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Abstract: We employ non-perturbative renormalisation group methods to compute the full mo-
mentum dependence of propagators in quantum gravity in general dimensions. We disentangle
all different graviton and Faddeev–Popov ghost modes and find qualitative differences in the mo-
mentum dependence of their propagators. This allows us to reconstruct the form factors that are
quadratic in curvature from first principles, which enter physical observables like scattering cross
sections. The results are qualitatively stable under variations of the gauge fixing choice.
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1. Introduction

The unification of gravity with quantum mechanics is a notoriously hard problem in
theoretical physics. Even a century after the development of quantum theory and general
relativity, breakthroughs in the understanding of quantum properties of spacetime are few
and far between. This is not least because of the typical scale that we expect quantum
gravity effects to be important at—the Planck scale, which is about 10−35 m. To illustrate
this fantastically small number, measuring the typical size of a human to an accuracy of a
Planck length is roughly comparable to measuring the extension of the Milky Way with an
accuracy of an atomic nucleus. This emphasises why experimental data on quantum gravity
effects are hard to come by and, accordingly, quantum gravity theories presently mostly
rely on theoretical considerations, and can only be confronted with consistency tests.

A conservative strategy, and potentially a path to success in formulating a theory of
quantum gravity, is to build on well-established theories that are valid at larger length
scales, and only add as few extra assumptions as possible to extend the theory to include
new phenomena. In the context of quantum gravity, such an approach is the Asymptotic
Safety program [1]. It embraces the importance of symmetries in the understanding of the
Standard Model and adds an interacting ultraviolet completion of gravity in the form of
a quantum realisation of scale symmetry. An enormous advantage of this approach is its
closeness to standard quantum field theory notions, and the straightforward connection
to low energy physics. In the matter sector, especially, this allows us to confront the
scenario with many observational consistency tests. A disadvantage is that the existence
of such a scale invariant regime is hard to prove. In practice, however, this is less of a
problem. Many interacting fixed points have been found with satisfactory precision in
other contexts, for example, in statistical physics and condensed matter systems [2–5]. By
now, there is ample evidence that a suitable fixed point indeed exists not only in various
approximations on the dynamics of pure quantum gravity [6–48], but also in the presence
of matter [49–76]. Phenomenological implications of the interacting fixed point have
been discussed in the context of particle physics [50,61,70,71,77–85], cosmology [40,86–93],
and black holes [94–102]. For recent reviews and introductions, see [103–107], and for
a critical discussion of the status of the field, see [108,109]. Evidence for asymptotic
safety in gravity has also been found in lattice formulations of quantum gravity, namely
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Euclidean and Causal Dynamical Triangulations [110–118]. On the lattice, a scale invariant
regime can be realised if a second-order phase transition exists that gives rise to consistent
low-energy physics.

The physical renormalisation group running of couplings is one of the key objects
of study in quantum field theories. This translates into the momentum dependence of
correlation functions, which are the basic building blocks of observables such as scattering
cross sections. The easiest non-trivial correlation function is the propagator, which is the
inverse of the two-point correlation function. It stores important information about the
unitarity and causality of the theory as it is related to the spectral function (if it exists), see,
for example, [119]. An accurate description of the propagator is thus crucial for deciding
whether Asymptotic Safety provides a theory of quantum gravity that is compatible with
these notions.

In this work, we compute the full momentum dependence of the propagators of the
graviton and its accompanying Faddeev–Popov ghost with non-perturbative renormali-
sation group techniques. A key advance is that we distinguish between all the different
modes of the graviton and the ghost. As is well-known from representation theory, the
graviton splits into a gauge-invariant spin two mode (the transverse-traceless mode), a
gauge-invariant spin zero mode, and a pure gauge vector mode (which can be split into
a spin one transverse, and a spin zero longitudinal component). The ghost is a vector
field itself, and also splits into a transverse and a longitudinal mode. The physical infor-
mation is stored in the spin two and gauge-invariant spin zero mode. The momentum
dependence of their propagators can be mapped to the form factors, which are quadratic
in curvature tensors.

The central results can be summarised as follows:

• The spin two and spin zero modes of the graviton feature qualitative and quantitative
differences in their momentum dependence.

• The overall gauge and gap dependence is small, see Figures 4 and 5.
• Within our approximation, only the spin two mode shows the property of momentum

locality [31], and furthermore only in four dimensions and with equal three- and
four-graviton coupling, see (65).

• A derivative expansion of the form factors shows alternating signs, indicating that
computations relying on such an expansion can be inherently unstable and generically
introduce fictitious poles [120], see (85).

• The propagators of the two ghost modes are related for asymptotic momenta, but
differ for finite momenta, see (60) and (70).

• Quantum corrections to the free propagator decrease exponentially with increasing
dimension, see (78) and Figure 3.

This work is structured as follows: our renormalisation group tool of choice is the so-
called functional renormalisation group, which we briefly review in Section 2. In Section 3
we discuss our setup and some general aspects of momentum-dependent correlation
functions. Section 4 and Appendix A comprise a discussion of analytical properties of the
momentum dependence of the propagators, whereas in Section 5, we discuss the numerical
results. Sections 6 and 7, as well as Appendix B, contain a comparison of results obtained
in different approximation schemes. Finally, we conclude with a summary and an outlook
in Section 8.

2. Functional Renormalisation Group

To extract the scale dependence of the system, we employ the functional renormalisa-
tion group (FRG). It is based on the Wetterich equation [121–123], describing the flow of the
scale-dependent action Γk,

∂tΓk[h, ḡ] =
1
2

STr
[(

Γ(2)
k [h, ḡ] +Rk[ḡ]

)−1
∂tRk[ḡ]

]
, (1)
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which was adapted to gravity in [6]. Here, we denote t = log k as the “RG-time”, Γ(2)
k is the

second functional derivative of Γk with respect to fluctuation fields, and the super-trace
STr contains a sum over all fields and indices, as well as an integration over the continuous
coordinates. The regulator Rk, which enters the generating functional as a momentum-
dependent mass term for the fluctuation, provides an infrared (IR) regularisation of modes
with p2 < k2, and thereby ensures IR finiteness. The factor ∂tRk ensures ultraviolet (UV)
finiteness by cutting off modes with p2 > k2. Overall, the regulator term, together with its
derivative, implement the Wilsonian idea of momentum-shell wise integration of quantum
fluctuations. As a result, the scale-dependent effective action Γk interpolates between
the classical action S when no quantum fluctuations are integrated out, that is, in the
limit k → ∞, and the full quantum effective action Γ, when k → 0. A central role is
played by the fixed points of the flow, which realise quantum scale invariance, where all
couplings measured in units of the scale k are scale-independent. For reviews of the FRG,
see [106,124–128]. Due to the momentum-shell wise integration of quantum fluctuations,
the Wetterich Equation (1) is formulated on Euclidean backgrounds, since only then does
the squared momentum provide definite information on whether a certain mode is a UV or
an IR mode. In the following, we will therefore assume a Euclidean background and hence
discuss Euclidean quantum gravity. The generalisation of the functional RG to Lorentzian
spacetimes is one of the important challenges of the approach [109], and first steps towards
investigations of Lorentzian spacetimes have been presented in [20,23,37,129–134].

Due to the formulation as a local coarse graining and the necessity of a gauge fixing,
the formal introduction of a background metric ḡ is hard to avoid. In this spirit, the full
metric g is split into background metric ḡ and a (not necessarily small) metric perturbation
h according to

gµν = ḡµν + hµν . (2)

Other parameterisations have been investigated, for example, in [33–35,53,63,129,135–145].
The practical advantage of the background field method is that one can retain background
diffeomorphism invariance at each step. Within the FRG, the background metric ḡ only
serves as a technical tool to allow for a momentum-shell wise integration of quantum
fluctuations, and in principle never has to be specified. Without approximations of the
dynamics of the theory, the physical results obtained at k → 0 are therefore entirely
independent of the specific choice of ḡ. However, in the following sections, we will use a
concrete choice for ḡ, since this significantly reduces the computational complexity.

Since the scale-dependent effective action Γk contains all operators that are consistent
with the symmetries of the system, practical computations of RG flows of couplings require
the truncation of Γk to a manageable set of operators. In gauge theories, especially, the
momentum dependence of scale-dependent correlation functions provides crucial infor-
mation about the system, such as on unitarity. Thus, in approximations, the resolution of
momentum dependence is unavoidable to obtain reliable results. A scale identification,
which allows us to translate the RG running of operators into their momentum depen-
dence is, in general, insufficient. For example, higher order n-point correlation functions
generically depend on n different momenta independently, such that the momentum de-
pendence cannot be captured by the dependence on just one scale k. It is, however, possible
that, for special momentum configurations, the RG running qualitatively agrees with the
physical momentum dependence [119]. Furthermore, the RG scale k is an artificial scale
introduced via the regulator Rk to regularise the path integral. Physical quantities, such
as scattering amplitudes, can only be extracted in the limit k→ 0, where all contributions
from the regulator Rk vanish. In this limit, the UV behaviour of a given theory is described
by the momentum dependence of operators. The momentum-dependent evaluation of
β-functions is thus necessary to extract the UV physics of a system.

In the context of asymptotically safe quantum gravity, different expansion schemes are
used, which allow us to extract momentum-dependent flow equations. On the one hand, a
vertex expansion in terms of metric fluctuations h is employed [24,29]. In this so-called fluc-
tuation approach, see [107] for a review, the starting point is a seed action S, which is then
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expanded in terms of fluctuation fields h, typically around a flat background, see [43,69]
for expansions around non-flat backgrounds. Consequently, the different vertices are
labelled with scale-dependent couplings, the flow of which is evaluated for different values
of the external momenta, allowing us to extract momentum-dependent flows of n-point
correlation functions. In this approach, the momentum-dependent RG running of vertex
correlation functions of the graviton two- [29], three- [31] and four-point functions [39],
as well as three-point functions in gravity-matter systems [52,58,64–66] have been inves-
tigated. As an important approximation, all computations in the fluctuation approach
identify the scale dependence of different tensor structures of the graviton with the scale
dependence of the purely transverse–traceless part of the corresponding n-point correlator.
On the other hand, the form factor expansion [68,101] is based on diffeomorphism invariant
operators, where the corresponding form factors are general functions of covariant deriva-
tives. In this expansion, the scale dependence of the entire form factor can be extracted
within the background field approximation. As a caveat, the background field approx-
imation ignores that the regulator and the gauge fixing break the full diffeomorphism
symmetry, which causes the scale-dependent effective action Γk to depend on ḡ and h
individually [15,16,24,29–31,39,42,43,52,64–66,68,69,107,119,144,146–163]. Comparing fluc-
tuation and background results at the same level of approximation thus provides informa-
tion about how much the respective modified Ward identities are broken.

In the present work, we provide a comparison of both expansion schemes on the level
of the two-point function. For this purpose, we will set the stage and provide more details
on momentum dependence in Section 3. In Sections 4 and 5, we derive and analyse the
momentum-dependent flow equation for the graviton two-point correlator for general
dimension d. Importantly, we distinguish all different tensor structures at the level of the
two-point function. After gauge fixing, we compute the scale dependence of four different
tensor structures for the graviton and ghost two-point functions. Additionally, in Section 6,
we compute the corresponding form factors on the background field level, which contribute
to the gravitational two-point function. We show that on this level in the expansion and
under certain assumptions, there is a one-to-one correspondence between vertex correlation
functions and form factors. Furthermore, in Section 7, we compare both expansions based
on the analysis of asymptotic behaviours of form factors and correlation functions.

3. Momentum Dependence in Quantum Gravity

In this section, we discuss our setup to resolve momentum-dependent correlation
functions. We start with a discussion of the correlators themselves. Next, we present
the general structure of the RG flow. Finally, we relate the form factor expansion to the
fluctuation correlation functions.

3.1. Fluctuation Approach

For the computation of vertex correlation functions, we choose a flat Euclidean background

ḡµν = δµν , (3)

which is a technical choice simplifying the computations significantly. In principle, each
diffeomorphism invariant operator in the seed action is labelled by a single coupling.
However, in the presence of the regulator and gauge fixing, the scale dependence of
different n-point functions, originating from the same operator in the seed action, generally
differ [39,58,64–66]. Therefore, we will introduce separate couplings for each operator
in the vertex expansion. Furthermore, on the level of the two-point function, we will
distinguish between the transverse–traceless (TT) mode, and the gauge-invariant scalar
mode. Specifically, the seed action we will use in the following reads

S = Sgrav + Sgh + Sgf , (4)
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where we approximate Sgrav by the Einstein–Hilbert action SEH describing classical gravity:

SEH = − 1
16πGN

∫
ddx
√

g(R− 2Λ) . (5)

Here, GN and Λ are the Newton coupling and the cosmological constant, respectively.
Computing the effect of quantum fluctuations of gravity requires the inclusion of a gauge
fixing condition Fµ = 0, where we choose

Fµ =

(
ḡµκ D̄λ − 1 + βh

d
ḡκλD̄µ +

γh
d

D̄µD̄κ 1
D̄2 D̄λ

)
hκλ . (6)

Here, D̄µ refers to the background covariant derivative, and βh and γh are gauge
parameters. The presence of γh allows us to compute the scale dependence of all tensor
structures on the level of the graviton two-point function. The gauge fixing condition is
implemented into the action via the inclusion of the gauge fixing action

Sgf =
1

32παhGN

∫
ddx

√
ḡ Fµ ḡµνFν . (7)

The gauge parameter αh controls how strongly we implement the gauge fixing condi-
tion in the path integral. A strict implementation corresponds to the Landau limit αh → 0.
The resulting Faddeev–Popov determinant is taken care of by introducing ghost fields cµ

and c̄ν, with ghost action Sgh:

Sgh =
1

16πGN

∫
ddx

√
ḡ c̄µ

δFµ

δhσκ
Lcgσκ . (8)

The Lie derivative Lcgσκ of the full metric gµν along the direction of the ghost field is
given by

Lcgσκ = 2ḡρ(σD̄κ)c
ρ + cρD̄ρhσκ + 2hρ(σD̄κ)c

ρ . (9)

Round brackets indicate a normalised symmetrisation.
With the seed action specified, and using the parameterisation (2), we expand the scale-

dependent effective action in powers of the fluctuation fields, via the vertex expansion [24,29]

Γk[Φ, ḡ] =
∞

∑
n=0

1
n!

Γ(n)
k A1 ...An

[0, ḡ]ΦAn . . . ΦA1 , (10)

where we have introduced the superfield Φ as a collection of all dynamical fields in
our system,

ΦA =
(
hµν(x), cµ(x), c̄µ(x)

)
. (11)

The Einstein summation convention over the superindex A implies the summation
over discrete indices as well as an integration over the coordinates. Furthermore, Γ(n)

k refers
to the n-th functional derivative with respect to the superfield Φ. For convenience, we
rescale the vertices according to

Γ(n)
k A1 ...An

[0, ḡ, GN , Λ]→
(

k−2gn

)n/2
Γ(n)

k A1 ...An
[0, ḡ, k−2gn, k2λn] . (12)

As mentioned at the beginning of the section, we have introduced individual di-
mensionless couplings, gn and λn, that label the different n-point functions. The vertices
introduced in (12) also satisfy flow equations similar to (1), see for example, [39]. Due to
the breaking of diffeomorphism invariance by the gauge fixing term and the regulator,
the scale dependence of these different couplings does not necessarily agree. In addition
to the distinction of different dimensionless n-point couplings gn and λn, the couplings
of pure gravity and ghost-gravity, or gravity-matter n-point vertices will also differ, and
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should be distinguished. Therefore, for vertices originating from the ghost action (8), one
generally has to replace the coupling gn in (12) by gc. For the course of this work, we
will however work under the assumption that the differences between those couplings,
caused by the breaking of diffeomorphism invariance, are negligible, and therefore as-
sume that gn = gc = g, and λn = λ, for n ≥ 3, and only distinguish the two-point
functions from higher-order vertices. In this way, we assume the exact realisation of
effective universality [39,64–66], which refers to the semi-quantitative agreement of the scale
dependence of different n-point vertices.

