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Abstract: Invariant inclusive single-particle/jet cross sections in p–p collisions can be factorized in
terms of two separable pT dependences, a [pT −

√
s] sector and an [xR − pT −

√
s] sector. Here, we

extend our earlier work by analyzing more extensive data to explore various s-dependent attributes
and other systematics of inclusive jet, photon and single particle reactions. Approximate power
laws in

√
s, pT and xR are found. Physical arguments are given which relate observations to the

underlying physics of parton–parton hard scattering and the parton distribution functions in the
proton. We show that the A(

√
s, pT) function, introduced in our earlier publication to describe the

pT dependence of the inclusive cross section, is directly related to the underlying hard parton–parton
scattering for jet production, with little influence from soft physics. In addition to the a function, we
introduce another function, the F(

√
s, xR) function that obeys radial scaling for inclusive jets and

offers another test of the underlying parton physics. An application to heavy ion physics is given,
where we use our variables to determine the transparency of cold nuclear matter to penetrating
heavy mesons through the lead nucleus.

Keywords: inclusive cross section 1; jets 2; LHC 3; radial scaling 4

1. Introduction

Inclusive jet, direct photon and heavy meson cross section measurements in p–p colli-
sions at the multi-TeV energies, up to

√
s = 13 TeV of the Large Hadron Collider (LHC), af-

ford incisive tests of the standard model. The cross sections are frequently presented as func-
tions of the transverse momentum pT and rapidity y defined by y = ln((E + pz)/(E − pz))/2,
with E being the particle/jet total energy and pz being the component of the 3-momentum
along the incoming proton direction in the p–p center of momentum (COM). Over the
years, both the data and the agreement of data with Monte Carlo simulations (MC) have
steadily improved as higher statistics are accumulated, better fits to the parton distributions
and higher-order quantum chromodynamics (QCD) terms are considered. This theoretical–
experimental interplay is an active area of research. A panoply of codes has been developed
to simulate inclusive jet production, such as Pythia [1] 8.2 and Sherpa 2.1.1 [2]; and for
direct photons, JETPHOX [3] and POWHWG [4]. The physics of heavy flavor production
in p–p collisions is adequately described by the FONLL code [5], which is a fixed-order
next-to-leading-order calculation. A good summary of simulation code can be found
at [6]. Experimental papers compare data with the MC simulations by superimposing
the simulation on the data points and/or by plotting the ratio of data to MC to generally
good agreement.

For the curious student, it is worthwhile to attempt to ‘touch the physics’ by searching
for the underlying power laws expected from hard parton scattering through the pT and
y behaviors of the inclusive cross sections even though there is good agreement between
data and simulations. We find in conventional practice that the underlying physics is
frequently hidden in the details of how the experimental cross sections are presented
and subsequently compared with highly developed computer simulations, when in fact
there may be attributes of the measured cross sections that can be more directly related
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to underlying process. The most egregious example is when only the data/MC ratio is
presented, in which case, the student learns that the data and MC agree to a certain level of
error, but gains no knowledge of the actual shape of the pT and y dependencies of the data.

We find that the current convention of presenting the inclusive cross sections in the
form d2σ/dpTdy followed in publications of LHC physics complicates direct comparisons
of data with the underlying physics. The measured cross section in this form has the
dimensions1 of 1/(GeV/c)3, which is not naturally related to the primordial hard scattering
of the colliding partons whose cross sections have a dimension of 1/(GeV/c)4. We will
show that expressing the inclusive cross sections of heavy meson and baryon production
in this ‘un-natural form’ confuses the mass dependence of the pT dependence and hides an
underlying power law.

Furthermore, the measurements with higher statistics of the d2σ/dpTdy cross sections
are sometimes integrated over y and presented as a function of pT , or sometimes integrated
over pT expressed as a function of y, resulting in a great deal of detailed dynamics of the
underlying scattering processes to be obscured. As higher statistics are accumulated, it is
much more revealing to present inclusive cross sections in the double differential form so
that both the pT and y dependences can be studied. It is important to present cross sections
in differentials of the invariant phase space form, Ed3σ/dp3.

Inclusive cross sections using the Lorentz-invariant phase space form have the same di-
mensions as the underlying hard-scattering parton–parton cross sections and are given by:

Ed3σ

dp3 =
∫ 1

x1

dx1

∫ 1

x2

dx2G(x1, Q)G(x2, Q)D(z, Q)
1

πz
dσ̂

dt̂
(1)

as in Equation (4.1) of Field and Feynman [7] and in similar expressions in Field, Feyn-
man and Fox [8], where x1,2 are the momentum fractions of partons 1 and 2, G(x1,2, Q)
represent the number of colliding partons between x and x + dx at the momentum scale
Q, D(z, Q) is the parton-to-jet/particle fragmentation function of momentum fraction z of
the jet/particle to the outgoing parton and dσ̂/dt̂ is the primordial parton–parton elastic
differential scattering cross section in the Mandelstam variable, t̂, defined as the square of
the difference of the incoming parton 4-vector minus the outgoing parton 4-vector. The
invariant cross section in this form has the dimension 1/(GeV/c)4, which is the dimen-
sion of the underlying hard-scattering elastic cross section dσ̂/dt̂. Equation (1) embodies
well-understood physics since the late 1970s.

In addition, recent papers on inclusive processes involving the production and de-
cay of heavy quark states do not attempt to explicitly measure the modified transverse

momentum2, PT ≡
√

p2
T + Λ2

m, which enables the underlying power law pT dependence
to be obvious and allows for an estimation of the mass of the heavy quark state itself,
including the mother–daughter relation for indirect inclusive particle production through
the “Λ term”. In principle, as an added benefit, the use of this phenomenology can probe
transverse structure function effects. By comparing the Λ value for prompt heavy meson
production with the Λ value for particles that are produced through ‘mother–daughter’
decay, the mass of the ‘mother’ particle can be probed.

Again, while a seemingly trivial point of kinematics, expressing the inclusive invariant
cross section in the form Ed3σ/dp3 dimensionally connects the data to dσ̂/dt̂, the underly-
ing parton–parton hard scattering in the parton–parton center of momentum frame and
therefore more directly touches the underlying causal physics.

The intent of this paper is to describe the inclusive invariant cross sections in a
physically obvious manner so that the underlying physics can be easily extracted and
analyzed. We use the kinematic variables pT and the radial scaling variable xR = E/Emax,
where E is the energy of the detected particle or jet in the p–p COM and Emax is its maximum
value, as well as rapidity, y, and the total COM energy,

√
s, in undertaking this study. In

our previous publications [9–11], we found that single particle/jet inclusive invariant
differential cross sections can be expressed as a product of a function that strictly depends
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on pT and not on the rapidity, y, or xR, and a function which is strongly dependent on xR
that is characteristic of the underlying colliding parton distributions. The foundation of
this phenomenology was developed in 1976 [10] during the early days of Fermilab. Others
have contributed to this analysis framework [12,13]. In this paper, we refine our previous
work to show that this factorization of these two sets of kinematic variables has a broad
application to jets, particles and even heavy ion collisions.

In the following, we will discuss the pT distributions and the xR distributions of
various inclusive cross section measurements and relate them in a straightforward manner
to the nucleon parton distribution functions (PDFs) and the underlying hard-scattering
cross sections. We examine inclusive cross section measurements of various inclusive
processes in p–p scattering (jets, photons and mesons and baryons) at different values
of
√

s as measured by several collaborations [14–17] in terms of a [pT − xR] factorized
framework. In this study, we have developed a dimensional custodial that relates the s
dependence of the magnitude parameter of the pT part of the invariant cross section to
the power index of its 1/pT dependence. The dimensional custodial holds for inclusive
jets, photons, mesons and baryons and is therefore independent of process. In addition,
we will show a particularly simple description of the xR dependence that is sensitive
to the underlying parton–parton scattering. Finally, we demonstrate that the modified
momentum factor, Λ, for meson/baryon production is directly related to the mass of the
produced meson/baryon and that the underlying pT distribution is a power law in the
modified transverse momentum, PT .

2. The Formulation

Because the published inclusive data are given in the form d2σ/dpTdy, we have to
convert to the invariant cross section form by computing d2σ/2πpTdpTdy, where we divide
the cross section by (2πpT), with pT taken as the central value of the published pT bin.
This approximates the invariant cross section d2σ/πdp2

Tdy to a ~4% error, except for the
lowest and highest pT bins where the approximation is ~10%. No correction of this binning
definition was made.

In a previous publication [9], we have shown that the inclusive cross sections for
single jets, direct photons and light and heavy quark states, up to and including b-quark
states, have the factorized form:

d2σ

2πpTdpTdy
= C(

√
s, pT , xR(pT , m, y,

√
s)) = A(

√
s, pT , Λm) f (

√
s, pT , xR), (2)

where the a function depends only on pT , Λm and
√

s and the f —function depends primar-
ily on the radial scaling variable xR, with

√
s and pT-dependent corrections. We extend the

formulation of our earlier publication to express the inclusive jet invariant cross section in
p–p collisions for constant pT as a polynomial in logarithms of the form:

ln
(

d2σ

2πpTdpTdy

)
pT

= ln(A) + nxR ln(1− xR) + nxRQ ln2(1− xR), (3)

where the left-hand side is the natural logarithm of the invariant cross section for constant
pT and the right-hand side is a polynomial of powers of ln(1− xR). Therefore, the con-
stant pT fits of Equation (2) determine three numbers: A(pT) and the power indices nxR
and nxRQ.

Since ln[A(pT)] is determined by the xR = 0 intercept of Equation (3), we expect
that A will be dependent on only pT ,

√
s and Λm but not on y. Note that for finite pT

and Λm, the xR → 0 extrapolation limit corresponds to
√

s→ ∞ . Therefore, we posit
that A(

√
s, pT , Λm) will have a direct connection to the primordial parton–parton hard

scattering and their parton distribution functions that is uncomplicated by subsequent
soft physics of final-state parton fragmentation and hadronization. Furthermore, we will
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show that the power indices nxR and nxRQ in Equation (3) have a close connection with the
underlying colliding parton distributions.

Putting all these terms together, the invariant cross section has the factorized form:

d2σ

2πpTdpTdy
= A(

√
s, pT , Λm)(1− xR)

nxR exp
(

nxRQ ln2(1− xR)
)

. (4)

In our previous publications [9–11], we have shown (e.g., Figure 6 of reference [9])
that the transverse momentum function, A(

√
s, pT , Λm) (called the a function), is a power

law to a good approximation of the form:

A(
√

s, pT , Λm) =
κ(s)(

p2
T + Λ2

m

) npT
2

=
κ(s)

PT
npT . (5)

The term, Λm in the modified transverse momentum, PT ≡
√

p2
T + Λ2

m, is crucial in
describing low pT heavy quark production, but for inclusive jets and isolated photons
the modified transverse momentum is computed with Λm = 0. In these cases, we use the
simple form:

A(
√

s, pT , Λm = 0) =
κ(s)

pT
npT , (6)

where npT is the pT power law index and κ(s) is the overall magnitude of the cross section
which depends on

√
s. Notice that A(

√
s, pT , Λm) has the dimensions of the invariant cross

section [cm2/(GeV/c)2 ] or [1/(GeV/c)4], thus κ(s) has the dimensions [cm2/(GeV/c)2 ] ×
[(GeV/c)npT] or [1/(GeV/c)4] × [(GeV/c)npT]. The A(

√
s, pT , Λm) parameters κ and npT in

Equations (5) and (6) are positively correlated3.
The radial scaling variable xR is defined in terms of pT , y and m (the detected

jet/particle rest mass) by:

xR ≡
E

Emax
=

2
√

p2
T + m2

√
s

cosh(y) ≈ 2pT√
s

cosh(η), (7)

where, in the second equation, we have expressed xR in the limit that the jet/particle mass
can be neglected (m = 0) in terms of the pseudo-rapidity η = − ln(tan(θ/2))/2, where θ is
the polar angle of the jet/particle with respect to the incoming beams direction and ranges
between 2m/

√
s ≤ xR ≤ 1. We will show that for heavy meson and baryon production,

Λm ~ m. The experimental radial scaling variable is constrained 2m/
√

s ≤ xR ≤ 1, where
the lower limit corresponds to pT = 0 at finite

√
s and the high limit of xR corresponds

to the exclusive process scattering kinematic boundary that preserves quantum numbers
when E(jet) or E(meson or baryon) ~

√
s/2. Notice that the rapidity distinguishes between

forward and backward hemispheres, whereas the xR variable is only a measure of the
radial distance of the kinematic point in the COM momentum space (pT − pZ) scaled to
its maximum value corresponding to xR = 1. Therefore, xR does not distinguish between
hemispheres. Hence, only the value of |y| can be computed from xR by the expression:

|y| = ln

√s
2

xR√
p2

T + m2
+

√
s
4

x2
R

p2
T + m2

− 1

. (8)

Having determined the a function by fitting data to Equation (3), we can extract the xR
dependence with our factorization ansatz by dividing out the pT dependence embedded in
A(
√

s, pT , Λm) as follows:

f (
√

s, pT , xR) =
1

A(
√

s, pT , Λ)

d2σ

2πpTdpTdy
= exp

(
nxR ln(1− xR) + nxRQ ln2(1− xR)

)
. (9)
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Notice that f = 1 in the limit xR = 0 is built in. The F-function depends on
√

s, pT and
y as well as xR and in general violates radial scaling because the power indices nxR and
nxRQ are not constants. However, we will show that the power indices nxR and nxRQ are
for inclusive jet data have a simple dependence on

√
s and pT and are represented by:

nxR(
√

s, pT) =
D(
√

s)
pT

+ nxR0

nxRQ(
√

s, pT) =
DQ(
√

s)
pT2 + nxRQ0,

(10)

where the distortion parameters D and DQ depend on
√

s and nxR0 and nxRQ0 are constants.
Thus, the remaining pT dependence is embodied in the D and DQ terms that is the origin of
the violation of radial scaling—mostly at low pT , whereas the larger pT region is controlled
by the constant parameters nxR0 and nxRQ0. In fact, with the pT behavior of Equation
(10), the xR sector of the invariant cross section can be written in terms of a radial scaling
violating term, controlled by the distortion parameters D and DQ multiplied by a scaling
term Thus, Equation (9) becomes:

f (
√

s, pT , xR) = exp

(
D
pT

ζ +
DQ

p2
T

ζ2

)
exp

(
nxR0ζ + nxRQ0ζ2

)
, (11)

where ζ = ln(1− xR). The first exponential is almost independent on pT for low xR, but is
dependent on y and violates radial scaling, while the second exponential, the radial scaling
term, is dependent only on xR and therefore for a fixed

√
s obeys radial scaling. Note that

positive D and nxR0 result in decreasing f (
√

s, pT , xR) as xR increases, whereas positive DQ
and nxRQ0 result in increasing f (

√
s, pT , xR) as xR increases. Therefore, if we compensate

for the scale violating term in Equation (11), governed by the distortion parameters D and
DQ we should be left with the radial scaling second exponential term determined by the
constants nxR0 and nxRQ0.

We will test this hypothesis by calculating a data-determined correction to the radial
scaling limit so that what is left is a ‘kernel’ radial scaling function that has no pT or y
dependence, little

√
s dependence, but is distinctly process dependent. The kernel end-

product of this calculation is:

F(
√

s, xR) = R(
√

s, pT , y) f (
√

s, pT , xR). (12)

We now show how the correction function R(
√

s, pT , y) in Equation (12) is calculated.
Immediately, we note by comparing Equations (11) and (12) that we have:

R(
√

s, pT , y) = exp

(
− D

pT
ζ −

DQ

p2
T

ζ2

)
. (13)

We find that R is slowly dependent on pT in the limit of small xR but strongly de-
pendent on y. Later, we will find that D ~

√
s and DQ ~ s so that the magnitude of the

correction is roughly independent of
√

s.
Having eliminated the D terms in f (

√
s, pT , xR) by the correction factor R of Equation (13),

we expect that the F-function can be represented to good approximation for the expression:

F(
√

s, xR) = exp
(

nxR0 ln(1− xR) + nxRQ0 ln2(1− xR)
)

, (14)

where nxR0 and nxRQ0 are constants defined in Equation (10) for a fixed value of
√

s.
Hence, at a fixed value of

√
s the F-function obeys radial scaling—namely the function only

depends on xR. On the other hand, complete ‘radial scaling’ is the limit when the power
indices nxR and nxRQ are themselves constant for all

√
s. In this case, all the pT and

√
s

dependence of the invariant cross section is in the A(
√

s, pT , Λm) function and none is in
the F-function. In this complete scaling case, it does not matter how xR is calculated—any
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set of values of
√

s, y and pT that computes to the same xR will yield the same non-A part
of the factorized cross section. This complete form of scaling has been shown to be violated
by QCD evolution as a function of

√
s [9].

In summary, we assert that the invariant cross section for inclusive jet, direct photon
or particle production (π, K, Λ, J/ψ, D, B, Υ, etc.) at a given value of

√
s, can be factorized

into three sectors: (1) a pT –
√

s sector, (2) a y –
√

s sector and (3) an xR –
√

s sector where:

d2σ

2πpTdpTdy
= A(

√
s, pT , Λm)Y(

√
s, y)F(

√
s, xR), (15)

with the functions defined as:

A(
√

s, pT , Λ) = κ(s)

(p2
T+Λ2

m)
npT

2
= κ(s)

PT
npT ,

Y(
√

s, y) = exp
(

D
pT

ζ +
DQ
p2

T
ζ2
)

,

F(
√

s, xR) = exp
(
nxR0ζ + nxRQ0ζ2).

(16)

We will show that D, DQ, nxR0 and nxRQ0 are functions of
√

s so that complete radial
scaling is broken although it holds for fixed

√
s. The parameter Λm is only significant when

pT ∼ m, the mass of the heavy particle. We will test the assertion of Equation (16) and will
show both agreements and violations to it in what follows.

