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Abstract: Superinsulators (SI) are a new topological state of matter, predicted by our collaboration
and experimentally observed in the critical vicinity of the superconductor-insulator transition (SIT).
SI are dual to superconductors and realise electric-magnetic (S)-duality. The effective field theory
that describes this topological phase of matter is governed by a compact Chern-Simons in (2+1)
dimensions and a compact BF term in (3+1) dimensions. While in a superconductor the condensate
of Cooper pairs generates the Meissner effect, which constricts the magnetic field lines penetrating
a type II superconductor into Abrikosov vortices, in superinsulators Cooper pairs are linearly
bound by electric fields squeezed into strings (dual Meissner effect) by a monopole condensate.
Magnetic monopoles, while elusive as elementary particles, exist in certain materials in the form of
emergent quasiparticle excitations. We demonstrate that at low temperatures magnetic monopoles
can form a quantum Bose condensate (plasma in (2+1) dimensions) dual to the charge condensate in
superconductors. The monopole Bose condensate manifests as a superinsulating state with infinite
resistance, dual to superconductivity. The monopole supercurrents result in the electric analogue of
the Meissner effect and lead to linear confinement of the Cooper pairs by Polyakov electric strings in
analogy to quarks in hadrons. Superinsulators realise thus one of the mechanism proposed to explain
confinement in QCD. Moreover, the string mechanism of confinement implies asymptotic freedom at
the IR fixed point. We predict thus for superinsulators a metallic-like low temperature behaviour
when samples are smaller than the string scale. This has been experimentally confirmed. We predict
that an oblique version of SI is realised as the pseudogap state of high-TC superconductors.

Keywords: monopoles; confinement; topological interactions

1. Introduction

Although extremely successful in describing many aspects of particle physics, the stan-
dard model does not explain the mechanism of confinement that binds quarks into hadrons.
In 1978, in a Gedanken experiment for quark confinement [1] ’t Hooft introduced the idea
of a dual superconductor in which, in analogy to the Meissner effect, chromo-electric fields
would be squeezed into thin flux tubes with quarks at their ends in a condensate of mag-
netic monopoles. When quarks are pulled apart, it is energetically favourable to pull out of
the vacuum additional quark-antiquark pairs and to form several short strings instead of a
long string. As a consequence, colour charge can never be observed at distances above a
fundamental length scale, 1/ΛQCD and quarks are confined. Only colour-neutral hadron
jets can be observed in collider events. In this phase, that he called the “extreme opposite”
of a superconductor, there is zero quark mobility and, thus, an infinite chromo-electric
resistance. He, hence, called this phase a “superinsulator”.

In condensed matter, superinsulation emerges in materials that have Cooper pairs
and vortices as relevant degrees of freedom. It was originally predicted for Josephson
junction arrays (JJA) [2] and then experimentally found in InO superconducting films [3],
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in Tin films [4,5] and NbTiN films [6]. Superinsulations emerge in all these systems at the
insulating side of the superconductor-insulator transition (SIT). The SIT and the nature
of the phases that it harbours is determined by the competition between two quantum
orders embodied in the topological interactions between charges and vortices (Aharonov-
Bohm/Aharonov-Casher (ABC)) and is, thus, a realisation of the field-theoretical Man-
delstam’t Hooft S-duality [1,7] in a material. A local formulation of such topological
interactions requires the introduction of two emergent gauge fields aµ and bµ (a tensor
field bµν in (3+1) dimensions) coupled to the conserved charge and vortex currents, respec-
tively. The effective field theory that describes this topological phase of matter is a mixed
Chern-Simons (CS) field theory in (2+1) dimensions and a BF theory in (3+1) dimensions.

Superinsulators are characterised by an infinite resistance that persists at finite temper-
atures: charges cannot move even if a voltage (below a critical threshold) is applied. This
infinite resistance is due to linear confinement of charges [8] in a condensate of magnetic
monopoles (instanton plasma in (2+1) dimensions). This confining mechanism is exactly
the mechanism that is realised in compact QED, [9,10], the simplest example of a strongly
coupled gauge theory with a massive photon and linear confinement of charges: the vortex
Bose condensate constricts electric fields into electric flux tubes that bind Cooper pairs and
anti-Copper pairs (Figure 1). The superinsulating state is nothing else than a plasma of
magnetic monopoles (instantons) since, in a condensate, vortex number is not conserved.
In (3+1), dimensions vortices can be viewed as magnetic filaments connecting magnetic
monopoles at their ends [10]. In this one-color version of quantum chromodynamics (QCD)
Cooper pairs play the role of quarks.
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Figure 1. Dual Mandelstam’t Hooft–Polyakov confinement. From top to bottom: quark confinement
by chromo-electric strings; magnetic tube (Abrikosov vortex) that forms in a superconductor between
two magnetic monopoles; electric string that forms in a superinsulator between the Cooper pair and
anti-Cooper pair. The lines are the force lines for magnetic and electric fields respectively. In all
cases the energy of the string (the binding energy) is proportional to the distance between either the
monopoles or the charges.

Although the search of magnetic monopoles has been the object of years of efforts [11],
they are elusive as elementary particles. In the materials that exhibit superinsulations,
instead, magnetic monopoles are present in the form of emergent quasiparticle excitations
realising the electric–magnetic symmetry. They behave as quantum particles and at low
temperatures, they form a quantum Bose condensate dual to the charge condensate in
superconductors. Their supercurrents cause the electric analogue of the Meissner effect
and lead to linear confinement of the Cooper pairs [8,12–14]. Magnetic monopoles play,
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thus, a crucial role in the formation and properties of the superinsulating state. As we will
show below, this phase is a phase in which vortex strings with magnetic monopoles at
their the endpoints become loose and confine charges. On the contrary, appreciable vortex
tension implies that vortices are short and confines monopoles in small dipoles, as shown
in Figure 2. Charges are thus liberated.
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Figure 2. Magnetic monopole states at low temperatures. (a) Monopoles are confined into small
dipoles by the tension of vortices connecting them. (b) As the tension vanishes, vortices become
loose and magnetic monopoles at their endpoints condense.