In the present work, we will focus on the two-point function of the pure gravity system.
For the graviton two-point function, there are five independent tensor structures, three
of them associated with the gauge fixing parameters αh, βh and γh. The two remaining
tensor structures, which will be unaffected by the choice of gauge, are related to the
transverse–traceless mode hTT

µν , which satisfies

D̄µhTT
µν = 0 , ḡµνhTT

µν = 0 , (13)

and the scalar mode h0 defined as

h0
µν = Π0 αβ

µν hαβ , (14)

where the scalar projector Π0 is orthogonal to the gauge fixing action and the transverse-
traceless projector, that is,

Π0 · S(2)
gf = S(2)

gf ·Π
0 = 0 , Π0 ·ΠTT = 0 . (15)

Explicitly, the transverse–traceless projector in momentum space is given by

ΠTT ρσ
µν = δ

ρ

(µ
δ

σ
ν)
− 1

d− 1
ḡµν ḡρσ − 2

p2 δ
(ρ

(µ
p

ν)
pσ)

+
1

d− 1
1
p2

(
ḡµν pρ pσ + pµ pν ḡρσ

)
+

d− 2
d− 1

1
p4 pµ pν pρ pσ .

(16)

The projector on the scalar mode h0, referred to in (15), reads

Π0 ρσ
µν =

B2

C

(
ḡµν +

A
B

pµ pν

p2

)(
ḡρσ +

A
B

pρ pσ

p2

)
, (17)

with

A = (dβh − γh) , (18)

B = (d− βh − 1 + γh) , (19)

C = (d− 1)
(

γh(−2βh + γh − 2) + d2 + d
(

β2
h + 2γh − 1

))
. (20)

The projectors ΠTT and Π0 can also be formulated in curved spaces, see for example, [48].
We will now discuss how we resolve the two-point function. We start with the momentum-
independent parts of the correlator. We can introduce two gaps, µTL and µ0, which
correspond to the traceless and the trace sector, respectively. These gaps µx are related to
the different n-point couplings introduced in (12) via µx = −2λ2,x, where the subscript
x labels the respective mode. Explicitly, we introduce them by adjusting the two-point
function via [42]

Γ(2) µνρσ
h = S(2) µνρσ

EH

∣∣
Λ=0 + S(2) µνρσ

gf

+
k2

32π

(
ΠTL µνρσ µTL −

ΠTr µνρσ

(d− 1)(d + γh)2

(
A2µTL + d(d− 2)B2µ0)

))
,

(21)
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where ΠTr and ΠTL are the trace and traceless projectors, respectively:

ΠTr ρσ
µν =

1
d

ḡµν ḡρσ , ΠTL ρσ
µν = δ

ρ

(µ
δ

σ
ν)
−ΠTr ρσ

µν . (22)

The introduction of the dimensionless quantities µTL and µ0 according to (21) ensures
that, in the Landau limit, the two propagating modes feature a standard propagator
with mass parameters µTL and µ0, respectively. We emphasise that Equation (21) is only
a rewriting of the two-point function, which conveniently allows us to introduce the
individual gaps µTL and µ0.

To capture the full momentum dependence of the propagators, we introduce indepen-
dent momentum-dependent wave function renormalisations for the transverse–traceless
and the gauge-invariant scalar mode. Specifically, we rescale h according to

hµν → Z ρσ
h µν hρσ , (23)

where the wave function renormalisation tensor Zh, given by

Z ρσ
hµν = δ

ρ

(µ
δ

σ
ν)

+

(√
ZhTT(p2)− 1

)
ΠTT ρσ

µν +

(√
Zh0(p2)− 1

)
Π0 ρσ

µν . (24)

The rescaling (23) entails that the two-point function (21) needs to be multiplied with
Zh from the left and the right:

Γ(2)
h → Zh · Γ

(2)
h · Zh . (25)

The scale dependence of the graviton wave function renormalisation is encoded in the
anomalous dimensions

ηTT(p2) = −∂t ln ZhTT(p2) , η0(p2) = −∂t ln Zh0(p2) . (26)

We choose a spectrally adjusted regulator, that is, a regulator that is proportional to
the momentum-dependent part of the two-point functions,

R
hµνρσ
k = Γ(2)µνρσ

h

∣∣
µTL=µ0=0Rk(p2) , (27)

which ensures that mass-like terms are not regularised [19,35,125,164]. The regulator
function Rk implements the momentum-shell wise integration. Furthermore, we will
choose the Landau gauge αh → 0, which is a fixed point for all gauge parameters [42,165].
With these choices, the graviton propagator reads

Gh =
32π

ZhTT(p2)

1
p2 +Rk(p2) + µTLk2 ΠTT

− 32π

Zh0(p2)

1
(d− 2)(d− 1)

C
B2

1
p2 +Rk(p2) + µ0k2 Π0 ,

(28)

where the coefficients B and C are defined in (19) and (20), respectively.
Similarly, for the ghost, we will distinguish between the longitudinal and the trans-

verse mode, and rescale the corresponding modes with momentum-dependent wave
function renormalisations ZcL and ZcT , respectively. Specifically, the rescaling of the ghost
will be

cµ → Z α
c µ cα, c̄µ → Z α

c µ c̄α , (29)

with
Z ν

cµ =
√

ZcT(p2) ΠT ν
µ +

√
ZcL(p2) ΠL ν

µ . (30)
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The longitudinal and transverse projectors are defined in the usual way,

ΠL ν
µ =

pµ pν

p2 , ΠT ν
µ = δ

ν
µ −ΠL ν

µ . (31)

The scale dependence of the ghost wave function renormalisations is encoded in the
anomalous dimensions

ηcL(p2) = −∂t ln ZcT(p2) , ηcT(p2) = −∂t ln ZcL(p2) . (32)

Therefore, after distinguishing all different modes on the level of the two-point function and
choosing the Landau gauge, there are four momentum-dependent anomalous dimensions
and two gaps, completely parameterising the flow of the two-point correlation function.

3.2. General Structure of the RG Flows

Since we aim at investigating the flow of physical n-point functions, we employ the
Landau limit, where the scale dependence of all gauge parameters vanishes. Focusing on
the graviton sector in this limit, only the two physical projectors ΠTT and Π0 contribute
to the propagator, see (28). When projecting the external legs of n-point functions on the
physical modes, the full gauge dependence in the gravity sector is contained in the projector
on the scalar mode Π0. For this projector, as defined in (17), we observe that

Π0[βh, γh] = Π0
[

dim βh − γh
dim+γh

, 0
]

. (33)

This shows that, for the scale dependence of couplings induced by the graviton sector
the gauge parameter γh is redundant, since it can be removed by a rescaling of βh.

While the cancellations in the ghost sector are more involved, and require non-trivial
cancellations between contributions from propagators and vertices, the same rescaling for
βh, as given in (33), eliminates the γh-dependence of the ghost-induced flows. Therefore,
in the following, we will employ γh = 0 and keep βh general. Despite this redundancy of
gauge parameters on the level of the scale dependence of couplings in the Landau limit, the
tensor structure corresponding to γh, (6), is nevertheless an independent tensor structure.

With the structure of the graviton propagator as given in (28), together with the
regulator defined in (27), we can compute the product of the regulator insertion and two
propagators, which enters every diagram of the flow as one of its building blocks, see
Figures 1 and 2. For the gravitational sector and in the Landau limit, it reads

Gh ·
(

∂tR
h
k

)
· Gh =

32π

ZhTT(p2)

∂tRk(p2)− ηTT(p2)Rk(p2)

(p2 +Rk(p2) + µTLk2)
2 ΠTT

− 32π

Zh0(p2)

1
(d− 2)(d− 1)

C
B2

∂tRk(p2)− η0(p2)Rk(p2)

(p2 +Rk(p2) + µ0k2)
2 Π0 .

(34)

Figure 1. Diagrams that contribute to the scale dependence of the graviton two-point function.
Double lines indicate gravitons, dashed lines stand for the Faddeev–Popov ghosts, and the circled
cross denotes the regulator insertion ∂tRk.
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Figure 2. Diagrams that contribute to the scale dependence of the ghost two-point function. Double
lines indicate gravitons, dashed lines stand for the Faddeev–Popov ghosts, and the circled cross
denotes the regulator insertion ∂tRk.

A similar expression can be computed for the ghost sector, where the product can be
spanned by a transverse and a longitudinal part. Importantly, in the Landau limit, both the
graviton propagator and the above product decay into a sum of the two projectors ΠTT and
Π0. This feature is due to a cancellation of gauge modes contained in the regulator with
contributions from the propagators. It entails that the flow of n-point functions projected
on gauge-invariant modes is only driven by the gauge-invariant modes themselves, and
no gauge modes drive their scale dependence. It also significantly decreases the number
of different tensor structures that need to be computed, when generalising the present
computation to higher n-point correlators. Due to the decomposition into the orthogonal
projectors ΠTT and Π0, vertices with one or more gauge mode will not contribute to the
scale dependence of any physical n-point correlator [107].

In the graviton sector, we project onto the different tensor structures of the two-point
function by contracting the indices of (21) with ΠTT and Π0, respectively. Structurally, after
projection, the flow of the TT-part of the graviton two-point function reads [29,52]:

− (y + µTL)ηTT(y) + ∂tµTL + 2µTL =
1

k2ZhTT(p2)
ΠTT ρσ

µν Γ̇(2) µν

h ρσ
≡ flowTT(y) , (35)

where the last term on the left-hand side comes from the scale derivative acting on the
k2 coming with the dimensionless gap µTL, see (21). Furthermore, the right-hand side is
obtained by evaluating and projecting the diagrams in Figure 1. We also introduced the

shorthand y = p2

k2 .
In a complete analogy, the flow equation for the scalar mode of the graviton two-point

function reads

− (y + µ0)η0(y) + ∂tµ0 + 2µ0 =
1

k2Zh0(p2)
Π0 ρσ

µν Γ̇(2) µν

h ρσ
≡ flow0(y) . (36)

Each of the Equations (35) and (36) is disentangled by evaluating the right-hand-side
at y = −µTL and y = −µ0, respectively [29]:

∂tµTL = −2µTL + flowTT(−µTL) , ∂tµ0 = −2µ0 + flow0(−µ0) , (37)

and

ηTT(y) = −
flowTT(y)− flowTT(−µTL)

y + µTL
, η0(y) = −

flow0(y)− flow0(−µ0)

y + µ0
. (38)

In the ghost sector, the equations determining the anomalous dimensions are

y ηcT(y) =
1

k2ZcT(p2)
ΠT ν

µ Γ̇(2) µ

c ν
≡ flowcT(y) ,

y ηcL(y) =
1

k2ZcL(p2)
ΠL ν

µ Γ̇(2) µ

c ν
≡ flowcL(y) ,

(39)
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where the diagrammatic representation of flowc(y) is shown in Figure 2. The transverse
and longitudinal parts of the flow are extracted by contraction with the corresponding
projectors (31).

To evaluate the diagrams shown in Figures 1 and 2, we used the Mathematica pack-
ages xAct [166–170]. The complete derivation is included in the attached notebook. We
validated the correctness of the results with an independent code based on xAct as well as
FormTracer [171].

3.3. On the Relation between Form Factors and Anomalous Dimensions

We will now briefly discuss the relationship between an action containing form factors
and the momentum-dependent wave function renormalisations. On a flat background, the
complete information on the graviton propagator is included in the action

Γ ' 1
16πGN

∫
ddx
√

g
[

2Λ− R− 1
4

d− 2
d− 1

R fR(∆) R +
1
4

d− 2
d− 3

Cµνρσ fC(∆)Cµνρσ

]
, (40)

where fR and fC are form factors. The normalisation of the form factors ensures a unit
prefactor in the propagator, see (41) below. This action, which is based on a curvature
expansion of the full effective action, is an expansion in terms of diffeomorphism invariant
operators. The form factors fR and fC capture the full momentum dependence of the
graviton propagator. In comparison to a derivative expansion, they do not necessarily
introduce new poles into the propagator. In a derivative expansion, one would in general
expect the emergence of additional, potentially spurious poles of the propagators (see [120],
and Section 5.5). However, computations based on curvature expansions usually make
use of the background-field approximation, where the difference between the background
and the fluctuation propagators are neglected. This approximation potentially suffers from
severe background dependence, which is lifted in the fluctuation expansion of the effective
action (10).

Since the gauge fixing and the regulator both break diffeomorphism invariance, the
expansion in terms of form factors, as in (40) and in terms of fluctuation vertex correlation
functions, do not agree. Therefore, the question arises whether it is possible to extract
the diffeomorphism invariant part—the form factors—from the scale dependences of
the fluctuation two-point functions, without explicitly computing and solving modified
Ward identities.

In the following, we will present a mapping between the form factors fR and fC,
and the fluctuation two-point functions. For this, we will compare the propagators in
both expansions, and neglect that these propagators are different due to the breaking of
diffeomorphism invariance. A motivation for this assumption is the feature of effective
universality [64], which suggests that, at least in the vicinity of the fixed point solution,
the breaking of diffeomorphism invariance is mild. Therefore, under this assumption, we
investigate the possibility of extracting the form factors fR and fC from the fluctuation
propagators.

For this, we will briefly indicate the form of the (unregularised) flat background
propagator that arises from the action (40). We will also set the cosmological constant to
zero for the moment. In this case, the scalar parts of the spin two and zero background
propagators read

ḠTT(p2) ∝
1

p2(1 + p2 fC(p2))
, Ḡ0(p2) ∝

1
p2(1 + p2 fR(p2))

. (41)

This can be compared with the unregularised fluctuation propagator (28) at vanishing gaps,
and suggests the following relation between form factors and wave function renormalisation:

ZhTT(p2)

ZhTT(0)
= 1 + p2 fC(p2) ,

Zh0(p2)

Zh0(0)
= 1 + p2 fR(p2) . (42)
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For finite values of the cosmological constant and the gaps, the situation is more com-
plicated. The cosmological constant enters the two parts of the background propagators in
a specific (gauge-dependent) ratio. By contrast, in general, the fluctuation gaps need to not
have any particular ratio. It is thus, in general, not possible to map the propagators in a
one-to-one way without non-local terms in at least one of the form factors. If we neverthe-
less want to insist on an equivalence and allow for inverse powers of the momentum in at
least one of the form factors, we can still map the propagators one-to-one. For example, we
could identify the gap in the spin two sector with the actual cosmological constant, and
introduce a term ∼ 1/p4 in the form factor fR. Interestingly, such a term has been observed
in the context of reconstructing an effective action from numerical lattice data obtained
within causal dynamical triangulations [172]. Such a term also has interesting cosmological
applications [173,174]. We will, however, not further discuss this issue here, since in the
end, a proper evaluation of the problem necessarily involves the solution of the modified
Ward identities.

