricial product
between them, has been plotted. Taking into account that the used devices are not of the
same class of performance, this example shows that, with well parallelizable algorithms,
the improvement in performance using the GPU high-level TensorFlow functions can be
up to one order of magnitude in terms of computation time.

Universe 2021, 7, 218 7 of 12

All tests shown in this paper have been performed on the GPUs of the Cineca Mar-
coni100 cluster [32] and on the CPUs of the LIGO–Caltech CIT cluster [33] (we refer readers
to the institutional web pages for details of the hardware specifications).

107 108

Pixels
10 3

10 2

10 1

100

101

Co
m

pu
ta

tio
n

tim
e

(s
)

GPU-CPU benchmark comparison

Numpy 64, Xeon E5-2650 v4, 48 threads
TensorFlow 64, Volta V100
TensorFlow 32, Volta V100

Figure 5. A simple benchmark on two example devices: an Intel Xeon E5-2650 v4 CPU system with,
in total, 24 2.20 GHz cores and 48 threads, and a NVIDIA Volta V100 with 5120 cores at 1500 MHz.
The test is based on the generation of two random 2-rank arrays and a matrix multiplication between
them. The green and orange dots show the benchmark conducted, respectively, with 64 and 32 bit
data with TensorFlow, the blue ones come from a test with 64 bit data with Numpy. The test with the
CPUs has been performed keeping the multithreading enabled as by default for Numpy.

4. FrequencyHough on TensorFlow

The standard FrequencyHough algorithm [7] is written in Matlab and is based on the
SNAG toolbox [34]. The new code has been written in Python with TensorFlow APIs up
to version 13.1, using CUDA libraries up to 10.01. The first step of the GPU porting has
been to write a fully vectorized version of the code. This is a crucial step with high-level
languages because, using a library with functions that are well developed and compiled
in a low level language, the code will often be faster than a custom function with similar
instructions or, even worse, loop cycles.

The greatest challenge in the GPU vectorization of the code has been the parallelization
over the spindown values. Every spindown row in the FrequencyHough map algorithm is
created independently. To limit the memory usage, we used a TensorFlow built-in function
to map a single spindown iteration along the full search interval in a parallel and efficient
way, rather than running a loop2. The integration part is instead intrinsically sequential,
so it becomes rapidly the most inefficient part of the code when the frequency resolution
is enhanced3.

Another delicate part of the analysis is the candidate selection. Once the Frequency-
Hough map for the selected sky positions has been generated, usually the matrix is split along
the frequency dimension in an arbitrary number of vertical stripes, where the local maxima
are selected [7]. The number of frequency stripes depends on how many candidates the
search will produce; usually that number is fixed on 1 candidate for every 0.05 Hz.

We note that, in terms of programming languages, this can create some issues: if in
a stripe there were more candidates with the same number count value but at different
spindown values, the algorithm would select only the first occurrence, discarding the
others. To bypass this technical limitation, we split the whole spindown range into dif-
ferent spindown sub-intervals and, for each of them, the candidate selection routine was
run independently.

Thanks to the vectorization method used for the generation of the Hough map,
with TensorFlow we can also naturally parallelize the candidate selection over the spin-
down sub-intervals, rather than running it sequentially. In this way, since increasing the

Universe 2021, 7, 218 8 of 12

number of sub-intervals makes the increase in computation time negligible, we can select
more candidates, thus improving the search sensitivity.

Benchmarks

The GPU FrequencyHough code can run on devices that have enough memory and
computational power like those built for big data centers, with a speed-up that can reach
1–2 orders of magnitude with respect to the standard code of [7], using the same input and
parameter space. In Figure 6, we present an estimation of the running time of the GPU
FrequencyHough code compared to the CPU version that runs on a single core. The bar
plots for the different TFFT used in the analysis (which imply different sizes of the input
peakmap) show that the FrequencyHough map computation—which was the dominating
part of the execution time of the whole pipeline—thanks to the GPU function becomes
lighter than the weighting process of the peakmaps, which is still running on CPUs, using
Numpy functions with the multithreading enabled.

