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Abstract: In this paper, we consider the vacuum energy of a scalar field in the spacetime of two
non-parallel cosmic strings. To this end, we obtain metrics for orthogonal straight cosmic strings
and for slightly nonparallel strings. In the first case, we derive the separation-dependent part of the
vacuum energy in the leading order of string tension. The dependence of the vacuum energy on
separation differs from that known for parallel strings. For two strings inclined at a small angle to
each other, the approximation used simply reproduces the result for parallel strings, since the angle
dependence enters the next to leading order. The results are compared with the Casimir interaction
between two inclined cylinders.
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1. Introduction

Symmetry-breaking phase transitions in the early universe may cause the formation
of cosmic strings which are linear defects, characterized by a dimensionless parameter
Gλ/c2 = Λ2/M2

Pl , where λ is the mass per unit length of strings (equal to the string
tension), G is the Newton constant, Mpl is the Planck mass, and Λ is the energy scale of
symmetry-breaking. First models of cosmic strings considered symmetry-breaking at the
grand unification scale with estimated string tension Gλ/c2 ∼ 10−6. It was supposed that
such strings could give origin to structure formation. Later, they were ruled out by the
acoustic peaks in the CMB power spectrum. Analysis of the CMB anisotropy data obtained
by the Planck collaboration gives a limitation on the effective mass density of a string,
which for different models does not exceed 10−7 [1,2].

Line sources in General Relativity were discussed in [3]. It was noticed that topologi-
cally stable strings do not have ends. They can either form closed loops or extend to infinity.
The energy momentum tensor for a straight infinite string parallel to z axis is given by

Tµν(x, y) = λ c2δ(x) δ(y)× diag(1, 0, 0,−1), (1)

where λ is the linear energy density. The metric of the spacetime with one cosmic
string may be found in linear approximation of general relativity, gµν = ηµν + hµν, with
ηµν = diag(1,−1,−1,−1) and hµν << 1, where in harmonic gauge, ∂µhµ

ν − 1
2 ∂νhµ

µ = 0, the
Einstein equations read [4]

�hµν = −16π
G
c2

(
Tµν −

1
2

ηµνT
)

. (2)

The solutions corresponding to the energy momentum tensor (1) are

h00 = h33 = 0, h11 = h22 = 8G λ ln(r/ρ),

where r =
√

x2 + y2, and ρ is an arbitrary parameter, which implies finite string thickness.
This metric describes geometry at distances larger than ρ. For cosmological strings born
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because of the spontaneous symmetry-breaking in GUT, one can estimate ρ ∼ 10−29 cm,
λ ∼ 1022 g/cm. A spacetime of an infinitely thin cosmic string is a conical space with the
angle deficit δϕ = 8πGλ/c2. The metric is locally flat, but has a conical singularity at r = 0.

In cosmology, cosmic strings are often viewed not individually, but as an ideal gas.
The energy-momentum tensor of an ideal gas of infinite cosmic strings is obtained by
applying the Lorentz boost to the initial string configuration parallel to the z axis. After
averaging over the directions of the boost, we arrive at the equation of state for the gas of
cosmic strings [5].

The static scalar Newton potential of a cosmic string U, defined by g00 = 1 + 2U,
vanishes. Therefore, there is no gravitational interaction of a neutral classical particle with
a straight cosmic string. The same goes for two parallel straight cosmic strings. (This is
not valid for curved strings). However, there may exist observable effects, such as lensing,
distortion of CMB, and extra density of matter in the wake of a moving cosmic string.

To date, no evidence of cosmic strings has been observed. Despite this, the search for
cosmic strings and other topological defects is included in the physics program of leading
international collaborations. The main directions are gravitational lensing, analysis of the
CMB anisotropy, and detection of gravitational waves generated by cosmic strings.

The current upper bound on the energy scale of the possible cosmic string network
from pulsar timing observations is Gλ/c2 ∼ 10−11. Unfortunately, at this level and below,
no effects can be seen in the CMB, and the strings cannot be discovered by gravitational
lensing (except certain microlensing models). Other possible gravitational effects of strings
are also significantly limited by this bound. New limits on cosmic strings from gravitational
wave observation were set in 2018. [2].