3.4. Momentum-Dependent Anomalous Dimension versus Wave Function Renormalisation

As a final point in this section, we will discuss the relation of the fixed point condi-
tion for the dimensionless wave function renormalisation and the momentum-dependent
anomalous dimensions. In the literature on momentum dependence in asymptotic safety,
one commonly uses momentum-dependent anomalous dimensions rather than the wave
function renormalisation. This is because only the anomalous dimensions are relevant
in the flow equations—by constructing all factors of the wave function renormalisation
drop out, see for example, (35). Since the anomalous dimension is related to the scale
derivative of the dimensionful wave function renormalisation, one does not impose the
fixed point condition directly. We can, however, easily translate between this language and
a formulation, where we require the dimensionless wave function renormalisation to be
constant at the fixed point with respect to the RG scale k, see also [66].

The definition of the anomalous dimension η in terms of the dimensionful wave
function renormalisation Z reads

η(y) = −∂t ln Z(y) , (43)

see (26) and (32). We want to express the right-hand side in terms of the dimension-
less wave function renormalisation z, for which we require a fixed point, and which is
given by 1

z(y) = kη(0)Z(y) . (44)

In that process, we have to account both for the fact that we can normalise the wave
function renormalisation—giving rise to an anomalous running induced by the anomalous
dimension evaluated at zero momentum—as well as the scaling of the argument. In that
way, we find

η(y) = η(0)− ż(y)
z(y)

+ 2y
z′(y)
z(y)

. (45)

Here, the overdot indicates the logarithmic scale derivative with respect to the intrinsic
k-dependence, excluding the trivial scaling of the argument. At a fixed point, where ż∗ = 0,
we have

η∗(y) = η∗(0) + 2y
z′∗(y)
z∗(y)

. (46)

We can solve this differential equation for the wave function renormalisation:

z∗(y) = z∗(0)e
∫ y

0 ds η∗(s)−η∗(0)
2s = z∗(0)e

∫ 1
0 dω

η∗(ω y)−η∗(0)
2ω . (47)
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Assuming that the momentum-dependent anomalous dimension is bounded, this has
the consequence that for large y, the wave function renormalisation scales as

z∗(y) ∝ y
η∗(∞)−η∗(0)

2 , as y→ ∞ . (48)

Notably, only if the anomalous dimension vanishes asymptotically, that is, if it fulfils
momentum locality2 [31], the standard fall-off behaviour of the propagator in terms of the
anomalous dimension at zero follows, see (28), namely

G(y) ∝
1

y1− η(0)
2

, as y→ ∞ . (momentum locality) (49)

If momentum locality is not fulfilled, we need non-local information on the momentum
dependence, and the formula reads

G(y) ∝
1

y1+ η(∞)−η(0)
2

, as y→ ∞ . (no momentum locality) (50)

Having direct access to the fixed point wave function renormalisation via (47), we
can calculate the fixed point form factor from the corresponding momentum-dependent
anomalous dimension by inverting (42),

f∗(y) =
e
∫ y

0 ds η∗(s)−η∗(0)
2s − 1

y
. (51)

Consequently, the behaviour at the large momentum is

f∗(y) ∼

cy
η∗(∞)−η∗(0)

2 −1 , η∗(∞)− η∗(0) > 0 ,

− 1
y + cy

η∗(∞)−η∗(0)
2 −1 , η∗(∞)− η∗(0) ≤ 0 ,

as y→ ∞ , (52)

where c is given by

c = e
∫ ∞

0 ds
[

η∗(s)−η∗(0)
2s − η∗(∞)−η∗(0)

2(1+s)

]
. (53)

For a derivation of this, see Appendix A.
Let us finally make the connection to the derivative expansion, see also [29]. To

quadratic order in y, we find

z∗(y)
z∗(0)

= 1 +
1
2

η′∗(0) y +
1
8

(
η′∗(0)

2 + η′′∗ (0)
)

y2 +O(y3) . (54)

This translates into the form factor

f∗(y) =
1
2

η′∗(0) +
1
8

(
η′∗(0)

2 + η′′∗ (0)
)

y +O(y2) . (55)

Let us also emphasise at this point that, in theories with more than one mode and
correspondingly more than one anomalous dimension, the derivative expansion is poten-
tially unstable—the more so the more modes one has [175]. This comes from the fact that,
for a well-defined flow, one needs that for all modes z∗(y) > 0. In particular, this implies
that all the highest retained coefficients of all form factors need to have a positive sign to
avoid turning one of the modes into a ghost. For general theories, there is, however, no
reason why all these coefficients need to be positive. One therefore likely faces the dilemma
that, for a given order in the derivative expansion, the highest order coefficient of some
mode might be negative. With a large number of modes, it is thus more likely that at no
finite order, a fixed point, which is physically viable and does not necessarily feature ghost
modes, can be found in a derivative expansion. This makes it clear that in complicated
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systems, the full resolution of the momentum dependence is not optional. In fact, as we
will see in Section 5, we find indications that quantum gravity with its two off-shell modes
already shows such an alternating pattern for low orders of the derivative expansion.

4. Momentum-Dependent Fluctuation RG Flow: Analytical Structure

Now, we will discuss several analytical properties of the momentum-dependent
fluctuation two-point correlation functions which were introduced in Section 3. For a clearer
notation, we will work with dimensionless momenta, that is, we make the identification
p2

k2 → p2, such that no explicit factors of k will appear in the following discussion.
As has been found earlier, the Landau limit αh → 0 induces a fixed point for all gauge

parameters [42]. Due to this fact, we only consider this limit for the fluctuation flows in
this work. Additionally, there is the constraint

βh < d− 1 , (56)

which ensures that the ghost kinetic operator has the correct sign and is invertible. The
most popular gauge choice in the literature is

βh =
d
2
− 1 , (57)

which we will focus on in our analysis. Other choices that have been argued for to be
preferred are the transverse gauge βh = −1 [154,176] and the singular choice βh → −∞,
which has been considered in, for example, [35,42,138,139]. The choice βh = 0 in the
Landau limit allows for a particularly simple regularisation in a curved spacetime [48].

The analytical properties, which we will discuss in the following, will provide impor-
tant cross-checks to test the numerical evaluation discussed in Section 5.

4.1. Behaviour at Small Momentum

Let us first discuss the behaviour of the flow of the two-point function at small
momentum. A key observation is that the flow contains terms of the form

1
(p2 + 2pqx + q2)

,
1

(p2 + 2pqx + q2)2 , (58)

where p is the external momentum, q is the loop momentum, and x is the cosine of the
angle between the two momenta. These terms look like unregulated, gapless propagators.
Their origin lies in the projectors occurring in the propagators, see (16) and (17), and are
thus simply a feature of gravity. The same phenomenon happens for spin one flows, where
the transverse and longitudinal projectors also introduce such terms. These terms cause
a number of technical difficulties, see also the discussion below in Section 4.4. For small
external momenta p, they are the reason that the derivative expansion does not commute
with performing the loop integral. This is because expanding these terms in small p is
actually an expansion in powers of p2/q2, so that higher orders of the external momentum
introduce higher negative powers of the loop momentum. At a critical order, the negative
powers cancel the measure term qd−1 and potential extra powers from the vertex factors. For
higher orders, the integrals thus do not converge as they suffer from IR divergences. This
problem has been encountered before [177], where momentum-independent contributions
of vertices have been neglected to define a finite, but ultimately inconsistent, flow. Even at
a level where the integrals converge, strong instabilities have been found [29] which might
prevent one from obtaining conclusive and robust results.

Note that once the integral over the loop momentum has been performed, the flow
appears to be smooth (see the numerical results presented below in Section 5). This
emphasises that reliable approximations must involve momentum dependence beyond a
local expansion.
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Besides this general discussion, one can investigate whether there are relations
between the different flows at vanishing momentum. In the graviton sector, we find
the relation

βh → −∞ :
flowTT

flow0

∣∣∣∣
p2=0

=
2
d
− 1 < 0 . (59)

This limit is formally singular, in part due to how we have to introduce the gap in
the spin zero sector, see (21). In this limit, our ansatz formally diverges, indicating that we
actually write down a gap for the spin zero gauge mode. This is consistent as this gauge
choice projects out the trace mode.

In the ghost sector, we find that

flowcT

flowcL

∣∣∣∣
p2=0

=
d− 1− βh

d− 1
> 0 . (60)

The divergence for βh → −∞ indicates that the longitudinal flow vanishes at p = 0
for this gauge choice. Due to the constraint (56), the flows, and thus the ghost anomalous
dimensions, have the same sign at vanishing momentum.

4.2. Behaviour at Large Momentum

We will now discuss the large momentum behaviour of the flow of the two-point
function. We emphasise that all of the following aspects a priori rely on our truncation of the
three- and four-point function—a dynamical implementation of their flow can alter these
results. In the following, we also assume that the regulator falls off exponentially. Similar
conclusions hold for regulators with compact support, in which case no exponentially
suppressed corrections appear. Some of the aspects that we present in the following have
been previously discussed in [107,178].

As a general feature, we note that in the large momentum limit, the self-energy
diagrams simplify. This is because of our assumption on the regulator, so that we can
neglect it in the propagator which carries both the loop and the external momentum, up to
exponentially small corrections. As a consequence, we can perform the angular integration
exactly. The relevant integrals are∫ 1

−1
dx
(

1− x2
) d−3

2
(

p2 + 2pqx + q2
)k(

p2 + 2pqx + q2 + µ
)−1

, k ∈ {−2, . . . , 6} , (61)

which give rise to hypergeometric functions. We will now discuss the different parts of the
flow in this limit in turn.

4.2.1. Spin Two Sector

It has been noted before that in d = 4 and with identified three- and four-graviton
couplings, the spin two two-point function shows momentum locality [29,31,39]. This
means that the flow of the two-point function goes to a constant at large momentum, in
contrast to the naive expectation of a quadratic behaviour. This is due to a cancellation of
the self-energy and the tadpole diagrams.

We found that this cancellation only happens in d = 4—in higher dimensions, the
two-point function rises quadratically at large momentum. We can also confirm that this
qualitative behaviour is independent of the choice of gauge parameters and regulators.
When we discuss the numerical results below, this manifests itself by ηTT going to zero for
large arguments in d = 4, but staying finite in this limit in other dimensions, see Figure 3.
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Figure 3. Dimensional dependence of anomalous dimensions for the choices g = 1, µTL = 0, µ0 = 0,
βh = d

2 − 1 and the regulator (83). For clarity, we have reinstated k in the momentum argument.

There are three contributions to the flow of the spin two two-point function: the
graviton tadpole, the graviton self-energy, and the ghost self-energy diagram, see Figure 1.
The tadpole diagram has the exact form

flowtadpole
TT (p2, µTL, µ0) = g4

(
Atadpole

TT,0 [ηTT, η0](µTL, µ0) + Atadpole
TT,2 [ηTT, η0](µTL, µ0)p2

)
. (62)

The coefficients Atadpole
TT,i depend functionally on the graviton anomalous dimensions

and the regulators, as well as on the gaps, gauge parameters and the dimension. The
structure of the self-energy diagrams is more involved due to the propagator depending on
the sum of external and loop momentum. In the large external momentum limit, neglecting
the regulator depending on the sum of the two momenta, we find that

flowhSE
TT (p2, µTL, µ0) ∼ g3

∫ ddq
(2π)d

6

∑
i=−2

[
AhSE

TT,i[η0](p2, q2)

(
p2 + 2pqx + q2)i

p2 + 2pqx + q2 + µ0

+ BhSE
TT,i [ηTT](p2, q2)

(
p2 + 2pqx + q2)i

p2 + 2pqx + q2 + µTL

]
, as p→ ∞ ,

(63)

for the graviton self-energy diagram, and

flowcSE
TT (p2) ∼ gc

∫ ddq
(2π)d

4

∑
i=−2

AcSE
TT,i[ηcT , ηcL ](p2, q2)

(
p2 + 2pqx + q2

)i
, as p→ ∞ . (64)

for the ghost self-energy diagram. Performing the integrals, we find the behaviour

flowTT(p2, µTL, µ0) ∼ p2
[
(d− 4)g3I1

TT[ηTT, η0](µTL, µ0)

+ (g4 − g3)I2
TT[ηTT, η0](µTL, µ0)

]
, as p→ ∞ .

(65)

The I i
TT are gauge- and dimension-dependent functions. This parameterisation exem-

plifies that, only for g3 = g4, is the flow momentum-local in d = 4. The ghost diagram does
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not contribute to the leading order behaviour. We highlight that the agreement of g3 and g4
at the asymptotically fixed point was indeed discovered on a semi-quantitative basis in [39].
This semi-quantitative agreement between different n-point correlators, also discovered in
the context of gravity-matter systems [64–66], might indicate the near-perturbative nature
of asymptotically safe quantum gravity.

More generally, one can ask if there are other (integer) dimensions where there is a
choice g4 = cg3 for which the flow exhibits momentum locality. This is indeed the case for

g4 =
7
4

g3 , d = 6 . (66)

This is the only other combination of coupling identifications and integer dimensions,
which gives rise to momentum locality.

4.2.2. Spin Zero Sector

The general structure of the spin zero sector is the same as that of the spin two
sector. In particular, asymptotically we have an expansion as in (62)–(64) for the different
diagrams. The main difference is that we do not find momentum locality in d = 4. The
only combination of coupling identification and integer dimension, which gives rise to a
momentum-local spin zero sector is

g4 = −2g3 , d = 6 . (67)

From this we conclude that, at least in our setup, there is no situation where both spin
two and spin zero sector are momentum-local. However, if higher n-point functions are
also distinguished according to their tensor structures, this situation might change.

One can further ask the question, for d 6= 4, whether there is a specific ratio between
the behaviour of the flows of the two sectors at large momentum. For this analysis, we
assume again that g4 = g3. In general, there is no such relation: the contributions, including
the spin zero propagator to each of the flows is generally different from the contributions
including the spin two propagator. There are three exceptions to this. Two of them are
independent of the choice of the gauge parameter βh:

d = 3 :
flowTT

flow0
(p2, µTL, µ0) ∼ 1 , as p→ ∞ ,

d = 6 :
flowTT

flow0
(p2, µTL, µ0) ∼ −

1
4

, as p→ ∞ .
(68)

The third exception is the gauge choice βh → −∞, so that

βh → −∞ :
flowTT

flow0
(p2, µTL, µ0) ∼ −

(d− 4)(d3 − d2 + 8d− 12)
(d− 2)(d + 2)(3d2 − 11d + 12)

, as p→ ∞ .

(69)

4.2.3. Ghost Sector

The flow in the ghost sector differs structurally from the flow in the graviton sec-
tor in that the tadpole diagram vanishes for a linear parameterisation of the metric
fluctuations [18], see also (8), since in the present approximation the ghost action is linear
in h. Neither of the two ghost modes shows momentum locality in our setup for any choice
of dimension and gauge. However, independent of dimension and gauge choice, the two
flows agree asymptotically,

flowcT

flowcL
(p2, µTL, µ0) ∼ 1 , as p→ ∞ . (70)
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In this limit, only one of the two self-energy diagrams in Figure 2 contributes, namely
the first one, where the regulator is inserted on the graviton line. Together with the relation
of the two flows at vanishing momentum, this gives an estimate of their typical disagreement.