The porting was carried out and tested in order to return the same set of candidates
of the original code. The peakmaps used for the benchmarks were generated with a time
duration of 12 months; between 10 Hz and 128 Hz we have a peakmap for every 1 Hz,
while for the other frequencies instead they cover a 5-Hz band.

T F
FT

=
81

92
s (

1
Hz

)

T F
FT

=
40

96
s

T F
FT

=
20

48
s

T F
FT

=
10

24
s0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(s

)

Benchmarks with GPU: NVIDIA V100

Loop preparation
Peakmap weights
Doppler correction
TensorFlow graph
Hough + candidates

T
FF
T

=
8

1
9

2
s

(1
 H

z)

T
FF
T

=
4

0
9

6
s

T
FF
T

=
2

0
4

8
s

T
FF
T

=
1

0
2

4
s

0

100

200

300

400

500

600
T
im

e
 (

s)

Benchmarks with CPU: Xeon E5-2650 v4

Loop preparation

Peakmap weights

Doppler correction

Hough transform

Candidates

Figure 6. Detailed comparison between the estimated running time of the GPU- (left plot) and
the CPU- (right plot) based FrequencyHough codes. The grey part of the benchmark is executed
only once per job and contributes negligibly to the overall cost, while the colored parts of the bars
constitute one iteration over the sky positions and are in the main loop. The part where TensorFlow
is involved has been split into two pieces: the graph building and variables initialization (orange)
and the graph execution (red). The GPU code, after the TensorFlow graph is created, computes the
FrequencyHough transform and the candidate selection at once, so it is not possible to split the two
steps without the introduction of an overhead caused by the fact that the graph is generated and run
in two steps. We remark that the CPU code can run only on a single thread. Hence, in the right plot
we show the performance in terms of computing times using a single CPU core.

The spindown range is the same for each frequency band: [−10−9, 10−10] Hz/s. Tobs
being the observation time, the spindown resolution is defined as ∆ ḟ := ∆ f /Tobs. With this
definition, we have, respectively, for the four datasets (see Table 1) the following number
of spindown bins: 2566, 1284, 644, 322.

The devices used are an Intel Xeon E5-2650 v4 CPU with 24 2.20 GHz execution
threads and a NVIDIA Volta V100 with 5120 cores at 1500 MHz and 16 GB of memory.
An example of a FrequencyHough transform applied to a hardware injection in the data
from the O2 run of the LIGO Hanford detector is shown in Figure 7.

Universe 2021, 7, 218 9 of 12

Table 1. Frequency range and TFFT for the four frequency bands used in this analysis.

Frequency Band (Hz) TFFT (s)

10–128 8192
128–512 4096
512–1024 2048

1024–2048 1024

0.635 0.636 0.637 0.638 0.640
(+190Hz)

8.71

8.69

8.67

8.65

8.63

8.61

8.59

(×
1
0

9
H
z/
s)

0.639

400

600

800

1000

1200

1400

f

f

Figure 7. The GPU FrequencyHough algorithm applied to a hardware injection (so-called pulsar_8)
in O2 LIGO Hanford data [27], with parameters: f0 = 190.6373 Hz, ḟ0 = −8.65× 10−9 Hz/s and
ecliptic coordinates λ = 351.39◦, β = −33.42◦.

To provide better insight into how the performance of the code works with different
sizes of the input time-frequency space and the frequency-spindown parameter space, we
show in Figure 8 the results of another set of tests on the code efficiency: the parallelism
efficiency of a GPU is well exploited when its memory and core architecture are filled as
much as possible with parallelizable instructions.Due to this, the longer a given observation
run is, the more efficient is the search with the new GPU code with respect to the older one.