Nevertheless, the classical cosmic string background affects the fluctuations of quan-
tum fields. In one-loop approximation, the contributions of scalar massless, neutrino, and
electromagnetic fields to the vacuum polarisation in the gravitational field of a cosmic
string were found in [6]. The UV-divergences of the effective action for fields with different
spins on manifolds with conical singularities were studied in [7] by making use of the heat
kernel expansion.

Cosmic strings may interact with particles and each other due to fluctuations of
quantum fields. The vacuum energy of the scalar field in the background of two parallel
cosmic strings was first derived by Bordag in 1990 [8]. The dependence of this energy on
the string separation results in attractive Casimir force between the strings. This problem
was studied by different methods in [9–11]. We also mention the Casimir–Polder force
acting on a polarizable particle in the geometry of a straight cosmic string [12].

Non-parallel moving cosmic strings were considered primarily in connection with
the so-called Gott time-machine. In [13], Gott demonstrated that pairs of moving cosmic
strings may produce closed timelike curves. He proposed to obtain solutions for moving
and crossed strings from a static solution for equal parallel strings at x = ±x0, by applying
to x ≤ 0 and x ≥ 0 half-spaces Lorentz boosts, rotations, and translations that map the flat
hypersurface x = 0 into itself.

In this article, we consider the vacuum interaction of crossed static cosmic strings.
In Section 2, we first discuss the metric of a static spacetime with many parallel cosmic
strings. Then we move on to non-parallel but non-intersecting strings. In Section 3, we give
a derivation of the vacuum energy for a scalar field in spacetime with two non-parallel
cosmic strings. In conclusion, we discuss whether it is possible to use the proximity force
approximation for two strings close to parallel, and summarize.

Throughout this paper, we use the units G = h̄ = c = 1.

2. Spacetime of Multiple Infinite Cosmic Strings

The spacetime of N strings parallel to the z axis is defined as a solution of the Einstein
equations with the energy-momentum tensor
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Tµν(x, y) =
N

∑
i=1

λi δ(x− xi) δ(y− yi)× diag(1, 0, 0,−1).

Parallel cosmic strings can be effectively reduced to zero-dimensional objects and
point-like masses. The corresponding metric in D = 2+ 1 was obtained using the Schwarz–
Chistoffel formula [14].

For N parallel straight cosmic strings, the metric is given by [15]

ds2 = dt2 − dz2 − e−4 ∑i Vi (dx2 + dy2), (3)

with
Vi = 2λi ln ri, ri = [(x− xi)

2 + (y− yi)
2]1/2. (4)

Here, λi is a mass per unit length of a string, (xi, yi) are the coordinates of the i-th string
on the (x,y) plane. The spacetime is locally flat, except for N conical singularities, each
with angle deficit 8πλi. For an open spacetime, the total angle deficit is less than 2π, so
∑N

i=1 λi < 1/4.
Obviously, in the case of cosmic stings tilted with respect to each other, the problem

cannot be reduced to a lower-dimensional one. If the angle between two non-intersecting
strings is π/2, then one needs to look for the metric as a solution to the Einstein equations
with the energy-momentum tensor of the form

Tµν(x, y) = λ1 δ(x− x1) δ(y− y1)× diag(1, 0, 0,−1)

+λ2 δ(x− x2) δ(z− z2)× diag(1, 0,−1, 0). (5)

This energy-momentum tensor corresponds to geometry. When two strings lie in two
parallel planes, the first string is parallel to the z axis, and the second one is parallel to the
y axis. Solving the linearized Einstein Equation (2) with the energy-momentum tensor (5)
in harmonic gauge, one finds the perturbation hµν above the Minkowski metric ηµν. For
two perpendicular straight static cosmic strings, it reads

h00 = 0, h11 = h22 + h33, h22 = 8λ1 ln(r1/ρ0), h33 = 8λ2 ln(r̃2/ρ0), (6)

where ρ0 is a constant standing for the string radius, r1 and r̃2 denote the positions in (x, y)
and (z, x) planes, respectively,

r1 = [(x− x1)
2 + (y− y1)

2]1/2, r̃2 = [(z− z2)
2 + (x− x2)

2]1/2, x1 6= x2. (7)