2.1. Theoretical Underpinnings of xR

The radial scaling variable xR was introduced to control the effect of the kinematic
boundary and as such was useful in comparing cross section measurements at different
values of

√
s and different y regions. However, there is another value in that xR provides

a window into the hard scattering of the primordial parton–parton system. For now,
consider the relevant variables at the parton level. The s value (total energy squared) of the
parton–parton center of momentum collision in terms of the colliding partons longitudinal
momentum fractions x1 and x2 is given by: ŝ = sx1x2. Hence, in terms of the colliding
partons, the radial scaling variable is the Lorentz invariant that can be evaluated by:

xR0 =

√
ŝ
s
=
√

x1x2 =
2pT cosh(η0)√

s
, (17)

where η0 is the true value of rapidity in the parton–parton COM frame and pT is the
scattered parton transverse momentum. The difference between the p–p COM value
of xR and the exact value xR0 given by Equation (17) arises from the fact that the p–p
COM value of η is only approximately equal to the true value of η0 because, in general,
the parton–parton COM is moving with respect to the p–p COM. Of course, there are
additional resolution effects to the actual measured value of xR from the fragmentation
and hadronization processes, where the outgoing parton becomes the detected jet, photon
or meson/baryon—effects we are neglecting in this parton-level discussion. Continuing,
the Lorentz transformation from the parton COM to the p–p COM is controlled by:

β =
x1 − x2

x1 + x2
. (18)

Therefore, the xR resolution is determined by not knowing the event-by-event value of
β, even though its average for p–p collisions is zero. The resolution smearing is computed
by remembering that the pseudo-rapidity transforms as η = η0 + tanh−1(β), where η0 is
the value in the parton–parton COM and η is its value in the p–p COM and is given by:

∆xR
xR

=
(xR − xR0)

xR0
=

(1− βtanh(η0))√
1− β2

− 1 =

√
1− β2

(1− βtanh(η))
− 1. (19)
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The relation between the β-smeared (‘experimental’) xR and the exact xR0 is shown
in Figure 1. Notice that there are ‘good’ kinematic regions, such as η > 0 and β > 0 and
‘bad’ regions when η and β have opposite signs. On average, the value of the measured xR
tends to be larger for large |η| than the true value, xR0 denoted by the blue-dashed line in
the figure. The resolution grows for increasing |η| but saturates for |η| ≥ 3.
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From our earlier publication [9], we find that the low xR behavior of inclusive cross
sections has a ∼ (1− xR)

nxR behavior as in Equation (4), neglecting the nxRQ term. Unlike
the high pT power law behavior of A(

√
s, pT , Λm) ∼ 1/pnpT

T , where the power index npT
is independent of scale calibration, the power index nxR is sensitive to both the pT and
cosh(y) (cosh(η)) scales. Considering a putative change of scale of the form x′R = ζxR,
which could be due to resolution errors in pT or y or from fragmentation and hadronization
following the hard parton–parton scattering, we find that for small xR, the power index
nxR is changed by:

nx′R = nxR
ln(1− xR)

ln(1− ζxR)
≈ nxR/ζ. (20)

Hence, the power index nxR of the (1 − xR) distribution is sensitive to scale and is
therefore a more stringent test of theory, especially parton fragmentation and hadronization,
than the pT distribution measured by the a function.

Note (obviously) that in the case of pure dijets, the complete kinematics can be
determined if both jets are measured. In this case, again neglecting the jet mass and any
energy loss through fragmentation and hadronization, the exact value of xR is given by:

xR0 =
2pT cosh

(
η2−η1

2

)
√

s
, (21)

and in the case of heavy quarks where the quark mass cannot be neglected by:

xR0 =

√
2(p2

T + m2)[1 + cosh(y1 − y2)]
√

s
. (22)

Similar expressions have been worked out by Feynman, Field and Fox some time
ago [8]. In summary, xR provides a direct view of the underlying parton distributions with
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an error that depends on the pseudo-rapidity and the unmeasured Lorentz factor β of the
parton–parton COM.

2.2. Analysis of ATLAS Jets
√

s = 13 TeV

As described in our previous publication [9], the a function and the xR power indices
are determined by the analysis of the invariant cross section for fixed pT extrapolated
to xR = 0. The parameters of the extrapolation are the power indices nxR and nxRQ of
Equation (3) and the endpoint of the extrapolation is the value of the a function for that
value of pT . Namely, for fixed pT ,

√
s and Λm, the a function value is determined by:

A(
√

s, pT , Λm) ≡ lim
x→0

(
d2σ

2πpTdpTdy

)
pT

. (23)

An example of this analysis for inclusive jets at R = 0.4 and
√

s = 13 TeV, measured by
the ATLAS collaboration [17], for a few selected values of pT is shown in Figure 2 below.
We have assigned errors for each data point as the sum of statistical and systematic errors
added in quadrature. We have neglected the overall normalization error associated with
the uncertainty of the luminosity (2.1%). In the construction of the evaluation of xR,we have
made a small jet mass correction since the ATLAS jet data were presented as a function of
fixed y. We estimate this mass term [18] in the definition for xR by the expression:

xR = 2pT

√
1 + (mjet/pT)

2 cosh(y)/
√

s = 2pT

√
1 + (R/

√
2)

2
cosh(y)/

√
s, (24)

where R = (∆φ2 + η2)1/2. We correct the xR value as shown but set Λm = 0 since this
small mass correction (~3.8%) [9] has a neglectable effect on the power law fits to the
A(pT) function.
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Figure 2. Demonstration of the ansatz of Equation (3) for some selected values of pT in GeV/c for
inclusive jets defined by the anti-kT algorithm, with R = 0.4 measured by the ATLAS collaboration
at
√

s = 13 TeV. The plot demonstrates that the log of the invariant cross section at constant pT is a
quadratic in ln(1 – xR). The error bars are smaller than the data points. The red dotted lines indicate
minimum χ2 fits to Equation (3). The extrapolation to ln(1 – xR) = 0 (xR = 0) determines ln[A(pT)].
The right-most point of each constant pT line corresponds to y = 0 and the gap between this point
and right-hand axis is the region beyond the kinematic boundary for given value of pT and

√
s. For

the ensemble of fits at constant pT , the χ2/d.f. = 14 for 79 degrees of freedom (p = 1.0).
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Having determined the values for A(pT), nxR and nxRQ for each value of pT , the entire
inclusive cross section can now be described. The resultant A(pT) for 13 TeV ATLAS [17]
and CMS [19] inclusive jets for R = 0.4 for jets determined by the anti-kT algorithm [20] is
plotted in Figure 3.
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Figure 3. The a function pT dependence for a 13 TeV inclusive jet cross section (R = 0.4) measured
by ATLAS (red circles) and CMS (yellow triangles) divided by 10. All data point errors—statistical
and systematic—were added in quadrature. The dashed black lines represent power law fits of the
Toy MC. The Pythia 8.1 simulations are indicated by the red dotted lines. Both simulations were
normalized to data. The MC representations of the data are indistinguishable on this plot. The
respective power law fits for 29 degrees of freedom (d.f.) for ATLAS are: fitting the data to a power
law χ2/d.f. = 1.13, (p = 0.288), Pythia 8.1 power law fit to data χ2/d.f. = 1.24 (p = 0.18) and Toy power
law fit to data χ2/d.f. = 1.13 (p = 0.288). For CMS 25 d.f. the fit qualities are χ2/d.f. = 0.60 (p = 0.94),
0.76 (p = 0.80) and 0.66 (p = 0.90), for data, Pythia 8.1 and Toy, respectively. The parameter Λm in
Equation (5) was set to 0.

As noted above, in addition to determining the A value, the extrapolation to xR = 0 also
determines the power index parameters nxR and nxRQ. These are shown in Figure 4.

Following the procedure embodied in Equation (12), we determine the F(
√

s, xR)
function for 13 TeV ATLAS jets. In the calculation, it is important to use the actual a
function values rather than its power law fit values since the small (~ ± 30%) deviations
from the pure power law over 8 orders of magnitude are critical. The result is shown in
Figure 5 and the correction function given by Equation (13) is plotted in Figure 6. Note
that the correction function is almost independent of pT for |y| ≤ 1.5, corresponding to
low xR because, to a good approximation, nxR ∼ 1/pT and nxRQ ∼ 1/p2

T , cancelling the
pT dependence of ln(1− xR) ≈ −xR and ln (1− xR)

2 ≈ x2
R, respectively.

Our formulation of inclusive jet production at the LHC at fixed
√

s employs only six
parameters (κ, npT , D, nxR0, DQ, and nxRQ0) for a complete description of jet invariant
differential cross sections—the a function characterizes the pT dependence in the limit xR
→ 0, the F-function describes the xR dependence at y = 0 and the D and DQ terms track the
scaling violation. Important corrections to the generation of the F-function are embodied in
the D and DQ terms which are related to the QCD evolution of the colliding parton PDFs.
We summarize the results of fitting ATLAS and CMS 13 TeV R = 0.4 inclusive jets in Table 1.
We note that the two data sets agree within about one standard deviation.
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Rx  → 0, the F-function describes the Rx  dependence at y = 0 and the D and DQ terms track 

Figure 4. The xR power indices nxR (a) and nxRQ (b) are plotted as a function of pT . The red dotted curves are the
result of minimum χ2 fits to Equation (10). We find D = (7.0 ± 1.1) × 102 GeV/c, nxR0 = 3.6 ± 0.2 with χ2 = 14 for
29 degrees of freedom (p = 0.99) and DQ = (1.5 ± 0.4) × 105 (GeV/c)2 and nxRQ0 = 0.06 ± 0.1 with χ2 = 24 for 29 degrees of
freedom (p = 0.73). While the fits have good χ2 values, they systematically underestimate the values of nxR and nxRQ0 for
pT ≤ 200 GeV/c.
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Figure 5. The F(
√

s, xR) for 13 TeV inclusive jets (R = 0.4) is plotted as a function of xR for various
slices of <|y|> indicated by the numbers in the legend. Note that all the data points at different
y values fall on the same line and that the red dotted line represents Equation (14). The error bars
represent the systematic and statistical errors added in quadrature. The fit of data by Equation (14)
has a χ2/d.f. = 1.06 for 170 degrees of freedom (p = 0.28). The solid blue line represents Pythia 8.1
simulation (χ2/d.f. = 3.5, p ~ 0)) and the black line the prediction of the Toy MC (χ2/d.f. = 36.6 p ~ 0).
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Figure 6. The R(
√

s, pT , y) correction function for 13 TeV inclusive jets determined by the measured
values of D and DQ is plotted as a function of pT for various values of |y| given by Equation (13).

Table 1. Fit parameters of 13 TeV ATLAS and CMS jets. The parameters κ and npT describe the
a function, and the parameters D, nxR0, DQ, and nxRQ0 describe the F-function. We note that the
ATLAS and CMS jet parameters are consistent within errors. In the analysis of both data sets, we
have required |y| ≤ 3 and have added systematic and statistical errors in quadrature. The overall
normalization error in the luminosities determinations was neglected. The CERN MINUIT [21] fitting
package was used. D and DQ are correlated as approximately 0.5D ~ (DQ)1/2.

Experiment Parameter Value χ2/d.f. p-Value

ATLAS κnpT

(2.1 ± 0.3) × 1014

pb/(GeV/c)(2-npT)

6.35 ± 0.02
33/29 0.28

CMS κnpT

(3.1 ± 1.0) × 1014

pb/(GeV/c)(2-npT)

6.41 ± 0.05
15/25 0.94

ATLAS D
nxR0

(7.0 ± 1.1) × 102 GeV/c
3.6 ± 0.2

14/29 0.99

CMS D
nxR0

(7.5 ± 3.1) × 102 GeV/c
3.3 ± 0.6

7/25 1.00

ATLAS DQ
nxRQ0

(1.5 ± 0.4) × 105 (GeV/c)2

0.06 ± 0.1
24/29 0.73

CMS DQ
nxRQ0

(2.0 ± 1.3) × 105 (GeV/c)2

0.08 ± 0.4
8/25 1.00

The ATLAS 13 TeV jet data [17] have an approximately 3% jet energy scale (JES) error.
By using the Toy MC, to be described later, we find that, for a +3% JES change (jet energy
measured to be larger than the actual energy), the a function parameter, npT , changes by
only −0.2%, whereas the parameters of the [xR − pT −

√
s] sector are much more sensitive.

For the same +3% JES increase, we find that D changes by +6%, nxR0 by −5%, DQ by +7%
and nxRQ0 by −4%. The magnitude parameter of the a function, κ, changes by +15% and
is therefore quite sensitive to the JES. The ± signs indicate change of parameter, either
increasing (+) or decreasing (−), when JES increased by +3%.

In summary, we have shown that inclusive jet production at
√

s = 13 TeV can be
described with six parameters (κ, npT , D, nxR0, DQ, and nxRQ0). The terms D and DQ
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characterize the radial scaling violation and the parameters nxR0 and nxRQ0 determine the
radial scaling term at a constant value of

√
s. In the next section we describe a Toy MC

simulation that provides an intuitive physical picture of inclusive jet production.

3. Jet Simulations: Toy Model and Pythia 8.1

In order to gain a deeper understanding of how the pT and s dependences arise, we
wrote a ‘Toy’ Monte Carlo (TMC) simulation in ROOT [22] that computes parton–parton
elastic scattering weighted by the PDFs of the proton given by CT10 parameterization [23].
We take the scattered partons within pT and η acceptance to approximate the jet as mea-
sured inclusively by ATLAS and CMS. A similar procedure is followed to simulate the
detected photon in inclusive direct photon measurements. The program does not simulate
any quark or gluon fragmentation or any “soft physics” of jet formation. In the simulation
of inclusive jets, all events are dijets. The hard-scattering cross sections in the simulation
are given in Owens, Reya and Gluck [24] and in the review by Owens [25]. The QCD
evolution of the strong coupling constant αs(Q) was parameterized by a fit to the PDG
values [26] of the form 1/αs(Q) = 1.2104 ln(Q) + 2.8827 with Q in GeV/c resulting in αs(Q)
~ 0.12 at Q = Mz.

For a more complete comparison with data, we deployed the HepSim Pythia 8.1 simu-
lations [27] of inclusive jets with a jet radius R = 0.4 defined by the anti-kt algorithm [20]
for COM energies through the LHC range even up to

√
s = 100 TeV, in order to check that

s-dependent systematics continue to very high energies. The Pythia 8.1 MC “data” were
analyzed in the same manner as described in [9]. However, for intuitive guidance, we find
comparisons with the TMC to be useful.

3.1. Toy Model

The governing equations of our toy model are specified by the following. The s value
(total energy squared) of the parton–parton center of momentum collision in terms of the
colliding partons longitudinal momentum fractions x1 and x2 is given by:

ŝ = sx1x2, (25)

where x1 and x2 are the momentum fractions of the colliding partons with respect to the
incoming beam momenta. (For simplicity in notation in the equations to follow we have
dropped the caret notation.) The Lorentz transformation β value of the parton–parton
COM is given by:

β =
x1 − x2

x1 + x2
. (26)

The Mandelstam variables are for the parton–parton elastic scattering given by:

t = − s
2 (1− cos θ)

u = − s
2 (1 + cos θ),

(27)

where θ is the COM angle of the outgoing struck parton (−1 ≤ cosθ ≤ 1) with respect to
the beam direction. Note that outgoing parton transverse momentum is p2

T = ut/s.
For example, in terms of these variables, the gluon elastic scattering cross section

(gg→ gg) is given by:

dσ

dt
=

πα2
s

s2
9
2

(
3− tu

s2 −
su
t2 −

st
u2

)
, (28)
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where αs is the strong coupling constant and s, t and u are the Mandelstam variables in
the parton–parton COM defined above. The cross section can be expressed in terms the
scattered gluon transverse momentum, pT , and s and is given by:

dσ

dt
= πα2

s
9
2

(
1

p4
T
+

3
s2 −

p2
T

s3 −
3

sp2
T

)
. (29)

In the limit of pT �
√

ŝ/2, the cross section becomes s-independent. In that limit, the
leading term is ~1/p4

T . On the other hand, when pT =
√

ŝ/2, corresponding to sin θ = 1
at the kinematic maximum (θ = π/2, t = u = − s/2) the g g→ g g elastic scattering cross
section has the finite value of:

dσ

dt
= πα2

s
243

8

(
1
s2

)
= πα2

s
243
128

(
1

p4
T

)
. (30)

A similar analysis can be performed for the other hard-scattering cross sections. These
are tabulated in Table 2 below where we list the leading term and the value of the cross
section at pT maximum.

Table 2. The cross sections for each hard-scattering process in jet production are listed showing
the leading pT behavior at small pT and the values of the cross sections at the kinematic limit
when pT =

√
ŝ/2. The fractional coefficients result from the various color factors of the parton–

parton interactions.

Process Leading pT Behavior Value at pT=
√

ŝ/2

gg→ gg dσ
dt ≈ πα2

s
9
2

(
1
p4

T

)
dσ
dt = πα2

s
243
128

(
1
p4

T

)
gq→ gq
gq→ gq

dσ
dt ≈ 2πα2

s

(
1
p4

T

)
dσ
dt = πα2

s
55

144

(
1
p4

T

)
q q→ q q
q q→ q q

dσ
dt ≈ πα2

s
8
9

(
1
p4

T

)
dσ
dt = πα2

s
11
54

(
1
p4

T

)
qaqb → qaqb
qaqb → qaqb

dσ
dt ≈ πα2

s
8
9

(
1
p4

T

)
dσ
dt = πα2

s
5
36

(
1
p4

T

)
qq→ gg dσ

dt ≈ πα2
s

32
27s

(
1
p2

T

)
dσ
dt = πα2

s
7

108

(
1
p4

T

)
qq→ qq dσ

dt ≈ πα2
s

8
9

(
1
p4

T

)
dσ
dt = πα2

s
35

216

(
1
p4

T

)
qaqa → qbqb

dσ
dt = πα2

s
4

9s2

(
1− 2p2

T
s

)
dσ
dt = πα2

s
1
72

(
1
p4

T

)
gg→ qq dσ

dt ≈ πα2
s

1
6s

(
1
p2

T

)
dσ
dt = πα2

s
7

768

(
1
p4

T

)

There are three features of the parton–parton scattering equations that are relevant.
The first is that the dominant hard-scattering processes have a 1/p4

T behavior but those
involving s-channel exchanges, such as gg→ qq , have a 1/p2

T behavior for fixed s in
leading order or, in the case of qaqa → qbqb , essentially flat in pT for constant s. In these
channels, the cross sections are suppressed by a power of 1/s. There is a slow additional
pT dependence through the QCD evolution of the coupling constant αs(Q2)2. The second
feature is the finite value of the cross sections at the kinematic limit when pT =

√
ŝ/2.

