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Abstract: Recently, astronomy has witnessed great advancements in detectors and telescopes. Imag-
ing data collected by these instruments are organized into very large datasets that form data-oriented
astronomy. The imaging data contain many radio galaxies (RGs) that are interesting to astronomers.
However, considering that the scale of astronomical databases in the information age is extremely
large, a manual search of these galaxies is impractical given the need for manual labor. Therefore,
the ability to detect specific types of galaxies largely depends on computer algorithms. Applying
machine learning algorithms on large astronomical data sets can more effectively detect galaxies us-
ing photometric images. Astronomers are motivated to develop tools that can automatically analyze
massive imaging data, including developing an automatic morphological detection of specified radio
sources. Galaxy Zoo projects have generated great interest in visually classifying galaxy samples
using CNNSs. Banfield studied radio morphologies and host galaxies derived from visual inspection
in the Radio Galaxy Zoo project. However, there are relatively more studies on galaxy classification,
while there are fewer studies on galaxy detection. We develop a galaxy detection model, which
realizes the location and classification of Fanaroff-Riley class I (FR I) and Fanaroff-Riley class II
(FR II) galaxies. The field of target detection has also developed rapidly since the convolutional
neural network was proposed. You Only Look Once: Unified, Real-Time Object Detection (YOLO)
is a neural-network-based target detection model proposed by Redmon et al. We made several
improvements to the detection effect of dense galaxies based on the original YOLOv5, mainly in-
cluding the following. (1) We use Varifocal loss, whose function is to weigh positive and negative
samples asymmetrically and highlight the main sample of positive samples in the training phase.
(2) Our neural network model adds an attention mechanism for the convolution kernel so that the
feature extraction network can adjust the size of the receptive field dynamically in deep convolutional
neural networks. In this way, our model has good adaptability and effect for identifying galaxies
of different sizes on the picture. (3) We use empirical practices suitable for small target detection,
such as image segmentation and reducing the stride of the convolutional layers. Apart from the three
major contributions and novel points of the model, the thesis also included different data sources,
i.e., radio images and optical images, aiming at better classification performance and more accurate
positioning. We used optical image data from SDSS, radio image data from FIRST, and label data
from FR Is and FR IIs catalogs to create a data set of FR Is and FR IIs. Subsequently, we used the
data set to train our improved YOLOv5 model and finally realize the automatic classification and
detection of FR Is and FR IIs. Experimental results prove that our improved method achieves better
performance. mAP@Q.5 of our model reaches 82.3%, and the location (Ra and Dec) of the galaxies
can be identified more accurately. Our model has great astronomical significance. For example, it can
help astronomers find FR I and FR II galaxies to build a larger-scale galaxy catalog. Our detection
method can also be extended to other types of RGs. Thus, astronomers can locate the specific type of
galaxies in a considerably shorter time and with minimum human intervention, or it can be combined
with other observation data (spectrum and redshift) to explore other properties of the galaxies.
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1. Introduction