We used tilded letters to distinguish between perpendicular planes.
Using the same reasoning as [4], we can find that for two perpendicular disjoint

infinitely thin strings, the spacetime metric is determined by the expression

ds2 = dt2 − e−4(V1(x,y)+Ṽ2(x,z))dx2 − e−4V1(x,y)dy2 − e−4Ṽ2(x,z)dz2, (8)

where

V1 = 2λ1 ln r1, Ṽ2 = 2λ2 ln r̃2, (9)

and the determinant of the metric is g = −e−8(V1+Ṽ2). This metric has two conical singular-
ities with angle deficits in planes (x, y) and (x, z). Setting λ2 = 0, we obtain the metric of
a single string parallel to the z axis, and vice versa, for λ1 = 0, we restore the metric of a
single string parallel to the y axis.

In the case of an arbitrary angle between the strings, the problem of finding the metric
becomes trickier. In 1993, Gal’tsov and Letelier [16] generalized the approach of [14] and
demonstrated how to obtain the spacetime of multiple moving crossed cosmic strings from
the Minkowski spacetime

ds2 = dt2 − dz2 − dZdZ̄ (10)
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by singular coordinate transformation (Christoffel–Schwarz formula)

Z(ζ) = X + iY =
∫ ζ

ζ0

N

∏
i=1

(ξ − αi(t, z))−4λi dξ, ζ = x + iy. (11)

This transformation takes into account that in general, the position of the j-th string depends
on time and the third space coordinate z,

αj = aj + i bj = vx,jt + wx,jz + x0,j + i (vy,jt + wy,jz + y0,j). (12)

Here we use the notations of [16], and vx,j and vy,j denote the velocities of the strings, and
wx,j and wy,j are the inclinations of the strings with respect to the z axis.

The line element is

ds2 = dt2 − dz2 − e−4V(dζ + Fdt + Gdz)(dζ̄ + F̄dt + Ḡdz), (13)

where V = ∑N
i=1 λi ln |ζ − αi|2, and the functions F and G are defined by the integrals:

F =
N

∏
i=1

(ζ − αi)
4λi

∫ ζ

ζ0

dξ

∏N
k=1(ξ − αk)4λk

N

∑
j=1

4λjα̇j

ξ − αj
, G = F|α̇j→άj . (14)

Here, ζ0 is some constant, and we assume |ζ0| → ∞. One can show that F and G are regular
functions of ζ [16],

F(ζ = αi) = −α̇i, G(ζ = αi) = −άi, (15)

and their derivatives up to any order can be computed at ζ = αi.
The case of two parallel moving strings was analyzed in [16]. See also the discussion

in [17]. Here, we focus on two nonparallel static strings. We do not consider the case when
strings intersect.

The position of two static strings, vx,j = vy,j = 0, j = 1, 2, is given by

αj = wx,jz + x0,j + i (wy,jz + y0,j), (16)

therefore α̇ = 0, ά 6= 0, F = 0, G = G1 + iG2, and the line element is

ds2 = dt2 − dz2(1 + G2
1 + G2

2)− e−4V
{

dx2 + dy2 + 2G1dxdz + 2G2dydz
}

. (17)

Let α1 = −α2 = α = a + i w z, where w = tan(θ/2), and θ stands for the angle between the
strings. If θ = 0, then α = a, the function G(ζ) vanishes, and one reobtains the metric of
parallel strings (3).

For nonparallel equal strings with λ1 = λ2 = λ,

G(α, ζ) = 8λαα′(ζ2 − α2)4λ
∫ ζ

ζ0

dξ

(ξ2 − α2)4λ+1 . (18)

The integration yields the hypergeometric function 2F1(α, ζ). Computing G(α, ζ) to the
first order of |α/ζ| and in the weak coupling regime, we obtain

G1 = 8λm(mzx− ay)/r2, G2 = −8λm(mzy + ax)/r2. (19)