Additionally, the third feature is that for the t-channel exchanges, such as g g→ g g , the
cross sections at low pT at small angles are independent of

√
ŝ.

All of the processes in Table 2 were considered in exact form, such as given in
Equation (23) for gg→ gg scattering, in our Toy MC program and are added in appropri-
ate weight to simulate the jet pT spectrum as measured at ATLAS and CMS at the LHC.
The PDFs were taken from the CT10 [23] fits which we parameterized at each µ value by an
eighth-order polynomial of the natural logarithm of the PDF as a function of ln(ln(1/x)) in
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the interval 1 × 10−5 ≤ x ≤ 0.988. This parameterization was motivated by the observation
that the log of the gluon PDF, ln(xG(x)), is approximately linear in the double log ln(ln(1/x)).
Hence, the higher-order terms of the fit are small perturbations about this dominant linear
dependence. The parameterizations are accurate to a fraction of a percent except at very
high x where the accuracy is a few percent even for the quark PDFs where the log–log
approximation is less exact.

In the simulations, we have generally taken µ ~
√

s for the PDF shapes and the αs(Q2)
renormalization scale as either Q ~ pT or Q ~

√
ŝ =
√

sx1x2. Since we use our Toy MC to
give rough physics guidance and not precision tests of QCD, our results are not strongly
dependent on our particular choices of scale. For jets, we take all parton masses to be zero.
Thus, the rapidity, y, and pseudo-rapidity, η are equal. For the simulation of inclusive
B0,± and Z-boson productions, for example, we do account for quark/boson masses and
distinguish y from η.

As mentioned, the Toy MC does not account for the ‘soft physics’ of jet formation
involving gluon and quark fragmentation governed by Sudakov form factors and subse-
quent hadronization, nor does it include NLO and higher-order evolution of αs(Q2). This
neglect may seem alarmingly incomplete, but for the fact that a power law followed by the
underlying pT distribution is manifestly independent of scale factors and quite insensitive
to fragmentation and parton splitting4. Further, since the a function is determined by the
limit xR → 0, it essentially avoids the ‘soft physics’ operative at finite xR.This insensitivity
to ‘soft physics’ is one of the main utilities of the a function.

Inclusive jet production is a sum over several channels of hard scattering in addition
to the dominant g g → g g term. Using the Toy MC at

√
s = 13 TeV, we studied the pT

distribution for each hard-scattering channel (and the corresponding antiquark ones) listed
in Table 2. We generated Monte Carlo data samples and analyzed them in the same
manner as we did for data in order to determine the pT dependence of the cross section
characterized by the function A(

√
s, pT) and the power of (1 − xR) for each constant pT .

The cross sections, given by the sum:

σ = ∑
i,j

(
d2σ

dpTdy
∆pT(i)∆y(j)

)
(31)

of each process for 106 GeV/c ≤ pT ≤ 1423 GeV/c, |y| ≤ 3, are shown in Table 3 normal-
ized to the total of all process. Additionally, tabulated are the a function pT power indices,
npT for different production channels. We find that the Λm term is unnecessary at the high
pT values where pT >> mjet.

3.2. The Power Law Indices

As expected, processes involving gluon–gluon, gluon–antiquark and antiquark–antiquark
interactions have the larger npT and nxR corresponding to the steeper shape of their
respective PDFs, whereas those involving quark–quark scattering have the smaller values.
The overall jet production is dominated by gluon–gluon elastic scattering with that process
at
√

s = 13 TeV making up 66% of the total inclusive jet cross section in our Toy MC
simulations. The average value of npT varies only ±13% over the various processes listed
in the table.

From Table 3, we note in detail that jets at 13 TeV are dominated by gg→ gg scattering.
The power indices, npT , are concentrated at approximately ~6. Those processes involving
gluons and antiquarks have larger power indices correlating with their steeper PDF x
dependences than those involving quarks, such as quark–quark elastic scattering, which
has the smallest index driven by the flatter parton x distribution. Gluon–gluon elastic
scattering has the largest (steepest) power index. The power law index npT , while varying
somewhat between different hard-scattering processes, has a weighted average value that is
quite close to the ATLAS and CMS data. Hence, the very simple Toy MC correctly predicts
A(pT) ∼ 1/p6

T , which we note is far from the dimensional limit 1/p4
T as we observed
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in Figure 3. The invariant cross section, however, has the dimensions of pb/(GeV/c)2

or 1/(GeV/c)4, whereas A(pT) ∼ 1/p6
T at fixed

√
s. This presents a puzzle as to what

corrects for this extra power ~1/(GeV/c)2. Later, we will show that the s dependence of
κ(s) acts as a dimensional custodian, thereby insuring the invariant cross section has the
correct dimensions.

Table 3. The power law indices, npT of A(
√

s, pT) with Λm ≡ 0, given in Equation (3) are tabulated
for the Pythia 8.1 simulation of 13 TeV jets (R = 0.4) and for our Toy MC simulation broken down for
each hard-scattering process listed in Table 2. The values of npT in the Toy MC were determined from
power law fits 106 GeV/c ≤ pT ≤ 1423 GeV/c, roughly matching ATLAS data. Note that processes
involving gluons and antiquarks have a larger power index than those involving quarks as would be
expected from their respective PDF shapes. The power indices are constrained at 5.3 ≤ npT ≤ 6.7.
The cross section ratios for the various subprocesses to total are given in the second column. The total
cross section is dominated by gg→ gg and gq→ gq scatterings (66% and 13% of total, respectively).

Process σ/σ (all) npT

ATLAS 1 6.35 ± 0.02
CMS 1 6.41 ± 0.05

Pythia 8.1 1 6.31 ± 0.01
All Toy 100% 6.35 ± 0.02

gg→ gg 66.20% 6.76 ± 0.03
gq→ gq 13.09% 6.09 ± 0.02
qq→ qq 5.95% 5.43 ± 0.03

qaqb → qaqb 3.27% 5.33 ± 0.02
qq→ gg 0.54% 5.85 ± 0.03
qq→ qq 1.98% 6.03 ± 0.03
gg→ qq 1.30% 6.66 ± 0.03

qaqa → qbqb 0.07% 5.54 ± 0.02
q q→ q q 1.43% 6.62 ± 0.04

qaqa → qbqb 0.81% 6.54 ± 0.04
gq→ gq 5.37% 6.64 ± 0.03

The a function is directly controlled by the energy in the parton–parton COM,
√

ŝ =
√

sx1x2
which fixes the maximum pT for that particular parton–parton scattering and therefore the
entire pT spectrum for the collision. Hence, the morphing of the underlying hard ∼ 1/p4

T
parton–parton scattering cross sections shown in Table 2 to the observed and Monte Carlo-
simulated behavior of∼ 1/p6

T has a simple explanation. Noting that the low pT behavior of
the elastic scattering cross section has little s dependence, as demonstrated by Equation (29)
and shown in Table 2, and that the cross section is finite at the kinematic limit pT =

√
ŝ/2,

the observed pT spectrum can be thought of a sum of overlapping, power law-segments
each following the power law ∼ 1/p4

T independent of s, at the experimentally chosen
minimum pT stretching out to the kinematic maximum of pT =

√
ŝ/2. Each line segment

has an amplitude given by the cross sections of the table above and contributes to the
overall pT distribution by the weighting of the

√
ŝ =
√

sx1x2—distribution determined by
the colliding parton PDFs.

Hence, there are two major factors that determine npT of the A(
√

s, pT) power law:
(1) the underlying hard-scattering pT dependence of dσ̂/dt̂ given in Table 2, and (2) the
parton x distribution that determines the ŝ = sx1x2 distribution, which is dominated by
the gluon distribution in g g→ g g scattering at high energies. There are a third and fourth
effect present: (3) the QCD evolution of the parton distribution functions as

√
s increases

(especially at x ≤ 10−4) and (4) the running of αs(Q2) as the Q2-scale changes. However,
at the LHC energies, the factors (3) and (4) are growing smaller as s increases and their
influence on the a function are dominated by the first two effects.

The parton distribution determines the ŝ distribution through Equation (25). For inclu-
sive jet production, it is the very low-x behavior of the gluon distribution that most strongly
affects the power law of A(

√
s, pT). The value of x has to satisfy x ≥ 4p2

T/s ≈ 2.4 × 10−4
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for the ATLAS 13 TeV inclusive jet data where the minimum jet pT ≈ 100 GeV/c. No 2→ 3
scattering is necessary as implied in our earlier publication [9]—just the underlying hard
scattering and the parton distributions are needed. Our unsophisticated Toy MC simulates
this behavior quite well.

The hard scattering of partons to produce inclusive jets and particles is very well
known and has been understood since the early days of the quark-parton model [7,8].
What is new is that the a function developed here is a particularly simple measure of the
underlying hard-scattering physics. The data, Pythia 8.1, and the toy model including all
channels are well represented by Equation (10). Those involving gluons and antiquarks
have larger values of D and DQ whereas those involving quarks have smaller D and DQ
values because they have less steeply falling PDFs with increasing x. The later processes
are less well represented by Equation (10).

The distortion “D” and “DQ” terms are quite descriptive of the inclusive cross section
and have a strong dependence on the low-x behavior of the colliding partons as shown in
Table 4, but are also influenced by the sampling of the cross section along lines of constant
|η| (|y|) and reflects the |η|max and |η|min constraints in the xR − pT plane. As a
consequence, these constraints have to be accounted for in comparing the xR distributions
of different experiments that have different η acceptance regions. However, in the table,
we have fixed |η| ≤ 3.

Table 4. The power law index of [pT − xR] sector given in Equation (9) are tabulated for Pythia 8.1 and
our Toy MC simulation for each hard-scattering process at

√
s = 13 TeV. Notice that the parameters

are strongly dependent on the hard-scattering process and the underlying PDFs. Additionally, note
that nxR0 is strongly correlated with nxRQ0. The ATLAS data for D and DQ fall between the Pythia
8.1 and the Toy MC. The ATLAS, Pythia 8.1 and All Toy fits were performed by a minimum χ2 fit
with MINUIT. The subprocesses were fit with linear regression (LR)—which does not minimize χ2

but does go through the points. The errors quoted for these processes are those of the LR.

Process D (GeV/c) nxR0 DQ (GeV/c)2 nxRQ0

ATLAS 700 ± 110 3.6 ± 0.2 (1.5 ± 0.4) × 105 0.1 ± 0.1
CMS 750 ± 307 3.3 ± 0.6 (2.0 ± 1.3) × 105 0.1 ± 0.4

Pythia 8.1 322 ± 30 4.3 ± 0.1 (6.5 ± 1.3) × 104 0.4 ± 0.04
All Toy 1170 ± 92 3.1 ± 0.2 (2.0 ± 0.3) × 105 0.4 ± 0.1

gg→ gg 969 ± 17 7.1 ± 0.1 (3.2 ± 0.03) × 105 1.0 ± 0.1
gq→ gq −25 ± 46 4.2 ± 0.1 (8.9 ± 0.9) × 104 −0.2 ± 0.1
qq→ qq −34 ± 55 2.7 ± 0.2 (5.4 ± 1.1) × 104 −1.1 ± 0.2

qaqb → qaqb −65 ± 52 3.3 ± 0.1 (7.3 ± 1.1) × 104 −0.8 ± 0.2
qq→ gg 253 ± 28 4.7 ± 0.1 (1.2 ± 0.1) × 105 0.3 ± 0.1
qq→ qq 223 ± 40 4.1 ± 0.1 (1.7 ± 0.1) × 105 −0.2 ± 0.1
gg→ qq 1362 ± 15 7.4 ± 0.1 (4.3 ± 0.03) × 105 1.1 ± 0.1

qaqa → qbqb −169 ± 30 6.8 ± 0.1 −(2.7 ± 0.7) × 104 0.6 ± 0.1
q q→ q q 397 ± 34 8.2 ± 0.1 (1.4 ± 0.1) × 105 0.6 ± 0.1

qaqa → qbqb 468 ± 28 8.7 ± 0.1 (1.8 ± 0.1) × 105 0.9 ± 0.1
gq→ gq 720 ± 18 8.0 ± 0.1 (2.4 ± 0.1) × 105 1.2 ± 0.1

Contributions from parton–parton scattering with less peaked shapes at low x will
result in a smaller value of D. A similar argument applies to the s dependence of DQ(s). For
a rough estimate of the effect of the QCD scale for the inclusive jet simulation, we ran the
Toy MC using 7 TeV PDFs to simulate the 13 TeV data—instead of using the appropriate
13 TeV PDFs. We found that npT changes by only 0.32%, whereas the change to D was 6%
and for nxR0 of order 5% and the changes to DQ and nxRQ0 were, 22% and 16%, respectively.
Hence, the [xR − pT ] sector is much more sensitive to the QCD scale than the a function.



Universe 2021, 7, 196 17 of 66

The A(pT) functions are not influenced by the η acceptance regions. In our analyses of
inclusive reactions, the data are sampled in the [pT − xR] plane defined by a quadrilateral
with the four constraint equations listed below:

xR ≤ 1; pTmin ≤ pT ≤ pTmax; xR ≤
2pT√

s
cosh(ηmax); xR ≥

2pT√
s

. (32)

As an estimate of the |η| boundary constraints, we simulated g g→ g g scattering in
our Toy MC. In this exercise, instead of fixing |η| to various values in order to histogram
the pT distribution as the data are parsed, we fixed xR to a set of discrete values to determine
the pT distribution. In essence, we are simulating the invariant cross section:

d2σ

2πpTdpTdxR
= G(

√
s,pT , xR), (33)

where G(
√

s, pT , xR) is another function of those variables from which we can extract an
a function and an F-function. Note that pT and xR are independent when the simulated
kinematic point on the [pT − xR] plane is within the quadrilateral region given by the
constraints of Equation (32) and only become coupled on the boundaries. The radial
scaling variable is symmetric between hemispheres in p–p and AA collisions, whereas
the xR distribution may in fact be different in the pA case. The results the with |η| ≤ 3
simulations for these two cross section definitions are given in Table 5 below.

Table 5. Shown are the values of the jet parameters nxR0 for g g → g g scattering subprocess at√
s = 13 TeV inclusive jet simulation by our Toy MC for two cross section definitions. The quoted

errors were determined by the consistency of the fits and not by the statistics of the MC simulation.
No finite bin corrections were applied. Note that η is double valued, either > 0 or < 0, whereas
0 < xR ≤ 1.0.

Cross Section Definition d2σ
2πpTdpTdη

d2σ
2πpTdpTdxR

npT 6.76 ± 0.03 6.59 ± 0.02
nxR0 6.83 ± 0.04 7.3 ± 0.1

nxRQ0 1.04 ± 0.04 0.1 ± 0.1
D (GeV/c) 948 ± 17 950 ± 37

DQ (GeV/c)2 (3.01 ± 0.03) × 105 (2.98 ± 0.08) × 105

The power indices are somewhat different, but the distortion parameters D and DQ
are essentially the same. We take these results as being consistent for the different cross
section (xR vs. |η|) schemes of the two calculations within the phase space samplings of
the two calculations. One would expect that future data sets will have higher statistics and
consequently more refined binning so that the experimental form of the xR behavior can be
better measured.5

3.3. Deconstruction of PDF Shape

We have seen in Tables 3 and 4 that there is a close connection between the PDFs of
the colliding partons and the jet parameters κ, npT , D, DQ, nxR0 and nxRQ0.The a function,
in particular, has a direct connection to the underlying parton distributions—especially to
their very low-x behavior. In order to gain insight, we revert to our Toy MC by probing the
underlying dependences with greatly simplified one-parameter models of the colliding
parton PDFs. We consider only g g→ g g scattering and greatly simplify the gluon PDF in
three forms in order to determine which of the shape parameters of the radial scaling jet
description strongly depends on the simplified gluon PDF parameters. The three forms
are one that emphasizes the low-x behavior, one that emphasizes the high-x behavior and
the Pomeron [28] which describes the gluon distribution at very low x in a simplified
form. This study is the first step towards probing hard scattering of the colliding partons
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as expressed by our six-parameter formulation of the inclusive jet scattering differential
cross section.

In this study, we consider the Pomeron form of the gluon PDF which gives us a
simplified view of the very low-x behavior:

xG(x, Q2) ∼ exp

√√√√√√√ 48
11− 2

3 n f
ln

 ln
(

Q2

Λ2

)
ln
(

Q2
0

Λ2

)
 ln

(
1
x

)
. (34)

We set ΛQCD
2 = (0.34 GeV/c)2, Q2 = s = (13 × 103 GeV/c)2, Q0

2 = (3.2 GeV/c)2

and n f = 6, forcing xG(x, Q2) to follow the CT10 [23] gluon PDF xG(x, s) distribution in
the interval 10−5 < x < 10−3 within an overall normalization factor. The low-x gluon
distribution in the Pomeron approximation can be expressed in the form ~1/xµ with an
effective power µ(x, Q) given by:

µ(x, Q) =
1
2

√√√√√√√ 48
11− 2

3 n f
ln

 ln
(

Q2

Λ2

)
ln
(

Q2
0

Λ2

)
/

√
ln
(

1
x

)
, (35)

which closely tracks the effective power of the CT10 gluon distribution for low x.
Thus, guided by the behavior of the Pomeron, we consider two extreme forms of the

colliding parton PDFs. We take the form emphasizing the low-x behavior governed by the
power index µ to be:

xG(x, Q2) ∼ (1/x)µ. (36)

Additionally, for the simplified gluon high-x behavior, we follow the expectation of
the valence quark distribution to explore a form below controlled by the power index ν:

xG(x, Q2) ∼ (1− x)ν. (37)

Note that by taking the logarithmic derivatives of the respective xG(x, Q2) forms, the
power indices are related by: µ/ν = x/(1− x). Thus, for example, an extreme value of ν
is required to emulate the low-x behavior determined by µ and vice versa. Therefore, the
two behaviors are essentially independent.

The toy simulation program was executed with these choices of the gluon PDF for√
s = 13 TeV. In the simulations, we allowed αs(Q2) to evolve by Q = pT . As usual, the

MC ‘data’ were analyzed in the same manner as data, other toy simulations and Pythia 8.1
simulations with |η| ≤ 3. The pT range considered was 106 GeV/c ≤ pT ≤ 1440 GeV/c
corresponding to the ATLAS 13 TeV data, where the upper pT cutoff ensures at least four
rapidity bins of the ‘data’ being within xR ≤ 0.9.