A salient feature of QCD is asymptotic freedom, the weakening of the interaction
coupling strength at short distances (ultraviolet (UV) limit). At large distances (infrared (IR)
limit), the quarks are thought to be confined within hadrons, which are physical observable
excitations, by the QCD strings. Quarks themselves cannot be extracted from hadrons
and be seen in isolation. The mechanism for the transition from weak quark interactions
in the UV regime to confinement and strings in the IR regime remains an open issue.
Confinement by strong interactions prevents a direct view on quarks despite that they
move nearly free at the small scales. As we will show below, superinsulators, instead, allow
for a direct observation of the interior of electric mesons made of Cooper pairs by standard
transport measurements. We reveal the transition from the confined to the asymptotic
free Cooper pair motion upon decreasing the distance between electrodes, modelling the
observation scale.

Pure gauge compact QED in 2D, with only closed string excitations [15] is not re-
normalisable. However, coupling the action to dynamical matter results in a non-trivial
fixed point [16]. The same occurs in our case: deep non-relativistic compact QED is
induced by an underlying matter dynamics from which it inherits the corresponding
Berezinskii-Kosterlitz-Thouless (BKT) [17–19] fixed point separating an integer topolog-
ical phase, [20–22] from a confined phase. The CS mass sets the gap for the topological
phase, [20–22], that corresponds to a functional first Landau level and consists of an in-
tertwined incompressible fluid of charges and vortices. The confined phase, instead, is
a highly entangled vortex condensate in which charges are linearly bound. As we will
show below, the effective coupling of the theory will thus flows to small values in the UV
limit, and the induced compact QED2 becomes asymptotically free (the theory is actually
asymptotically safe, since the critical point is at a finite value of the coupling different from
zero but we will use the more familiar term for simplicity’s sake here), the BKT transition
representing the infrared (IR) confining fixed point.

The review is organised like this. In Section 1, we present the effective gauge theories
description of the SIT in (2+1) dimensions and show how the BKT transition arises. We
then derive the phase diagram. In Section 2, we will discuss the characteristics of the
superinsulating phase, computing the string tensions for the electric strings that bind the
Cooper pairs and show how the asymptotic free regime arises. We then generalised the
model of the SIT to the (3+1)-dimensional case in Section 3 and compute the phase diagram
that essentially coincides with the one in one dimension less. In Section 4, we discuss
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the characteristic of the superinsulating phase and show that also in (3+1) dimensions
this is a confinement phase in which Cooper pairs are bounded by electric flux tubes in a
condensate of magnetic monopole. Section 5 is devoted to conclusions.

2. 2+1 Dimensions

We will use natural units c = 1, h̄ = 1 , ε0 = 1 but restore physical units when
necessary. The infinite-range ABC interaction, embodying the quantum phase acquired
either by a charge encircling a vortex or by a vortex encircling a charge, dominates the
structure of the critical vicinity of the SIT. The world-lines of elementary charges and
vortices are described by:

Qµ = ∑i
∫

x(i)q
dτ

dx(i)qµ(τ)

dτ δ3
(

x− x(i)q (τ)
)

,

Mµ = ∑i
∫

x(i)m
dτ

dx(i)mµ(τ)
dτ δ3

(
x− x(i)m (τ)

)
,

(1)

where the index i labels the elementary charges and vortices, parametrized by the coor-
dinates x(i)q and x(i)m , respectively, n is the dimensionless charge ( in our case n = 2 to
describes Cooper pairs), and Greek subscripts run over the Euclidean three dimensional
space encompassing the 2D space coordinates and the Wick rotated time coordinate. ABC
phases are encoded in the Gauss linking number between the two curves (1):

Slinking = i
∫

d3xQµεµαν
∂α

−∇2 Mν , (2)

where εµαν is the completely antisymmetric tensor. To ensure a local formulation of the
action (2), one introduces two emergent gauge fields, aµ and bµ mediating ABC interactions
and the topological part of the action takes the form

SCS =
∫

d3x
[

i
n

2π
aµεµαν∂αbν + i

√
naµQµ + i

√
nbµ Mµ

]
. (3)

Equation (3) defines the mixed Chern-Simons (CS) action [23–25] and represents the
local formulation of the topological interactions between charges and vortices. Since it
contains only one field derivative, it is the dominant contribution to the action at long
distances and it is invariant under the gauge transformations aµ → aµ + ∂µλ and bµ → bµ +
∂µχ, reflecting the conservation of the charge and vortex numbers. In this representation
jµ = (

√
n/2π)εµαν∂αbµ and φµ = (

√
n/2π)εµαν∂αaµ are the continuous charge and vortex

number current fluctuations, while Qµ and Mµ stand for integer point charges and vortices.
The CS kernel has a zero mode [23–25] and needs a regularisation. To this end we will

use the next-order terms in the effective action of the SIT that contain two field derivatives
and that are gauge invariant. Introducing the dual field strengths fµ = εµαν∂αbµ and
gµ = εµαν∂αaµ and setting n = 2 for Cooper pairs, we obtain the action

S2D =
∫

d3x i 1
π aµεµαν∂αbν +

1
2e2

vµ
f 2
0 + ε

2e2
v

f 2
i + 1

2e2
qµ

g2
0 +

ε
2e2

q
g2

i + i
√

2aµQµ + i
√

2bµ Mµ , (4)

where f0 and g0 are the magnetic fields, fi and gi the electric fields and µ is the magnetic
permeability and ε is the electric permittivity which define the speed of light v = 1/

√
µε in

the material. The two coupling constants e2
q and e2

v have canonical dimension [1/length]
so, naively the two kinetic terms are infrared-irrelevant. However they are necessary
to correctly define the pure CS limit in which the topological mass m = eqev/2πv =
O(1/vλL) → ∞ [26,27], where λL is the London penetration depth in the bulk material.
With the two energy scales e2

q and e2
v we can define a dimensionless coupling constant

g = ev/eq = O(d/(αλL)), where d is the thickness of the film and α = e2/4π is the fine
structure constant. g plays the role of the conductance in materials. The electric-magnetic
duality (charge–vortex symmetry) is given by the action symmetry with respect to the
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transformation g ≡ ev/eq ↔ 1/g. Thus, g is a tuning parameter driving the system across
the SIT, and the SIT itself corresponds to g = gc = 1.