Extended RGs are traditionally classified according to the Fanaroff-Riley (FR) scheme [1]
as FRI and FRII sources. FR class I (FR I) and FR class II (FR II) are two types of RGs with
different morphologies. By examining the extended components of the source, the pattern
of the surface brightness with different brightness in various regions, we can identify
whether it is FR Is or FR IIs [2]. Within the two to half extent of the source of FR Is, small or
even no separation can be observed between the points with the highest peak intensities
(Figure 1). The regions of jets and core often have the highest level of surface brightness,
which is why we say that FR Is have an edge-darkened radio morphology [3]. FR II sources,
on the contrary, have separation that can be easily observed between the peak-intensity
points (Figure 2). Instead of having a bright region of jets and core, FR IIs have highlighted
edges with the highest surface brightness. Therefore, FR IIs have an edge-brightened radio
morphology [4]. Studying RGs according to their morphology can help us to understand
the galaxies’ formation, evolution, and subcomponents better [2]. Raouf et al. studied the
impact of the formation and evolution of radio jets on galaxy evolution [5]. Crotond et al.
studied AGN feedback using a high-resolution simulation of the growth of structure in
unprecedented detail [6]. Khosroshahi et al. studied the radio emission of the most massive
galaxies in a sample of dynamically relaxed and unrelaxed galaxy groups from the Galaxy
and Mass Assembly survey [7]. New radio observatories are generating massive imaging
data, and the manual inspection is time consuming [8]. The artificial neural network
model proposed by Gravet (2015) [9] is a very effective method to classify five types of
galaxies, namely a spheroid, a disk, presenting an irregularity, compact or point source,
and unclassifiable. Alhassan (2018) [2], using data from FRIST, developed a classifier for
Compact, BENT, FRI, and FRII galaxies using a well-trained deep convolutional neural
network model (DCNN). However, their approaches are to manually cut out the galaxies
of interest from large radio images and then classify RGs by image classification using
deep learning models. Cropping single galaxies manually is time consuming and labor
intensive; thus, this approach is evidently infeasible for a large number of imaging data.
The object detection model only needs to input the original imaging data from radio
observatories. Then, it can identify the objects of interest in the image and simultaneously
provide the object coordinates (Ra and Dec). Compared with the previous method (Gravet
2015, Alhassan 2018) [2], this approach is equivalent to using model automation instead
of manually cropping galaxy images. YOLO [10] is an object detection model that uses
deep neural networks. We designed an improved object detector based on the original
YOLOVS5 [10] and improved the robustness of the model by improving the problem of
small target detection. Experiments tested the model through the test set and verified that
the performance of the model is significantly better than the original YOLOv5 method. It
can achieve higher accuracy and robustness while ensuring the detection speed.

The main objective is to propose a model that automatically performs accurate and
robust position and classification prediction for FRI and FRII galaxies. Experimental results
show that our object detection model can effectively locate and classify FR I and FR II
galaxies. mAP@0.5 reached 82.3%. map[0.05, 0.95] reached 39.3%. The precision and recall
were 82.6% and 84.3%, respectively. Our model effectively improves the effect of galaxy
detection and classification compared with the original YOLOv5. Our neural network
model is developed using the PyTorch deep learning framework.

This paper is organized as follows. In Section 2, the data set is presented. Section 3
presents data preprocessing and augmentation. In Sections 4 and 5, the object detection
algorithm and our network architecture are described. Section 6 presents the model
performance evaluation in detail. In Section 7, we present our conclusions and future work.
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Figure 1. J0039-1032 J1053+4929 J0140+0018 J0152-0010 J1053+4929. Examples of radio morphologies
of FR Is. These images are drawn from 0.45 mJy/beam and increase in geometric progression at the
same ratio of /2.

(Jy/beam)

(Jy/beam)

Figure 2. J1102+2429 J1131+6047 J1620+4309 J1054+0606 J1102+2907. Examples of radio morphologies
of FR IIs. These images are drawn from 0.45 mJy/beam and increase in geometric progression at the
same ratio of v/2.

2. Radio Galaxy Catalog

We use two catalogs to construct our sample of radio sources. Both catalogs provide
the source coordinates and classification labels.

For FR Is, the FRICAT catalog by Capetti (2016) [3] is used. The catalog includes
data of the Sloan Digital Sky Survey [11], NRAO VLA Sky Survey (NVSS) [12], and Faint
Images of the Radio Sky at Twenty-Centimeters (FIRST) [13]. FRICAT includes 219 FR I
with redshifts <0.15 and an edge-darkened radio morphology with the radius extending
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larger than 30 kpc from the host. Capetti (2016) [3] investigated the information of radio
morphology and the possibility to create the catalog of FR Is selected based on the radio
and optical data with the name of FRICAT. We show image examples of FR I galaxies
(Figures 1 and 3) in SDSS and FIRST.

For FR IIs, we employed the FRIICAT catalog by Capetti (2017) [4]. FRIICAT includes
122 FR IIs with redshifts <0.15 and an edge-brightened radio morphology with at least one
of the emission peaks located at the radius r larger than 30 kpc from the center of the host.
The image examples of FR II galaxies in SDSS and FIRST are shown in Figures 2 and 4.

Figure 3. Image example of an FR I in SDSS and in FIRST.

-

Figure 4. Image example of an FR II galaxy in SDSS and in FIRST.