The shape parameters µ and νwere varied and the resulting inclusive cross section
parameters given by Equation (4) studied. Most striking is that the a function power index,
npT , is an almost-linear function of µ which controls the low-x PDF shape. At the other
extreme of high x, we find that the nxR0 parameter is approximately linear in ν with an
almost one-to-one correspondence nxR0 ~ ν. These two dominant behaviors are shown in
Figure 7, furnishing a rough interpretation of the observed jet data behavior.

However, we find that all six of our parameters (κ, npT , D, nxR0, DQ, and nxRQ0)
depend on µ and ν. Further, the distortion parameters D and DQ are complicated functions
of µ and ν We find that both D and DQ have peak values of 400 GeV/c and 1 × 105

(GeV/c)2, respectively, at approximately µ ~ 0.5. Additionally, both D and DQ are negative,
with minimum values at approximately ν ~ 8 to 10. Their complete behaviors are shown in
Appendix B.
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This study confirms the strong sensitivity of npT on the low-x behavior of the PDFs of
the colliding partons as shown in Figure 7a, implying that the ‘operative’ µ ~ 1.2. Expressing
the CT10 [23] gluon distribution as xG(x, Q2) ∼ 1/xµ(x,Q), we find µ ~ 1.2 for x ~ 4 × 10−2.
The Pomeron has a µ value that is always smaller than the CT10 distribution for larger x.
Hence, the power index of the a function in the Pomeron case is smaller than that of the
gluon distribution.

Because of the double-log approximation, there is a very slow evolution of µ(x, Q)
with increasing Q ~

√
s. Hence, the value of µ(x, Q) for the Pomeron approximation of the

low-x gluon distribution at
√

s = 2.76 TeV is not much different from that of
√

s = 13 TeV
consistent with the observation that npT is nearly independent of

√
s. In fact, both the

CT10 parameterization of the gluon and quark PDFs at low x roughly follow a linear
1/(ln(1/x))1/2 dependence and have µ values at the same x that increase by only ~ 6%
between Q ~

√
s = 2.76 TeV and 13 TeV.

3.4. Consequent F-Function

The corresponding F-functions of the µ - ν study by the algorithm of Equation (12) are
shown in Figure 8. Both PDF extremes result in slowly increasing F-functions for µ = ν = 0
and decreasing F-functions for finite values of µ and ν, with the ν case imposing the largest
influence as expected by Figure 7b. Hence, the high- xR behavior is determined chiefly by
the large x shape of the colliding parton PDFs.

3.5. Summary

We have performed this study considering only g g→ g g, but, according to Table 2,
many other types of parton–parton scattering have roughly the same pT behavior so the
conclusions here are more general than pertaining to just g g→ g g scattering. The gluon
distribution dominates for x < 0.1 and the quark distribution dominates for x > 0.1. In
broad terms, it is the behavior of the colliding parton PDFs at low x that controls the power
npT and the D and DQ parameters. Since the gluon distribution is most peaked at low x,
gluon scatterings are primarily responsible for determining the values of the npT and D
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and DQ parameters in inclusive jet production. The high-x region is the domain of the
quark parton PDFs—especially the valence quarks at very high x. This study indicates that
the high-x behavior of the parton PDF controls nxR0 and has little influence on npT .
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Finally, we compute the effective µ and ν values as a function of x for the CT10 gluon
and quark PDFs at

√
s = 13 TeV. The results are shown in Figure 9.
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Figure 9. The effective µ (a) and ν values (b) for the CT10 gluon (black lines) and quark (red lines) PDFs at

√
s = 13 TeV. No-

tice that µ for quarks is smaller than that for gluons implying that npT for quark scattering is smaller than the corresponding
values for gluons—consistent with the discussion above. Further, we note that since the quark distribution dominates at
high x, the value of nxR0 is largely determined by the quark PDFs at x > 0.1 where there is a ‘valence shelf’ ν ~ 4 consistent
with the nxR0 value measured in jets (ATLAS nxR0 = 3.6 ± 0.2) by the nxR0 – ν relation of Figure 7b. Therefore, our analysis
using pT and xR sheds light on the shape of the PDFs in different regions by the different sensitivities of the parameters npT ,
D, DQ, nxR0 and nxRQ0 and are nicely correlated with the shapes of the colliding PDFs.
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4. The s—Dependence of Inclusive Jets

Using the data of Tables II, VII and VIII and Figure 11 of our earlier publication [9],
we concluded that the power of pT , characterized by the parameter npT , for the invariant
inclusive cross section for jets is roughly independent of

√
s and that the magnitude of the

jet invariant cross section governed by the parameter κ(s) grows approximately linearly
with s. We also noted in [9] the value of npT = 6.5 ± 0.3 for inclusive jets—a value that is ~
8 standard deviations above the expected dimensional limit of 4 that is mandated by the
dimensional definition of the inclusive invariant cross section (Equation (1)) and that of the
underlying parton–parton hard-scattering cross section dσ̂/dt̂.

Here, we have refined our analysis using HEPData (https://www.hepdata.net/,
accessed on 28 April 2021) not available at the time of our early publication using the
ATLAS inclusive jet data for R = 0.4 from

√
s = 2.76, 5.02, 7, 8 and 13 TeV [17,29–32],

respectively. We have analyzed each data set in the same manner as demonstrated above.
These findings are tabulated in Appendix A.

We treat the data at each
√

s as being analyzed by the same algorithms, jet energy
scale calibration, pileup corrections, etc., although the data span the 2013 to 2018 time
period corresponding to the early days of commissioning the LHC and the ATLAS detector
through to their more mature operating periods. We have analyzed the data conservatively
by taking statistical and systematic errors in quadrature—even so, these errors may not
represent all the errors between different

√
s data sets.

The s dependence of the jet parameters is shown in Figure 10. It is interesting to note
that the parameters κ, D and DQ increase as

√
s increases. While the scatter of the data is

large, κ, D and DQ appear to follow power laws in
√

s, such as of the form κ(s) ∼ κ0
(√

s
)ns,

where κ0 and ns are constants. In order to estimate the constant term κ0 and the power law
index ns for κ(s), as well the corresponding parameters for the parameters D(s) and DQ(s),
we fit to the following log equations:

ln(κ(s)) ∼ ns ln
(√

s
)
+ ln(κ0),

ln(D(s)) ∼ nD ln
(√

s
)
+ ln(D0),

ln
(

DQ(s)
)
∼ nDQ ln

(√
s
)
+ ln

(
DQ0

)
,

(38)

where ns, nD and nDQ are the power indices and ln(κ0), ln(D0) and ln(DQ0) are the constant
terms. The resulting fits of data and two Monte Carlo simulations (to be described later)
are shown in Table 6 below. What is of most interest are the power indices, ns, nD and nDQ.
It appears that κ(s) and DQ(s) increase with

√
s with a power ~2, whereas D(s) increases

with a power ~1, that is linearly in
√

s. Later, we will show that the power index, ns, that
governs how the a function magnitude parameter, κ(s), increases with increasing s, is key
to maintaining the overall correct dimension of the invariant cross section.

The resulting simulation of inclusive dijets by our Toy MC is displayed in Figure 10a
for κ vs.

√
s and Figure 10b for npT vs.

√
s. The data points suffer from considerable scatter,

but, from the figure, we conclude that data, Pythia 8.1 and Toy MC roughly agree that the
magnitude of the cross section governed by the parameter κ(

√
s) grows nearly linearly

with increasing s and that the pT power of the a function is consistent with npT = 6.3 ± 0.1
of the average value for ATLAS jets and is essentially independent of

√
s. The power

indices, npT , nxR0 and nxRQ0 in Equations (6) and (10) show no systematic variation in
√

s
although their errors are large and their correlations may be important in determining the
shape of the F-function.

https://www.hepdata.net/
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Table 6. The
√

s, expressed in GeV, dependence of the parameters κ(
√

s), D(s) and DQ(s) are tabulated.
The data were fit assuming all five

√
s points are of equal statistical weight. For the κ(s) parameter,

the Monte Carlo simulations (Pythia 8.1, Toy) were normalized to the
√

s = 13 TeV data point. In
summary, it appears that κ(s) and DQ(s) increase with a power ~2, whereas D(s) increases with a
power ~1, that is linearly in

√
s. It is apparent from Figure 10 that there is considerable scatter in

the parameter values of the jet fits so for the logarithmic behavior of the parameters with respect to
ln(
√

s) we quote the regression value, R2, instead of the χ2/d.f.

Parameter Power Index Constant Term R2

κ(s) ns ln(κ0)

Data 2.3 ± 0.7 11 ± 6 0.79
Pythia 8.1 2.4 ± 0.2 10.2 ± 1.7 0.98

Toy 2.5 ± 0.3 9 ± 3 0.96

D(s) nD ln(D0)

Data 0.9 ± 0.5 −2 ± 5 0.51
Pythia 8.1√

s ≥ 7 TeV 1.1 ± 0.1 −5.1 ± 0.8 0.99

Toy 1.0 ± 0.1 −3.0 ± 0.1 0.96

DQ(s) nDQ ln(DQ0)

Data 2.3 ± 1.0 −10 ± 9 0.63
Pythia 8.1√

s ≥ 7 TeV 2.2 ± 0.1 −9.6 ± 0.9 0.99

Toy 2.0 ± 0.5 −8 ± 5 0.84

The general behavior of the xR sector of the inclusive cross sections is characterized by the
shape of (1− xR)

nxR which is mostly controlled by the power index nxR at low xR. (We con-
sider the quadratic term exp

[
nxRQ ln2(1− xR)] controlled by nxRQ(pT) = DQ/pT + nxRQ0

to be a perturbation.) Considering two nearby points in y, y1 and y2 > y1, and noting that
ln(1− xR) ≈ −xR for small xR, we estimate that the power nxR of (1 − xR) should be
approximately:

nxR ∼
( √

s
2pT

)
ln
(

σ(pT , y1)

σ(pT , y2)

)(
1

cosh(y2)− cosh(y1)

)
, (39)

where σ(pT , y) denotes the inclusive invariant differential cross section given by Equation (2).
Hence, we expect that the nxR power index should be proportional to

√
s/2pT at low xR—

especially when dominated by g g→ g g scattering. This behavior is captured in the D term
defined by Equation (10). From Equation (39), we find that:

D(s) ∼ −
√

s
2

(
d ln(σ(pTmin, y)

d cosh(y)

)
, (40)

where the derivative is evaluated at the lowest measured pT for a given
√

s data set. Note
that the minus sign enforces the sign convention of Equation (39). By this formulation, the
value of D should grow with increasing

√
s if the derivative d ln(σ(pTmin))/d cosh(y) has

little s-dependence—roughly true when the kinematic point is near the rapidity plateau.
The data, Pythia 8.1 and the Toy MC all follow this behavior (see Figure 10c).

Note that the s dependence of the a function, A(
√

s, pT), is the same as the inclu-
sive differential cross section at xR = 0. In our formulation, the dimension of the invari-
ant cross section is determined by the term A(

√
s, pT) = κ(s)/pnpT

T given by Equation
(6). Since κ(s) for inclusive jets is proportional to s[GeV2] as shown in Figure 10a and
npT ~ 6 [(GeV/c)−6], the overall dimensions of the inclusive cross section are [(GeV/c)2]
[(GeV/c)−6] ~1/p4

T[(GeV/c)−4] ~ [cm2/(GeV/c)2], thus the same dimensions of the hard-
scattering cross section dσ/dt ((GeV/c)−4), as it must be by dimensional analysis of



Universe 2021, 7, 196 24 of 66

Equation (1). Later, we will refine the relationship between κ(s) and npT which we call the
“dimensional custodian”.

One might ask why the exponent of the pT power is approximately independent
on the value of

√
s. One factor is that the leading term in the hard g g → g g (2 → 2)

scattering cross section dσ̂/dt̂ at small pT is independent of
√

s. Another factor is that
the evolution of the PDFs enhances the low-x region as

√
s increases, which is partially

compensated by the decrease in the αs(Q)2 term of the hard-scattering cross sections as the
scale Q increases. In fact, we find that the fractions of subprocesses given in Table 3 for
13 TeV jets are nearly the same for

√
s = 2.76 TeV with the ATLAS experimental cuts. For

example, the (g g→ g g)/(g q→ g q) channels at 2.76 TeV are 68.8%/13.6%, respectively,
vs. 66.2%/13.1% for 13 TeV. The overall conclusion is that our formulation of the inclusive
invariant cross section given by Equations (2)–(4) suggests that the A(

√
s, pT) function is

a less sensitive way to study QCD and, as will be discussed later, the xR dependence of
the cross section, primarily through the distortion parameters D and DQ, is a much more
sensitive measure of theory, hard parton scattering and the nucleon PDFs. We find that the
power indices npT , nxR0 and nxRQ0 have little s-dependence, making their average values
meaningful. Most of the s dependence is in the magnitude factor κ(s) of the a function. The
averages are tabulated in Table 7 below for ATLAS jets.

Table 7. The power indices npT , nxR0 and nxRQ0 of data averaged over 2.76 ≤
√

s ≤ 13 TeV of
inclusive jets (R = 0.4) measured by ATLAS are compared with two MC simulations and are tabulated.
The quoted errors are the standard deviation about the average. The Monte Carlo simulations, Pythia
8.1 and Toy MC are in good agreement with npT data and are consistent with the < nxR0 > and
< nxRQ0 > data values, for the later within 50% errors.

Parameter Average Value Data/MC

< npT >
Data 6.3 ± 0.1

Pythia 8.1 6.28 ± 0.04 1.00 ± 0.02
Toy MC 6.27 ± 0.06 1.00 ± 0.02

< nxR0 >
Data 3.7 ± 0.4

Pythia 8.1 4.4 ± 0.2 0.8 ± 0.1
Toy MC 3.92 ± 0.04 0.9 ± 0.1

< nxRQ0 >
Data 0.4 ± 0.2

Pythia 8.1 0.4 ± 0.1 0.8 ± 0.6
Toy MC 0.62 ± 0.01 0.6 ± 0.4

As another way of envisioning the s dependence of inclusive jets arising from κ(s),
we normalize the A(pT) functions by multiplying them by pT

6.35, the reciprocal of the pT
dependence of the 13 TeV ATLAS R = 0.4 jet data set, as is frequently done for cosmic
ray spectra—in Figure 11a. Plotted in the figure are the two Monte Carlo simulations,
normalized to the 13 TeV ATLAS data. The strong s dependence is evident. It is of note that
the Toy MC follows the much more sophisticated Pythia 8.1 simulation up to

√
s = 100 TeV,

indicating that, at least for the kinematic region of the simulation, the hard scattering of
partons dominates.

It is of course true that the s dependence of the A(pT) function is not the complete story
of the cross section s dependence. We have therefore computed the integral inclusive cross
section of the ATLAS R = 0.4 jet data in the kinematic region measured and normalized
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for |y| ≤ 3 by using our parameterizations given in Tables A2–A4 in Appendix A. The
integration is defined as:

σ
(√

s
)
= π

3∫
0

dy

pH
T∫

pL
T

(
d2σ
(√

s, pT , y
)

2πpTdpTdy

)
dp2

T , (41)

where the same pT interval 100 ≤ pT ≤ 3000 GeV/c is used for all values of
√

s. In the
integration, xR < 0.9 where F(xR) > 10−3. The cross section integral is compared to the
integral of the A(pT) function for the same pT range. In order to study the behavior over the
range of measured

√
s values, we choose the same lower and upper pT limits independent

of
√

s. The result is shown in Figure 12, where we conclude that most the s dependence of
the integrated cross section is in the A(pT) function, and that the overall integrated cross
section rises faster than the integral of A(pT).
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Figure 11. (a) The A(pT) functions multiplied by pT
6.35 for ATLAS inclusive jet data (R = 0.4) are plotted vs. pT . The Toy

MC simulations for each energy are displayed by the red dotted lines and the Pythia 8.1 simulations are indicated by the
circles with black outlines. The Toy MC has been smoothed by a cubic polynomial fit in pT . It follows Pythia 8.1 for the three
overlapping

√
s values, but both tend to underestimate the data at 2.76 (green circles) and 7 TeV (blue circles). All three

functions overlap at
√

s = 13 TeV, where the simulations were normalized. The vertical axis is a measure of the magnitude
parameter κ(s) in Equation (6) given in units of barns (GeV/c)4.35. On the right, (b), κ(

√
s), computed by the average of each

normalized A(pT) is plotted as a function of
√

s for data and the two MC simulations. The errors of the averaged are the
standard deviation about the averages. Also shown is the value of κ(

√
s) of data computed by fixing npT = 6.35. The red

dotted line is a fit to the Pythia 8.1 simulation consistent with κ(
√

s) ~ (
√

s)2. Note that each normalized a function is not a
constant indicating a violation of the pure power law.

The resulting F(xR) functions are plotted in Figure 13. The Toy MC gives the better
fit for

√
s = 2.76 and 5.02 TeV, but has approximately the same quality as the Pythia 8.1

simulation for 7 TeV. On the other hand, Pythia 8.1 gives the better fits for 8 and 13 TeV.
The resulting χ2 are shown in Table 8.

Since it is difficult to see any s dependence of F(
√

s, xR) in Figure 13, we plot the fitted
functions to Equation (16) of the analysis of the 2.76, 7 and 13 TeV ATLAS data in Figure 14.
It is apparent that as the COM energy increases, the F-function becomes steeper but all
data follow a simple power law ~ (1 − xR)n0 at low xR.
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Figure 12. The integrated jet cross section for 100 ≤ pT ≤ 3000 GeV/c, xR ≤ 0.9, and |y| ≤ 3.0 for
the parameterization of the inclusive cross section as measured by ATLAS (red squares) and of the
integral of the corresponding a functions (black circles). The error bars were estimated from the
relative errors of κ(s), the a function magnitude parameter. The red dotted line and dashed black line
represent a power law growth (

√
s)2.29 ± 0.05 and (

√
s)1.89 ± 0.09 with χ2/d.f. of 1.3/5 (p = 0.93) and

0.62/5 (p = 0.99), respectively. The integrated cross section grows faster in
√

s than the integrated a
function because of the broadening of the rapidity distribution with increasing

√
s.