To describe the linking number the two compact emergent gauge fields must be
compact. To formulate U(1) symmetries we will use a lattice regularisation introducing
a lattice of spacing `. This is not entirely trivial, however, since particular care has to
be exercised in the definition of the lattice CS term so that discrete gauge invariance is
maintained [2]. To this end we introduce the forward and backward derivatives and
shift operators

dµ f (x) = f (x+`µ̂)− f (x)
` , Sµ f (x) = f (x + `µ̂) ,

d̂µ f (x) = f (x)− f (x+`µ̂)
` , Ŝµ f (x) = f (x− `µ̂) .

(5)

We also introduce forward and backward finite differences:

∆µ f (x) = f (x + `µ̂)− f (x) ; ∆̂µ f (x) = f (x)− f (x + `µ̂) . (6)

Summation by parts on the lattice interchanges both the two derivatives (with a
minus sign) and the two shift operators. Gauge transformations are defined by using
the forward lattice derivative. In terms of these operators one can then define two lattice
Chern-Simons terms

kµν = Sµεµανdα , k̂µν = εµανd̂αŜν , (7)

where no summation is implied over equal indices. Summation by parts on the lattice
interchanges also these two operators (without any minus sign). Gauge invariance is then
guaranteed by the relations

kµαdν = d̂µkαν = 0 , k̂µνdν = d̂µ k̂µν = 0 . (8)

Note that the product of the two Chern-Simons terms gives the lattice Maxwell operator

kµα k̂αν = k̂µαkαν = −δµν∇2 + dµd̂ν , (9)

where ∇2 = d̂µdµ is the 3D Laplace operator.
Integrating out the fictitious gauge fields we obtain an action for the topological

excitations alone:

Stop = ∑x v2 e2
q
` Qµ

1
v4m2−d0 d̂0−v2∇2

2
Qµ + v2 e2

v
` Mµ

1
v4m2−d0 d̂0−v2∇2

2
Mµ

+i 2πv6m2

` Qµ
kµν

(d0 d̂0+v2∇2
2)(v

4m2−d0 d̂0−v2∇2
2)

Mµ ,
(10)

where ∇2 is the 2D spatial Laplacian. The third term in this action describes the lattice
version of the topological linking of electric and magnetic strings of width 1/(vm)2 and,
due to the Dirac quantization condition, at large distances, it reduces to an integer. We will
thus drop this term.

The phase diagram is determined by the condensation (or lack thereof) of topological
defects. The conditions for the condensation are derived using the standard free energy
arguments [28]: the action of the Euclidean field theory model plays the same role as the
energy and quantum corrections to the classical action play the same role as the entropy in
an equivalent statistical mechanics model in one additional spatial dimension. The ground
state of the quantum model corresponds to the minimum of its free energy. Following the
standard lattice gauge field theory arguments of [29] we retain only the self-interaction
terms in (10)
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Stop = 2πm`vG(m`v)
[

eq

ev
Q2 +

ev

eq
M2
]

N , (11)

where G(m`v) is proportional to the diagonal element of the lattice kernel G(m`v, x− y)
representing the inverse of the operator (`2/v2)(m2

Tv4 − d0d̂0 − v2∇2
2) and we consider

strings made of N bonds with integer electric and magnetic quantum numbers Q and
M. We assign to strings an entropy proportional to their length, being given by µN with
µ ≈ ln(5) since, at each step, the non-backtracking strings can choose among 5 possible
directions on how to continue. The main contribution to the free energy is thus:

F = 2πm`vG(m`v)
[

eq

ev
Q2 +

ev

eq
M2 − 1

η

]
N , (12)

with the dimensionless parameter η given by:

η =
2πm`vG(m`v)

µ
, (13)

which, together with the ratio g = ev/eq fully determines the quantum phase structure.
When the energy term in (12) dominates, the free energy is positive and minimized

by short closed loop configurations while, when the entropy dominates, the free energy
is negative and minimised by large strings and long closed loops giving the following
condensation conditions for long strings with integer quantum numbers Q and M:

η
eq

ev
Q2 + η

ev

eq
M2 < 1 . (14)

If two or more condensations are allowed, one has to choose the one with the lowest
free energy. This condition describes the interior of an ellipse with semi-axes

rQ =
√

ev
eq

√
1
η ,

rM =
√

eq
ev

√
1
η ,

(15)

on a square lattice of integer electric and magnetic charges. The ratio g = ev/eq deter-
mines the ratio of the semi-axes while the parameter η sets the overall scale of the ellipse.
The quantum phase diagram is found by noting which integer charges lie within the ellipse
when the semi-axes and the overall scale are varied:

η < 1→
{

g > 1 , electric condensation = superconductor ,
g < 1 , magnetic condensation = superinsulator ,

η > 1→


g > η , electric condensation = superconductor ,
η > g > 1

η , no condensation = Bose metal = topologicalinsulator ,

g < 1
η , magnetic condensation = superinsulator .

The phase structure is shown in Figure 3.
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Figure 3. The quantum phase diagram of the SIT as a function of the coupling constant g. The point
g = 1, η = 1 is a tricritical point dominating the phase structure.

A detailed description of all these possible phases can be found in [8,30]. In what
follows we will concentrate on the superinsulating phase.