4.3. Limit of Large Dimension

Let us discuss aspects of the limit d→ ∞. In this limit, we can perform the remaining
angular integral exactly, and also comment on the radial integral. To see the first statement,
note that this integral structurally looks like

∫ 1

−1
dx
(

1− x2
) d−3

2 f (x) , (71)

where f (x) is one of the integrands in the flow. We will now make the assumption that the de-
pendence on x is smooth, so that f admits a convergent expansion in Chebyshev polynomials,

f (x) = ∑
n≥0

fnTn(x) . (72)

Inserting this expansion into (71), and assuming that we can swap the order of sum-
mation and integration, we arrive at

∫ 1

−1
dx
(

1− x2
) d−3

2 f (x) = ∑
n≥0

fn

∫ 1

−1
dx
(

1− x2
) d−3

2 Tn(x)

= ∑
k≥0

f2k

(
−1

2

)k
√

π Γ
(

d−1
2

)
Γ
(

d
2 + k

) (d− 2)!!
(d− 2k− 2)!!

∼
√

2π

d ∑
k≥0

(−1)k f2k =

√
2π

d
f (0) , as d→ ∞ .

(73)

In the last line, we expanded the expression to leading order in the limit of large d.
This result is intuitively clear: for large d the measure suppresses all values of x except
x = 0.

To deal with the radial integral, we will assume that we have a regulator which falls
off like an exponential, so that also all integrands in the flow fall off exponentially. More
precisely, with z denoting the square of the loop momentum, we assume that any integrand
is of the form

f (z) = g(z)(1 + z)ke−az , a > 0 , k ≥ 0 . (74)

We included an additional power law behaviour so that we can assume that g is
bounded on the whole interval. As a consequence, we can expand it in a series of rational
Chebyshev functions,

g(z) = ∑
n≥0

gnTn

(
z− 1
z + 1

)
. (75)

Combining this with the measure, we have integrals of the form

∑
n≥0

gn

∫ ∞

0
dz

d
2 +k Tn

(
z− 1
z + 1

)
e−az ∼ ∑

n≥0
gna−

d
2−1−k2

√
π

(
d
2

) d
2 +1+k

e−
d
2

= 2
√

πg(∞)e−
d
2

(
d
2a

) d
2 +1+k

, as d→ ∞ .

(76)

If we combine these two results with the factor from the angular integration,∫
dΩ =

1

2dπ
d+1

2 Γ
(

d−1
2

) , (77)
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we get the overall scaling of the flow as

flow ∝
(

1
4πa

) d
2
dk+1 . (78)

This result shows that there are two outcomes for the behaviour at large d, depending
on the fall-off of the regulator. For

a >
1

4π
, (79)

the dimensional factor goes to zero, whereas for

a ≤ 1
4π

, (80)

the flow diverges in this limit.

4.4. The Flow for Positive µ

As a last point in this section, we will discuss a technical challenge related to the
projection procedure for the anomalous dimensions, see (35) and (36). For positive gaps
µ > 0, we have to evaluate the flow at negative squared momentum. This is, in general,
challenging, for two reasons. First, we have to define a regulator for, in general, complex
momenta. Second, the factors (58) induce poles in the integration domain for p2 < 0.

We choose a regulator in the following way. First, to avoid having to define it in the
entire complex plane, we take the real part of the argument. Second, we have to define the
desired behaviour of the regularised propagator for p2 = −µ, that is, we have to define

1
p2 +Rk(p2) + µ

∣∣∣∣
p2=−µ

=
1

Rk(−µ)
. (81)

In the limit of large masses, we require that this expression behaves like a standard
regularised propagator,

Rk(−µ) ∼ 1 + µ , as µ→ ∞ . (82)

Third, we clearly also need that the regularised propagator does not introduce any
poles in the integration region. A choice that fulfils all these requirements is

Rk(y) =
e−ỹ

1 + e−2ỹ +
1− ỹ

1 + e2ỹ , ỹ = Re y . (83)

For (large) positive arguments, this regulator is just of an exponential type since the
second term vanishes in this limit.

Let us now discuss how we deal with the unregularised pole structures (58) coming
from the projectors. The poles are situated at x = 0 and q2 = −p2 = µ. We define
the integration over these poles by splitting the integration domain into a disk centred
around the pole, and the rest. Inside the disk, we choose radial coordinates. One can show
analytically that the Jacobian of the coordinate transformation and the angular integration
remove all potential poles, so that the integral is well-defined. Let us finally mention that
only simple poles arise in approximations that do not resolve the difference between the
two graviton anomalous dimensions and gaps.

5. Momentum-Dependent Fluctuation RG Flow: Numerical Results

In this section, we discuss numerical results on the momentum dependence of the
propagators, and the influence of the dimension, the choice of gauge and the size and sign
of gaps. We will also discuss the derivative expansion of the form factors. All results are
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obtained with the regulator (83). As a generic choice, we set the gravitational coupling to
one, g = 1, and use the Landau limit αh → 0.

5.1. Numerical Strategy

Before we present the actual numerical results, we provide a short discussion of how
we obtained them. In the previous section, we found that the anomalous dimensions
are bounded both at zero and infinite arguments. We will further assume that they are
bounded on the entire positive real line. In that case, they can be expanded in a series of
rational Chebyshev functions [179],

η(y) = ∑
n≥0

ηnTn

(
y− 1
y + 1

)
. (84)

Such an expansion is equivalent to compactifying the domain and employing a stan-
dard expansion in Chebyshev polynomials. This expansion shows desirable convergence
properties if the function that is represented by the series is smooth, see for example, [180]
for an in-detail discussion. In the context of functional renormalisation group flows, they
have been systematically discussed in [181–183]. For applications in quantum gravity, see
also [68,101,145].

In practice, we will truncate (84) at a finite order, insert the expansion into the integral
equations, and evaluate the equations at a set of collocation points. The set of integral
equations for the anomalous dimensions then reduces to an algebraic set of equations for
the expansion coefficients, which can be solved by standard linear algebra methods. The
integrals have been performed with Mathematica’s numerical integration routine.

To judge whether the numerical precision of the solution is high enough, we verify
that the analytic relations between the different anomalous dimensions found in the last
section are satisfied.

Note that the above approach is non-perturbative in the coupling g, and works for
any value of it. If one is only interested in the anomalous dimensions for small g, one
can perform a Taylor series in g, the coefficients of which are nested integrals that can be
computed numerically. In that way, the overall magnitude of the anomalous dimensions is
directly controlled by g, at least for small enough values.

5.2. Dimensional Dependence

First, we will study the dimensional dependence of the anomalous dimensions. For
the gauge choice βh = d

2 − 1 and vanishing gaps µTL = µ0 = 0; this is shown in Figure 3.
There are a few general features. First, the overall magnitude of the anomalous dimensions
decreases with increasing dimension. This is in agreement with our analytical estimate
in the previous section, see (78). Second, we observe that while η0 stays positive at these
coordinates in all dimensions, ηTT shifts to negative values quickly. Third, while there is
some quantitative difference between the two ghost anomalous dimensions in d = 4, they
agree more and more the larger the dimension is. Fourth, as we have seen analytically in
Section 4.2, ηTT is momentum-local only in d = 4. Finally, we observe a general flattening
for large d: the momentum dependence of all anomalous dimensions is essentially trivial so
that they can be very well approximated by a constant. However, this conclusion only holds
in the current approximation, where higher-order curvature operators were neglected in the
seed action. Since some of these operators are expected to be relevant in higher dimensions,
their presence might alter the momentum dependence of the anomalous dimensions.

5.3. Gap Dependence

Let us now discuss the dependence of the anomalous dimensions on the gaps µTL and
µ0. For this, we fix d = 4 and the gauge parameters βh = 1. The anomalous dimensions
are shown in Figure 4 for the gaps µx = ±1/4.

Generally, we see that the gaps mostly influence the overall magnitude and the
behaviour at small momenta. Rather small variations in the gaps can shift the value of
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η0(0) rather drastically. By contrast, the overall shape of the other anomalous dimensions
is rather unaffected. We take this as evidence that the qualitative momentum dependence
in large parts of theory space looks approximately similar to that at the specific points that
we present in this work.

5.4. Gauge Dependence

Now we will discuss the gauge dependence of the anomalous dimensions. Once
again we choose vanishing gaps and d = 4. The anomalous dimensions for the choices
βh ∈ {−1, 0, 1} are shown in Figure 5. We find that, overall, the dependence on βh is
mild, and mostly at the quantitative level. This is a promising indication that, even though
off-shell quantities like β-functions and propagators are inherently gauge-dependent,
this dependence is well-controlled. As analytically expected, we find that the two ghost
anomalous dimensions agree at p = 0 for βh = 0. Their value at infinity is also numerically
close to their value at zero. As a consequence, for this gauge choice a single, constant
ghost anomalous dimension is an accurate approximation. Notably, ηTT and η0 are also
numerically close at p = 0 for this choice of gauge.
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Figure 4. Gap dependence of the dynamical anomalous dimensions for the choices d = 4, g = 1,
βh = 1 and the regulator (83). For clarity, we have reinstated k in the momentum argument.

5.5. Form Factors and the Derivative Expansion

Let us finally discuss the form factors and their derivative expansion obtained via (51).
As parameters, we choose d = 4 and βh = 1, µTL = µ0 = 0. While this is in general not a
fixed point, we want to illustrate the general form of the fluctuation form factors. Since the
general shape of the anomalous dimensions seems to be stable under variation of the gaps,
see Section 5.3, we expect that the qualitative picture presented here is correct for at least
some part of theory space.

The fluctuation form factors, which were reconstructed according to (51), are shown
in Figure 6. We find that the R2 form factor f fluc

R is positive while the C2 form factor f fluc
C

is negative. Due to the positivity of f fluc
R , there is no additional pole in the propagator of

the gauge-invariant scalar mode. Similarly, for the transverse-traceless propagator, there
is no additional pole. Both go to a constant value for small momenta and fall off with
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a power law at large momenta. Due to the absence of additional poles in the graviton
propagators, the particle spectrum of the theory at the investigated point agrees with the
particle spectrum of GR. Interestingly, the C2 form factor f fluc

C agrees qualitatively with
that obtained in a background approximation of conformally reduced gravity [101].

For small momenta, we find

f fluc
R (y) ≈ 0.464 + 0.426y− 6.49y2 +O(y3) ,

f fluc
C (y) ≈ −0.0941− 0.213y + 3.16y2 +O(y3) .

(85)

This entails that the worst-case scenario for the derivative expansion explained in
Section 3.4 and in [175] is actually realised for this point of theory space: the Taylor
coefficients of the two form factors have alternating signs, so a local expansion would not
be able to resolve this point accurately. This means that, in any derivative expansion in
gravity that is currently technically feasible, viable fixed points might be missed due to
the expansion.
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Figure 5. Gauge dependence of the dynamical anomalous dimensions for the choices d = 4, g = 1,
µTL = 0, µ0 = 0 and the regulator (83). For clarity, we have reinstated k in the momentum argument.
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Figure 6. Fluctuation form factors reconstructed from the dynamical anomalous dimensions accord-
ing to (51) for the choices g = 1, µTL = 0, µ0 = 0, βh = 1 and the regulator (83). The dashing indicates
that the function is negative. For clarity, we have reinstated k in the momentum argument.

6. Momentum-Dependent Background RG Flow

In this section, we provide the results of a computation within the background field
approximation. The minimal way to obtain the background form factors is to calculate
their forms induced by the Einstein–Hilbert action. For simplicity, we will restrict ourselves
to four dimensions and a harmonic gauge fixing, αh = βh = 1. This choice simplifies the
calculation so tremendously to justify violating our preference of using the Landau limit.
The detailed calculation is shown in Appendix B. In particular, the resulting flow equations
are given in Equations (A35)–(A38).

For the form factors, the fixed point equations are linear first order differential equa-
tions, so that we can immediately calculate the solution. The free integration constant can
be identified with the value of the functions at infinite momentum. With our choice of
regulator, at Λ = 0 we can avoid additional poles in the propagator for

fR(∞) & 2.95 , fC(∞) & 0.611 . (86)

To illustrate the solutions, we plot both form factors for two different choices of
integration constants of Figures 7 and 8. The first satisfies the above bounds and avoids
new poles, whereas the second introduces new poles. We set the cosmological constant to
zero and the dimensionless Newton’s constant to one. This is, in general, not a fixed point,
but allows a more direct comparison with the results of the fluctuation calculation.
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Figure 7. Background form factors fR and fC for the choices g = 1, Λ = 0, fR(∞) = 5, fC(∞) = 2
and the regulator (83). The dashing indicates that the function is negative in that regime. This choice
of integration constants avoids additional poles in the propagator. For clarity, we have reinstated k in
the momentum argument.
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Figure 8. Background form factors fR and fC for the choices g = 1, Λ = 0, fR(∞) = 0, fC(∞) = 0
and the regulator (83). The dashing indicates that the function is negative in that regime. This choice
of integration constants introduces additional poles in the propagator. For clarity, we have reinstated
k in the momentum argument.

7. Comparing Background and Fluctuation Results

We will now compare the results obtained from the background and the fluctuation
computation at the level of the form factors in d = 4. As our parameters we choose
g = 1, Λ = µTL = µ0 = 0. For the background computation, we choose the harmonic
gauge αh = βh = 1, whereas for the fluctuation calculation we use αh = 0, βh = 1. The
form factors are shown in Figures 6–8.

Since the background computation is essentially one-loop, the form factors show a
logarithmic behaviour at small momenta. By contrast, the fluctuation form factors go to
finite values at vanishing momentum. The universal one-loop logarithms can be expected
to come out correctly once we study the flow in the limit k → 0, at least in some part of
theory space where effective field theory around flat spacetime is valid, see also [119].

For large momenta, the background form factors are either finite or zero depending
on the choice of integration constant. This is again due to restricting to one-loop. The
correct behaviour will be fixed dynamically once the backreaction of these form factors
onto the flow is taken into account. The fluctuation form factors show a power law fall-off
according to (52). This entails that

f fluc
R (y) ∝ y−0.85 , f fluc

C (y) +
1
y

∝ y−1.17 , as y→ ∞ . (87)

Regarding additional poles in the propagator, we have to choose the integration con-
stants for the background form factors according to (86) to avoid them. For the fluctuation
propagators, no new poles appear at the point that we investigated. The absence of addi-
tional poles in the propagators is crucial for the theory to be unitary. At the investigated
point, the fluctuation results suggest that indeed no new poles arise, indicating that asymp-
totically safe quantum gravity might be unitary [120,184–186]. Within the background field
approximation, however, the presence of additional poles is not yet conclusive, since in
the present setup, they can only be avoided by choosing the integration constant appro-
priately. Avoiding this choice requires a more consistent computation, which includes the
backreaction of the form factors.

Finally, the general shape and the signs differ between the two ways of computation.
For the background computation, fR is negative for small momenta, whereas fC is positive,
in both cases due to the logarithm. For larger momenta, the signs can, but need not change,
depending on the integration constant. The fluctuation form factors have a definite sign:
positive for f fluc

R and negative for f fluc
C . They do not show any non-trivial feature besides

what is dictated by the asymptotics: they show an approximately constant regime for small
momenta, a cross-over at around p ≈ k, leading to the power law fall-off at large momenta.

It is difficult to predict which of these features are generic in most parts of theory
space, and which are special to the point of investigation. We leave this investigation
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to future work, together with a detailed analysis of the momentum-dependent flow of
interaction vertices.

8. Summary and Outlook

In this work, we discussed the full non-perturbative momentum dependence of the
graviton and the ghost propagator in quantum gravity. This includes the two different
graviton modes with spins zero and two, and the two ghost modes, with spins zero and
one. We obtained the results with the help of functional renormalisation group equations,
and resolved both gauge and dimensional dependence.