Table 8. The χ2 values of comparison of data with themselves vs. data with the Toy MC and Pythia
8.1 simulations of data shown in Figure 13. In all comparisons, the nxR0 and nxRQ0 values were used
for the model. The column “Data” is the comparison of actual data points with the model determined
by Equation (13). The χ2 values and the numbers of degrees of freedom are shown as ratio and value
for each comparison: data vs. data, data vs. Toy MC and data vs. Pythia 8.1. The errors used in the
χ2 computation include the errors of the fit as well as data systematic and systematic errors added in
quadrature. p-Values less than 10−8 were set to 0.

√
s (TeV) Data Toy MC Pythia 8.1 MC

χ2/d.f. p-Value χ2/d.f. p-Value χ2/d.f. p-Value

2.76 TeV
ATLAS 21.2/52 1.00 71/52 0.04 130/52 1.3 × 10−8

5.02 TeV
ATLAS 14.1/72 1.00 149/72 2.7 × 10−7 - -

7 TeV*
ATLAS 15.0/83 1.00 51.3/83 0.99 50.3/83 0.99

8 TeV
ATLAS 161/155 0.35 3464/155 0 - -

13 TeV
ATLAS 137/171 0.97 1161/171 0 771/171 0

13 TeV
CMS 143/154 0.73 248/154 2.4 × 10−6 494/154 0

* Three outlier points have been eliminated in calculation of χ2. We see that the data are consistent with themselves,
consistent with the Toy MC up to 7 TeV, whereas the adequacy of Pythia to provide a good fit shows no systematic
s dependence, but the χ2 are generally poor, except for 7 TeV. Overall, only in the case of data vs. data are the χ2

values reasonable, which indicates that the shape of F(
√

s, xR) is compatible with Equation (16) and that the MC
simulations are being strongly tested.
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Figure 13. The xR distributions for five values of
√

s for ATLAS inclusive jets ((a–e) for
√

s = 2.76, 5.02, 7, 8, 13 TeV,
respectively) and for CMS jets at 13 TeV—(f). The red dotted line represents a fit to the data (Equation (16)), the solid blue
line the results of a Pythia 8.1 simulation and the dashed black line the results of the toy model simulation. Pythia agrees
roughly with data for 7 and 13 TeV but underestimates the data at 2.76 TeV. The Toy model generally overestimates data at
high xR for 8 and 13 TeV.
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√
s.

5. Analysis of Inclusive Isolated Photons

The production of photons by either parton–parton annihilation or by parton–parton
Bremsstrahlung in p–p collisions has been of long-term interest [33,34]. It provides a useful
window into the gluon and quark distributions of the proton without the complications of
hadronization of particles in the final state [35]. However, there is a third, and complicating
process, where the detected photon arises from a higher-order fragmentation process into a
photon from the quark legs of the collision. Thus, the analysis of the data on this process is
subtle and important corrections have to be made in order to isolate the direct photon signal
from these background fragmentation processes as well as from that from π0 → γγ decay.
This isolation cut is typically performed by demanding that the transverse energy in a
hollow cone centered on the detected photon be less than some empirical functional value.

As we did for jet production in Table 2, we list the dominant processes that contribute
to direct photon production in Table 9 [24,25]. Note that both quark Bremsstrahlung and
quark–antiquark annihilation cross sections have a leading 1/p2

T behavior at low pT for
fixed

√
ŝ. In the case of Bremsstrahlung gq→ γq we note (dropping the caret designation

of the parton–parton COM variables):

dσ
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=

παeαs
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−

e2
q

3

)(u
s
+

s
u

)
≈ παeαs
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(
e2

q

3

)
1
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T

, (42)

where αe is the fine structure constant, αs is the strong interaction coupling strength and eq
is the electric charge of the radiating quark. At the maximum pT =

√
s/2 limit for a given

s, the differential cross section is finite and has the value:

dσ

dt
=

5
2
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(
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q

3
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(
5e2

q

96

)
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This cross section and those for other parton–parton scatterings are tabulated in Table 9.

Table 9. The various parton–parton scattering processes (carets not shown) that contribute to direct
photon production in p–p scattering are listed. The leading pT dependences at small pT and the
values of the cross sections at the kinematic limit where pT =

√
ŝ/2 are shown. The gg→ γγ cross

section depends on both αe and αs and on s, t, and u through the terms Ti. This channel was neglected
since it contributes ≤ 0.1% of the overall production cross section. In all cases, the exact expressions
for the scattering cross sections were used in the Toy MC simulations. The expressions shown here
are only to give a rough idea of the ŝ and pT dependences. Notice that, unlike the cross sections of
Table 2, the photon-producing cross sections are ŝ dependent and at low pT and fall with increasing
pT as 1/p2

T .

Process Leading pT Value at pT=
√

ŝ/2

gq→ γq dσ
dt ≈

παeαs
s

(
e2

q
3

)
1
p2

T

dσ
dt = παeαs

p4
T

(
5e2

q
96

)
qq→ γg dσ

dt ≈
παeαs

s

(
8e2

q
9

)
1
p2

T

dσ
dt = παeαs

p4
T

(
e2

q
9

)
qq→ γγ dσ

dt ≈
πα2

e
s

(
2e4

q
3

)
1
p2

T

dσ
dt = πα2

e
p4

T

(
e4

q
12

)
gg→ γγ dσ

dt ∼
α2

s
8π2

πα2
e

s2

(
n f
∑

i=1
eq2

i

)2

∑
i

Ti

∼ (1× 10−3)
dσ(qq→γg)

dt

See Owens [25] (neglected)

The leading pT power for constant s is (1/s)
(
1/p2

T
)

rather than the steeper 1/p4
T that

governs the underlying hard-scattering dominant terms in jet production. Therefore, we
would expect to see a reflection of this 1/p2

T behavior predicting that inclusive photons
will have a flatter A(pT) spectrum. We also expect that the xR sector, characterized by
the power indices nxR(pT) and nxRQ(pT), will be different from inclusive jet production
because photon creation tends to be in the direction of the incoming electric fields causing
a peaking along the incoming beam direction. However, the peaking behavior will be
modulated by the hadronic part of the photon creation process. Hence, the xR distribution
for inclusive photons is the result of a competition of the peaking by QED and the flattening
of QCD.

We have analyzed ATLAS 8 [36] and 13 TeV [37] photon data in the same manner as
we did for inclusive jets, namely using Equation (4) as the ansatz. (There are ATLAS 7 TeV
data [38] that cover 0.0 ≤ |η| ≤ 1.81 in only three bins making them insufficient coverage
for our full analysis.) The results are shown in Figure 15. The power law of the isolated
photon a function is quite evident. Hence, the inclusive isolated photon cross section can
be factorized into a [pT −

√
s] sector and a [pT − xR] sector as we found for inclusive jets

but we find that the [pT − xR] sector is significantly different.
The power indices of the A(pT) photon fits are: npT = 5.81± 0.02 for 8 TeV, 5.91 ± 0.04 for

13 TeV data and 5.85± 0.12 for 13 TeV theory [39]—all three values being significantly smaller
(9.8σ) than the corresponding values for inclusive jets (6.35± 0.02) discussed earlier. The corre-
sponding κ(s) values for the ATLAS photon measurements are: (5.0 ± 0.5) × 109 pb/GeV/c2,
(1.8 ± 0.4) × 1010 pb/GeV/c2 and (1.3 ± 0.9) × 1010 pb/GeV/c2 for 8 TeV data, 13 TeV data
and 13 TeV simulation, respectively. As in the case of inclusive jets, we find that the κ(s)
value for inclusive isolated photons increases with increasing

√
s.

Turning to the [pT − xR] sector, we plot in Figure 16 the power indices nxR(pT)
and nxRQ(pT) as a function of pT for data and the simulation based on an NLO pQCD
predictions from Jetphox based on the MMHT2014 PDFs taken for the posted HepData of
the paper [37].
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Figure 16. The power indices nxR and nxRQ ((a,b) respectively) for inclusive isolated photons measured in the ATLAS
detector for

√
s = 13 TeV compared to simulations. The red dotted lines represent the results of our Toy model simulation

and the solid black lines the theory simulation shown in the ATLAS paper [37]. Both the Toy MC and NLO simulation tend
to overestimate the power indices. The NLO simulation is a better representation of nxR(pT) but is approximately the same
quality as the Toy MC for nxRQ(pT). The large systematic errors of the NLO simulation are not shown.
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We have simulated direct photons in the same manner as we did for inclusive jets
by considering only the underlying hard scattering of gluons and quarks. We neglect
the so-call fragmentation production of photons and higher level QCD contributions [39].
The dominant underlying hard-scattering cross sections are proportional to αeαs, hence
the first order in electromagnetic and hadronic interactions. In the simulation we take
αe(MZ) = 1/128 [26] to be a constant and αs(Q2) to evolve as described above. The
contributing underlying parton–parton scattering cross sections are tabulated below. There
are two major types—those involving Bremsstrahlung and those involving quark–antiquark
annihilation into a photon–gluon pair. A third contribution involves quark–antiquark
annihilation into a photon pair. Unlike purely hadronic processes, which are roughly
independent of ŝ, the photon-producing cross sections fall with increasing ŝ and have a
1/p2

T dependence at low pT . Hence, it is the very low ŝ = sx1x2 region that dominates the
inclusive photon cross sections.

The Toy MC uses the CT10 PDFs but does not account for photon identification
efficiency, radiative corrections or isolation effects—hence is only a rough guide to the
data. The results of the simulations in comparison to the 13 TeV ATLAS data, where the
statistical and photon ID errors were added in quadrature, are shown in Table 10 for our
Toy MC. Our simulation involves only the various hard-scattering processes listed in the
table and the corresponding parton distributions from a parameterization of CT10 [23]. We
have not simulated fragmentation photons or the effect of photon isolation cuts.

Table 10. The contributions of each process, σ(i), operative in the production of direct photons at√
s = 8 and 13 TeV integrated over 34.8 ≤ pT ≤ 990 GeV/c and 138.3 ≤ pT ≤ 1932 GeV/c for our Toy

MC 8 and 13 TeV simulations, respectively, and over 0 ≤ |y| ≤ 2.5 for both energies are shown along
with their corresponding power law indices. The power law indices were calculated for MC data in
the range 34.8 ≤ pT ≤ 600 GeV/c and 138.3 ≤ pT ≤ 1310 GeV/c for 8 and 13 TeV data, respectively,
which roughly corresponds to the ATLAS data ranges. The g g→ γγ process is neglected. The Toy
MC is only useful as a rough guide—it underestimates the value of npT by approximately 11%. There
is a small

√
s dependence in the fractional contributions to the total cross section but the values of

npT for all processes change by only 0.56%.

8 TeV 13 TeV

Process σ (i)/σ (All) npT σ (i)/σ (All) npT

All 100% 5.35 ± 0.01 100% 5.32 ± 0.01

g u→ γ u
g d→ γ d
g s→ γ s
g u→ γ u
g d→ γ d
g s→ γ s

89.01% 5.40 ± 0.01 85.52% 5.35 ± 0.01

u u→ γ g
d d→ γ g
s s→ γ g

10.80% 5.11 ± 0.01 14.19% 5.19 ± 0.01

u u→ γ γ

d d→ γ γ
s s→ γ γ

0.19% 4.95 ± 0.01 0.29% 5.01 ± 0.01

Note that processes involving Bremsstrahlung at
√

s = 13 TeV comprise approximately
86% of the cross section for ET ≥ 100 GeV at

√
s = 13 TeV, whereas the sum of the anni-

hilation cross sections is 14%. Ichou and d’Enterria [35] estimate the same fractions at√
s = 14 TeV to be 84% and 16%, respectively, with an isolation cut R = (∆η2 + ∆φ2)1/2 = 0.4.

It is interesting to compare the ratio of isolated prompt photons at 13 TeV to those
measure at 8 TeV. The ATLAS collaboration has performed such a calculation and has
compared the results to a NLO QCD calculation using the program [40]. One would expect
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that some of the simplicity of the Toy MC simulation, such as the absence of common
systematic errors would cancel in taking the ratio. In the ATLAS paper, the ratio of the
13 TeV/8 TeV data is plotted as a function of pT in four separate |y| bins. Displaying the
ratio in this manner implies that the comparison is made between an xR value at 13 TeV
and a larger xR value at 8 TeV given by xR(8) = 13/8 xR(13).

Referring to Equation (4), immediately we notice that since npT ~ constant, most
of the variation of the ratio is in the [pT − xR] sector. Since the cross section falls with
increasing xR, comparing the 13 and 8 TeV data with this xR relation between the two

√
s

values ensures that the Rγ
13/8(pT , η) ratio increases with increasing pT and increasing |η|,

namely for increasing xR. Most of the pT dependence in the ratio is therefore due to the
decrease in the cross section as the kinematic point approaches the kinematic boundary,
xR = 1 with the decrease larger for the 8 TeV data than the 13 TeV data. Thus, this test of
theory has a strong kinematic component that is relatively easy to simulate.

In terms of our formulation of inclusive cross sections and their comparison at the
same pT and |η], we can express the ratio Rγ

13/8 as the product of three ratios:

Rγ
13/8(pT , η) = RA(pT)R(pT , xR)RQ(pT , xR), (44)

where

RA(pT) =
(

κ(13)
κ(8)

)(
p∆npT

T

)
,

R(pT , xR) =

(
(1−xR)

nxR(13,pT )

(1−13/8xR)
nxR(8,pT )

)
,

RQ(pT , xR) = exp
(

nxRQ(13, pT) ln2(1− xR)− nxRQ(8, pT) ln2(1− 13/8xR)
)

,

(45)

and ∆npT = npT(8) – npT(13) ≈ − 0.1 ± 0.04. This near-equality of the npT exponents makes
RA(pT) slowly varying—in fact < RA> = 1.9 ± 0.1 for 100 < pT < 1310 GeV/c).

We show the Rγ
13/8 ratio for different η slices as a function of pT in Figure 17. The

Toy MC represents the data rather well over the entire kinematic range. It underestimates
the ratio for the two lower η bins, but is remarkably close to the data and the more
sophisticated NLO QCD simulation for the two higher ones. The NLO simulation is a
better representation of the data than the Toy simulation with χ2/d.f. = 31/47 (p = 0.97),
while the Toy simulation has χ2/d.f. = 175/47 (p = 1.2 × 10−16), where most of the
contribution to the χ2 comes from the lower two |η| bins.
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high Rx  kinematic boundary. 

  

Figure 17. The ratio of the inclusive isolated photon cross sections measured by the ATLAS collaboration at
√

s = 8 and
13 TeV is plotted as a function of pT (ET) for various slices of |η| in (a–d). The dashed black curves represent the NLO
QCD calculation and the red dotted curves are the results of our Toy MC simulation. The NLO calculation is a better
representation of the data but it is noteworthy that the Toy simulation is so close to the data—especially at the two larger
|η| bins. This is an indication that most of the pT dependence is due to the decrease in the cross section as xR → 1, the high
xR kinematic boundary.

6. Analysis of Heavy Mesons and Baryons

The study of heavy quark final states (charm and bottom) offers tests of both perturba-
tive QCD as well as non-perturbative corrections. The literature is extensive and there are
highly developed MC simulations which replicate the data quite well. Because the mass
of the bottom quark, m, defines the scale of the strong coupling in such processes and is
much larger than ΛQCD, perturbative calculations can be conducted. The same is roughly
true for charm quark states despite being lighter and closer to the ΛQCD. Higher-order
QCD diagrams (~αs(m2)3) are important since the cross section for gg→ gg scattering is
several orders of magnitude larger than gg→ QQ , thereby permitting heavy quark pair
production to occur by fragmentation of one of the gluon lines into QQ. These processes
are of order αs

3(Q2) [41,42]. Hence, we would expect our very elementary lowest-order
simulation to be only a rough guide.

In order to gain a theoretical foundation of heavy quark (meson/baryon) production,
we first examine the underlying parton–parton scattering processes that contribute. We



Universe 2021, 7, 196 34 of 66

consider both open charm and bottom states, as well as “onium” states (J/ψ, ψ(2S), Υ(1S).
There are two main processes—gluon–gluon scattering into a heavy quark–antiquark pair
and light quark–antiquark annihilation into a heavy quark–antiquark pair. The appropriate
cross sections are shown in Table 11 in the small pT approximation as well as at the
maximum pT kinematic limit.

Table 11. The leading order cross sections and their behavior at low pT and at the kinematic boundary are tabulated. Again,
the carets denoting variables of parton–parton scattering have been omitted. The equations were derived from [43] and

checked with those in the PDG [26]. The modified transverse momentum PT =
√

p2
T + m2.

Process Leading pT Value at pT= 1
2

√
ŝ−4m2

ŝ=4P2
T

gg→ QQ
dσ
dt = πα2

s
s2

(
s

6(m2+p2
T)
− 3

8

)[
1− 2 m4+p4

T
s(m2+p2

T)

]
dσ
dt ≈

πα2
s

s

(
1

6(m2+p2
T)

) dσ
dt = 7

768
πα2

s
P4

T

(
1 + 2m2

P2
T
− 2m4

P4
T

)

qq→ QQ dσ
dt = 4πα2

s
9

1
s2

(
1− 2p2

T
s

)
dσ
dt = πα2

s
72P4

T

(
1 + m2

P2
T

)

Notice that the gg→ QQ cross section has a 1/P2
T behavior at small pT , indicating

that the data should follow a power law in the modified transverse momentum PT with
Λm = m rather than in pT . We expect the a function to be a power law in 1/PT and that the
power npT should be less than that of inclusive jets since the dominant hard-scatteringhard-
scattering cross section goes as ~1/P2

T rather than ~1/p4
T , as in the case of jets. Since

ŝ ≥ 4m2, the cross sections are finite throughout their kinematic ranges and, as before,
we examine the behavior of the cross sections through their approximations. The first
approximation of the operative hard-scattering cross sections is to determine the leading pT
term for the case when ŝ is well above threshold. Note that ŝ = 2P2

T(1 + cosh(y1 − y2)) for
QQ production, where the heavy quarks are produced at yi, i =1, 2, respectively, expresses
the fact that the rapidity of the b-mesons tend to be correlated [44].