For small-angle θ, the line element is

ds2 = dt2 − dz2 − e−4V
{

dx2 + dy2 − 16 tan(θ/2) λa
(ydx + xdy)

r2 dz
}

, (20)
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where 2a is the closest separation of the strings, V = λ ln(r1r2), and r1 = ln[(x− a)2 + y2],
r2 = ln[(x + a)2 + y2]. With the substitution

dz→ dz− 8e−4λV tan(θ/2) λa
(ydx + xdy)

r2 , (21)

the metric can be rewritten as

ds2 = dt2 − dz2 − e−4V
{

dx2 + dy2 − (8λδ)2e−4V (ydx + xdy)2

r4

}
, (22)

and we introduced the notation
δ = tan(θ/2)a. (23)

The determinant of the metric is

g = −e−8V(1− (8λδ)2e−4V/r2). (24)

3. Vacuum Interaction of Two Cosmic Strings

There is no classical gravitational interaction between straight cosmic strings, and they do
not radiate gravitational energy; however, they interact due to quantum vacuum fluctuations.

We consider the fluctuations of a scalar field in the background of two nonparallel
cosmic strings. The action of a scalar field is given by

S = −1
2

∫
d4x
√
−gφ(x)∆φ(x), (25)

where ∆ is the Laplace–Beltrami operator,

∆ = ∇µ∇µ =
1√−g

∂µ

√
−ggµν∂ν. (26)

We compute the vacuum energy in terms of the functional determinant of the opera-
tor (26)

E0 = − i
2T

ln det ∆, T =
∫

dt. (27)

To this end, we decompose the operator K as

∆ = K+ δK, (28)

where K ≡ ∂2 = ∂2
t − ∂2

x − ∂2
y − ∂2

z is the flat spacetime d’Alembertian, and δK is the
perturbation due to the strings.

For two parallel strings, this perturbation in the leading order of λ1 and λ2 is [10]

δK|| = (e−4(V1+V2) − 1)(∂2
1 + ∂2

2) = −4(V1 + V2)(∂
2
x + ∂2

y) +O(λ2). (29)

If the strings are perpendicular, then using the metric (8), we obtain

δK⊥ = −4[V1(x, y)(∂2
x + ∂2

y) + Ṽ2(x, z)(∂2
x + ∂2

z)] + . . . . (30)

For two equal strings with a small angle θ between them, the perturbation δK derived by
making use of the metric (22) reads
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δK = δK|| + δKθ (31)

δKθ = −16δ2

r4 λ2
[(

y∂x + x∂y
)2

+
2
r2

(
x(x2 − 3y2)∂x + y(y2 − 3x2)∂y

)]
+O(λ3),

with δ given by (23). Here, we keep the second order of the expansion, because it is in this
order that the angular dependence appears.

Following [10], we expand ln det with respect to the perturbation δK

ln det ∆ = ln det[∂2 + δK] = ln det ∂2 + ln det[1 + ∂2δK]

= −tr ln ∂−2 + tr ∂−2δK− 1
2

tr ∂−2δK∂−2δK. (32)

The first and second terms in (32) correspond to tadpole graphs which are put to zero
for a massless field in dimensional regularization. In the second order of the perturbation
theory, we are left with the third term of (32).

3.1. Parallel Strings

In the case of parallel strings, δK is given by (29). Then, in the lowest order of the
parameters λ1 and λ2, the distance-dependent part of the vacuum energy is

E|| =
i

2T
tr
(

∂−2δK1∂−2δK2

)
, δKa = −4Va(∂

2
x + ∂2

y). (33)

Here, the terms ∂−2δK1∂−2δK1 and ∂−2δK2∂−2δK2 are omitted, as they do not depend on
the distance between strings and do not contribute to the force.

In [10], the distance-dependent part of the vacuum energy given by (33) was derived
in dimensional regularization,

E ren
|| = − 4

15π

λ1λ2

(2a)2

∫
dz. (34)

This result coincides with the Casimir energy obtained as a vacuum expectation value of
the energy momentum tensor derived in [9,11]. The distance dependence changes with
the spacetime dimension. The vacuum energy for two cosmic strings in the spacetime of
arbitrary dimension was derived in [9].