3. Superinsulating Phase

To understand the nature of the superinsulating state, we couple the charge current jµ
to the physical electromagnetic gauge field Aµ by adding to the action the minimal coupling
term 2eAµ jµ and set Qµ = 0, since charges are dilute, in (4). The effective action Seff(Aµ),
which gives the electromagnetic response of an ensemble of charges in a superinsulator, is
obtained by integrating out the gauge fields aµ and bµ, and summing over the condensed
vortices Mµ. The action we obtain is the deep non-relativistic version of Polyakov’s compact
QED action [10] in which only the electric fields survive

Stop
(

Mµ, Aµ

)
= ∑

x,i

1
2e2

eff
(Fi + 2πMi)

2 , (16)

where e2
eff is the effective coupling constant

e2
eff =

2π2

µ

1
ηg

= e2 π

2µη

λL
d

= e2O
(

λL
d

)
. (17)

The partition function that we obtain is:

Z = Z0 · Zinst. =
∫ +∞

−∞
DAµ e

− 1
2e2

eff
∑x,i Fi

2

· ∑
{m}

e
− 2π2

e2
eff

∑x m 1
−∇2

2
m

, (18)

where ∇2
2 is the spatial Laplacian instead of the full Laplacian in 3D Euclidean space-time

present in the relativistic version of the model. As we will see, this difference has important
consequences on the model since the interaction of the monopoles near the SIT, in this case,
is logarithmic, (e2

eff/2π)ln|x|, instead of an inverse linear power of the relativistic model.
The deep non-relativistic limit does not affect, however, the main consequence of

Polyakov’s original idea [10]: the physics of a superinsulator is governed by the sponta-
neous proliferation of instantons M = d0M0 + di Mi, corresponding to magnetic monopoles,
so that the vortex number is not conserved in the condensate. These instantons represent
quantum tunnelling events by which vortex fluctuations appear and disappear in the
condensate. Then, in a mirror analogue to the monopole confinement, i.e., formation of
Abrikosov vortices as a result of the Meissner effect in a Cooper pair condensate, the mag-
netic monopole condensation leads to a dual phenomenon, the emergence of the electric
strings [10] mediating confinement of Cooper pairs in superinsulators.
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The deep non-relativistic limit plays a crucial role in the shape of the monopoles.
The gauge invariance of the bµ fields force the constraint dµ Mµ = 0 that is satisfied by
choosing di Mi = m and consequently dt M0 = −m. m represents instanton quantum
tunnelling events in which vortices on the film appear and disappear and their magnetic
flux flows in and out isotropically in the four available spatial directions, as it is shown
in Figure 4. Another important effects of instantons is that they disorder the system and
generate a mass for the photon given by [10]

mγ =
8π2

e2
eff

z , (19)

rendering thus the Coulomb potential screened with a a screening length λel = 1/mγ.

!"

"/!

"/!

"/!

"/!

Eu
cli
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 ti
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JJA plane

ℓ$

				2D	film	

Figure 4. A non-relativistic magnetic monopole instanton representing a quantum tunnelling event
in which a fundamental vortex of flux 2π at time t is divided up into four fluxes π/2 that flow out
isotropically in the spatial directions. At the next instant t + `0 there is no vortex on the film anymore.
For simplicity the condensate islands are represented schematically as in a regular array.

To probe Cooper pair confinement we compute the expectation value of the Wilson
loop operator W(C), where C is a closed loop in 3D Euclidean space-time (a factor ` is
absorbed into the gauge field Aµ to make it dimensionless),

〈W(C)〉 = 1
ZAµ ,Mi

∑
{Mi}

∫ +π

−π
DAµ e

− 1
2ee f f 2 ∑x(Fi−2πMi)

2

eiqext ∑C Aµ . (20)

When the loop C is restricted to the plane formed by the Euclidean time and one of
the space coordinates, 〈W(C)〉measures the potential between two external probe charges
±qext. A perimeter law indicates a short-range potential, while an area-law is tantamount to
a linear interaction between the probe charges [10] with a new emergent scale represented
by the string tension σ that gives the strength of the linear potential. We now multiply
the Wilson loop operator by 1 in the form exp(−i2πqextMi) on the plaquettes forming the
surface S encircled by the loop C and we introduce a unit vector Si perpendicular to the
plaquettes forming the surface S.

We then decompose Mi into transverse and longitudinal components, Mi = MT
i +

ML
i with MT

i = εij∆jn + εij∆jξ, ML
i = ∆iλ, where {n} are integers and ∆λ = ∆̂i∆iλ = m.

The two sets of integers {Mi} are thus traded for one set of integers {n} and one set of
integers {m} representing the magnetic monopoles. The integers {n} are used to shift the
integration domain for the gauge field Aµ to [−∞,+∞]. The real variables {ξ} are then
also absorbed into the gauge field. The integral over this non-compact gauge field Aµ gives
then the Gaussian fluctuations around the instantons m, representing the saddle points
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of the action. Gaussian fluctuations do not contribute to confinement and, thus, can be
neglected. Only the summation over instantons, {m}, remains:

〈W(C)〉 = 1
Zm

∑
{m}

e
− 2π2

e2
eff

∑x mx
1
−∇2

2
mx

ei2πqext ∑S ∆̂iSi
1
−∆ mx . (21)

For qext = 1, i.e., Cooper pair probes, the sum over instantons gives rise to an area law
for the expectation value of the Wilson loop (21) with a string tension given by [31]

σ =

√
8

`0`

eeff
π

e
− π2

e2
eff

G2(0)
, (22)

where G2(0) is now the infrared-regularized 2D lattice Coulomb potential at coinciding
points. This linear potential is due to a flux tube (string) of electric field connecting
Cooper pairs and Cooper holes. This string, with a Cooper pair and a Cooper hole at its
endpoints, has a typical width λel [15] and typical length ds = 1/

√
σ and is the electric

equivalent of a strong interaction pion. When one pulls this string by, say, an external
voltage, Cooper pairs and Cooper holes start moving apart but there comes a moment
where it becomes energetically favourable for the system to pop out a Cooper pair-Cooper
hole pair in some intermediate island and to form two short strings. Only neutral states
exist asymptotically in this phase of the system and the resistance becomes infinite since
charges cannot move anymore. There is, however, a crucial difference with the relativistic
case, in which monopoles are always in a plasma phase due to their weak inverse linear
interaction. In the deep non-relativistic limit, the interactions between monopoles is
logarithmic, as we already pointed out, so, near the SIT they can undergo a confining
quantum BKT transition [17–19] for sufficiently strong coupling constants g. In fact e2

eff
plays the role of the temperature and, from (17), we see that g plays the role of an inverse
temperature, so we have the usual XY model: for low values of g instantons are free
and charges are confined, while instants undergo a confining transition and become
logarithmically confined at g = gcr. This quantum BKT transition represents the SIT
itself with a transition between the superinsulating phase and the intermediate Bose metal,
the bosoic topological insulator phase.