The gg→ QQ process dominates the qq→ QQ reaction at low pT and high
√

s
since the gluon PDFs dominate the quark and antiquark PDFs, while their respective cross
sections at low pT are nearly equal. We see that hard-scattering cross sections for gg→ QQ
and qq→ QQ are power laws in the modified transverse momentum (transverse mass)

PT =
√

p2
T + m2 as indicated by the data when m ~ Λm. Furthermore, the cross sections

are larger when |y1–− y2| is small. Both differential cross sections are finite in the limit of
the maximum value of pT =

√
ŝ− 4m2/2 and decrease with increasing s. For the two cross

sections we expect the empirical term Λm to be determined by the mass, m, of the detected
particle, but for small m we expect that the Λm parameter generally will be larger than m
because of gluon radiation and parton intrinsic transverse momentum.

We have applied our formulation of inclusive cross sections to the production of
heavy mesons and baryons in p–p collisions. Just as in the case of inclusive jets and direct
photons, we determine the A and F-functions for inclusive heavy quark final states, thereby
providing new tools to study them. We note that for those processes at low transverse
momentum, pT , of order of the mass of the heavy particle produced, we must engage the
parameter Λm in Equation (5) in order to determine the transverse momentum part of
the invariant cross section A(pT ,

√
s, Λm) in terms of the modified transverse momentum.

In the case of direct production of charm/bottom mesons and baryons, the Λm value is
determined mostly by the mass of the detected heavy particle itself. Additionally, in the
case of indirect production of heavy particles where the detected particle is the result
of a decay, the Λm value is determined by the parent particle mass and value of Q ~
(m(parent)–− m(daughter)) of the decay and is generally larger than the direct production
case. Unfortunately, we find the data are not extensive enough to include the nxRQ term in
Equation (3) so the analysis of heavy mesons to follow is performed with nxRQ ≡ 0. In the
following, we discuss both the pT and xR behavior of heavy particle production.
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6.1. PT Dependence of Heavy Particle Production

An example of this application is shown in Figure 18, where we plot the a function
of the invariant B± inclusive cross section measured by the LHCb collaboration at p–p
collisions at

√
s = 7 TeV [45] as a function of both pT and of the mass-modified trans-

verse momentum PT ≡
√

p2
T + Λ2

m. We determine the value of Λm by a minimum χ2

power law fit to the hypothesis that the modified transverse momentum distribution fol-
lows a power law distribution. The fitting process determines κ, Λm and npT . For B±

data shown, we find the PT power index npT = 5.5 ± 0.2 for Λm = 6.3 ± 0.3 GeV/c and
κ = (8.8 ± 4.7) × 103 µb (GeV/c)npT−2. It is important to note that our formulation not
only determines the operative mass term, Λm, in the production of the heavy meson, but
also estimates the underlying PT power law, thereby enabling comparisons with other
processes—especially at higher momentum, where PT >> Λm.
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LHCb J/ψ data taken at higher |y| (2 ≤ |y| ≤ 4.5) [46] compared with ATLAS data [47] at 
lower |y| ≤ 2. A simultaneous minimum χ2 fit to both data sets yields κ = (2.32 ± 0.13) × 
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Figure 18. Shown is the transverse momentum pT and modified transverse momentum PT depen-
dences of the a function for B± production at 7 TeV (LHCb [45]). It is evident that the transverse
momentum distribution pT indicated by the yellow circles can be corrected by the empirical mass
term Λm = 6.3 ± 0.3 GeV/c to reveal the underlying power law indicated by the black circles as
given in Equation (3). The power index of the PT distribution is npT = 5.5 ± 0.2, smaller than
that of the inclusive (u-d-s-g) jet production cross sections shown in Figure 3. The 3-parameter fit
determines κ = (8.8 ± 4.7) × 103 µb (GeV/c)npT−2 with χ2/d.f. = 6.6/24 (p = 1.0).

Open quark flavor mesons (π±,0, K±, D0, Ds, D*, B±,0, Bs0 mesons), vector mesons
(such as φ, J/ψ and ψ(2S)) and baryons (antiprotons and Λb baryons) can be analyzed
using the Λm parameter to reveal the underlying A(PT) power law. Although well known,
this correlation of Λm with the mass of the particle produced is not frequently referenced
because inclusive cross sections are presented as d2σ/dpTdy, which distorts the Λm de-
pendence by simple kinematics, rather than the differential cross section in the invariant
phase space form, d2σ/2πpTdpTdy, where a power law in PT is manifest. Determining
the Λm term in the modified transverse momentum, PT , from data is an important test of
the production cross section and potentially yields information of the mother–daughter
relationship for particles produced indirectly.
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The a function, by definition, should be independent of y. Thus, it enables the pT
distributions of data in different y ranges to be compared. In Figure 19, we show the
8 TeV LHCb J/ψ data taken at higher |y| (2 ≤ |y| ≤ 4.5) [46] compared with ATLAS
data [47] at lower |y| ≤ 2. A simultaneous minimum χ2 fit to both data sets yields
κ = (2.32 ± 0.13) × 106, npT = 6.62± 0.02 and Λm = 3.93± 0.02 GeV/c with χ2/d.f. = 73.9/35.
Both data sets are at

√
s = 8 TeV, but their respective y regions do not overlap.

Universe 2021, 7, x FOR PEER REVIEW 39 of 73 
 

 

 

Figure 19. The ( , , )T mA s p Λ  values for J/ψ prompt mesons as A-function of transverse momentum 

are plotted for both LHCb (circles) and ATLAS data (triangles) sets at s = 8 TeV. Two values of 
the transverse momentum are plotted for each point—the Tp  value and the modified transverse 

momentum value derived from Tp  given by 2 2
T T mP p≡ + Λ . The yellow circles and blue triangles 

(mostly covered by black triangles) are ( , , )T mA s p Λ versus Tp  for the LHCb and ATLAS data, 
respectively, and the red circles (LHCb) and black triangles (ATLAS) are the same data plotted ver-
sus the modified transverse momentum, TP . Note that all data have the same power index pTn = 
6.53 ± 0.03 indicated as a simultaneous fit to both data sets. The common fit value results in mΛ  = 
3.93 ± 0.02 GeV/c. The ATLAS data were taken in the interval 0 ≤ |y| ≤ 2.0 and the LHCb data in the 
non-overlapping region 2.0 ≤ |y| ≤ 4.5, thereby demonstrating the independence on |y| of 

( , , )T mA s p Λ as A-function of TP . 

The values of mΛ  for other single particle inclusive cross sections are approximately 
linearly dependent on the rest mass (PDG value [26]) of the produced particle as indicated 
in Figure 20 (left). The data were taken from Table VIII of reference [9], along with other 
data [48–62]. However, the linear mΛ  –m relation appears to be broken for the Υ(nS). The 
ATLAS value and CMS values are consistent with the linear relation of the lower mass 
data, whereas the LHCb values lie below the extrapolated line. The ATLAS data cover |y| 
≤ 2.0 and the CMS data are even more central with |y| ≤ 1.2, whereas the LHCb data range 
over 2.0 ≤ |y| ≤ 4.5. More data are needed to resolve this discrepancy—especially from the 
ATLAS and CMS collaborations covering the central |y| range. We have averaged the 
ATLAS and CMS data with those of the LHCb collaboration in Figure 20 (left). The red 
dotted line is a minimum χ2 fit mΛ  = (1.17 ± 0.04) m + (0.40 ± 0.04) to all data points except 
the inclusive photon points and the Υ(nS) values. The χ2/d.f. = 29.7/11 (p = 1.8 × 10−3). 

Figure 19. The A(
√

s, pT , Λm) values for J/ψ prompt mesons as a function of transverse momentum
are plotted for both LHCb (circles) and ATLAS data (triangles) sets at

√
s = 8 TeV. Two values of

the transverse momentum are plotted for each point—the pT value and the modified transverse

momentum value derived from pT given by PT ≡
√

p2
T + Λ2

m. The yellow circles and blue triangles
(mostly covered by black triangles) are A(

√
s, pT , Λm) versus pT for the LHCb and ATLAS data,

respectively, and the red circles (LHCb) and black triangles (ATLAS) are the same data plotted
versus the modified transverse momentum, PT . Note that all data have the same power index
npT = 6.53 ± 0.03 indicated as a simultaneous fit to both data sets. The common fit value results in
Λm = 3.93 ± 0.02 GeV/c. The ATLAS data were taken in the interval 0 ≤ |y| ≤ 2.0 and the LHCb
data in the non-overlapping region 2.0 ≤ |y| ≤ 4.5, thereby demonstrating the independence on
|y| of A(

√
s, pT , Λm) as a function of PT .

The values of Λm for other single particle inclusive cross sections are approximately
linearly dependent on the rest mass (PDG value [26]) of the produced particle as indicated
in Figure 20 (left). The data were taken from Table VIII of reference [9], along with other
data [48–62]. However, the linear Λm –m relation appears to be broken for the Υ(nS). The
ATLAS value and CMS values are consistent with the linear relation of the lower mass data,
whereas the LHCb values lie below the extrapolated line. The ATLAS data cover |y| ≤ 2.0
and the CMS data are even more central with |y| ≤ 1.2, whereas the LHCb data range
over 2.0 ≤ |y| ≤ 4.5. More data are needed to resolve this discrepancy—especially from
the ATLAS and CMS collaborations covering the central |y| range. We have averaged the
ATLAS and CMS data with those of the LHCb collaboration in Figure 20 (left). The red
dotted line is a minimum χ2 fit Λm = (1.17± 0.04) m + (0.40± 0.04) to all data points except
the inclusive photon points and the Υ(nS) values. The χ2/d.f. = 29.7/11 (p = 1.8 × 10−3).
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Figure 20. Shown in (a) is the transverse mass parameter Λm as a function of the single particle mass in single particle
inclusive production as illustrated in the fit for B± shown above. The red dotted line represents a fit to the data, not
including the Υ(nS) data resulting in Λm = (1.17 ± 0.04) m + (0.40 ± 0.04) where Λm is in momentum units (GeV/c) and m
is in mass units (GeV/c2). The photon point, where m = 0 with Λm = 0, was not included in the fit. The LHCb Υ(nS) data
are inconsistent with the general trend for lower masses suggesting that the Λm –m relation breaks down for high mass. In
(b) are the npT values of the corresponding A(PT) fits in ascending magnitude vs. the particle species. The photon and jet
points are the values of the spine fits—hence the small errors.

Heavy quark pair production is sensitive to the gluon distribution of the proton, quark
masses in the low pT region and is a laboratory for testing QCD. There is a large body of
work in simulating the inclusive cross sections for heavy quark production, such as the
FONNL code [5]. LHCb data taken on heavy meson production are especially interesting
in the low pT region where the Λm term is important. For example, in this low pT regime,
not only is the intrinsic transverse momentum of the partons potentially important, but
also the very low-x parton behavior is critical. (The 7 TeV LHCb B data probes down to
x ~ 5 × 10−3.) In the simulations, there are large ln(pT/m) terms that must be resumed.
Additionally, higher-order αs

3 terms are important at low pT .
In the spirit of the discussion of the pT distributions of inclusive jets and photons given

above, it is interesting to see whether there is an underlying simplicity in the measured
cross sections that would be evidence of the initial hard parton–parton scattering with
appropriate mass terms considered. One simplicity already evident has been shown in
Figure 20 that indicates a linear relationship between the effective mass term Λm which

makes the PT ≡
√

p2
T + Λ2

m distribution a pure power law.
As an example, we study the A(pT ,

√
s, Λm) behavior of B± measured by the LHCb

collaboration at the LHC (see Figure 21). From equations in Table 11, the a function becomes
quite flat in pT for small pT since the modified transverse momentum PT is essentially
constant ~ m (Λm). Our Toy MC simulates the flat region at very low pT due to this
transverse mass effect. The simulation also shows that the power law index of 1/ PT is
smaller than that of inclusive jets following the pT dependence of the underlying parton–
parton hard scattering. As before, we note that the value of npT is not dependent on the
details of the fragmentation (no fragmentation/fragmentation ~1) but the value of Λm does
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depend on fragmentation in ourIe model since the lower pT values following fragmentation
can fall below the lower pT cut.
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(red and black circles) for MC and data plotted vs. the transverse momentum PT and the modified
transverse momentum, PT . The MC is in good agreement with the data and both MC and data follow
a power law in the modified transverse momentum, PT .

Our toy model is quite simple and differs from data in several significant ways. One
discrepancy is that the resultant power of PT is larger than that of the data, although smaller
than the corresponding jet value, where the toy model is successful in simulating the power
indices ns and npT . In the simulation, the QCD coupling was evolved by ŝ and the input
mass of the b-quark was set to 4.75 GeV/c2. The salient points of our toy formulation of
inclusive reactions captures the underlying power law in PT expected from gg→ QQ and
qq→ QQ hard scattering to be smaller than that of inclusive jets and the suppression of
the low pT values of A(

√
s, pT , Λm) by the heavy quark mass terms in the hard-scattering

cross sections.
Unlike our Toy MC simulations, higher-order effects are considered in the FONLL

program [5]. Its application to LHCb inclusive B± data is shown in Figure 21, where
we find that the Λm parameter in the modified transverse momentum is larger than
the PDG rest mass (m value) [26] as in data and the npT parameter is smaller than
that of u-d-s-g jets as expected. The simulated values for LHCb measurements of B-
mesons at 7 TeV yields Λm = 5.9 ± 0.3 GeV/c and npT = 5.6 ± 0.2 and for D0 mesons at
13 TeV determines Λm = 2.9 ± 0.2 GeV/c and npT = 5.7 ± 0.1, both consistent with data (B:
Λm = 6.3 ± 0.3 GeV/c, npT = 5.5 ± 0.2; D: Λm = 2.7 ± 0.1 GeV/c, npT = 5.3 ± 0.1).

Furthermore, it is interesting to observe that A(
√

s, pT , Λm) functions for LHCb B±,
B0, Bs

0 mesons [45], after the appropriate Λm corrections (Λm = 6.3 ± 0.3 GeV/c), and
b-jets, measured by ATLAS at 7 TeV [63], have the same power law index, npT . The relation
is shown in Figure 22 below where the b-jets have been normalized by an empirical factor
of 1.4 × 10−4. The red dotted line represents a minimum χ2 fit to the LHCb data and
ATLAS b-jets combined (κ = (9.2 ± 0.7) × 103 µb GeV/cnpT−2 and npT = 5.51 ± 0.03,
χ2/d.f. = 14.3/52, p = 1.0). It is apparent that the three processes plotted have the same pT
dependence (other than the normalization factor) suggesting that the soft processes in b-jet
formation and those in the fragmentation of the b-quark to B0, B± hadrons have little effect
on the pT distributions of the a function. This is one of the salient simplifying powers of
the a function.



Universe 2021, 7, 196 39 of 66

Universe 2021, 7, x FOR PEER REVIEW 42 of 73 
 

 

Figure 21. The resulting ( , , )T mA s p Λ  function for the FONLL simulation of inclusive production 

of B-mesons at s = 7 TeV (orange diamonds and red dotted line) superimposed on the LHCb data 
(red and black circles) for MC and data plotted vs. the transverse momentum Tp  and the modified 
transverse momentum, TP . The MC is in good agreement with the data and both MC and data fol-
low a power law in the modified transverse momentum, TP . 

 
Figure 22. Comparison of the ( )TA P  distributions of b-jets (black diamonds) measured in ATLAS 
normalized by an empirically determined multiplicative factor of 1.4 × 10−4 with LHCb B-meson 
data (B0 and B± shown as yellow circles and red triangles, respectively). Each data set is plotted 
versus the modified transverse momentum 2 2 1 2( )T T mP p= + Λ . The red dotted line is a simultaneous 
power law fit in the modified transverse momentum, TP , of all three data sets resulting in pTn  = 
5.51 ± 0.03 and mΛ  = 6.3 ± 0.3 GeV/c (χ2/d.f. = 14.3/52, p = 1.0). 

Our formulation of the invariant cross sections in terms of the A-function and the 
[ ]T Rp x−  sector enables such a comparison to be made between diverse data sets. In fact, 
given the common pTn  value for B0, B± and b-jets demonstrated in Figure 22, and the di-
mensional custodial to be discussed in Section 7, we expect that all three processes will 
have sn = 1.24 ± 0.05 making their respective A-functions grow with increasing s  as ( s
)(1.24 ± 0.05). 

6.2. XR Dependence of Heavy Particle Production 
The xRn  behavior for inclusive B± production as measured by the LHCb collabora-

tion [45] is shown in Figure 23. The data have been analyzed in the same manner as the 
inclusive jets and inclusive photons discussed above. In the analysis, we have used the 
PDG [26] rest mass value of the B± meson (5.27929 ± 0.00014 GeV/c2) for the expression for 

Rx , and the mΛ  term of the Tp  distribution was set to the measured value mΛ  = 6.3 ± 
0.6 GeV/c as shown in Figure 20. 

Figure 22. Comparison of the A(PT) distributions of b-jets (black diamonds) measured in ATLAS
normalized by an empirically determined multiplicative factor of 1.4× 10−4 with LHCb B-meson data
(B0 and B± shown as yellow circles and red triangles, respectively). Each data set is plotted versus the

modified transverse momentum PT = (p2
T + Λ2

m)
1/2

. The red dotted line is a simultaneous power
law fit in the modified transverse momentum, PT , of all three data sets resulting in npT = 5.51 ± 0.03
and Λm = 6.3 ± 0.3 GeV/c (χ2/d.f. = 14.3/52, p = 1.0).

Our formulation of the invariant cross sections in terms of the a function and the
[pT − xR] sector enables such a comparison to be made between diverse data sets. In fact,
given the common npT value for B0, B± and b-jets demonstrated in Figure 22, and the
dimensional custodial to be discussed in Section 7, we expect that all three processes will
have ns = 1.24 ± 0.05 making their respective a functions grow with increasing

√
s as

(
√

s)(1.24 ± 0.05).

6.2. XR Dependence of Heavy Particle Production

The nxR behavior for inclusive B± production as measured by the LHCb collabo-
ration [45] is shown in Figure 23. The data have been analyzed in the same manner as
the inclusive jets and inclusive photons discussed above. In the analysis, we have used
the PDG [26] rest mass value of the B± meson (5.27929 ± 0.00014 GeV/c2) for the ex-
pression for xR, and the Λm term of the pT distribution was set to the measured value
Λm = 6.3 ± 0.6 GeV/c as shown in Figure 20.