3.2. Perpendicular Strings

Let us compute the distance-dependent part of the vacuum energy for perpendicular
cosmic strings using the approach of the paper [10]. In this case, the perturbation δK is
given by (30) and the distance-dependent part of the vacuum energy reads

E⊥ =
i

2T
tr
(

∂−2δK1∂−2δK2

)
, (35)

where
δK1 = −4V1(x, y)(∂2

x + ∂2
y), δK2 = −4Ṽ2(x, z)(∂2

x + ∂2
z). (36)

By the trace, we mean trM =
∫

d4x
√−gM, and in the given order of λi we assume√−g ∼ 1. The trace is computed in momentum representation

E⊥ =
8i
T

∫ d4k
(2π)4

d4q
(2π)4

(k2
1 + k2

2)

k2
((q + k)2

1 + (q + k)2
3)

(q + k)2 V1(q)Ṽ2(−q). (37)

Let the first string coincide with the z axis, and the second string lies in the (x, y) plane
being parallel to the y axis,
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x1 = y1 = 0, x2 = 2a, z2 = 0.

Here, 2a is the closest separation between the strings. Then, the Fourier transforms of the
functions V1 and Ṽ2, given by (9), are

V1(q) = (2π)2 λ1

q2 δ(q0)δ(q3), Ṽ2(q) = (2π)2 λ2

q2 e−2aiq1 δ(q0)δ(q2). (38)

Substituting (38) into (39), one arrives at

E⊥ =
8iλ1λ2

(2π)

∫ dq1

q4
1

e2iaq1

∫ d4k
(2π)4

((k1 − q1)
2 + k2

2)

(k− q⊥)2
k2

1 + k2
3

k2 , (39)

where q⊥ = (0, q1, 0, 0). We compute the integral over k in dimensional regularization,
replacing d4k → dnk, n = 4− 2ε. After the Wick rotation, k0 = ik4, dnk = idnkE, the
integral reads

IE(q2) = i
∫ dnk

(2π)n
(k2

1 + k2
3)

k2
((k1 − q1)

2 + k2
3)

(k− q⊥)2

=
iqn

1
(2π)n

(−π)
n
2

Γ(n + 2)
Γ
(n

2

)2
Γ
(
−n

2

)n2

16
(
2n3 + 3n2 − 2n− 2

)
. (40)

In (40) we performed the momentum integration according to (A1) and (A2) in Appendix A.
To integrate over q2, the α-representation is used, and we obtain

∫
dq1qn−4

1 e2iaq1 =

√
π

an−3
Γ(n/2− 3/2)

Γ(2− n
2 )

. (41)

The poles of the gamma functions in (40) and (41) mutually cancel. Finally, removing the
regularization, ε → 0, we get a result for the separation-dependent part of the vacuum
energy, which is free of divergences,

E ren
⊥ = lim

ε→0
E ε
⊥ = − 83

240π2
λ1λ2

2a
. (42)

3.3. Small Angle between the Strings

Unfortunately, we cannot use this approach when the angle between strings is small,
and the metric is given by (22). As it was already mentioned, the angle dependence enters
the next to leading order of the expansion (31). Therefore, the leading contribution to
the Casimir energy is given by (34) and the next order is proportional to θ2. For small
angles between strings, a more fruitful method is to compute the Casimir energy using the
vacuum expectation value of the energy momentum tensor expressed in terms of Green’s
function of the operator K [9,11].

For two infinitely thin strings inclined at a small angle θ, one may define a PFA-like
approximation. Let us treat opposite infinitesimal string segments as parallel and separated
by distance ρ, which depends on the third coordinate z,

ρ =
√
(2a)2 + z2 tan2 θ,
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where 2a is the closest separation between the strings. Then, assuming the additivity of
the segment contributions, the vacuum energy of the scalar field in the background of two
strings is obtained through integration:

Eθ = −
L/2∫
−L/2

dzε ||(ρ) = E||(2a) f (L/2a, θ),

where L is the length of the string, and ε ||(ρ) is the linear vacuum energy density for
parallel strings (34) with the constant distance 2a replaced by ρ. The function f (L/2a, θ)
shows the ratio of the Casimir energies evaluated for crossed and parallel cosmic strings

f (L/2a, θ) =
4a

L tan(θ)
arctan

(
L tan(θ)

4a

)
' 1− θ2

12
L
2a

.

This expression is obtained for small angles and is not valid for perpendicular strings,
where f diverges.