A key result is that the propagators of the different graviton modes behave qualita-
tively differently. In four dimensions and within our approximation, the spin two mode is
momentum-local, whereas the spin zero mode does not show this property. This qualitative re-
sult is independent of the gauge choice, and thus potentially has physical significance [31,107].
By contrast, the two ghost modes agree qualitatively and partially even quantitatively, and
their anomalous dimensions are approximately momentum-independent.

The dependence on the choice of gauge as well as on the gaps is largely quantitative
rather than qualitative. We take this as a sign that the selected examples presented in this
work are indeed representative of larger parts of theory space. Furthermore, the weak
dependence of the anomalous dimensions on the choice of gauge is a promising indication
that, even in truncations, the FRG gives rise to reliable and stable results.

In dimensions larger than four, we find that all anomalous dimensions quickly go
to zero. Assuming a regulator that falls off quickly enough, this suppression for large
dimensions is exponential in the dimension d.

All these results have been obtained from calculations of dynamical correlation func-
tions. To also compare to a computation in a background field approximation, we have
calculated the background form factors induced by an Einstein–Hilbert action to quadratic
order in the curvature. To facilitate this comparison, we created a dictionary relating the
form factors to anomalous dimensions, both evaluated at a fixed point. We find that the
one-loop structure of our approximation in the background sector makes such a compari-
son difficult, since many features are dictated by the one-loop form rather than dynamically,
for example, the asymptotic behaviour for both large and small momenta. A dynamical
computation of the background form factors with backreaction is desirable but is postponed
for the future.

The present work represents a major step in a complete and systematic computation
of correlation functions in quantum gravity. The natural next step is to resolve the three-
graviton vertex. Since the complete vertex is rather complicated, two possible paths are
the resolution of the full momentum dependence of selected tensor structures, or the
complete resolution of all tensor structures in a derivative expansion. While the former
strategy allows us to extract the full momentum dependence in one specific sector, it is not
guaranteed that such an approximation has the desirable features the full theory should
have [175]. In the latter strategy, all tensor structures are taken into account; however, as
we have seen in Section 5.5, a derivative expansion might not be able to resolve the fixed
points of the theory accurately.

Finally, we expect that disentangling the different graviton modes will play an im-
portant role in the discussion of spectral functions [119]. In particular, the two sectors will
have individual spectral functions, and their different high-momentum behaviour will
have a non-trivial effect.
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Appendix A. Asymptotic Expansion of Form Factors

In this appendix we derive the asymptotic expansion (52). For this, we consider the
integral in the exponent of (51),

I(y) =
∫ y

0
ds

η∗(s)− η∗(0)
2s

. (A1)

We will assume that η∗ is a bounded function on the whole positive real line, which
is indeed true in our case. With that, we can first show that the leading order behaviour
of (A1) at large y is logarithmic. For that, let us take the derivative of (A1):

I′(y) =
η∗(y)− η∗(0)

2y
. (A2)

Since η∗ is bounded, for large y, we find that

I′(y) ∼ η∗(∞)− η∗(0)
2y

, as y→ ∞ . (A3)

As a consequence, the integral itself is asymptotic to a logarithm,

I(y) ∼ η∗(∞)− η∗(0)
2

ln y , as y→ ∞ . (A4)

We still have to determine the sub-leading behaviour. For that, let us take the difference
of the integral and the logarithm above, and take the limit of y going to infinity. We will
find that this limit exists, so that the sub-leading part is a constant. To achieve that, let us
rewrite the logarithm via

ln y =

[∫ y

0
ds

1
1 + s

]
− ln

1 + y
y

. (A5)

The virtue of this rewriting is that the logarithm on the right-hand side vanishes in
the limit of large y. We can then combine the integrals so that

I(y)− η∗(∞)− η∗(0)
2

ln y =
η∗(∞)− η∗(0)

2
ln

1 + y
y

+
∫ y

0
ds

[
η∗(s)− η∗(0)

2s
− η∗(∞)− η∗(0)

2(1 + s)

]
.

(A6)

We can now take the limit y→ ∞. The integral converges in this limit, since the terms
falling off such as 1/s at large s cancel, so that finally we get
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I(y) ∼ η∗(∞)− η∗(0)
2

ln y +
∫ ∞

0
ds

[
η∗(s)− η∗(0)

2s
− η∗(∞)− η∗(0)

2(1 + s)

]
, as y→ ∞ . (A7)

This completes the derivation of the asymptotic formula (52).

Appendix B. Calculation of the Background form Factors Induced by GR

In this appendix we derive the flow equations for GN and Λ as well as the two-
curvature form factors induced by the Einstein–Hilbert truncation in a background field
approximation and in four dimensions. To make our life easier, we will choose the harmonic
gauge condition

αh = βh = 1 , γh = 0 . (A8)

Even though we argued in the main text that only the Landau limit allows for a
clean flow, in a background field calculation this gauge choice simplifies the calculation
tremendously. The reason for this is that in this gauge, the two-point function is diagonal
and only depends on Laplacians and curvatures, while it does not involve uncontracted
derivatives. Splitting the graviton into traceless and trace parts,

hµν = hTL
µν +

1
4

ḡµνh , ḡµνhTL
µν = 0 , (A9)

the individual two-point functions at vanishing fluctuation fields read

δ2Γk

δhTLµνδhTL
ρσ

∝
1

GN

[
∆̄ ρσ

2µν − 2ΛΠTL ρσ
µν

]
,

δ2Γk
δh2 ∝

1
GN

[∆̄− 2Λ] ,

δ2Γk
δc̄µδcν

∝ ∆̄µν
c .

(A10)

Here, we introduced the operators

∆̄ ρσ
2µν =

(
∆̄− 2

3
R̄
)

ΠTL ρσ
µν − 2C̄(µ

ρ
ν)

σ ,

∆̄µν
c = ∆̄ḡµν − R̄µν .

(A11)

These are also the operators that we regularise. This yields the very simple flow

Γ̇k
∣∣
h=0 =

1
2

Tr

[
ΠTL

(
2− ĠN

GN

)
Rk(∆̄2)− 2∆̄2R′k(∆̄2)

∆̄2 +Rk(∆̄2)− 2Λ

]

+
1
2

Tr

[
ΠTr

(
2− ĠN

GN

)
Rk(∆̄)− 2∆̄R′k(∆̄)

∆̄ +Rk(∆̄)− 2Λ

]

− Tr

[
2Rk(∆̄c)− 2∆̄cR′k(∆̄c)

∆̄c +Rk(∆̄c)

]
.

(A12)

Here, we used the same shape function in all modes. For later convenience, we
introduce the shorthands

fh(x) =

(
2− ĠN

GN

)
Rk(x)− 2xR′k(x)

x +Rk(x)− 2Λ
, fc(x) = 2

Rk(x)− xR′k(x)
x +Rk(x)

. (A13)
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In this notation, the flow reads

Γ̇k
∣∣
h=0 =

1
2

Tr[ΠTL fh(∆̄2)] +
1
2

Tr[ΠTr fh(∆̄)]− Tr fc(∆̄c) ≡ TTL + TTr + Tc . (A14)

To improve the readability, in the following, we will refrain from using an overbar for
background quantities.

Appendix B.1. Early Time Heat Kernel Expansion

To evaluate the traces, we will employ the early time expansion of the heat kernel. For
an operator of Laplace type ∆ +E, where E is an endomorphism with the appropriate
bundle structure, the expansion reads [187]

Tr e−s(∆+E) ' 1
(4πs)d/2

∫
ddx
√

g tr

{
1− sE+

s
6

R1+ s2
[
1Rµν fRic(s∆) Rµν

+ 1R fR(s∆) R + R fRE(s∆)E+E fE(s∆)E+Fµν fF(s∆)Fµν
]}

.

(A15)

In this expression, Tr is a functional trace, tr is the trace over the bundle indices, F is
the bundle curvature

Fµν = [Dµ, Dν] , (A16)

which depends on the index structure of the field traced over, and

fRic(x) =
f (x)− 1 + x

6
x2 , (A17)

fR(x) =
f (x)
32

+
f (x)− 1

8x
−

f (x)− 1 + x
6

8x2 , (A18)

fRE(x) = − f (x)
4
− f (x)− 1

2x
, (A19)

fE(x) =
f (x)

2
, (A20)

fF(x) = − f (x)− 1
2x

, (A21)

are heat kernel form factors. The universal heat kernel function f is defined by

f (x) =
∫ 1

0
dξ e−xξ(1−ξ) = 2

∫ 1
2

0
dξ e−xξ(1−ξ) =

√
π

x
e−

x
4 erfi

(√
x

2

)
= 1− x

6
+O(x2) . (A22)

The Taylor expansion shows that all form factors are regular at zero.
To bring the traces (A12) into the form of the standard heat kernel trace (A15), we

use the inverse Laplace transform. For a function g of an operator O, this entails that we
can write

g(O) =
∫ ∞

0
ds g̃(s) e−sO . (A23)

To be in line with the basis of the main text, we can use the relation∫
ddx

[
Rµν ∆n Rµν

]
=
∫

ddx
[

1
3

R ∆n R +
1
2

Cµνρσ ∆n Cµνρσ

]
+O(R3) , n > 0 , (A24)

to replace any occurrence of Ricci tensors by Ricci scalars and Weyl tensors. In the following,
we will also neglect the Euler characteristic, which corresponds to the case n = 0 in the
above equation.
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Appendix B.2. Some Integral Transformations in d = 4

To bring the flow equations into a convenient form, we will use the formula∫ ∞

0
ds g̃(s)s−n =

1
Γ(n)

∫ ∞

0
dz zn−1g(z) , (A25)

which holds for n > 0. Also, the following identities hold true:

∫ ∞

0
ds g̃(s) f (s∆) = 2

∫ 1
4

0
du

1√
1− 4u

g(u ∆) , (A26)

∫ ∞

0
ds g̃(s)

f (s∆)− 1
s∆

= −
∫ 1

4

0
du
√

1− 4u g(u ∆) , (A27)∫ ∞

0
ds g̃(s)

f (s∆)− 1 + s∆
6

s2∆2 =
1
6

∫ 1
4

0
du (1− 4u)3/2g(u ∆) . (A28)

In all these equations, g̃ is the inverse Laplace transform of an arbitrary function g,
see (A23), and f is the universal heat kernel function (A22). The equations can be shown
by inserting the integral form of f and performing repeated variable transformations while
exchanging the order of integrals.

Appendix B.3. Trace Contribution of the Spin Zero Part

We start with the contribution of the trace part of the graviton to the flow. The trace
projector makes it a scalar trace, with

Fµν = 0 , E = 0 . (A29)

Using the inverse Laplace transform (A23), then applying the general trace formula (A15),
and using the integral identities (A25)–(A28) for this case and in d = 4 gives

TTr '
1
2

1
16π2

∫
d4x
√

g

{ ∫ ∞

0
dz
[

z fh(z) +
1
6

R fh(z)
]

+
∫ 1

4

0
du

[
1

12
Cµνρσ(1− 4u)3/2 fh(u ∆)Cµνρσ

+ R
{

1
16

1√
1− 4u

− 1
8

√
1− 4u +

5
144

(1− 4u)3/2
}

fh(u ∆)R

]}
.

(A30)

Appendix B.4. Trace Contribution of the Ghost

Next, we present the contribution of the ghost. In this case,

Eµν = −Rµν , trFµν g(∆)Fµν = −Rµνρσ g(∆) Rµνρσ . (A31)

With this, the trace is

Tc ' −
1

16π2

∫
d4x
√

g

{ ∫ ∞

0
dz
[

4z fc(z) +
5
3

R fc(z)
]

+
∫ 1

4

0
du

[
Cµνρσ

{
1
2

1√
1− 4u

−
√

1− 4u +
1
3
(1− 4u)3/2

}
fc(u ∆)Cµνρσ

+ R
{

13
12

1√
1− 4u

− 7
6

√
1− 4u +

5
36

(1− 4u)3/2
}

fc(u ∆)R

]}
.

(A32)
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Appendix B.5. Trace Contribution of the Spin Two Part

Finally, we present the contribution of the traceless spin two component of the
graviton. With

Eµνρσ =
2
3

R ΠTLµνρσ − Cµρνσ − Cνρµσ ,

trΠTLFµν g(∆)Fµν ' −6Cµνρσ g(∆)Cµνρσ + 2R g(∆) R− 12Rµν g(∆) Rµν ,
(A33)

we find

TTL '
1
2

1
16π2

∫
d4x
√

g

{ ∫ ∞

0
dz
[

9z fh(z)−
9
2

R fh(z)
]

+
∫ 1

4

0
du

[
Cµνρσ

{
3

1√
1− 4u

− 6
√

1− 4u +
3
4
(1− 4u)3/2

}
fh(u ∆)Cµνρσ

+ R
{
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16

1√
1− 4u

+
7
8

√
1− 4u +

5
16

(1− 4u)3/2
}

fh(u ∆)R

]}
.

(A34)

Appendix B.6. Background Flow Equations

Now that we have computed all traces, we can read off the beta functions of GN , Λ
and the two-curvature form factors by comparing the coefficients of the scale derivative
acting on the action (40), with the results for (A14), given in (A30), (A32) and (A34). We
will present them for the dimensionless quantities g, λ, fR and fc. They read

ġ = g
2− g

3π

∫ ∞
0 dz

[
13 2Rk(z)−zR′k(z)

z+Rk(z)−2λ
+ 10Rk(z)−zR′k(z)

z+Rk(z)

]
1− 13g

6π

∫ ∞
0 dz Rk(z)

z+Rk(z)−2λ

, (A35)

λ̇ =

(
−4 +

ġ
g

)
λ− 5ġ

2π

∫ ∞

0
dz z

Rk(z)
z +Rk(z)− 2λ

+
g
π

∫ ∞

0
dz z

[
5

2Rk(z)− zR′k(z)
z +Rk(z)− 2λ

− 4
Rk(z)− zR′k(z)

z +Rk(z)

]
, (A36)

ḟR(z) =
ġ
g

fR(z) + 2z f ′R(z) +
3ġ
π

∫ 1
4

0
du µR

h (u)
Rk(u z)

u z +Rk(u z)− 2λ

− 6g
π
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]
, (A37)

ḟC(z) =
ġ
g

fC(z) + 2z f ′C(z)−
ġ
π

∫ 1
4

0
du µC

h (u)
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π
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. (A38)

Here, we introduced the combined measures

µR
h (u) =

13
8

1√
1− 4u

+
3
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√
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25
72
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Appendix B.7. Fixed Point Structure

Let us now analyse the fixed point structure of these background flow equations.
Employing the fixed point condition

ġ = λ̇ = ḟR = ḟC = 0 , (A40)

we find that the form factor equations are first order linear ordinary differential equations
of the form

2z f ′(z) =
∫ 1

4

0
du µ(u)K(u z) , (A41)

for some kernel K. The explicit solution to this equation reads

f (∞)− f (∆) =
∫ ∆

4

0
dx
∫ ∞

∆
dz

1
2z2 µ

( x
z

)
K(x) +

∫ ∞

∆
4

dx
∫ ∞

4x
dz

1
2z2 µ

( x
z

)
K(x) . (A42)

We chose to impose the boundary condition at ∆ = ∞ since for this choice the integrals
on the right-hand side converge for all ∆ ≥ 0. Inserting the explicit expressions for the
kernel, we can also perform the z-integration. With the shorthand notation

ν(a, b, c|ω) = a
(

1− (1−ω)1/2
)
+

b
3

(
1− (1−ω)3/2

)
+

c
5

(
1− (1−ω)5/2

)
, (A43)

the explicit induced background fixed point form factors are

fR(∆) = fR(∞)− 3g
2π
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Some of the integrals can be performed analytically:

∫ ∞

1

dω

ω
ν

(
a, b, c

∣∣∣∣ 1
) Rk(
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 , (A46)

while the others have to be evaluated numerically.
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Notes
1 We refer to z(y) as the dimensionless wave function renormalisation, since its canonical mass dimension and the anomalous

dimension cancel at the fixed point.
2 A correlation function is called momentum-local in this context if the ratio of its flow to the correlator itself vanishes for large

momenta.