From the figure, we note that nxR(pT) for inclusive B production is quite different
from that of jets (Figure 5) and that of direct photons (Figure 16), but the momentum
regions of the measurements are quite different. We observe that the FONLL [5] simulation
shown in Figure 23 overestimates the power nxR at low pT although the experimental
errors are large.

Since we have observed that the PT distributions of B± production at the LHCb and
b-jets as measured by the ATLAS collaboration are consistent as shown in Figure 22, it is
interesting to see how the F(

√
s, xR) functions compare. In Figure 24, we plot on the left

the 7 TeV LHCb B± inclusive data and on the right b-jets measured at 7 TeV by the ATLAS
collaboration. In both cases, the F-functions were determined in the same manner as those
for inclusive jet production discussed above, but with the simplification of setting the DQ
and nxRQ0 terms to zero since the data are not extensive enough for good estimates of their
values. Notice that the two F distributions in Figure 24 are nearly the same—in fact in
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terms of Equation (16) with nxRQ0 = 0, we find nxR0 = 14.0 ± 0.4 for B± and nxR0 = 12 ± 3
for b-jets—in agreement, but very different from light parton jets indicated by the blue
dotted line in the figure on the left (nxR0 = 4.0 ± 0.5, nxRQ0 = 0.7 ± 0.2). Applying a χ2 test
of the b-jet fit to B± F-function, we find χ2 = 50 for 134 d.f.; and for B± with itself, χ2 = 101
for 134 d.f. Similarly, applying the fit of B± F-function to b-jets, we find χ2 = 91 for 35 d.f.;
and for b-jets with itself, χ2 = 67 for 35 d.f. The F(7, xR) for g-u-d-s jets discussed above is
much different from b-jets.
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Figure 23. The power terms, nxR for (1 − xR)nxR are plotted vs. pT for LHCb B± data (black points)
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The observed consistency of the a functions, determined by the invariant differential
cross section extrapolation xR → 0, for inclusive B± and b-jets suggests that the underlying



Universe 2021, 7, 196 41 of 66

parton–parton scatterings for the two processes are the same. What is noteworthy is that
the F-functions are also quite similar but quite different for those of light quark/gluon jets
despite the fact that soft processes, such as fragmentation and hadronization, are at work.
In the case of B± production, the b-quark has to hadronized into a B-meson, whereas for
b-jets, there only has to be collimated gluon and quark radiation around the struck b-quark
direction to form a jet. The steeper fall-off as the kinematic boundary is approached is
indicative of the dominance of gluons and sea quarks in the production process.

7. Analysis of Z-Boson Inclusive Production

The production of the Z-boson in p–p collisions is one of the important tests of the
standard model in that the production cross section involves not only QCD physics but also
the electroweak sector. The production cross section is usually thought of as a continuum
of the Drell–Yan process, where an initial state quark–antiquark pair annihilates to a heavy
JPC = 1−− state to become a Z-boson. On the other hand, Z-boson production is also related
to direct photon production, where, for example, in the process q + q→ Z + g the ‘heavy
photon’ in the final state becomes the Z-boson and the radiated gluon provides a transverse
momentum kick to the Z that would not be present in simple quark–antiquark annihi-
lation with no gluon radiation. Since we have already analyzed some of our properties
of vector meson production, such as J/ψ, ψ(2S) and Υ(nS) and direct photon produc-
tion, it is of interest to analyze the inclusive Z-boson production with our radial scaling
phenomenology.

Following Schott and Dunford [64], who have reviewed Z-boson production at 7 TeV,
there are two regions of the spectrum of the transverse momentum, pT of the Z-boson that
have distinct signatures. In the high pT >> Mz region, the cross section is expected to be of
the form:

d2σ

dp2
T
∼

αs(p2
T)

p4
T

(46)

which is at the dimensional limit of the inclusive cross section ~1/p4
T . As we will see

in the next section, this pT dependence implies a slow growth of the a function mag-
nitude κ(s) with

√
s. In the intermediate transverse momentum range, where the Z-

boson transverse momentum is larger than the intrinsic parton transverse momentum
(kT ~ 0.7 GeV/c) kT < pT < Mz/2, gluon emission is important in the initial quark–antiquark
state. When the gluon is colinear with the incoming quark or antiquark line, the effect of
gluon emissions can become quite large and has to be treated by a resummation technique
(i.e., “Sudakov form factor”). Again, following Schott and Dunford [64] the normalized
Z-boson cross section at low pT becomes:

1
σ

d2σ

dp2
T
∼ d2

dp2
T

(
exp

[
−2αs

3π
ln2

(
M2

Z
p2

T

)])
(47)

The exponential term imposes a large damping at small pT of the cross section by
‘robbing’ energy of the annihilating quark–antiquark collision, thereby pushing the pro-
duction of the Z-boson closer to its

√
ŝ threshold. The Z-boson a function shows these

two characteristics—a suppression at low pT controlled by colinear gluon emission and an
emergent ~1/p4

T power law at high pT .
In Figure 25, we show the a functions for inclusive Z/γ* production at

√
s = 8 [65]

and 13 TeV [66] measured by the CMS collaboration and a measurement by the ATLAS
collaboration at 7 TeV [67]. The 8 TeV data correspond to an integrated luminosity of
19.7 fb−1 and range 0 ≤ |y| ≤ 2.4 and 10 ≤ pT ≤ 600 GeV/c central bin values by
measuring the Z → µ+ µ− channel. Additionally, the CMS 13 TeV data of the absolute
inclusive cross section for Z→ µ+ µ−, e+ e− cover the 0 ≤ |y| ≤ 2.4 region in five bins
and range over 0.5 ≤ pT ≤ 950 GeV/c in thirty four bins, corresponding to an integrated
luminosity of 35.9 fb−1. The 7 TeV ATLAS data (4.7 fb−1) of the double differential cross
section has been normalized by a fiducial cross section and cover 1.0 ≤ pT ≤ 800 GeV/c in
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26 bins with 0 ≤ |y| ≤ 2.4 in three bins. These extensive data enable us to calculate the a
functions as well as determine t–e (1 − xR) power index function, nxR(pT).
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agreement is within ±50% for all quality measures (fit, data-data, data-MC) except at highest pT points.

One might think that the Λm –m relation, shown in Figure 20a, would be opera-
tive for inclusive Z-boson production but we find that relation to be strongly broken.
The data have a turnover at low pT that cannot be ‘corrected’ by a single value of Λm
consistent with gluon radiation in the initial state. However, we do find that the a
functions are consistent with a pT power law at large pT ≥ 100 GeV/c. Fitting the re-
gion 102.5 ≤ pT ≤ 950 GeV/c for the CMS 13 TeV data set, we find A(pT) ∼ 1/pnpT

T ,
where npT = 4.68 ± 0.03 (χ2/d.f. = 112/6 d.f., p ~ 0.)—close to the dimensions (GeV/c)−4

required by the definition of the invariant cross section, albeit with a large χ2 value since
there was no finite bin correction for the largest pT bin.

The a function for Z-boson inclusive production can be approximated by treating
the Z-boson as a heavy photon in the process q + q→ Z + g , as noted above. We have
deployed our direct photon simulation but modified the kinematics to accommodate the
mass of the Z-boson and have ignored the Z-boson width. As with the direct photon
simulations, we have used the CT10 parton distributions with QCD scale set to Q2 ~ s
and considered all qq channels weighted by their respective Z-boson branching fractions.
The results of the simulation are shown in the figure as red (8 TeV) and black (13 TeV)
lines normalized to the data. In the momentum range pT(Z) > 7 GeV/c and neglecting the
very highest pT point of the three measurements, the R(Toy/Data) = 1.0 ± 0.5 over up to
6 orders of magnitude. We conclude that pT > 7 GeV/c regions of the A(pT) functions can
be roughly simulated by the heavy photon approximation with gluon emission and have
little shape change as a function of

√
s.

A much more demanding test of the data is to examine the power nxR(pT) as in
(1 − xR)nxR as a function of pT . Our Toy simulation indicates that nxR(pT) is quite sensitive
to the mixture of qq annihilations contributing to the production cross section. Thus, the
simulation of the nxR(pT) dependence, just as in inclusive jet production, is a much more
stringent test of theory than the A(pT) function.
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We have deployed only the single power nxR analysis since the 8 TeV CMS and 7 TeV
ATLAS data are insufficient to determine the quadratic term, nxRQ(pT), as in Equation (9).
Furthermore, the ATLAS 7 TeV data set has only three |y| points so the determination
of the xR behavior is minimal. When we analyze the xR dependence of these three data
sets we find a large s dependence in the structure of nxR(pT) as a function of pT . Not
surprisingly, our simulation of the nxR(pT) by the Toy MC fails badly. For example, in the
13 TeV case, the TMC predicts nxR(pT) ~ 6 and independent of pT , whereas the CMS data
fall from nxR ~ 8 at pT ~ 5 GeV/c to nxR ~ 1 for pT > 200 GeV/c, with shape changes in
between. Remember that the A(pT) function is insensitive to ‘soft physics’, whereas the
xR(pT) dependence is sensitive to both ‘hard’ and ‘soft’ physics. Hence, it is possible to
have agreement of the Toy MC simulation for A(pT), but disagreement with data for xR
behavior. This disagreement begs for a full simulation of Z production, with all the QCD,
parton PDF and electroweak effects operative, analyzed in the [pT − xR] framework with
finer |y| and pT binning and standardized background corrections.

In summary, the study of Z-boson inclusive production in our [pT − xR] framework
offers stringent test of the modeling. Measurements of the double differential cross section
in bins of pT and y with standardized cuts and signal definitions are mandated. Others
have made this point clear [68,69].

8. The Dimensional Custodian

The inclusive invariant cross sections, d2σ/(2πpTdpTdy) have the dimension
cm2/(GeV/c)2 ~ 1/(GeV/c)4—by definition. It is therefore interesting to see how this
dimension is maintained by computing the logarithmic derivatives with respect to all the
energy/momentum variables. (We take energy and momentum to be equivalent when
measured in either GeV or GeV/c with c = 1). The sum of the resultant power indices
should compute to the dimension of the cross section, that is, the sum of the power indices
should result in the value – 4, the dimension of the invariant cross section in units of GeV/c.

In order to refine the analysis for inclusive jets and photons, we deploy another power
index, introduced in Table 6, to explicitly express the s dependence of the a functions.
In that terminology, we write κ(s) = κ0 (

√
s)ns, with ns being the power index of its

√
s

dependence. We then fit the normalized a functions of data taken at different
√

s values to
the form:

Sj,γ(pT) ≡
A(
√

s, pT)(√
s
)ns =

κ0

pnpT
T

, (48)

where ns, κ0 and npT are fit parameters with npT being the usual a function power index.
We call these normalized pT distributions the spine functions for jets and photons. They
should be approximate functions of only pT , having eliminated the s dependence by the
power index, ns.

The a functions so normalized for ATLAS inclusive jets is shown in Figure 26. We
expect that a determination of the power indices, npT and ns, of the spine functions to
be a straightforward test of the dimensional constraint that the invariant cross section,
as expressed by the a functions, should have the dimension of [(GeV/c)−4]. Thus, the
power indices, npT and ns, for both inclusive jets and photons, respectively, should obey
the dimensional constraint equation: npT − ns = 4. However, when we measure this simple
constraint equation we find that it is not satisfied and discovery (not unexpected) that the
residual power of pT forcing the dimensional constraint is in fact directly related to the
QCD evolution of the distribution functions of the colliding partons and thus to the strong
coupling constant αs(Q2). Therefore, the spine functions provide a rough test of the Q2

evolution of the colliding PDFs and coupling constant controlled by QCD.
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s, pT) of inclusive jets (R = 0.4) measured at the LHC by
ATLAS divided by sns/2 (called the ‘spine function’) is shown. The data are:

√
s = 2.76 TeV red circles,

5.02 TeV inverted blue triangles, 7 TeV yellow squares, 8 TeV green diamonds, 13 TeV black triangles.
Note that all the data follow the same power law with npT = 6.29 ± 0.01. The error bars represent the
statistical and systematic errors of the measurements added in quadrature. The resulting errors are
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T ,
where ns = 2.0 ± 0.1. The data follow this power law with residuals ≤ ± 50% over 12 orders of
magnitude. For plotting purposes, the error bars for 5 points were limited to no larger than 95% of
the point’s value.

Combining the ns power index with the value of npT and demanding that the dimension
of the inclusive jet cross section d2σ/(2πpTdpTdy) ~ 1/(GeV/c)4, we find npT − ns − 4 6= 0
but rather that there is a non-zero residual power nr = npT − ns − 4 = (6.29 ± 0.02) −
(1.99 ± 0.04) − 4 = 0.30 ± 0.04 (7.5σ). Hence, the simple dimension equation is not satisfied
without the residual power nr. For inclusive photons, we find similarly that the residual
power nr = npT − ns − 4 = (5.83 ± 0.02) − (1.56 ± 0.04) − 4 = 0.27 ± 0.05 (5.4σ).

We have checked our understanding of the spine function for inclusive jets by calcu-
lating the function for both Toy MC as well as Pythia 8.1 simulations. The comparison of
data with these two simulations is shown in Table 12 below. We note that the consistencies
of the simulations with data are reasonably good but that the simulated value of the resid-
ual power, nr, tends to be smaller than the data. Since the determination of the residual
power involves a subtraction of two experimental (simulated) numbers, the quoted error is
probably smaller than the actual error since we have not included the luminosity errors, pT
finite binning, and other experimental details in the simulations.

The spine functions follow power laws in 1/pT to a good approximation. For inclusive
jets, we find the residuals of the 1/pT power law fit to data are ≤ ± 50% over 12 orders of
magnitude. It is somewhat of a surprise that the normalized a functions are so congruent,
since in the primordial parton hard-scattering cross sections the PDF and αs(Q2) evolutions
are operative. However, we note that at very high energy the QCD Q2 evolution becomes
smaller fractionally. In fact, a close examination of the residuals of each data set that
comprise the spine functions reveals that they have a systematic pattern of negative
residuals at the low and high pT limits of the distribution and positive residuals between
the two pT extremes as shown in Figure 18 of our earlier publication [9]. The peak position
of the positive residual pT (max residual) is roughly the hyperbolic mean of the lowest and
highest momentum of the distribution ~ < pT > =

√
pTmin pTmax. Both Pythia 8.1 and our

Toy MC follow this behavior.
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Table 12. Spine function parameters for inclusive jets. Data are compared with Toy MC and Pythia
8.1 simulations. The Toy simulation had the relative errors of simulated invariant cross section ‘data’
points fixed to 2%, whereas the errors of the Pythia 8.1 simulation itself were used. Since the MCs
have no absolute normalizations, the values of κ0 for them are arbitrary and therefore not tabulated.
The MC fits ranged from 2.76 ≤

√
s ≤ 13 TeV matching the range of data. The pT and |y| binning of

the MC simulations were forced to be the same as data.

Inclusive Jets Parameter Value

Data κ0 (10 ± 3) × 105 (pb GeV(npT-ns−2))
Data ns 1.99 ± 0.04

Toy MC ns 2.084 ± 0.004
Pythia 8.1 MC ns 2.028 ± 0.005

Data npT 6.29 ± 0.01
Toy MC npT 6.286 ± 0.002

Pythia 8.1 MC npT 6.243 ± 0.003
Data nr 0.30 ± 0.04

Toy MC nr 0.203 ± 0.004
Pythia 8.1 MC nr 0.216 ± 0.005

Data χ2/d.f. 221/94 (p = 3 × 10−12)

We proceed in the same manner as we followed for inclusive jets for the analysis of
direct photon data taken at 8 TeV [36] and 13 TeV [37] by the ATLAS collaboration in order
to determine the spine function for direct photons. (There are ATLAS data at 7 TeV [38],
but they cover only three |y| bins, thereby precluding a full nxR and nxRQ analysis.) For
each

√
s value we determined the A(

√
s, pT) function as in Equation (3) with Λ ≡ 0. These

A(
√

s, pT) values were simultaneously considered by using Equation (36) in a global fit
to determine the three spine parameters κ0, ns and npT . The resulting spine function for
direct photon production is shown in Figure 27. As in the case of the jet spine function
analysis, we display the spine function normalized to the 13 TeV data set. The resulting fit
values are given in Table 13. We applied the normalization parameters determined by the
ATLAS data to the plotted UA1 data [70] but did not include them in the fit.
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Figure 27. The spine function for direct photons as measured by the ATLAS and UA1 Collaboration.
Data from 8 [36] and 13 TeV [37], yellow squares, green diamonds, respectively, are plotted. The UA1
data [70] are represented by the red circles, blue triangles for

√
s = 546 and 630 GeV, respectively.

Error bars are plotted but are generally smaller than the symbols of the plotted points. The red dotted
line represents the global fit to the ATLAS data sets. The χ2/d.f. of the red dotted line through all the
plotted points is 48/45 (p = 0.35). Note that the UA1

√
s = 0.546 TeV data have been normalized with

respect to the ATLAS 13 TeV data by a computed factor of (13/0.546)1.56 ~ 141.
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Table 13. Spine function parameters for inclusive photons. Data are compared with Toy MC
simulation through the parameters ns, npT and nr. The MC simulation has the relative errors of
invariant differential cross section fixed to 2%. The simulation was from 2.76 ≤

√
s ≤ 13 TeV, whereas

the data were 8 ≤
√

s ≤ 13 TeV. Since the MC had no absolute normalization, the values of κ0 for
them are arbitrary and therefore not tabulated. The pT and y binning of the MC simulation were
forced to be the same as data.

Inclusive Photons Parameter Value

Data κ0 (5 ± 2) × 103 (pb (GeV/c)(npT-ns−2))
Data ns 1.56 ± 0.04

Toy MC ns 1.08 ± 0.01
Data npT 5.83 ± 0.02

Toy MC npT 5.30 ± 0.01
Data nr 0.27 ± 0.05

Toy MC nr 0.22 ± 0.01
Data χ2/d.f. 44/27 (p = 0.02)

Toy MC χ2/d.f. 277/95 (p = 1 × 10−19)

The residual power for direct photons is expected to be smaller than that of inclusive
jets because the underlying hard parton scattering cross sections are dependent on the
product αe αs rather than αs

2. Because αe(Q) has a negative β function forcing the coupling
to grow stronger as the Q scale increases, whereas αs(Q) has a positive β function making
the coupling weaker with increasing Q scale, resulting in the residual power for inclusive
photons to be smaller. Unfortunately, the data are not good enough to determine this
difference by this method. By the fitted parameters above, we find the residual power for
photons nr = 0.27 ± 0.05 (5.4σ).