3. Image Preprocessing and Data Augmentation

By detecting the source at 1.4 GHz with a resolution of 5 arcseconds and a sensitivity
of 1 mJy/bm, nearly one-fourth of the sky was mapped in the FIRST survey [13], of which
two areas, the northern area and the southern area, were coincidently covered by the areas
detected in another survey, The Sloan Digital Sky Survey [11] (SDSS). SDSS [11] has created
the most detailed 3D maps of the universe with deep multicolor images of one-third of
the sky. All data are publicly available and can be downloaded!. After downloading the
images, we performed image preprocessing and data augmentation. Image data from
FIRST were first saved as PNG files [2], then we used the image denoising method of
Aniyan and Thorat (2017) [14] for both FIRST data and SDSS data. We deleted, i.e., set all
pixel values below 3 ¢ from the median to zero to eliminate background noise, meaning that
all values within the range [median-3 ¢, median+3 o] were shrunken into zero; therefore,
the contribution of the source was highlighted, and the unwanted background noise
was removed. Then, we generated artificial images by flipping and rotating to generate
sufficient data to train our model due to the small number of labeled images. We adopted
a method similar to Alhassan (2018) [2], where each marked image is randomly rotated by
an angle and then flipped along the x-axis to generate an artificial image. In addition, in
the process of random rotation of the image, we used bilinear interpolation to avoid holes.
After the picture was randomly rotated, we discarded the image wherein the target turned
out of the canvas because the picture did not contain the target we were interested in. This
situation is shown in Figure 5. Flip and rotate do not increase the topological information
in the data but change the orientation of the object significantly.
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Figure 5. The image before random rotation, and the image after random rotation. In this case, the
galaxy of interest is rotated out, so this picture needs to be discarded. Images before and after random
rotation. In this case, the galaxy of interest is rotated out, so this picture needs to be discarded. To
provide a clear description, we deliberately marked the galaxies of interest in green in this picture.

4. Object Detection

The task of object detection is not only to provide the class information of the target to
be detected but also to give the position of the target in the image and surround it with the
smallest rectangular frame; that is, to achieve the target of classification and positioning.
YOLO [10] is an object detection model built with deep neural networks. It was originally
used in the COCO data set to detect and classify birds, cats, dogs, horses, sheep, cows,
elephants, etc. YOLO has now experienced the development from v1 to v5. Compared
with the four previous versions, the YOLOv5 network model has the advantages of small
size, fast speed, and high accuracy. Fast R-CNN [15], Faster R-CNN [16], YOLO [10], and
SSD [17] have appeared in the field of object detection. Among them, the YOLO algorithm
belongs to the end-to-end detection framework. YOLO treats object detection as regression
problem solving by using a single end-to-end network so that it can complete the input
from the original image to the output of the target position at one time. Its detection
performance can achieve real-time processing, which is very suitable for such a large
amount of imaging data. Therefore, the YOLO algorithm can be used there to deal with
this task and as a baseline of our method. The neural network structure of the YOLOvV5
model is shown in Figure 6, wherein each square represents a convolution module formed
by stacking several convolution networks. The YOLO algorithm divides the input image
into NxN grids, and the grid at the center of the target is responsible for this target. Each
candidate box can predict five quantities: x, y, w, h, and 1. (x, y) represents the coordinates
of the target center point (that is, the center of the galaxy); (w, h) represents the width and
height of the box, respectively; 1 (class) represents the class of the target. To predict these
five values at once, the loss function of the YOLOv5 model contains two parts: one part
is classification loss, and the other part is regression loss. Among them, the classification
loss of the original YOLOV5 is Focal loss, the regression loss of the original YOLOVS5 is
Intersection over Union (IOU) loss [10].

Intersection over Union (IOU) = W @D

As mentioned above, the YOLO algorithm has a smaller number of calculations, faster
speed, and higher accuracy. However, certain bottlenecks are still encountered in the
detection of small targets, such as RGs. In this regard, Varifocal loss is used instead of the

1
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Focal loss in the original YOLOVS5 to improve this shortcoming. After training with the
data set, our model gained the strong ability to locate and classify galaxies.
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Figure 6. The neural network structure of the original YOLOv5 model [18]. Each rectangle or

trapezoid represents a module that is encapsulated by several connected single-layer neural networks.
Among them, the CSP neural network module performs three convolutions on the feature map and
then uses four different scales of max pooling for processing. The kernel sizes are 13 x 13,9 x 9,5 x 5,
and 1 x 1 pixels. They are used to catch the most significant contextual features. The convolutional
neural network module is an encapsulated convolution module that includes convolution, activation,
and pool operation, whose main function is to extract image features.