References
1. Weinberg, S. Ultraviolet divergences in quantum theories of gravitation. General Relativity: An Einstein Centenary Survey; Hawking,

S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1979; pp. 790–831.
2. Gies, H.; Scherer, M.M. Asymptotic safety of simple Yukawa systems. Eur. Phys. J. C 2010, 66, 387–402. [CrossRef]
3. Gies, H.; Rechenberger, S.; Scherer, M.M. Towards an Asymptotic-Safety Scenario for Chiral Yukawa Systems. Eur. Phys. J. C

2010, 66, 403–418. [CrossRef]
4. Braun, J.; Gies, H.; Scherer, D.D. Asymptotic safety: A simple example. Phys. Rev. 2011, D83, 085012. [CrossRef]
5. Gies, H.; Rechenberger, S.; Scherer, M.M.; Zambelli, L. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models.

Eur. Phys. J. C 2013, 73, 2652. [CrossRef]
6. Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. 1998, D57, 971–985. [CrossRef]
7. Souma, W. Nontrivial ultraviolet fixed point in quantum gravity. Prog. Theor. Phys. 1999, 102, 181–195. [CrossRef]
8. Reuter, M.; Saueressig, F. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. 2002,

D65, 065016. [CrossRef]
9. Lauscher, O.; Reuter, M. Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. 2002, D65, 025013.

[CrossRef]
10. Litim, D.F. Fixed points of quantum gravity. Phys. Rev. Lett. 2004, 92, 201301. [CrossRef]
11. Machado, P.F.; Saueressig, F. On the renormalization group flow of f(R)-gravity. Phys. Rev. 2008, D77, 124045. [CrossRef]
12. Codello, A.; Percacci, R.; Rahmede, C. Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization

Group Equation. Ann. Phys. 2009, 324, 414–469. [CrossRef]
13. Benedetti, D.; Machado, P.F.; Saueressig, F. Asymptotic safety in higher-derivative gravity. Mod. Phys. Lett. 2009, A24, 2233–2241.

[CrossRef]
14. Machado, P.F.; Percacci, R. Conformally reduced quantum gravity revisited. Phys. Rev. 2009, D80, 024020. [CrossRef]
15. Manrique, E.; Reuter, M. Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety. Ann. Phys. 2010,

325, 785–815. [CrossRef]
16. Manrique, E.; Reuter, M.; Saueressig, F. Bimetric Renormalization Group Flows in Quantum Einstein Gravity. Ann. Phys. 2011,

326, 463–485. [CrossRef]
17. Groh, K.; Saueressig, F. Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity. J. Phys. 2010, A43, 365403.

[CrossRef]
18. Eichhorn, A.; Gies, H. Ghost anomalous dimension in asymptotically safe quantum gravity. Phys. Rev. 2010, D81, 104010.

[CrossRef]
19. Benedetti, D.; Groh, K.; Machado, P.F.; Saueressig, F. The Universal RG Machine. J. High Energy Phys. 2011, 2011, 079. [CrossRef]
20. Manrique, E.; Rechenberger, S.; Saueressig, F. Asymptotically Safe Lorentzian Gravity. Phys. Rev. Lett. 2011, 106, 251302.

[CrossRef] [PubMed]
21. Reuter, M.; Saueressig, F. Quantum Einstein Gravity. New J. Phys. 2012, 14, 055022. [CrossRef]
22. Benedetti, D.; Caravelli, F. The Local potential approximation in quantum gravity. J. High Energy Phys. 2012, 2012, 017. [CrossRef]
23. Rechenberger, S.; Saueressig, F. A functional renormalization group equation for foliated spacetimes. J. High Energy Phys. 2013,

2013, 10. [CrossRef]
24. Christiansen, N.; Litim, D.F.; Pawlowski, J.M.; Rodigast, A. Fixed points and infrared completion of quantum gravity. Phys. Lett.

2014, B728, 114–117. [CrossRef]
25. Dietz, J.A.; Morris, T.R. Asymptotic safety in the f(R) approximation. J. High Energy Phys. 2013, 2013, 108, [CrossRef]
26. Ohta, N.; Percacci, R. Higher Derivative Gravity and Asymptotic Safety in Diverse Dimensions. Class. Quant. Grav. 2014,

31, 015024. [CrossRef]
27. Falls, K.; Litim, D.; Nikolakopoulos, K.; Rahmede, C. A Bootstrap towards Asymptotic Safety; University of Sussex: Brighton,

UK, 2013.
28. Falls, K.; Litim, D.F.; Nikolakopoulos, K.; Rahmede, C. Further evidence for asymptotic safety of quantum gravity. Phys. Rev.

2016, D93, 104022. [CrossRef]
29. Christiansen, N.; Knorr, B.; Pawlowski, J.M.; Rodigast, A. Global Flows in Quantum Gravity. Phys. Rev. 2016, D93, 044036.

[CrossRef]
30. Becker, D.; Reuter, M. En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average

actions. Ann. Phys. 2014, 350, 225–301. [CrossRef]
31. Christiansen, N.; Knorr, B.; Meibohm, J.; Pawlowski, J.M.; Reichert, M. Local Quantum Gravity. Phys. Rev. 2015, D92, 121501.

[CrossRef]

http://doi.org/10.1140/epjc/s10052-010-1256-z
http://dx.doi.org/10.1140/epjc/s10052-010-1257-y
http://dx.doi.org/10.1103/PhysRevD.83.085012
http://dx.doi.org/10.1140/epjc/s10052-013-2652-y
http://dx.doi.org/10.1103/PhysRevD.57.971
http://dx.doi.org/10.1143/PTP.102.181
http://dx.doi.org/10.1103/PhysRevD.65.065016
http://dx.doi.org/10.1103/PhysRevD.65.025013
http://dx.doi.org/10.1103/PhysRevLett.92.201301
http://dx.doi.org/10.1103/PhysRev D.77.124045
http://dx.doi.org/10.1016/j.aop.2008.08.008
http://dx.doi.org/10.1142/S0217732309031521
http://dx.doi.org/10.1103/PhysRevD.80.024020
http://dx.doi.org/10.1016/j.aop.2009.11.009
http://dx.doi.org/10.1016/j.aop.2010.11.006
http://dx.doi.org/10.1088/1751-8113/43/36/365403
http://dx.doi.org/10.1103/PhysRevD.81.104010
http://dx.doi.org/10.1007/JHEP06(2011)079
http://dx.doi.org/10.1103/PhysRevLett.106.251302
http://www.ncbi.nlm.nih.gov/pubmed/21770628
http://dx.doi.org/10.1088/1367-2630/14/5/055022
http://dx.doi.org/10.1007/JHEP06(2012)017
http://dx.doi.org/10.1007/JHEP03(2013)010
http://dx.doi.org/10.1016/j.physletb.2013.11.025
http://dx.doi.org/10.1007/JHEP01(2013)108
http://dx.doi.org/10.1088/0264-9381/31/1/015024
http://dx.doi.org/10.1103/PhysRevD.93.104022
http://dx.doi.org/10.1103/PhysRevD.93.044036
http://dx.doi.org/10.1016/j.aop.2014.07.023
http://dx.doi.org/10.1103/PhysRevD.92.121501


Universe 2021, 7, 216 32 of 36

32. Morris, T.R.; Slade, Z.H. Solutions to the reconstruction problem in asymptotic safety. J. High Energy Phys. 2015, 2015, 094.
[CrossRef]

33. Ohta, N.; Percacci, R.; Vacca, G.P. Flow equation for f (R) gravity and some of its exact solutions. Phys. Rev. 2015, D92, 061501.
[CrossRef]

34. Ohta, N.; Percacci, R.; Vacca, G.P. Renormalization Group Equation and scaling solutions for f(R) gravity in exponential
parametrization. Eur. Phys. J. 2016, C76, 46. [CrossRef]

35. Gies, H.; Knorr, B.; Lippoldt, S. Generalized Parametrization Dependence in Quantum Gravity. Phys. Rev. 2015, D92, 084020.
[CrossRef]

36. Demmel, M.; Saueressig, F.; Zanusso, O. A proper fixed functional for four-dimensional Quantum Einstein Gravity. J. High
Energy Phys. 2015, 2015, 113. [CrossRef]

37. Biemans, J.; Platania, A.; Saueressig, F. Quantum gravity on foliated spacetimes: Asymptotically safe and sound. Phys. Rev. 2017,
D95, 086013. [CrossRef]

38. Gies, H.; Knorr, B.; Lippoldt, S.; Saueressig, F. Gravitational Two-Loop Counterterm Is Asymptotically Safe. Phys. Rev. Lett. 2016,
116, 211302. [CrossRef]

39. Denz, T.; Pawlowski, J.M.; Reichert, M. Towards apparent convergence in asymptotically safe quantum gravity. Eur. Phys. J.
2018, C78, 336. [CrossRef] [PubMed]

40. Platania, A.; Saueressig, F. Functional Renormalization Group Flows on Friedman–Lemaître–Robertson–Walker backgrounds.
Found. Phys. 2018, 48, 1291–1304. [CrossRef]

41. Falls, K.; King, C.R.; Litim, D.F.; Nikolakopoulos, K.; Rahmede, C. Asymptotic safety of quantum gravity beyond Ricci scalars.
Phys. Rev. 2018, D97, 086006. [CrossRef]

42. Knorr, B.; Lippoldt, S. Correlation functions on a curved background. Phys. Rev. 2017, D96, 065020, [CrossRef]
43. Christiansen, N.; Falls, K.; Pawlowski, J.M.; Reichert, M. Curvature dependence of quantum gravity. Phys. Rev. 2018, D97, 046007.

[CrossRef]
44. De Brito, G.P.; Ohta, N.; Pereira, A.D.; Tomaz, A.A.; Yamada, M. Asymptotic safety and field parametrization dependence in the

f (R) truncation. Phys. Rev. 2018, D98, 026027. [CrossRef]
45. Falls, K.G.; Litim, D.F.; Schröder, J. Aspects of asymptotic safety for quantum gravity. Phys. Rev. D 2019, 99, 126015. [CrossRef]
46. Kluth, Y.; Litim, D.F. Fixed Points of Quantum Gravity and the Dimensionality of the UV Critical Surface. arXiv 2020,

arXiv:2008.09181.
47. Falls, K.; Ohta, N.; Percacci, R. Towards the determination of the dimension of the critical surface in asymptotically safe gravity.

Phys. Lett. B 2020, 810, 135773. [CrossRef]
48. Knorr, B. The derivative expansion in asymptotically safe quantum gravity: General setup and quartic order. arXiv 2021,

arXiv:2104.11336.
49. Narain, G.; Percacci, R. Renormalization Group Flow in Scalar-Tensor Theories. I. Class. Quant. Grav. 2010, 27, 075001. [CrossRef]
50. Shaposhnikov, M.; Wetterich, C. Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. 2010, B683, 196–200.

[CrossRef]
51. Donà, P.; Eichhorn, A.; Percacci, R. Matter matters in asymptotically safe quantum gravity. Phys. Rev. 2014, D89, 084035.

[CrossRef]
52. Meibohm, J.; Pawlowski, J.M.; Reichert, M. Asymptotic safety of gravity-matter systems. Phys. Rev. 2016, D93, 084035. [CrossRef]
53. Donà, P.; Eichhorn, A.; Labus, P.; Percacci, R. Asymptotic safety in an interacting system of gravity and scalar matter. Phys. Rev.

2016, D93, 044049; Erratum in Phys. Rev. 2016, D93, 129904. [CrossRef]
54. Oda, K.y.; Yamada, M. Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity. Class. Quant. Grav.

2016, 33, 125011. [CrossRef]
55. Eichhorn, A.; Lippoldt, S. Quantum gravity and Standard-Model-like fermions. Phys. Lett. 2017, B767, 142–146. [CrossRef]
56. Wetterich, C.; Yamada, M. Gauge hierarchy problem in asymptotically safe gravity–the resurgence mechanism. Phys. Lett. B 2017,

770, 268–271. [CrossRef]
57. Biemans, J.; Platania, A.; Saueressig, F. Renormalization group fixed points of foliated gravity-matter systems. J. High Energy

Phys. 2017, 2017, 093. [CrossRef]
58. Christiansen, N.; Litim, D.F.; Pawlowski, J.M.; Reichert, M. Asymptotic safety of gravity with matter. Phys. Rev. 2018, D97, 106012.

[CrossRef]
59. Hamada, Y.; Yamada, M. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system.

JHEP 2017, 08, 070. [CrossRef]
60. Eichhorn, A.; Hamada, Y.; Lumma, J.; Yamada, M. Quantum gravity fluctuations flatten the Planck-scale Higgs potential. Phys.

Rev. 2018, D97, 086004. [CrossRef]
61. Eichhorn, A.; Held, A. Top mass from asymptotic safety. Phys. Lett. 2018, B777, 217–221. [CrossRef]
62. Eichhorn, A.; Lippoldt, S.; Skrinjar, V. Nonminimal hints for asymptotic safety. Phys. Rev. D 2018, 97, 026002. [CrossRef]
63. Alkofer, N.; Saueressig, F. Asymptotically safe f (R)-gravity coupled to matter I: The polynomial case. Ann. Phys. 2018,

396, 173–201. [CrossRef]
64. Eichhorn, A.; Labus, P.; Pawlowski, J.M.; Reichert, M. Effective universality in quantum gravity. Sci. Post Phys. 2018, 5, 31.

[CrossRef]

http://dx.doi.org/10.1007/JHEP11(2015)094
http://dx.doi.org/10.1103/PhysRevD.92.061501
http://dx.doi.org/10.1140/epjc/s10052-016-3895-1
http://dx.doi.org/10.1103/PhysRevD.92.084020
http://dx.doi.org/10.1007/JHEP08(2015)113
http://dx.doi.org/10.1103/PhysRevD.95.086013
http://dx.doi.org/10.1103/PhysRevLett.116.211302
http://dx.doi.org/10.1140/epjc/s10052-018-5806-0
http://www.ncbi.nlm.nih.gov/pubmed/30996660
http://dx.doi.org/10.1007/s10701-018-0181-0
http://dx.doi.org/10.1103/PhysRevD.97.086006
http://dx.doi.org/10.1103/PhysRevD.96.065020
http://dx.doi.org/10.1103/PhysRevD.97.046007
http://dx.doi.org/10.1103/PhysRevD.98.026027
http://dx.doi.org/10.1103/PhysRevD.99.126015
http://dx.doi.org/10.1016/j.physletb.2020.135773
http://dx.doi.org/10.1088/0264-9381/27/7/075001
http://dx.doi.org/10.1016/j.physletb.2009.12.022
http://dx.doi.org/10.1103/PhysRevD.89.084035
http://dx.doi.org/10.1103/PhysRevD.93.084035
http://dx.doi.org/10.1103/PhysRevD.93.044049
http://dx.doi.org/10.1088/0264-9381/33/12/125011
http://dx.doi.org/10.1016/j.physletb.2017.01.064
http://dx.doi.org/10.1016/j.physletb.2017.04.049
http://dx.doi.org/10.1007/JHEP05(2017)093
http://dx.doi.org/10.1103/PhysRevD.97.106012
http://dx.doi.org/10.1007/JHEP08(2017)070
http://dx.doi.org/10.1103/PhysRevD.97.086004
http://dx.doi.org/10.1016/j.physletb.2017.12.040
http://dx.doi.org/10.1103/PhysRevD.97.026002
http://dx.doi.org/10.1016/j.aop.2018.07.017
http://dx.doi.org/10.21468/SciPostPhys.5.4.031


Universe 2021, 7, 216 33 of 36

65. Eichhorn, A.; Lippoldt, S.; Pawlowski, J.M.; Reichert, M.; Schiffer, M. How perturbative is quantum gravity? Phys. Lett. 2019,
B792, 310–314. [CrossRef]

66. Eichhorn, A.; Lippoldt, S.; Schiffer, M. Zooming in on fermions and quantum gravity. Phys. Rev. 2019, D99, 086002. [CrossRef]
67. Pawlowski, J.M.; Reichert, M.; Wetterich, C.; Yamada, M. Higgs scalar potential in asymptotically safe quantum gravity. Phys.