4. Conclusions

We have considered the vacuum energy of a scalar field in the spacetime of two
non-parallel cosmic strings. To this end, we obtained the metrics for perpendicular
straight cosmic strings and for slightly nonparallel strings. In the first case, we derived the
separation-dependent part of the vacuum energy in the leading order of λ1λ2. This result
is non-perturbative with respect to the angle between the strings. The distance dependence
of the vacuum energy (42) differs from that known for parallel strings (34). Up to the
numerical factor,

E⊥/E|| ∼ 2a/L. (43)

The results obtained may be of interest for cosmological models in which strings are
formed as a random network of straight moving segments. A certain role in the evolution
of this network should be played by quantum effects, in particular, the mutual attraction
and rotation of non-parallel strings due to fluctuations of quantum fields, studied in the
present work [18].

The method we used here is identical to the TGTG formula or scattering approach.
As demonstrated in [11], the potential of multiple cosmic strings has a form suitable for
applying the TGTG formula only in the leading order of expansion in λi. The reason is that
the contributions of conical defects enter the perturbation (28) not additively, but in a more
complex way. When we expand δKwith respect to the string tension λ, in the leading order,
the contributions split, δK = δK1 + δK2, and the expressions (33), (36) become applicable.

This approximation is insufficient for close to parallel strings, since the angle de-
pendence enters the beyond-leading order of (31). In this geometry, the leading order
reproduces the result for parallel strings. The exact derivation of the vacuum energy in the
background of two cosmic strings, inclined at a small angle to each other, is reserved for
future work.

For two non-contiguous bodies, it is possible to estimate the Casimir force using the
so-called Proximity Force Approximation (PFA). It is valid if the distance between the
bodies is much less than the radius of curvature of their surface.

Two infinite cylinders, the axis of the first cylinder being inclined with respect to the
axis of the second at an angle θ, is a system somewhat analogous to crossed strings. Like
crossed strings, the cylinders are infinite in only one dimension. The difference is that the
radius of the cylinders is finite. The space is flat, there are no conical singularities. In [19],
the problem of two crossed cylinders was investigated by methods of scattering theory and
proximity force approximation was also derived. It was shown that the distance depen-
dence changes significantly in comparison with the PFA for parallel cylinders. Moreover
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the PFA result for inclined cylinders diverges when the angle between them approaches
zero. The ratio of the vacuum energies for perpendicular and parallel cylinders is

Ecyl
⊥ /Ecyl

|| =
8

3L

√
Rl.

Here, l = 2a− 2R is the surface-to-surface gap, and 2a is the closest distance between the
cylinders’ axes. Compare with the ratio for cosmic strings (43).

In the problem of crossed infinitely thin strings, there is no parameter with respect to
which one could determine large and small distances. In the problem of crossed cylinders,
this parameter is the ratio of the shortest distance between the cylinders to their radius
R. The distance is considered small if l � R. In the problem of crossed strings, such a
parameter could be the finite radius of a string.

Funding: This research received no external funding.

Acknowledgments: The author acknowledge discussions with M.Bordag, A.A. Vladimirov and
E. Radionova.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

To derive (40) we used the following expressions for euclidean momentum integration

∫
dnk

kµkνkγkρ

k2(q− k)2 =
i(−π)

n
2 (q2)

n
2−2

Γ(n + 2)

{
qµqνqγqρΓ

(
2− n

2

)
Γ
(n

2
+ 3
)

Γ
(n

2
− 1
)

+
q2

2
Γ
(

1− n
2

)
Γ
(n

2
+ 2
)

Γ
(n

2

)
g[µνqρqγ] (A1)

+
q4

4
Γ
(n

2
+ 1
)2

Γ
(
−n

2

)(
gµνgγρ + gµγgνρ + gµρgνγ

)}
,

∫
dnk

kµkνkγ

k2(q− k)2 =
i(−π)

n
2 (q2)

n
2−2

Γ(n + 1)

{
qµqνqγΓ

(
2− n

2

)
Γ
(

2 +
n
2

)
Γ
(n

2
− 1
)

+
q2

2
Γ
(

1− n
2

)
Γ
(

1 +
n
2

)
Γ
(n

2

)(
qµgνλ + qνgµλ + qλgµν

)}
. (A2)

Here g[µνqρqγ] denotes 6 terms of this kind with all nonidentical index permutations.
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