5. Our Method

In the radio images, a single galaxy occupies very few pixels in the entire image. The
so-called small target has an imaging area of fewer than 80 pixels in a 256 x 256 image
based on the definition of the International Society for Optical Engineering. According
to this definition, the galaxy can be regarded as a small target in radio images, and this
work is a small target detection task. The same situation is faced in optical images. Small
targets occupy fewer pixels in the image, the resolution is lower, and the ability to express
features is weaker than the conventional size targets. At present, many research directions
and related algorithms are available for small target detection tasks, such as presenting
attention mechanisms, generating super-resolution feature representation, introducing
context information, and processing differences in data sets [19]. Based on these ideas, we
made improvements to the original YOLOVS5 target detection model that are suitable for
small target detection tasks.

First, in our model, the original Focal loss function [20] is replaced with the Varifocal
loss function designed by Zhang (2021) [21].

Focal loss, as the name suggests, distinguishes between samples that are difficult to
classify and samples that are easy to classify. Focal loss focuses on samples that are difficult
to classify, thereby reducing the weight of samples that are easy to classify in the model
learning stage. The formula is expressed as:

_ [ —a(1—p)"log(p) ify =1
FL(p,y) = { —(1—a)pTlog(l—p) otherwise M

where p is the classification score, and r is a hyperparameter. The larger the value, the more
obvious the distinction between difficult and easy samples. If 7 is set to 0, then the Focal
loss function degenerates into cross-entropy loss.
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The new loss function we used is called Varifocal loss, which is expressed as:

VFL(p,q) = { :Z%lloig((pl)j—;f)l —q)log(1—p)) Zig )

where p is the predicted lou-aware classification score (IACS) [21], and g is the IOU
score [21] between its ground truth (actual category labels and accurate location in reality)
and the generated bounding box. Thus, the training can focus on those high-quality
samples. « and -y are hyperparameters. « is an adjustable scaling factor to balance the
losses between positive and negative examples, and 0 < a < 1. Thus, the training can
avoid focusing on negative examples. The model can judge and weigh between difficult
and easy samples and can ultimately reduce the loss contribution of easy samples because
0 <p <1, and v is usually set greater than 1.

Second, we also added the attention mechanism, which provides the model the
importance of distinguishing information during training and focuses on the more relevant
part of the image features according to training needs. Neural network scientists apply this
mechanism, which is similar to the human visual selection mechanism, to neural networks.
The attention mechanism will enable it to make targeted selections when extracting the
features of the input samples and assign higher weights to the features that are beneficial
to the training of the network model. Features that do not affect the performance of the
network model or are even unfavorable for network training are assigned lower weights.
The SKnet module [22] used in this paper is the attention mechanism for the convolution
kernel. In addition, the attention mechanism includes the attention mechanisms for the
space and the channel. SKnet [22] is inspired by the instance wherein the size of the human
receptive field of visual cortex neurons is adjusted according to the stimulus when looking
at objects of different sizes. Therefore, SKnet realizes that if the galaxy of interest in the
picture is relatively large (occupying more pixels), then the neural network convolution
layer will be more inclined to select a larger convolution kernel (for larger convolution
kernel convolution). The feature map obtained by the product is assigned a higher weight.
If the galaxy is relatively small, then the neural network convolution layer will be more
inclined to opt for a smaller convolution kernel (feature obtained by convolution of the
smaller convolution kernel map assigns a higher weight). This mechanism is called the
attention mechanism for the convolution kernel because it adaptively adjusts the size of the
convolution kernel according to the input. The SKConv module in our model is added with
SKnet [22]; thus, each neuron automatically adjusts the receptive field [23] according to the
input image and integrates shallow and deep features, thereby considerably improving
the accuracy of our galaxy detection model. The structure diagram of SKnet is shown in
Figure 7.

The SKConv module enables each neuron to adjust the receptive field automatically
according to the input information. The neural network structure of our model is shown in
Figure 8.