0 10 20 30 40 50 60
Frequency band (Hz)

0

2

4

6

8

10

12

C
o
m

p
u
ta

ti
o
n

ti
m

e
 (

s)

Benchmark: peakmap size

serialized

1 month

9 months

100 200 300 400 500
N

2

4

6

8

10

12

14

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

Benchmark: Hough map spin-down size

serialized
9 months, 5 Hz

f

Figure 8. GPU tests for the FrequencyHough algorithm on a Tesla k20 (2496 cores at 706 MHz and
5 GB of memory) changing some key parameters: the size of the input (time interval–frequency range
of the peakmap), and the size of the parameter space (number of spindown bins). The plots show the
increasing efficiency of the GPU parallelism with a higher load on the memory and cores of the device.
Left: computation time as a function of the frequency band covered by the peakmap. The measured
computation times (dotted lines) are compared to those we would obtain by serializing the GPU
code over 1 Hz peakmaps (dashed lines). The red plots show that, with a 20 Hz large peakmap, when
the memory of the device is full, the efficiency of the parallelization halves the computation time
needed for a separate analysis of 20 1 Hz large peakmaps. The blue plot comes from a 1 month long
peakmap, with a 20% time gain. Right: computation time as function of the number of spindown
steps of the Hough map, with Tobs = 9 months and ∆ f = 5 Hz. Dotted and dashed lines have the
same meaning as before. The plot shows a 68% time reduction with respect to the serialized case,
proving that the vectorization with TensorFlow is successful.

Universe 2021, 7, 218 10 of 12

To provide an estimate of the different performances for a dataset spanning 1 year of
observing time, 5 million CPU core hours are needed to complete a full all-sky analysis,
while the pipeline equipped with the GPU FrequencyHough transform will take only ~130
thousand single-GPU hours.

5. Conclusions

In this work, we have shown the usefulness of GPGPU by developing analysis algo-
rithms for the search for CWs. By parallelizing the FrequencyHough transform compu-
tation on GPUs, for a single Doppler corrected peakmap, we obtained a speed-up of the
analysis by a factor of 10 in comparison to the original code. As seen in Figure 8, we also
showed that by improving the degree of parallelism, that is, analyzing more data and a
larger parameter space at once, the efficiency of the analysis can be increased further, by an
amount that depends strongly on the devices used, but roughly by another ~50%.

With the computational speed of the GPUs, other portions of the pipeline that run
on CPUs become the bottleneck of the pipeline, and should be ported on GPUs as well.
By updating the code to the newer versions of TensorFlow, the time that TensorFlow takes
to generate and initialize the graph is also expected to be reduced.

With the better performances granted to a well developed GPGPU code, one can
consider adding higher order spindown parameters and expanding the parameter space
in order to increase the probability of a detection. To this purpose, a few arrangements and
improvements could be made, such as:

• Extend the code to run on multi-GPU systems, exploiting the larger memory to load
and process larger files at once;

• Develop a scalable big data input/output pipeline, which can work out-of-memory,
using appropriate modern file formats and libraries, trying to balance serialization
and parallelism.

The field of big data computation with GPUs is fast evolving, with new hardware
architectures that raise the available computational power, and an increasing number of
frameworks, which allow us to develop codes with a high variety of purposes. Due to
this, we expect that an increasing amount of scientific analysis in the next years will use
such devices and frameworks. Thanks to the availability of clusters made by thousands
of data center GPUs, it has become crucial to have codes that can efficiently exploit the
computational power of these devices.

Developing GPGPU codes for CW searches is thus of primary importance.

Author Contributions: Conceptualization, I.L.R., P.A., S.F. and C.P.; Data curation, P.L. and O.J.P.;
Formal analysis, I.L.R.; Funding acquisition, P.L. and T.R.; Methodology, I.L.R.; Resources, P.A.
and C.P.; Software, I.L.R., P.A. and S.F.; Supervision, P.A., P.L., C.P. and T.R.; Validation, P.A. and
C.P.; Visualization, I.L.R.; Writing—original draft, I.L.R.; Writing—review & editing, P.A., S.D., S.F.,
P.L., A.L.M., C.P., O.J.P., L.P. and T.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by European Gravitational Observatory as part of the PhD
scholarship of I.L.R.

Data Availability Statement: The data presented in this study are openly available in Gravitational
Wave Open Science Center at doi:10.1016/j.softx.2021.100658.