The BKT transition is an infinite-order transition and follows from the observation
that the dual formulation of the 2D Coulomb gas is the well known sine-Gordon model.
To obtain the Coulomb gas formulation we start from from Zinst (18) and rewrite the
Gaussian term in the action for the topological excitations in terms on an auxiliary field as:

Zinst =
∫ +π

−π
Dχe−∑x,i

e2
e f f

8π2 (∆iχx)
2

∑
N

zN

N! ∑
x1,...,xN

∑
m1,...,mn=±1

ei ∑x mx(χx+ηx) , (23)

where

z = e
−2π2G(0)

e2
e f f , (24)

is the instanton fugacity and we have adopted the dilute gas approximation in which we
consider only mx = ±1. G(0) is the infrared-regularised value of the lattice Coulomb
kernel at coinciding points. The sums can be now computed, with the result

Zinst =
∫ +∞

−∞
Dχ e−∑x,i

e2
e f f

8π2 (∆iχx)
2+2z(1−cos(χx)) , (25)

which is nothing else than the partition function of the sine-Gordon model (for a review
see [32]) which describes the physics of the planar XY model. Following the results for
the XY model [32] we find thus a critical coupling gcrit = (4π/µ)(1/η) which plays the
role of the critical temperature in this quantum BKT transitions. Monopoles and linear
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confinement of charges can exist only for g < gcr, in excellent agreement with the estimate
obtained from the crude free energy argument for strings which would correspond to the
string entropy value µ = 4π.

For the XY model described by (25) re-normalisation group flow (varying the temper-
ature) is expressed best in terms of the two variables

u = 1− Tcr
T ,

v = 16πz Tcr
T .

(26)

The half line z = 0, T < Tcr is an half line of infrared fixed points all corresponding to
states with bound vortices and differing by a constant representing the initial conditions of
the flow equations. In our case, g flows to large values in the IR limit, and the line z = 0, g <
gcr is a line of confining IR fixed points for the charges. The magnetic monopole instantons
cause linear confinement of charges in the superinsulating phase and the granularity scale
` (lattice spacing) determines the string tension of this linear potential and sets thus also the
scale of linearly bound pairs of charges, see (22). The SIT corresponds to an IR Berezinskii-
Kosterlitz-Thouless [17–19] fixed point (gcr, z = 0). The BKT re-normalisation flow toward
short UV scales implies a decreasing g and an increasing z. The confining interaction
decreases when flowing towards short scales and, we reach the scale O(`) as we will show,
charges essentially do not feel any potential anymore, showing what is called asymptotic
freedom. This phenomenon is typically associated with non-Abelian gauge theories, where
it characterises their UV fixed point [33], here it is associated with the sine-Gordon model
(and not the compact QED) and describes an IR fixed point so it should be called asymptotic
safety but here will use the more familiar term asymptotic freedom.

The only evidence for quarks inside hadrons is indirect, through high-energy collision
that smash them and create hadron jets in colliders such as LHC. In such experiments, it
is impossible to “look inside hadrons” to study the UV to IR confining transition. Here
we show that this is, instead, possible in condensed matter superinsulators since the
electric interaction is much weaker than the strong interaction and, therefore, the size
an electric pion larger than the size of real pion. In superinsulators if the string length
scale ds is large enough so that the regime λel < ds is realized, one can probe the interior
of “superinsulating mesons” by measuring the IV dependencies on samples with linear
dimensions L < λstring. In this case the “interior” interaction at intermediate scales λel <
r < ds is a screened Coulomb potential. This should result in a strong size-dependence of
the I(V) response, such that the superinsulating hyperactivated behaviour of the resistance
observed in sufficiently large samples changes to a metal-like behaviour in sufficiently small
systems with L . ds. This size-dependence corresponds exactly to the transition from the
confinement regime at large scale to the asymptotic free regime inside the “electric mesons”.

To gain more insight about this transition, let us focus on the interaction energy U(r)
between charges separated by a distance r, derived from the compact QED model of
superinsulation (we henceforth restore physical units) is

U(r) = σ(T)r− ch̄π

24r
+ a
[

ln
(

λel
r0

)
− K0

(
r

λel

)]
, (27)

where the second term is the so-called Lüscher term [34] and the third term, containing the
MacDonald function K0, is the screened 2D Coulomb potential, reducing to a ln(r/r0) for
r � λel while decaying exponentially at r � λel, with r0 ≈ the superconducting coherence
length. For r > d ' r0, the Lüscher term is negligible, so that U(r0) ' 0. Near the SIT,
the strength of the Coulomb potential becomes [8]

a = (4e2/2πε0εd)( f (κ)/g) . (28)

The exact form of f (κ) is given in [8] and is not relevant here.
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When samples are very big, with their dimension L such that L � ds, charges are
confined and we expect the usual hyperactivated behaviour of the resistance as a function
of temperature of superinsulators. However, for samples with dimensions in the range
λel < L < ds Cooper pairs sufficiently far apart feel neither the string tension, since the
string is loose on these scales, nor the Coulomb interaction, which is screened on the scale
λel. We expect thus to observe a transition from hyperactivated resistance behaviour to
a metallic saturation at the lowest temperatures when the sample size is decreased. This
is exactly what has been observed in a NbTiN superinsulating film by varying the bridge
length on which the external voltage is applied [12], as shown in Figure 5. For large bridge
lengths the film displays hyperactivated resistances, for the smallest bridge length 0.2 mm,
however, we see metallic saturated behaviour at low temperatures. The crossover from
hyperactivation to metallic behaviour should take place around a bridge length L ≈ ds.
The typical string size can be estimated from experimental data as follows. The energy
kBTdec is the energy necessary to break up the string by raising the temperature. So it is a
measure of