Rev. 2019, D99, 086010. [CrossRef]
68. Knorr, B.; Ripken, C.; Saueressig, F. Form Factors in Asymptotic Safety: Conceptual ideas and computational toolbox. Class.

Quant. Grav. 2019, 36, 234001. [CrossRef]
69. Bürger, B.; Pawlowski, J.M.; Reichert, M.; Schaefer, B.J. Curvature dependence of quantum gravity with scalars. arXiv 2019,

arXiv:1912.01624.
70. Eichhorn, A.; Schiffer, M. d = 4 as the critical dimensionality of asymptotically safe interactions. Phys. Lett. 2019, B793, 383–389.

[CrossRef]
71. Reichert, M.; Smirnov, J. Dark Matter meets Quantum Gravity. Phys. Rev. D 2020, 101, 063015. [CrossRef]
72. Kurov, A.; Saueressig, F. On characterizing the Quantum Geometry underlying Asymptotic Safety. Front. Phys. 2020, 8, 187.

[CrossRef]
73. Daas, J.; Oosters, W.; Saueressig, F.; Wang, J. Asymptotically safe gravity with fermions. Phys. Lett. B 2020, 809, 135775. [CrossRef]
74. Eichhorn, A.; Pauly, M. Safety in darkness: Higgs portal to simple Yukawa systems. arXiv 2020, arXiv:2005.03661.
75. Eichhorn, A.; Pauly, M. Constraining power of asymptotic safety for scalar fields. Phys. Rev. D 2021, 103, 026006. [CrossRef]
76. Ali, P.; Eichhorn, A.; Pauly, M.; Scherer, M.M. Constraints on discrete global symmetries in quantum gravity. J. High Energy Phys.

2021, 2021, 036. [CrossRef]
77. Harst, U.; Reuter, M. QED coupled to QEG. JHEP 2011, 1105, 119. [CrossRef]
78. Eichhorn, A.; Gies, H. Light fermions in quantum gravity. New J. Phys. 2011, 13, 125012. [CrossRef]
79. Christiansen, N.; Eichhorn, A. An asymptotically safe solution to the U(1) triviality problem. Phys. Lett. 2017, B770, 154–160.

[CrossRef]
80. Eichhorn, A.; Versteegen, F. Upper bound on the Abelian gauge coupling from asymptotic safety. J. High Energy Phys. 2018,

2018, 030. [CrossRef]
81. Gies, H.; Martini, R. Curvature bound from gravitational catalysis. Phys. Rev. D 2018, 97, 085017. [CrossRef]
82. Eichhorn, A.; Held, A. Mass difference for charged quarks from asymptotically safe quantum gravity. Phys. Rev. Lett. 2018,

121, 151302. [CrossRef]
83. Alkofer, R.; Eichhorn, A.; Held, A.; Nieto, C.M.; Percacci, R.; Schröfl, M. Quark masses and mixings in minimally parameterized

UV completions of the Standard Model. Ann. Phys. 2020, 421, 168282. [CrossRef]
84. de Brito, G.P.; Eichhorn, A.; Schiffer, M. Light charged fermions in quantum gravity. Phys. Lett. B 2021, 815, 136128. [CrossRef]
85. Gies, H.; Salek, A.S. A curvature bound from gravitational catalysis in thermal backgrounds. arXiv 2021, arXiv:2103.05542.
86. Bonanno, A.; Platania, A. Asymptotically safe inflation from quadratic gravity. Phys. Lett. B 2015, 750, 638–642. [CrossRef]
87. Alkofer, N.; D’Odorico, G.; Saueressig, F.; Versteegen, F. Quantum Gravity signatures in the Unruh effect. Phys. Rev. 2016,

D94, 104055. [CrossRef]
88. Bonanno, A.; Koch, B.; Platania, A. Cosmic Censorship in Quantum Einstein Gravity. Class. Quant. Grav. 2017, 34, 095012.

[CrossRef]
89. Bonanno, A.; Gionti, S.J.G.; Platania, A. Bouncing and emergent cosmologies from Arnowitt–Deser–Misner RG flows. Class.

Quant. Grav. 2018, 35, 065004. [CrossRef]
90. Bonanno, A.; Platania, A.; Saueressig, F. Cosmological bounds on the field content of asymptotically safe gravity–matter models.

Phys. Lett. 2018, B784, 229–236. [CrossRef]
91. Gubitosi, G.; Ooijer, R.; Ripken, C.; Saueressig, F. Consistent early and late time cosmology from the RG flow of gravity. JCAP

2018, 1812, 004. [CrossRef]
92. Platania, A. The inflationary mechanism in Asymptotically Safe Gravity. Universe 2019, 5, 189. [CrossRef]
93. Platania, A. From renormalization group flows to cosmology. Front. Phys. 2020, 8, 188. [CrossRef]
94. Bonanno, A.; Reuter, M. Quantum gravity effects near the null black hole singularity. Phys. Rev. D 1999, 60, 084011. [CrossRef]
95. Falls, K.; Litim, D.F. Black hole thermodynamics under the microscope. Phys. Rev. 2014, D89, 084002. [CrossRef]
96. Koch, B.; Saueressig, F. Structural aspects of asymptotically safe black holes. Class. Quant. Grav. 2014, 31, 015006. [CrossRef]
97. Koch, B.; Saueressig, F. Black holes within Asymptotic Safety. Int. J. Mod. Phys. 2014, A29, 1430011. [CrossRef]
98. Bonanno, A.; Koch, B.; Platania, A. Gravitational collapse in Quantum Einstein Gravity. Found. Phys. 2018, 48, 1393–1406.

[CrossRef]
99. Adeifeoba, A.; Eichhorn, A.; Platania, A. Towards conditions for black-hole singularity-resolution in asymptotically safe quantum

gravity. Class. Quant. Grav. 2018, 35, 225007. [CrossRef]
100. Platania, A. Dynamical renormalization of black-hole spacetimes. Eur. Phys. J. C 2019, 79, 470, [CrossRef]
101. Bosma, L.; Knorr, B.; Saueressig, F. Resolving Spacetime Singularities within Asymptotic Safety. Phys. Rev. Lett. 2019, 123, 101301.

[CrossRef]
102. Held, A.; Gold, R.; Eichhorn, A. Asymptotic safety casts its shadow. J. Cosmol. Astropart. Phys. 2019, 2019, 029. [CrossRef]
103. Percacci, R. An Introduction to Covariant Quantum Gravity and Asymptotic Safety; 100 Years of General Relativity; World Scientific:

Singapore, 2017; Volume 3. [CrossRef]

http://dx.doi.org/10.1016/j.physletb.2019.01.071
http://dx.doi.org/10.1103/PhysRevD.99.086002
http://dx.doi.org/10.1103/PhysRevD.99.086010
http://dx.doi.org/10.1088/1361-6382/ab4a53
http://dx.doi.org/10.1016/j.physletb.2019.05.005
http://dx.doi.org/10.1103/PhysRevD.101.063015
http://dx.doi.org/10.3389/fphy.2020.00187
http://dx.doi.org/10.1016/j.physletb.2020.135775
http://dx.doi.org/10.1103/PhysRevD.103.026006
http://dx.doi.org/10.1007/JHEP05(2021)036
http://dx.doi.org/10.1007/JHEP05(2011)119
http://dx.doi.org/10.1088/1367-2630/13/12/125012
http://dx.doi.org/10.1016/j.physletb.2017.04.047
http://dx.doi.org/10.1007/JHEP01(2018)030
http://dx.doi.org/10.1103/PhysRevD.97.085017
http://dx.doi.org/10.1103/PhysRevLett.121.151302
http://dx.doi.org/10.1016/j.aop.2020.168282
http://dx.doi.org/10.1016/j.physletb.2021.136128
http://dx.doi.org/10.1016/j.physletb.2015.10.005
http://dx.doi.org/10.1103/PhysRevD.94.104055
http://dx.doi.org/10.1088/1361-6382/aa6788
http://dx.doi.org/10.1088/1361-6382/aaa535
http://dx.doi.org/10.1016/j.physletb.2018.06.047
http://dx.doi.org/10.1088/1475-7516/2018/12/004
http://dx.doi.org/10.3390/universe5080189
http://dx.doi.org/10.3389/fphy.2020.00188
http://dx.doi.org/10.1103/PhysRevD.60.084011
http://dx.doi.org/10.1103/PhysRevD.89.084002
http://dx.doi.org/10.1088/0264-9381/31/1/015006
http://dx.doi.org/10.1142/S0217751X14300117
http://dx.doi.org/10.1007/s10701-018-0195-7
http://dx.doi.org/10.1088/1361-6382/aae6ef
http://dx.doi.org/10.1140/epjc/s10052-019-6990-2
http://dx.doi.org/10.1103/PhysRevLett.123.101301
http://dx.doi.org/10.1088/1475-7516/2019/06/029
http://dx.doi.org/10.1142/10369


Universe 2021, 7, 216 34 of 36

104. Eichhorn, A. An asymptotically safe guide to quantum gravity and matter. Front. Astron. Space Sci. 2019, 5, 47. [CrossRef]
105. Reuter, M.; Saueressig, F. Quantum Gravity and the Functional Renormalization Group; Cambridge University Press: Cambridge,

UK, 2019.
106. Reichert, M. Lecture notes: Functional Renormalisation Group and Asymptotically Safe Quantum Gravity. PoS 2020, Mo-

dave2019, 005. [CrossRef]
107. Pawlowski, J.M.; Reichert, M. Quantum gravity: A fluctuating point of view. arXiv 2021, arXiv:2007.10353.
108. Donoghue, J.F. A Critique of the Asymptotic Safety Program. Front. Phys. 2020, 8, 56. [CrossRef]
109. Bonanno, A.; Eichhorn, A.; Gies, H.; Pawlowski, J.M.; Percacci, R.; Reuter, M.; Saueressig, F.; Vacca, G.P. Critical reflections on

asymptotically safe gravity. Front. Phys. 2020, 8, 269. [CrossRef]
110. Ambjorn, J.; Jurkiewicz, J.; Loll, R. Reconstructing the universe. Phys. Rev. D 2005, 72, 064014. [CrossRef]
111. Laiho, J.; Coumbe, D. Evidence for Asymptotic Safety from Lattice Quantum Gravity. Phys. Rev. Lett. 2011, 107, 161301.

[CrossRef] [PubMed]
112. Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R. Nonperturbative Quantum Gravity. Phys. Rept. 2012, 519, 127–210. [CrossRef]
113. Coumbe, D.; Laiho, J. Exploring Euclidean Dynamical Triangulations with a Non-trivial Measure Term. J. High Energy Phys. 2015,

2015, 028. [CrossRef]
114. Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J.T. Lattice Quantum Gravity and Asymptotic Safety. Phys. Rev. 2017,

D96, 064015. [CrossRef]
115. Ambjørn, J.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Németh, D. The phase structure of Causal Dynamical Triangulations

with toroidal spatial topology. J. High Energy Phys. 2018, 2018, 111. [CrossRef]
116. Loll, R. Quantum Gravity from Causal Dynamical Triangulations: A Review. Class. Quant. Grav. 2020, 37, 013002. [CrossRef]
117. Ambjorn, J.; Drogosz, Z.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Nèmeth, D. CDT Quantum Toroidal Spacetimes: An

Overview. Universe 2021, 7, 79. [CrossRef]
118. Bassler, S.; Laiho, J.; Schiffer, M.; Unmuth-Yockey, J. The de Sitter Instanton from Euclidean Dynamical Triangulations. Phys. Rev.

D 2021, 103, 114504. [CrossRef]
119. Bonanno, A.; Denz, T.; Pawlowski, J.M.; Reichert, M. Reconstructing the graviton. arXiv 2021, arXiv:2102.02217.
120. Platania, A.; Wetterich, C. Non-perturbative unitarity and fictitious ghosts in quantum gravity. Phys. Lett. B 2020, 811, 135911.

[CrossRef]
121. Wetterich, C. Exact evolution equation for the effective potential. Phys.Lett. 1993, B301, 90–94. [CrossRef]
122. Ellwanger, U. FLow equations for N point functions and bound states. Z. Phys. C 1994, 62, 503–510. [CrossRef]
123. Morris, T.R. The Exact renormalization group and approximate solutions. Int. J. Mod. Phys. 1994, A9, 2411–2450. [CrossRef]
124. Berges, J.; Tetradis, N.; Wetterich, C. Nonperturbative renormalization flow in quantum field theory and statistical physics. Phys.

Rept. 2002, 363, 223–386. [CrossRef]
125. Pawlowski, J.M. Aspects of the functional renormalisation group. Ann. Phys. 2007, 322, 2831–2915. [CrossRef]
126. Gies, H. Introduction to the functional RG and applications to gauge theories. Lect. Notes Phys. 2012, 852, 287–348. [CrossRef]
127. Berges, J.; Mesterhazy, D. Introduction to the nonequilibrium functional renormalization group. Nucl. Phys. Proc. Suppl. 2012,

228, 37–60. [CrossRef]
128. Dupuis, N.; Canet, L.; Eichhorn, A.; Metzner, W.; Pawlowski, J.M.; Tissier, M.; Wschebor, N. The nonperturbative functional

renormalization group and its applications. Phys. Rep. 2020. [CrossRef]
129. Demmel, M.; Nink, A. Connections and geodesics in the space of metrics. Phys. Rev. 2015, D92, 104013. [CrossRef]
130. Houthoff, W.B.; Kurov, A.; Saueressig, F. Impact of topology in foliated Quantum Einstein Gravity. Eur. Phys. J. 2017, C77, 491.

[CrossRef] [PubMed]
131. Knorr, B. Lorentz symmetry is relevant. Phys. Lett. 2019, B792, 142–148. [CrossRef]
132. Baldazzi, A.; Percacci, R.; Skrinjar, V. Wicked metrics. Class. Quant. Grav. 2019, 36, 105008. [CrossRef]
133. Eichhorn, A.; Platania, A.; Schiffer, M. Lorentz invariance violations in the interplay of quantum gravity with matter. Phys. Rev.

D 2020, 102, 026007. [CrossRef]
134. Nagy, S.; Sailer, K.; Steib, I. Renormalization of Lorentzian conformally reduced gravity. Class. Quantum Gravity 2019, 36, 155004.