Acknowledgments: We thank the LIGO Scientific Collaboration for access to LIGO data, as well as the
funding agencies that enabled the construction and operation of the LIGO observatories.This material
is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by
the National Science Foundation. We also acknowledge the support of the CIT cluster, Cineca and
CNAF, and we acknowledge the European Gravitational Observatory for funding this project.

Conflicts of Interest: The authors declare no conflict of interest.

Universe 2021, 7, 218 11 of 12

Notes
1 An update to TensorFlow 2.x with CUDA 11.x is planned in the near future.
2 The function used is map_fn: it applies a function along elements of a tensor, parallelizing the instructions over the GPUs.
3 For this part, TensorFlow APIs have a cumulative sum function called cumsum.

References
1. Einstein, A. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte Königlich Preußischen Akad. Wiss.

1916, 1, 688.
2. Einstein, A. Über Gravitationswellen. Sitzungsberichte Königlich Preußischen Akad. Wiss. 1918, 1, 154.
3. Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] Observation of gravitational waves from a binary black

hole merger. Phys. Rev. Lett. 2016, 116, 061102. [CrossRef]
4. Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW170817: Observation of gravitational waves from a

binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [CrossRef] [PubMed]
5. Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW170814: A three-detector observation of gravitational

waves from a binary black hole coalescence. Phys. Rev. Lett. 2017, 119, 141101. [CrossRef] [PubMed]
6. Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] All-sky search for continuous gravitational waves from

isolated neutron stars using Advanced LIGO O2 data. Phys. Rev. D 2019, 100, 024004. [CrossRef]
7. Astone, P. et al. Method for all-sky searches of continuous gravitational wave signals using the frequency-Hough transform. Phys.

Rev. D 2014, 90, 042002. [CrossRef]
8. Leaci, P.; Astone, P.; D’Antonio, S.; Frasca, S.; Palomba, C.; Piccinni, O.; Mastrogiovanni, S. Novel directed search strategy to

detect continuous gravitational waves from neutron stars in low-and high-eccentricity binary systems. Phys. Rev. D 2017, 95,
122001. [CrossRef]

9. Maggiore, M. Gravitational Waves: Volume 1: Theory and Experiments; Oxford University Press: Oxford, UK, 2008. [CrossRef]
10. Ushomirsky, G.; Cutler, C.; Bildsten, L. Deformations of accreting neutron star crusts and gravitational wave emission. Mon. Not.

R. Astron. Soc. 2000, 319, 902. [CrossRef]
11. Cutler, C. Gravitational waves from neutron stars with large toroidal B fields. Phys. Rev. D 2002, 66, 084025. [CrossRef]
12. Owen, B.J.; Lindblom, L.; Cutler, C.; Schutz, B.F.; Vecchio, A.; Andersson, N. Gravitational waves from hot young rapidly rotating

neutron stars. Phys. Rev. D 1998, 58, 084020. [CrossRef]
13. Bildsten, L. Gravitational radiation and rotation of accreting neutron stars. Astrophys. J. 1998, 501, L89. [CrossRef]
14. Andersson, N.; Kokkotas, K.D.; Stergioulas, N. On the relevance of the r-mode instability for accreting neutron stars and white

dwarfs. Astrophys. J. 1999, 516, 307. [CrossRef]
15. Stairs, I.H.; Lyne, A.G.; Shemar, S.L. Evidence for free precession in a pulsar. Nature 2000, 406, 484. [CrossRef]
16. Australia Telescope National Facility. The ATNF Pulsar Catalogue. 2021. Available online: http://www.atnf.csiro.au/people/

pulsar/psrcat/ (accessed on 29 June 2021).
17. Bisnovatyi-Kogan, G.S. The neutron star population in the Galaxy. Int. Astron. Union. Symp. 1992, 149, 379. [CrossRef]
18. Palomba, C. The search for continuous gravitational waves in LIGO and Virgo data. Nuovo Cim. 2017, 40, 129. [CrossRef]
19. Sieniawska, M.; Bejger, M. Continuous gravitational waves from neutron stars: Current status and prospects. Universe 2019,

5, 217. [CrossRef]
20. The TensorFlow Authors, TensorFlow. 2021. Available online: www.tensorflow.org (accessed on 29 June 2021).
21. Saulson, P.R. Fundamentals of Interferometric Gravitational Wave Detectors; World Scientific: Singapore, 2017. [CrossRef]
22. Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent No. 3069654, 18 December 1962.
23. Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11.