√
σ and, therefore,

ds ≈
h̄v

kBTdec
, (29)

where we have reinstated physical units with v = (1/
√

ε)c. Using the experimentally
determined deconfinement temperature Tdec ≈ 400 mK and the known dielectric constant
of NbTiN near the SIT [6], ε ≈ 800, one can obtain an estimate ds ≈ 0.13 mm in excellent
quantitative agreement with the observation of the metallic crossover. This is the first direct
experimental evidence of asymptotic freedom.
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Figure 5. Sheet resistance of a NbTiN superinsulating film as a function of the effective sample size
(bridge length) (a) Logarithmic plot of sheet resistance R� vs. inverse temperature 1/T for bridges
of various length L. The dashed straight line shows the Arrhenius behaviour R ∝ exp(1/T). Inset:
experimental setup. The Si substrate with AlN buffer layer is shown with light gray and the Hall
bridge of NbTiN is dark grey. The square gold contacts are given in yellow. All lateral sizes are given
in millimetres. (b) Same data as in (a) but replotted in terms of the conductance G = 1/R� vs. T in
log-line scale. The dotted lines are fits using a two dimensional Coulomb gas model that generalises
the Berezinskii-Kosterlitz-Thouless (BKT) formula for the conductance G ∝ exp[−(T/Tdec − 1)1/2]

by incorporating a self-consistent solution of the effects of electrostatic screening, where the screening
length λc and Tdec enter as fitting parameters. For all bridges the deconfinement temperature is
Tdec ≈ 400 mK. (c) Same data as in (b) but for temperature renormalized as (T/Tdec− 1)1/2. The solid
line corresponds to the case of an infinite electrostatic screening length λc → ∞.

4. (3+1) Dimensions

In this section, we will generalise our theory to the (3+1)-dimensional case. We will use
in what follow a relativistic notation. The relevant degrees of freedom, Cooper pairs, and
Josephson vortices, can acquire topological ABC phases when one is encircling the other.
However, vortices are now one-dimensional extended objects and their world-surfaces
are described by the two-index antisymmetric tensor mµν (we will use for the moment a
continuous notation). Due to this the generalisation of the Chern-Simons representations
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of the linking number will include a Kalb-Ramond antisymmetric tensor fields bµν [35]
which couples to the vortex current giving the BF action, generalising (3):

L =
1

4π
bµνεµναβ∂αaβ + aµ jµ +

1
2

bµνmµν , (30)

where jµ and mµν are the charge and vortex currents, respectively. Although the field
strength associated to aµ is, as usual, fµν = ∂µaν − ∂νaµ, in (3+1) dimensions its the dual
field strength is a 2-tensor,

f̃ µν =
1
2

εµναβ fαβ = εµναβ∂αaβ . (31)

The field strength associated with the tensor field bµν is a 3-tensor

hµνα = ∂µbνα + ∂νbαµ + ∂αbµν , (32)

and its dual field strength is, thus, a vector:

hµ =
1
6

εµναβhναβ =
1
2

εµναβ∂νbαβ . (33)

These field strengths fµν and hµνα can be used to add dynamics to the purely topologi-
cal BF term (30),

L =
1

12Λ2 hµναhµνα +
1

4π
bµνεµναβ∂αaβ −

1
4 f 2 fµν f µν , (34)

where f is a dimensionless coupling and Λ has canonical dimension [1/length]. This action
was introduced as a field theory for a condensed matter system in [2]. The BF model is
topological, since it is metric-independent. In addition to the usual gauge transformations
aµ → aµ + ∂µξ, (34), is also invariant under gauge transformations of the second kind,

bµν → bµν + ∂µλν − ∂νλµ . (35)

When using the BF term to model the emergent behaviour of condensed matter
systems, one identifies the topologically conserved charge current jµ and vortex current
mµν as

jµ = 1
2π hµ = 1

4π εµναβ∂νbαβ ,

mµν = 1
2π f̃ µν = 1

2π εµναβ∂αaβ ,
(36)

with Cooper pairs measured in integer units of 2e and vortices in integer units of 2π/2e =
π/e.

To formulate the gauge-invariant lattice BF-term, we follow [2] and introduce the
lattice BF operators

kµνρ ≡ Sµεµανρdα ,

k̂µνρ ≡ εµναρd̂αŜρ ,
(37)

The two lattice BF operators are interchanged (no minus sign) upon summation by
parts on the lattice and are gauge invariant so that:

kµνρdν = kµνρdρ = d̂µkµνρ = 0 ,

k̂µνρdρ = d̂µ k̂µνρ = d̂ν k̂µνρ = 0 ,
(38)
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and satisfy the equations

k̂µνρkρλω = −
(
δµλδνω − δµωδνλ

)
∇2

+
(

δµλdνd̂ω − δνλdµd̂ω

)
+
(

δνωdµd̂λ − δµωdνd̂λ

)
,

k̂µνρkρνω = kµνρ k̂ρνω = 2
(

δµω∇2 − dµd̂ω

)
,

(39)

where ∇2 = d̂µdµ is the lattice Laplacian. We use the notation ∆µ and ∆̂µ for the forward
and backwards finite difference operators.