Third, the shallow feature map in the neural network contains rich, detailed informa-
tion, which is more conducive to detecting small targets. Therefore, our model adopts the
method of Ju et al. [24], decreases the number of pooling layers to avoid downsampling,
and uses a shallower convolutional network. In addition, our model refers to the method
of van Etten et al. [25]. We reduced the stride of the convolutional layer to allow our model
to become more conducive to small target detection. Furthermore, we used the method in
the YOLT algorithm [25] to divide large-resolution images equally and set the overlap area
(to prevent some targets from being segmented and truncated); then, we input them into
the neural network. The process from input to output is shown in Figure 9.
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Figure 7. Structural diagram of SKnet. The stacked rectangles represent the feature map, and the
feature map refers to the output of each layer in the neural network. The unique function of SKnet,
the dynamic adjustment of the receptive field, is achieved through three steps: split, fuse, and select.
Split refers to the convolution operation with small- and big-sized kernels performed on the input
feature map. Fuse refers to the global average pooling operation (global average pooling neural
network layer) and fully connected operation (fully connected neural network layer) on the feature
map to obtain global information and then embed the global information into a vector. In the select
stage, the a and b vectors are used as the weights of the upper and lower branches, and multiplication
is performed to achieve the weighting of the upper and lower feature maps. Then, the feature maps
of the last two branches are added together and outputted to the next network layer.

Next
conv blocks

Previous
conv blocks

@~ ST - 8-

Figure 8. Neural network structure of SKConv section. The comparison of Figures 6 and 8 shows that
we added SKConv to our model. SKConv includes the attention mechanism SKnet. The Conv, SPP,
and Concat modules are originally available in the original YOLOvV5 and represent the convolutional
modules stacked up by convolutional neural networks for feature extraction.
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Figure 9. This illustration represents the whole process; that is, from input to image preprocessing
to target detection model to output. We train our improved YOLOv5 models on the SDSS data and
FIRST data separately. In this way, we obtain two models, namely the galaxy detection model based
on the improved YOLOV5 using radio image data and the galaxy detection model based on the
improved YOLOV5 using optical image data. This method as shown in the figure allows us to obtain
more accurate positioning and more precise classification when detecting galaxies.
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6. Experiment and Results
6.1. Metrics and Quantitative Experimental Results

To assess how accurately the model can predict the classes and locations of different
morphology galaxies, the precision (P), recall (R), and mAP@0.5 were calculated using
the test data set based on the number of true-positive (TP), false-positive (FP), and false-
negative (FN) detection, as given below:

TP
Recall - m (3)

« . _ TP
Precision = TPTEP

where

(i) TP means that when we predict the source as FRII and it is FRII in fact. It also satisfies
that the IOUs of the prediction box and the ground truth box are greater than 0.5.

(ii) FP means that when we predict the source as FRII but it is not FRII in fact. It also
satisfies that the IOUs of the prediction box and the ground truth box are less than 0.5.

(iii) FN means that when we predict the source as not FRII but it is FRII in fact. It also
satisfies that the IOUs of the prediction box and the ground truth box are greater
than 0.5.

P in AP and in mAP@0.5 stands for Precision. AP is the abbreviation of average preci-
sion, which refers to the accuracy rate of a single class label. mAP@0.5 is the abbreviation
of mean average precision, which corresponds to the mean of average precision of all
classes. The mAP@0.5 in the target detection is calculated as follows. For the samples in
the test set, if the IOU of the prediction box and the ground truth box is greater than 0.5,
then the two boxes match. On this basis, the samples whose prediction scores outputted in
the upper right corner of the box are greater than the threshold are predicted as positive
samples (marked with boxes in the figure). Precision and recall at this time can be calcu-
lated according to Formula (4). Different positive samples can be obtained by adjusting
the threshold so that different (P, R) values can be calculated. The precision-recall curve
(P-R curve) is utilized to trace these (P R) points in the coordinate system and connect them
into a line. The area under a P-R curve that corresponds to each class is defined as the
AP of this class, and the average value of AP of all classes is taken to obtain mAP@0.5.
map[0.5:0.95], which is the mean when the threshold of IOU is set to 0.5, 0.55, 0.6, 0.65,
0.7,0.75,0.8,0.85, 0.9, and 0.95. On a target detection task, the most important and most
scientific indicator is mAP [26] (that is, the area under the all-classes P-R curve). Thus, if
the all-classes P-R curve of a model wraps the all-classes P-R curve of the original model
completely, then the model is better than the original one. In the figure, our model is
better than the original model. map[0.5:0.95] is an evaluation index that necessitates higher
requirements for the position of the prediction frame. map[0.5:0.95] of our model is larger
than the original model, indicating that our model predicts the position of the galaxy more
accurately. Figure 10 shows our P-R curve on the original YOLOv5 and our improved
model.
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Figure 10. P-R curve of the original YOLOv5 and P-R curve of our model. In object detection that
needs to recognize multiple classes, each class draws a curve, whose abscissa and ordinate are recall
and precision, respectively. The blue curve represents the P-R curve of all types, and the area under
this curve is the most commonly used index for the evaluation of target detection, mAP.