[CrossRef]
24. Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111. [CrossRef]
25. Miller, A.; Astone, P.; D’Antonio, S.; Frasca, S.; Intini, G.; La Rosa, I.; Leaci, P.; Mastrogiovanni, S.; Muciaccia, F.; Palomba,

C.; et al. Method to search for long duration gravitational wave transients from isolated neutron stars using the generalized
frequency-Hough transform. Phys. Rev. D 2018, 98, 102004. [CrossRef]

26. Antonucci, F.; Astone, P.; D’Antonio, S.; Frasca, S.; Palomba, C. Detection of periodic gravitational wave sources by Hough
transform in the f versus f plane. Class. Quant. Grav. 2008, 25, 184015. [CrossRef]

27. Abbott, R. et al. [LIGO Scientific Collaboration and Virgo Collaboration] Open data from the first and second observing runs of
Advanced LIGO and Advanced Virgo. SoftwareX 2021, 13, 100658. [CrossRef]

28. NVIDIA Corporation, CUDA Toolkit. 2021. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on
29 June 2021).

29. The Khronos Group, OpenCL. 2021. Available online: https://www.khronos.org/opencl (accessed on 29 June 2021).
30. MathWorks, MATLAB. 2021. Available online: https://www.mathworks.com/products/matlab.html (accessed on 29 June 2021).
31. Scipy Developers, Scipy. 2021. Available online: https://www.scipy.org (accessed on 29 June 2021).
32. Cineca, Marconi100. 2021. Available online: https://www.hpc.cineca.it/hardware/marconi100 (accessed on 29 June 2021).

http://doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://www.ncbi.nlm.nih.gov/pubmed/29099225
http://dx.doi.org/10.1103/PhysRevLett.119.141101
http://www.ncbi.nlm.nih.gov/pubmed/29053306
http://dx.doi.org/10.1103/PhysRevD.100.024004
http://dx.doi.org/10.1103/PhysRevD.90.042002
http://dx.doi.org/10.1103/PhysRevD.95.122001
http://dx.doi.org/10.1093/acprof:oso/9780198570745.001.0001
http://dx.doi.org/10.1046/j.1365-8711.2000.03938.x
http://dx.doi.org/10.1103/PhysRevD.66.084025
http://dx.doi.org/10.1103/PhysRevD.58.084020
http://dx.doi.org/10.1086/311440
http://dx.doi.org/10.1086/307082
http://dx.doi.org/10.1038/35020010
http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/
http://dx.doi.org/10.1017/ S0074180900120510
http://dx.doi.org/10.1393/ncc/ i2017-17129-y
http://dx.doi.org/10.3390/universe5110217
www.tensorflow.org
http://dx.doi.org/10.1142/ 9789813146198_0001
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1016/0031-3203(81)90009-1
http://dx.doi.org/10.1103/PhysRevD.98.102004
http://dx.doi.org/10.1088/0264-9381/25/18/184015
http://dx.doi.org/10.1016/j.softx.2021.100658
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl
https://www.mathworks.com/products/matlab.html
https://www.scipy.org
https://www.hpc.cineca.it/hardware/marconi100

Universe 2021, 7, 218 12 of 12

33. LIGO Caltech, CIT. 2021. Available online: https://www.ligo.caltech.edu/ (accessed on 29 June 2021).
34. Frasca, S. SNAG. 201. Available online: https://www.roma1.infn.it/~frasca/snag/default.htm (accessed on 29 June 2021).

https://www.ligo.caltech.edu/
https://www.roma1.infn.it/~frasca/snag/default.htm

	Introduction
	Continuous-Wave Search
	Hough Transform
	FrequencyHough Transform

	General Purpose Computing on GPUs
	FrequencyHough on TensorFlow
	Conclusions
	References