As in the (2+1)-dimensional case, in the Euclidean lattice formulation, Qµ and Mµν

becomes integer link and plaquette variables Qµ and Mµν. In 4 Euclidean dimensions
they describes the Euclidean world-lines of point charges and Euclidean world-surfaces
of vortices. In materials, the velocity of light will be v = 1/

√
εµ < 1 by defining the

Euclidean time lattice spacing as `0 = `/v , where ε is the electric permittivity and µ is
the magnetic permeability we incorporate this velocity by rescaling all time derivatives,
currents, and zero-components of gauge fields by the factor 1/v. As a consequence, both
gauge fields acquire a dispersion relation E =

√
m2v4 + v2p2 with the topological mass

given by m = f Λ/2πv, and we thus obtain the lattice action:

S = ∑
x

`4

4 f 2 fµν fµν + i
`4

4π
aµkµαβbαβ +

`4

12Λ2 hµναhµνα + i`aµQµ + i`2 1
2

bµν Mµν . (40)

The dimensionless parameter f = O(e) encodes the effective Coulomb interaction
strength in the material, Λ is the magnetic scale, Λ = O(1/λL), where λL is the London
penetration depth of the superconducting granules.

To find the topological action for monopoles, we start from Equation (40) and integrate
out fictitious gauge fields aµ and bµν

Stop = ∑x
f 2

2`2 Qµ
δµν

(mv)2−∇2 Qν +
g2

8 Mµν
δµαδνβ−δµβδνα

(mv)2−∇2 Mαβ

+i π(mv)2

2` Qµ
kµαβ

∇2((mv)2−∇2)
Mαβ .

(41)

The last term can be neglected since it represents the Aharonov-Bohm phases of
charged particles around vortices of width λL. In fact we consider scales much larger than
λL, the denominator in (41) reduces to (mv)2∇2 and this last term becomes (i2π− integer),
reflecting the absence of Aharonov-Bohm phases between charges ne and magnetic fluxes
2π/ne .

Gauge invariance requires closed vortex loops. The presence of magnetic monopoles
at the endpoints of open vortices will break the gauge symmetry of the second kind (35)
and the longitudinal components of the tensor gauge field bµν will become usual vector
gauge fields for the magnetic monopoles. What is the effect of this gauge breaking term?
Monopoles will experience the same type of Coulomb interaction experienced by charges,
but this interaction is subdominant with respect to the linear tension created by the vortices
between a monopole–antimonopole pair. We can thus neglect it for the determination of
the phase structure and admit open vortices with magnetic monopoles at the endpoints.

The important consequence of the topological interactions is that they induce self-
energies in form of the mass of Cooper pairs and tension for vortices between magnetic
monopoles. These self-energies are encoded in the short-range kernels in the action (41),
which we approximate by a constant. World-lines and world-surfaces are thus assigned
energies, that are nothing else that their Euclidean actions in the present statistical field
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theory setting, proportional to their length N and area A which we measure in numbers of
links and plaquettes,

SN = 2π(mv`)G f
Λ` Q2N ,

SA = 2π(mv`)G Λ`
f M2 A .

(42)

Here Q and M are the integer quantum numbers carried by the two kinds of topo-
logical excitations and G = O(G(mv`)), where G(mv`) is the diagonal element of the
lattice kernel G(x− y) representing the inverse of the operator `2((mv)2 −∇2). As in the
(2+1)-dimensional case, to construct the free energy, we need to estimate the entropy of link
strings and plaquette surfaces. The entropy is, for string, proportional to their length µNN,
and for surfaces proportional to their area [36] µA A. Both coefficients µ are non-universal:
for strings µN ' ln(7) since at each step the non-backtracking string can choose among 7
possible directions on how to continue, while, for surfaces, µA does not have such a simple
interpretation but can be estimated numerically. The total free energy that we obtain is:

F = 2π(mv`)G
[(

f
Λ`

Q2 − 1
ηQ

)
N +

(
Λ`

f
M2 − 1

ηM

)
A
]

,

where we have defined

ηQ =
2π(mv`)G

µN
, ηM =

2π(mv`)G
µA

. (43)

When the self-energy dominates, large string and surface configurations are sup-
pressed in the partition function and Cooper pairs or vortices are gapped excitations,
suppressed by their large action. On the contrary, when the entropy dominates large string
and surface configurations are favoured in the “free energy” (effective action) and they con-
dense. The phase in which long world-lines of Cooper pairs condense is a superconducting
phase characterised by a charge Bose condensate. The phase in which a Bose condensate of
magnetic monopoles forms, instead, is a superinsulator.

The formation of larger world-surface implies that the strings binding monopoles and
antimonopoles into neutral pairs become loose on distance scales� 1/vm. This implies
that magnetic monopoles at the endpoints of the loose vortices become deconfined and
Bose condense.

The combined energy-entropy balance equations are best viewed as defining the
interior of an ellipse on a 2D integer lattice of electric and magnetic quantum numbers,

Q2

r2
Q

+
M2

r2
M

< 1 , (44)

where the semi-axes are given by

r2
Q = `Λ

f
1

ηQ
= `Λ

f

√
µN
µA

1
η ,

r2
M = f

`Λ
1

ηM
= f

`Λ

√
µA
µN

1
η ,

(45)

with
η =
√

ηQηM = 2π(mv`)G/
√

µNµA . (46)

In (3+1)-dimensional case, however, only configurations with {0, M} or {Q, 0} have
to be considered, and configurations with Q 6= 0 and M 6= 0 must be excluded since the
two types of excitations are different. The phase diagram is found by establishing which
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integer charges lie within the ellipse when the semi-axes are varied. We thus obtain a phase
diagram that is essentially as in (2+1) dimensions:

η < 1→
{

g < 1 , charge Bose condensate ,
g > 1 , monopole Bose condensate ,

η > 1→


g < 1

η , charge Bose condensate ,
1
η < g < η , bosonic insulator ,

g > η , monopole Bose condensate ,

(47)

with the tuning parameter g given in this case by:

g =
f
`Λ

√
µN

µA
. (48)

5. (3+1) Dimensions Superinsulating Phase

To derive the effective action for a superinsulator in (3+1) dimensions we follow
exactly the same steps as in the (2+1)-dimensional case and we add the minimal coupling
of the charge current jµ to the electromagnetic field:

L → L+ i ∑
x
`4 Aµ jµ = L+ i ∑

x
`4 1

4π
Aµkµαβbαβ , (49)

and we compute its effective action by integrating over the fictitious gauge fields aµ and
bµν. Using summation by parts, however, the above coupling amounts only to a shift

Mµν → Mµν +
1

2π
`2k̂µνα Aα , (50)

in (40). The electromagnetic response Seff
(

Aµ

)
is then obtained by integrating over the

fictitious gauge fields and setting Qµ = 0:

e−Seff(Aµ) = ∑
Mµν

e
− 1

8 f 2 ∑x,µ,ν(F̃µν−2πMµν)
2

. (51)

Equation (51) is the action of Polyakov’s compact QED in (3+1) dimensions.
To prove linear confinement of charges we introduce two external probe charges ±qext

and compute the expectation value for the corresponding Wilson loop operator W(C),
where C is a closed loop, now in 4D Euclidean space-time:

〈W(C)〉 = 1
ZAµ ,Mµν

∑
{Mµν}

∫ +π

−π
DAµ e

− 1
8 f 2 ∑x,µ,ν(F̃µν−2πMµν)

2

eiqext ∑C lµAµ , (52)

where lµ = 1 on the links forming the closed loop C and lµ = 0 everywhere else. We can
now use the lattice Stoke’s theorem and, for small values of the coupling f , the saddle-point
approximation to rewrite Equation (52) as:

〈W(C)〉 = 1
ZAµ ,Mµν

∑
{Mµν}

∫ +π

−π
DAµ e

− 1
8 f 2 ∑x(F̃µν−2πMµν)

2

ei qext
2 ∑S Sµν(F̃µν−2πMµν) , (53)

where the quantities Sµν are unit surface elements perpendicular (in 4D) to the plaquettes
forming the surface S encircled by the loop C and vanish on all other plaquettes. We have
also multiplied the Wilson loop operator by 1 in the form exp(−iπqext ∑x Sµν Mµν).
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At this point, we can simply repeat the computation of Polyakov [10] which shows an
area law behaviour for the expectation value of the Wilson loop:

〈W(C)〉 = e−σA (54)

where A is the area of the surface S enclosed by the loop C and the string tension is given by

σ =
32 f

π
√

εµ

1
`2 exp

(
−πG(0)

8 f 2

)
, (55)

where G(0) = 0.155 is the value of the 4D lattice Coulomb potential at coinciding points.
The monopole condensate, thus, generates a string binding together charges and preventing
charge transport in systems of a sufficient size. A magnetic monopole condensate is a
3D superinsulator, characterized by an infinite resistance at finite temperatures [2,8,14].
The critical value of the effective Coulomb interaction strength for the transition to the
superinsulating phase is fcrit = O(`/λL).

These results shows that the string confinement mechanism of superinsulation allows
to generalise the concept of a superinsulator to (3+1) dimensions. The SIT has, however,
been experimentally found only in (2+1) dimensions. What will be the experimental
hallmark of superinsulation in (3+1) dimensions and, at the same time, unequivocally
discriminate between the 3d and 2d superinsulators, exposing the linear nature of the
underlying confinement? We can gain insight on this problem by looking at the finite
temperature behaviour and the deconfinement transition at which string confinement of
Cooper pairs ceases to exist. At a critical temperature Tdc the linear tension of the string
turns to zero and the superinsulator transforms into a conventional insulator. In [37],
we have shown that the confining string theory description of superinsulation leads to a
deconfinement criticality that depends on the space dimension. In fact the critical behaviour
is embodied by the behaviour of the (dimensionless) correlation length that is proportional
to the inverse of the square root of the string tension near the critical temperature. In (2+1)
dimensions when approaching the deconfinement transition from below the correlation
length at the transition diverges according to the law

ξ± ∝ exp

[
b±√

|T/Tc − 1|

]
, (56)

reproducing thus the BKT [17–19] criticality, typical of the 2D XY model, criticality that was
predicted for compact QED in (2+1) dimensions by Svetitsky and Yaffe [38].This behaviour
has been experimentally observed in [6]. In (3+1) dimensions, instead, we predicted in [37]
that the finite-temperature confinement–deconfinement transition is in the Vogel-Fulcher-
Tamman class [39], a quasi-2D behaviour in which the correlation length at the transition
diverges according to the law

ξcorr ∝ e
ξ

|T−Tcr | . (57)

This criticality differs from the one of the 2D XY model only by the power in the
exponent. This critical behaviour has been detected in InO films [40], in which the thickness
is much larger than the superconducting coherence length. While it seems premature to
view this result as a conclusive evidence, yet one can view it as a possible indication of
linear confinement in 3d superinsulators.

6. Conclusions

Even after decades of intense research the problem of quark confinement has not yet
been completely understood. One of the most promising ways to explain confinement is
that confinement of colour is produced by dual superconductivity [1,7,10]: the chromoelec-
tric field produced by quark–antiquark pairs is constrained by the dual Meissner effect
into Abrikosov flux tubes in the same way as magnetic field is confined in usual super-



Universe 2021, 7, 201 17 of 18

conductors of type II. This produces an energy proportional to the distance of the pairs,
E = σR, with σ the string tension, leading to confinement. Magnetic monopoles, however,
have never been observed as elementary particles. In this review, we have shown that they
exist as emergent excitations in superconducting films exhibiting the SIT as instantons,
where they can form a plasma, and as particles in 3D materials, where they can form a
Bose condensate. Monopoles give thus rise to a new state of matter, the superinsulator,
in which electric fields are squeezed into flux tubes by the dual Meissner effect leading
to linear confinement of charges. Superinsulators realize thus a single-colour version of
quantum chromodynamics (QCD) with Cooper pairs playing the role of quarks. Due to
the Abelian nature of QED, although in strong coupling, for superinsulators it is possible
to derive analytically the linear confinement by electric strings. In QCD, instead, this is
possible only through numerical computations. Superinsulators are, thus, a toy model
for exploring and testing the fundamental implications of confinement by monopoles and
asymptotic safety via desktop experiments on superconductors.
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