Table 1 shows mAP, precision, and recall of two models. Table 2 shows the hyperpa-
rameters used to train our model. The effects of our galaxy detection model are shown in
Figures 11 and 12.

Table 1. mAP, accuracy, and recall of YOLOv5 and our model.

Method map@0.5 map[0.5:0.95] Precision Recall
Yolov5 74.8 35.1 781 80.5
Our Model 82.3 39.3 82.6 84.3

Table 2. Hyperparameters used to train our model.

Hyperparameters Values
Batch Size 16
Dropout Rate 0.5

Epochs 400
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Figure 11. Ground truth of samples in SDSS and FIRST images.
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Figure 12. Predicted samples in SDSS and FIRST images. The prediction box is drawn on the basis of
the values of X, y, w, and h predicted by our neural network model. The string and decimal in the
upper right corner of each prediction box is the predicted class and confidence score. The closer the
score is to 1, the closer the prediction is to the ground truth.

6.2. Results and Effects

In order to evaluate the effectiveness of our improved object detection model in
comparison with the ground truth, we selected random FR I and FR II galaxy image
samples detected by our improved object detection model, as shown in Table 3. These
samples show that our model is very accurate in positioning and has achieved good results
in classification. It can be applied to the pipeline of the data processing of survey telescopes.
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Table 3. Comparison between our model predictions and the ground truth of some samples.

Course Ground Truth Model Prediction
Ra (deg) Dec (deg) True Class Predicted Ra  Predicted Dec Predicted Class
(deg) (deg)
» 119.06145833 50.36669444 FRII 119.061458 50.366694 FRII
FRII 0.68 .
FRIl 0.74
; 145.36895833 39.69252778 FRII 145.368958 39.692528 FRII
162.80454167 39.98833333 FRII 162.804542 39.988333 FRII
F-RII 0.45
181.92404167 33.80716666 FRII 181.924041 33.807166 FRII
F.Rll 0.84
224.48295833 28.49813889 FRII 224.482958 28.498139 FRII
115.37591666 48.07438889 FR1I 115.375917 48.074389 FRI
124.04991667 43.04966667 FR1I 124.049916 43.049667 FRI
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Table 3. Cont.

Course Ground Truth Model Prediction
Ra (deg) Dec (deg) True Class Predicted Ra  Predicted Dec Predicted Class
(deg) (deg)
124.72800000 4.05211111 FRI 124.728000 4.052111 FRI
242.10225000 37.65530556 FRI 242.102250 37.655306 FR1I
247.02729167 8.69638889 FRI 247.027291 8.696389 FRI

7. Conclusions

Automatic detection of specified objects is greatly required in upcoming massive RG
images. We propose an improved galaxy detection model based on YOLOVS5 to automati-
cally locate and classify the FR I and FR II RGs. This is a great convenience for discovering
and measuring their positions, exploring their laws of motion, and studying their physical
properties, chemical composition, internal structure, and their evolutionary laws. Innova-
tions and improvements in three aspects result in considerable performance improvement
to the original YOLOVS5. In addition, our model has achieved good experimental results,
proving the accuracy and robustness of our method. In the future, we will improve the
model’s ability to obtain detailed information from galaxy images and further improve
the accuracy of classification and positioning. We will also expand the data set so that the
model can classify and locate more types of galaxies (such as BENT and Compact).
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