[CrossRef]
135. Kawai, H.; Kitazawa, Y.; Ninomiya, M. Scaling exponents in quantum gravity near two-dimensions. Nucl. Phys. 1993,

B393, 280–300. [CrossRef]
136. Aida, T.; Kitazawa, Y.; Nishimura, J.; Tsuchiya, A. Two loop renormalization in quantum gravity near two-dimensions. Nucl.

Phys. 1995, B444, 353–380. [CrossRef]
137. Nink, A. Field Parametrization Dependence in Asymptotically Safe Quantum Gravity. Phys. Rev. 2015, D91, 044030. [CrossRef]
138. Percacci, R.; Vacca, G.P. Search of scaling solutions in scalar-tensor gravity. Eur. Phys. J. 2015, C75, 188. [CrossRef]
139. Labus, P.; Percacci, R.; Vacca, G.P. Asymptotic safety in O(N) scalar models coupled to gravity. Phys. Lett. 2016, B753, 274–281.

[CrossRef]
140. Ohta, N.; Percacci, R. Ultraviolet Fixed Points in Conformal Gravity and General Quadratic Theories. Class. Quant. Grav. 2016,

33, 035001. [CrossRef]
141. Falls, K. On the renormalisation of Newton’s constant. Phys. Rev. 2015, D92, 124057. [CrossRef]

http://dx.doi.org/10.3389/fspas.2018.00047
http://dx.doi.org/10.22323/1.384.0005
http://dx.doi.org/10.3389/fphy.2020.00056
http://dx.doi.org/10.3389/fphy.2020.00269
http://dx.doi.org/10.1103/PhysRevD.72.064014
http://dx.doi.org/10.1103/PhysRevLett.107.161301
http://www.ncbi.nlm.nih.gov/pubmed/22107374
http://dx.doi.org/10.1016/j.physrep.2012.03.007
http://dx.doi.org/10.1007/JHEP04(2015)028
http://dx.doi.org/10.1103/PhysRevD.96.064015
http://dx.doi.org/10.1007/JHEP06(2018)111
http://dx.doi.org/10.1088/1361-6382/ab57c7
http://dx.doi.org/10.3390/universe7040079
http://dx.doi.org/10.1103/PhysRevD.103.114504
http://dx.doi.org/10.1016/j.physletb.2020.135911
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1007/BF01555911
http://dx.doi.org/10.1142/S0217751X94000972
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1007/978-3-642-27320-9_6
http://dx.doi.org/10.1016/j.nuclphysbps.2012.06.003
http://dx.doi.org/10.1016/j.physrep.2021.01.001
http://dx.doi.org/10.1103/PhysRevD.92.104013
http://dx.doi.org/10.1140/epjc/s10052-017-5046-8
http://www.ncbi.nlm.nih.gov/pubmed/28943798
http://dx.doi.org/10.1016/j.physletb.2019.01.070
http://dx.doi.org/10.1088/1361-6382/ab187d
http://dx.doi.org/10.1103/PhysRevD.102.026007
http://dx.doi.org/10.1088/1361-6382/ab2e20
http://dx.doi.org/10.1016/0550-3213(93)90246-L
http://dx.doi.org/10.1016/0550-3213(95)00071-Y
http://dx.doi.org/10.1103/PhysRevD.91.044030
http://dx.doi.org/10.1140/epjc/s10052-015-3410-0
http://dx.doi.org/10.1016/j.physletb.2015.12.022
http://dx.doi.org/10.1088/0264-9381/33/3/035001
http://dx.doi.org/10.1103/PhysRevD.92.124057


Universe 2021, 7, 216 35 of 36

142. Ohta, N.; Percacci, R.; Pereira, A.D. Gauges and functional measures in quantum gravity I: Einstein theory. J. High Energy Phys.
2016, 2016, 115. [CrossRef]

143. Falls, K.; Ohta, N. Renormalization Group Equation for f (R) gravity on hyperbolic spaces. Phys. Rev. 2016, D94, 084005.
[CrossRef]

144. Percacci, R.; Vacca, G.P. The background scale Ward identity in quantum gravity. Eur. Phys. J. 2017, C77, 52. [CrossRef]
145. Knorr, B. Infinite order quantum-gravitational correlations. Class. Quant. Grav. 2018, 35, 115005. [CrossRef]
146. Reuter, M.; Weyer, H. Background Independence and Asymptotic Safety in Conformally Reduced Gravity. Phys. Rev. 2009,

D79, 105005. [CrossRef]
147. Manrique, E.; Reuter, M.; Saueressig, F. Matter Induced Bimetric Actions for Gravity. Ann. Phys. 2011, 326, 440–462. [CrossRef]
148. Donkin, I.; Pawlowski, J.M. The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows. arXiv 2012,

arXiv:1203.4207.
149. Codello, A.; D’Odorico, G.; Pagani, C. Consistent closure of renormalization group flow equations in quantum gravity. Phys. Rev.

2014, D89, 081701. [CrossRef]
150. Becker, D.; Reuter, M. Propagating gravitons vs. ’dark matter‘ in asymptotically safe quantum gravity. J. High Energy Phys. 2014,

2014, 025. [CrossRef]
151. Demmel, M.; Saueressig, F.; Zanusso, O. RG flows of Quantum Einstein Gravity in the linear-geometric approximation. Ann.

Phys. 2015, 359, 141–165. [CrossRef]
152. Dietz, J.A.; Morris, T.R. Background independent exact renormalization group for conformally reduced gravity. J. High Energy

Phys. 2015, 2015, 118. [CrossRef]
153. Safari, M. Splitting Ward identity. Eur. Phys. J. 2016, C76, 201. [CrossRef]
154. Wetterich, C. Gauge invariant flow equation. Nucl. Phys. B 2018, 931, 262–282. [CrossRef]
155. Wetterich, C. Gauge symmetry from decoupling. Nucl. Phys. 2017, B915, 135–167. [CrossRef]
156. Morris, T.R.; Preston, A.W.H. Manifestly diffeomorphism invariant classical Exact Renormalization Group. J. High Energy Phys.

2016, 2016, 012. [CrossRef]
157. Safari, M.; Vacca, G.P. Covariant and single-field effective action with the background-field formalism. Phys. Rev. 2017,

D96, 085001. [CrossRef]
158. Safari, M.; Vacca, G.P. Covariant and background independent functional RG flow for the effective average action. J. High Energy

Phys. 2016, 2016, 139. [CrossRef]
159. Labus, P.; Morris, T.R.; Slade, Z.H. Background independence in a background dependent renormalization group. Phys. Rev.

2016, D94, 024007. [CrossRef]
160. Morris, T.R. Large curvature and background scale independence in single-metric approximations to asymptotic safety. J. High

Energy Phys. 2016, 2016, 160. [CrossRef]
161. Meibohm, J.; Pawlowski, J.M. Chiral fermions in asymptotically safe quantum gravity. Eur. Phys. J. 2016, C76, 285. [CrossRef]

[PubMed]
162. Ohta, N. Background Scale Independence in Quantum Gravity. PTEP 2017, 2017, 033E02. [CrossRef]
163. Nieto, C.M.; Percacci, R.; Skrinjar, V. Split Weyl transformations in quantum gravity. Phys. Rev. D 2017, 96, 106019. [CrossRef]
164. Gies, H. Running coupling in Yang-Mills theory: A flow equation study. Phys. Rev. D 2002, 66, 025006. [CrossRef]
165. Litim, D.F.; Pawlowski, J.M. Renormalization group flows for gauge theories in axial gauges. J. High Energy Phys. 2002, 2002, 049.

[CrossRef]
166. Brizuela, D.; Martin-Garcia, J.M.; Mena Marugan, G.A. xPert: Computer algebra for metric perturbation theory. Gen. Rel. Grav.

2009, 41, 2415–2431. [CrossRef]
167. Martín-García, J.M.; Portugal, R.; Manssur, L.R.U. The Invar tensor package. Comput. Phys. Commun. 2007, 177, 640–648.

[CrossRef]
168. Martín-García, J.M.; Yllanes, D.; Portugal, R. The Invar tensor package: Differential invariants of Riemann. Comput. Phys.

Commun. 2008, 179, 586–590. [CrossRef]
169. Martín-García, J.M. xPerm: Fast index canonicalization for tensor computer algebra. Comput. Phys. Commun. 2008, 179, 597–603.

[CrossRef]
170. Nutma, T. xTras: A field-theory inspired xAct package for mathematica. Comput. Phys. Commun. 2014, 185, 1719–1738. [CrossRef]
171. Cyrol, A.K.; Mitter, M.; Strodthoff, N. FormTracer - A Mathematica Tracing Package Using FORM. Comput. Phys. Commun. 2017,

219, 346–352. [CrossRef]
172. Knorr, B.; Saueressig, F. Towards reconstructing the quantum effective action of gravity. Phys. Rev. Lett. 2018, 121, 161304.

[CrossRef]
173. Belgacem, E.; Dirian, Y.; Foffa, S.; Maggiore, M. Nonlocal gravity. Conceptual aspects and cosmological predictions. J. Cosmol.

Astropart. Phys. 2018, 2018, 002. [CrossRef]
174. Belgacem, E.; Dirian, Y.; Finke, A.; Foffa, S.; Maggiore, M. Gravity in the infrared and effective nonlocal models. J. Cosmol.

Astropart. Phys. 2020, 2020, 10. [CrossRef]
175. Knorr, B. Lessons from conformally reduced quantum gravity. Class. Quant. Grav. 2021, 38, 065003. [CrossRef]
176. Wetterich, C. Quantum correlations for the metric. Phys. Rev. D 2017, 95, 123525. [CrossRef]
177. Christiansen, N. Four-Derivative Quantum Gravity Beyond Perturbation Theory. arXiv 2016, arXiv:1612.06223.

http://dx.doi.org/10.1007/JHEP06(2016)115
http://dx.doi.org/10.1103/PhysRevD.94.084005
http://dx.doi.org/10.1140/epjc/s10052-017-4619-x
http://dx.doi.org/10.1088/1361-6382/aabaa0
http://dx.doi.org/10.1103/PhysRevD.79.105005
http://dx.doi.org/10.1016/j.aop.2010.11.003
http://dx.doi.org/10.1103/PhysRevD.89.081701
http://dx.doi.org/10.1007/JHEP12(2014)025
http://dx.doi.org/10.1016/j.aop.2015.04.018
http://dx.doi.org/10.1007/JHEP04(2015)118
http://dx.doi.org/10.1140/epjc/s10052-016-4036-6
http://dx.doi.org/10.1016/j.nuclphysb.2018.04.020
http://dx.doi.org/10.1016/j.nuclphysb.2016.12.008
http://dx.doi.org/10.1007/JHEP06(2016)012
http://dx.doi.org/10.1103/PhysRevD.96.085001
http://dx.doi.org/10.1007/JHEP11(2016)139
http://dx.doi.org/10.1103/PhysRevD.94.024007
http://dx.doi.org/10.1007/JHEP11(2016)160
http://dx.doi.org/10.1140/epjc/s10052-016-4132-7
http://www.ncbi.nlm.nih.gov/pubmed/28280434
http://dx.doi.org/10.1093/ptep/ptx020
http://dx.doi.org/10.1103/PhysRevD.96.106019
http://dx.doi.org/10.1103/PhysRevD.66.025006
http://dx.doi.org/10.1088/1126-6708/2002/09/049
http://dx.doi.org/10.1007/s10714-009-0773-2
http://dx.doi.org/10.1016/j.cpc.2007.05.015
http://dx.doi.org/10.1016/j.cpc.2008.04.018
http://dx.doi.org/10.1016/j.cpc.2008.05.009
http://dx.doi.org/10.1016/j.cpc.2014.02.006
http://dx.doi.org/10.1016/j.cpc.2017.05.024
http://dx.doi.org/10.1103/PhysRevLett.121.161304
http://dx.doi.org/10.1088/1475-7516/2018/03/002
http://dx.doi.org/10.1088/1475-7516/2020/04/010
http://dx.doi.org/10.1088/1361-6382/abd7c2
http://dx.doi.org/10.1103/PhysRevD.95.123525


Universe 2021, 7, 216 36 of 36

178. Reichert, M. Towards a UV-Complete Standard Model: From Baryogenesis to Asymptotic Safety. Ph.D. Thesis, Heidelberg
University, Heidelberg, Germany, 2018. [CrossRef]

179. Boyd, J. Orthogonal rational functions on a semi-infinite interval. J. Comp. Phys. 1987, 70, 63–88. [CrossRef]
180. Boyd, J.P. Chebyshev and Fourier Spectral Methods, 2nd ed.; Dover Publications: Mignola , NY, USA, 2000.
181. Borchardt, J.; Knorr, B. Global solutions of functional fixed point equations via pseudospectral methods. Phys. Rev. 2015,

D91, 105011, Erratum: Phys. Rev. 2016, D93, 089904. [CrossRef]
182. Borchardt, J.; Knorr, B. Solving functional flow equations with pseudo-spectral methods. Phys. Rev. 2016, D94, 025027. [CrossRef]
183. Grossi, E.; Wink, N. Resolving phase transitions with Discontinuous Galerkin methods. arXiv 2019, arXiv:1903.09503.
184. Becker, D.; Ripken, C.; Saueressig, F. On avoiding Ostrogradski instabilities within Asymptotic Safety. J. High Energy Phys. 2017,

2017, 121. [CrossRef]
185. Draper, T.; Knorr, B.; Ripken, C.; Saueressig, F. Finite Quantum Gravity Amplitudes: No Strings Attached. Phys. Rev. Lett. 2020,

125, 181301. [CrossRef]
186. Draper, T.; Knorr, B.; Ripken, C.; Saueressig, F. Graviton-Mediated Scattering Amplitudes from the Quantum Effective Action. J.

High Energy Phys. 2020, 2020, 136. [CrossRef]
187. Codello, A.; Zanusso, O. On the non-local heat kernel expansion. J. Math. Phys. 2013, 54, 013513. [CrossRef]

http://dx.doi.org/10.11588/heidok.00024469
http://dx.doi.org/10.1016/0021-9991(87)90002-7
http://dx.doi.org/10.1103/PhysRevD.91.105011
http://dx.doi.org/10.1103/PhysRevD.94.025027
http://dx.doi.org/10.1007/JHEP12(2017)121
http://dx.doi.org/10.1103/PhysRevLett.125.181301
http://dx.doi.org/10.1007/JHEP11(2020)136
http://dx.doi.org/10.1063/1.4776234

	Introduction
	Functional Renormalisation Group
	Momentum Dependence in Quantum Gravity
	Fluctuation Approach
	General Structure of the RG Flows
	On the Relation between Form Factors and Anomalous Dimensions
	Momentum-Dependent Anomalous Dimension versus Wave Function Renormalisation

	Momentum-Dependent Fluctuation RG Flow: Analytical Structure
	Behaviour at Small Momentum
	Behaviour at Large Momentum
	Spin Two Sector
	Spin Zero Sector
	Ghost Sector

	Limit of Large Dimension
	The Flow for Positive gaps

	Momentum-Dependent Fluctuation RG Flow: Numerical Results
	Numerical Strategy
	Dimensional Dependence
	Gap Dependence
	Gauge Dependence
	Form Factors and the Derivative Expansion

	Momentum-Dependent Background RG Flow
	Comparing Background and Fluctuation Results
	Summary and Outlook
	Asymptotic Expansion of Form Factors
	Calculation of the Background form Factors Induced by GR
	Early Time Heat Kernel Expansion
	Some Integral Transformations in d = 4
	Trace Contribution of the Spin Zero Part
	Trace Contribution of the Ghost
	Trace Contribution of the Spin Two Part
	Background Flow Equations
	Fixed Point Structure

	References