Referring to Table 13 for the spine function for direct photon production, we find the
photon npT and ns values significantly smaller than the inclusive jet values. The residual
dimensions, nr, are, however, consistent within errors.

The dimensional constraint fixed by the underlying parton–parton hard scattering is
further demonstrated by performing similar Toy MC analyses for various parton distribu-
tion assumptions at various

√
s as tabulated in Tables 2 and 8. We find that these different

(toy) processes have different npT and ns values allowing us to explore the npT − ns relation.
In Figure 27, we plot the resultant npT(nET) vs. ns values as well as the measured npT − ns
pair values for inclusive jets and inclusive photons described above. It is obvious that
the dimension of the data cross section as well as that of the MC is ~1/(GeV/c)4 in the
factorized form for whatever process. A linear fit to the power indices correlation (jet data
and MC and photon data and its MC) shown in Figure 28 yields the custodial relations for
inclusive jets and photons that are:

npT(jets) = (1.00± 0.02)ns + 4.28± 0.03
npT(γ) = (1.05± 0.03)ns + 4.16± 0.04,

(49)

where npT is the pT power index of the a function and ns is the power index of the
√

s
dependence of the magnitude parameter κ(

√
s) = κ0(

√
s)ns of the a functions. The slopes

of both custodial relations are consistent with 1.0 within errors, whereas the intercepts
differ by 0.12 ± 0.5, or about 2.4σ, or in ratio nr(jets)/ nr(γ) = 1.7 ± 0.7 consistent with the
evolution of αs(Q2)2 versus αs(Q2).

Thus, both the pT power law index, npT , and the s dependence, κ0(
√

s)ns with a
power index ns are coupled. The dimensional custodial is the result of the constraint of
the dimensions of the invariant cross section being 1/(GeV/c)4 that is the same dimen-
sion of the a function and the same dimension of the underlying parton–parton cross
section. The residual power for inclusive jets, determined by combining data with MC,
is nr = (4.28 ± 0.03) – 4.0 = 0.28 ± 0.04 (9.2σ) and arises from the pT evolution of the PDFs
and the strong coupling constant analyzed as an approximate power law in the low pT
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region of the data. For inclusive photons, the residual power by combining data and MC,
nr = 4.16 ± 0.04 − 4 = 0.16 ± 0.04 (3.7σ)—both consistent with the spine function analysis.
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It is interesting to observe that the hard scattering of the partons, which occurs at the
causal beginning of jet production, weighted by the participating PDFs, actually controls
the s dependence of the jet and direct photon a functions by the dimensional custodian.
This is another example of the utility of the a function—its dependences on pT and

√
s is

independent of the ‘soft physics’ of fragmentation and hadronization.
That the residual pT power is due to the Q2 evolution of the PDFs through the

DGLAP [71] equations and the explicit running of the value of coupling αs
2(pT) governing

the size of the various parton–parton scattering cross sections, is easily demonstrated by
our Toy MC with the αs

2 strength term of the hard-scattering cross sections set to a constant
and assuming that the 13 TeV PDFs are operative at all

√
s values. With these conditions,

we find that the residual pT power for the simulated spine function for inclusive jets in the
energy range 2.76 ≤

√
s ≤ 13 TeV is nr = 6.123 ± 0.002 − 2.120 ± 0.004 − 4 = 0.003 ± 0.004,

namely zero.
We can cross check the residual power by analyzing αs

2 as a power law in pT at the
minimum pTmin by the expression:

npT(residual) ≈
(

2pTmin

αs(pTmin)

)
dαs

dpT
∼ 2.42 αs(pTmin) , (50)

where αs(pT) is evaluated at pTmin where the QCD scale evolution is the largest. For the
ATLAS inclusive jet data (pTmin = 25 to 100 GeV/c) we estimate that the residual power
index ranges from 0.29 ≤ nr ≤ 0.36, which agrees with inclusive jet data nr = 0.30 ± 0.04.
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Hence, all dimensional factors are accounted for in terms of the power indices of
energy-momentum variables. In our earlier publication [9], we noted that 2→ 3 scattering
processes have a natural 1/p6

T behavior. We remarked that the existence of diquarks in
the nucleon is consistent with a putative 2→ 3 scattering processes. Contrary to those
earlier speculations [9], we show here that the pT behavior for jets, photons and heavy
meson inclusive cross sections can be adequately explained by 2→ 2 processes controlled
by hard-scattering cross sections dσ̂/dt̂, in the range pTmin ≤ pT ≤

√
ŝ/2, where the cross

sections are finite at each limit, weighted by the ŝ distribution generated by the parton
distributions. The important factors in drawing this conclusion are: (1) the determination of
A(
√

s, pT) by extrapolating to xR→ 0, which forces the shape of the A(
√

s, pT)- distribution
to be independent of soft physics, and (2) noticing that the magnitude of the A(

√
s, pT)

function is s dependent by just the right amount, when corrected by the residual power,
to make the dimension of the invariant cross sections for a given 1/ pT power to be
fixed to the dimension of the underlying hard-scattering

[
dσ̂/dt̂

]
d ~ 1/(GeV/c)4. That

the measured cross sections follow this behavior is an experimental verification of the
well-known factorization hypothesis [72].

9. Applications to HI Collisions at the LHC

Many analyses of heavy ion (HI) collisions are performed using the so-called nuclear
modification factors, RpA and RAA, defined by the ratio of heavy ion data divided by p–p
collision data of the same kinematic range corrected by a collision overlap factor [73,74].
Generally, these ratio measures do not attempt to separate the pT- dependence from
the y dependence of the cross sections—or equivalently separate kinematic boundary
effects, controlled by xR, from the pT dependence. Our formulation, which we have
used to study inclusive reactions in p–p collisions, can be applied easily to single particle
and jet production in heavy ion collisions. In particular, we can separately compare the
A(
√

s, pT , Λm) functions in p–p collisions with those of p–A or A–A collisions and contrast
the corresponding xR behaviors as described by nxR, the power of (1 − xR).

Since the a function is constructed by taking the limit xR → 0, it should only be
dependent on the parton distributions and on the parton hard-scattering cross sections and
not on the subsequent formation of QGP, fragmentation and hadronization. Hence, we
expect that the a functions for p–A and A–A collisions should be quite similar to those of
p–p collisions. This was indeed noted in [9].

9.1. Jets in HI Collisions

For a first look at the utility of our variables when applied to HI collisions, we have
studied the pT dependence of the a function for high transverse momentum jets in p–Pb
collisions and find that it is consistent with the a function of p–p collisions, whereas the nxR
behaviors of the two types of collisions are quite different as noted in an analysis of ATLAS
jets in p–Pb data at

√
s = 5.02 TeV in our earlier publication [9]. We caution, however, that

this behavior observed at high energies may not appertain to low energy. In fact, there
may be differences between these dissimilar colliding beams at lower transverse momenta,
where there could be sensitivity to the lower x shape of the colliding nucleon structure
functions.

Following the pA case, we note that there is a congruency of the a functions of HI
collisions with p–p collisions. Here, we compare p–p inclusive jets for pT ≥ 35 GeV/c
at
√

s = 2.76 TeV with those of Pb–Pb collisions at the same nucleon–nucleon energy for
pT ≥ 56.5 GeV/c as measured by the ATLAS collaboration [75] in the centrality bin 0–10%.
The corresponding A(pT) functions are shown in Figure 29, where we have normalized the
Pb–Pb data to p–p data by an overall factor. From the figure, we see that the A(pT) functions
for the two types of collisions (p–p and Pb–Pb) are the same within an overall scale factor
(the Pb–Pb data had been normalized to the number of events, whereas the p–p data were
full cross section measurements). The power law fit of the p–p data yields npT = 6.36 ± 0.01
and of the Pb–Pb data npT = 6.32 ± 0.05, agreeing within errors. The average ratio of
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A(pT)PbPb/A(pT)pp = 1.0 ± 0.2 and is flat in the interval 56.5 ≤ pT ≤ 357 GeV/c with a

χ2/d.f. = 2.1/8 (p = 0.98). Hence, we reinforce our previous conclusion from [9] that the
A(pT) power laws for inclusive jets in these transverse momentum intervals for p–p, p–Pb
(ATLAS

√
s = 5.02 TeV) and in p–p and Pb–Pb collisions at

√
s = 2.76 TeV have the same

power indices, npT .
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The congruency of the A(pT) functions for p–p, p–Pb and Pb–Pb jet data suggests that
heavy ion effects are best studied by comparing the respective xR behaviors, rather than
their pT behaviors through the a functions. Remember that the a function is determined by
taking the limit xR → 0 and is therefore insensitive to fragmentation and hadronization—
the sector where most heavy ion effects are presumably operative. (Of course, the hard
scattering of partons is controlled by the parton distributions in heavy ion collisions, which
are different from those of the p–p collisions).

9.2. Heavy Flavors in Heavy Ion Collisions

The LHCb collaboration has studied J/ψ prompt and non-prompt production in p–p
collisions [46] and in p–Pb (Pb–p) collisions [58] at

√
s ~ 8 TeV at very low pT where

nuclear effects are expected to be quite strong. The collaboration has measured the nuclear
modification factor by the ratio p–Pb data to p–p data defined by:

RpPb(pT , y∗) = 1
A

d2σpPb(pT , y∗)/dpTdy∗
d2σpp(pT , y∗)/dpTdy∗ , (51)

where A = 208 for Pb and y* is the rapidity of the J/ψ in the nucleon–nucleon COM with
respect to the proton direction. Data of both prompt and non-prompt J/ψ production
in the two fragmentation regions (y* > 0 the p-fragmentation region and y* < 0 the Pb-
fragmentation region) were analyzed. By integrating over the y* (~1.5 ≤ |y*| ≤ 4),
the collaboration finds a suppression of the ratio Equation (51) of ~50% at the lowest
pT for direct J/ψ production in p–Pb collisions. The ratio approaches unity at higher
pT (~14 GeV/c). The collaboration reports smaller modification factors for direct Pb–p
(~25%) J/ψ production and smaller suppression for beauty decay (indirect) J/ψ production.
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The LHCb ratio analysis is a convolution of the unseparated pT and the y* dependen-
cies of the cross sections resulting in the pT dependence being influenced by the kinematic
boundary for large |y*|. We assert that a clearer picture of the heavy ion effects can be
obtained by our [pT − xR] variables, which isolates kinematic boundary effects from dy-
namic effects. In general, it is natural to relate p–A and A–A collisions with p–p collisions,
where A is the atomic number of the colliding nuclei, by separately studying the pT sector
through ratios of the respective A(

√
s, pT , Λm) functions and by examining the ratios of

the respective [pT − xR] sectors controlled by nxR(pT). Because the LHCb data are at low
pT , we find it unnecessary to include the DQ and nxRQ0 terms of Equation (10).

In order to analyze these data by our method, we begin by first determining the Λm
and npT terms of the A(

√
s, pT , Λm) functions for each of the six LHCb data sets [46,76]. The

results are tabulated below. We have included all statistical and non-correlated systematic
errors added in quadrature, but we have neglected the correlated systematic errors.

Note that the power indices in p–Pb collisions for direct production are larger
(< npT > = 7.4 ± 0.1 weighted average) than for decay production (< npT > = 5.7 ± 0.1
weighted average). We checked the agreement of the LHCb npT values for p–p production
at 8 TeV direct vs. decay (npT(direct) = 6.9± 0.3, npT(decay) = 5.6± 0.1, respectively) versus
those determined by ATLAS at 8 TeV [47] (npT(direct) = 6.5 ± 0.3, npT(decay) = 5.6 ± 0.3,
respectively). Further, we observed that the decay < npT > value as determined in these
LHCb data is consistent with the value for b-jets, npT = 5.6 ± 0.2 measured by the ATLAS
collaboration. We also note that the values of Λm for the four cases of p–Pb and Pb–p
collisions are the consistent within errors, and that the values of Λm for p–p collisions
(Λm = (4.1 ± 0.1) GeV/c) are smaller than that of p–Pb collisions (Λm = (4.7 ± 0.1) GeV/c).

Remember that the A(
√

s, pT , Λm) function is determined by the extrapolation of the
function (1 − xR)nxR to the limit xR → 0. Thus, the a function is weakly sensitive to the
primordial parton x distributions as demonstrated above. Further, we assert that the a
function is not influenced by any dilution or quenching arising from heavy ion effects after
the collision by assuming that there are none in the limit xR → 0. Figure 30 that shows the
A(
√

s, pT , Λm) functions for p–p collisions and the two combination of p–Pb scattering for
both direct and decay J/ψ production, supports this conclusion. The pT dependences of the
a functions for each scattering process are remarkably similar and contain little information
about heavy ion effects as expected, except that the values of Λm are different for the direct
and decay processes and the observation that npT values for p–p collisions are somewhat
smaller than the values for p–Pb and Pb–p collisions.

While we found that the pT dependences of these reactions are quite similar and
insensitive to putative heavy ion effects (except for the Λm parameter), the nxR dependences
are strikingly different. In Figure 31, we show the nxR behaviors of the p–p and p–Pb
productions of J/ψ as measured by the LHCb collaboration as a function of 1/ PT , the
modified transverse momentum.

It is interesting to observe that nxR(PT) values for the decay channel are larger than
for the direct channel but in both cases the values converge among themselves for large
PT (small 1/ PT). This is not unexpected. Several effects can perturb the xR distributions.
One could arise from the lead nucleon PDFs being different from the proton. Another is
that the J/ψ could lose energy, but remains intact as it moves through cold nuclear matter
(CNM)6. A third possibility is that the J/ψ disintegrates as would be the case when the
putative CNM acts as an opaque medium. All three mechanisms may be at play.

We consider the transparency possibility first. The different nxR values for the various
cases shown above can be used to determine the transparency of the medium. We plot the
power index differences for the four cases [∆nxR(direct, decay) = nxR(p–Pb, Pb–p) − nxR(pp)]
as a function of PT for the two hemisphere cases in Figure 32.
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Figure 30. Shown are the a functions plotted versus the modified transverse momentum, PT , for
direct J/ψ production (black points upper curve) and for decay production (red points lower curve)
in p–p and p–Pb collisions measured by the LHCb collaboration. The data are consistent with pure
power laws—the direct production has a larger power index than decay production. The 8 TeV
p–p data have been scaled up to 8.16 TeV by adjusting κ = κ0 (

√
s)ns with the computed ns value

computed from npT by the dimensional custodial as shown in Figure 28 and the pPb data have been
divided by the nucleus A number = 208. The p–p data have a slightly smaller power index npT than
the corresponding pPb, Pbp data and are in good agreement with ATLAS p–p data. The error bars
were computed by adding all tabulated errors in quadrature (statistical, uncorrelated systematic and
correlated systematic errors).
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s = 8 TeV
and for the p–Pb data for

√
s = 8.16 TeV for y* > 0 (a) and y* < 0 (b). The black circles are for J/ψ direct production and the

red triangles are for decay production. (a) corresponds to the proton fragmentation region y* > 0, where the J/ψ has to
penetrate the Pb nucleus. (b) is for the Pb fragmentation region y* < 0, where the J/ψ is co-traveling with the Pb debris. The
dotted lines are quartic fits to ∆nxR(PT). Since there is little difference in the two cases (direct and decay) for y* > 0 (left
plot), we show a simultaneous fit to both direct and decay data sets.

We posit that the transparency can be estimated by the ratio of the xR functions of the
p–Pb data divided by the p–p data given by ∆nxR shown in Figure 32. Here, we neglect the
small differences in a functions (direct, or decay) between p–p and p–Pb collisions. Thus:

T(PT , y∗) = (1− xR)
∆nxR(PT) =

(
1− 2PT cosh(y∗)√

s

)∆nxR(PT)

≈ exp(−∆nxR(PT)xR), (52)

where T(PT , y∗) is the transparency at a given PT and y*, ∆nxR(PT) = nxRp−Pb(PT)− nxRp−p(PT)
is the difference between the measured nxR values for each p–Pb case (direct, decay: y* > 0,
y* < 0) minus the corresponding value for p–p collisions. The modified transverse mo-

mentum PT =
√

p2
T + Λ2

m parameterizes the power indices. The exponential expression is
only approximate in the limit of small xR, where the binomial function is approximately an
exponential function, but is nevertheless suggestive of a transparency effect.

Examining the y* > 0 case in Figure 32a we see that the ∆nxR(PT) values, which
determine the transparency of the medium through Equation (52), are the same for both
direct and decay J/ψ productions, whereas in Figure 32b for the y* < 0 case, the direct
and decay productions are different. Referring to Figure 32b y* < 0, we note that ∆nxR
for decay data becomes negative, but with large errors. This negative value makes the
calculated transparency > 1, which may represent quark–antiquark recombination, but is
consistent with unity within errors. The direct ∆nxR values for y * < 0 are essentially 0 for
PT > 8 GeV/c meaning that the transparency becomes ~ 1 above this momentum.

The y* dependence of the transparency is computed through the definition of xR
for fixed PT and is plotted in Figure 33 for PT = 5 to 11 GeV/c as a function of y*. The
transparencies for direct and decay production (Figure 33, black and red points) are the
same within errors in the y* > 0 hemisphere and are smaller than those in the y* < 0
hemisphere. The y* > 0 is the hemisphere where the J/ψ has to penetrated the Pb nu-
cleus. Thus, the J/ψ (direct) and its progenitor (decay) experience the same attenuations
traveling through the Pb nucleus. For y* < 0, when the J/ψ is comoving with the Pb frag-
mentation debris, the direct production shows no recombination (black points), whereas
decay (red points) does. Note that since the transparency given in Equation (52) is ap-
proximately exponential in xR, the transparency is also approximately exponential in
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cosh(y*) as T(PT , cosh(y∗)) = exp(−λ cosh(y∗)) with the coefficient λ = 2PT∆n/
√

s.
When PT = 5 GeV/c, λ = (3.5 ± 0.2) × 10−2 for direct J/ψ production in the y* > 0 case.
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The power indices shown in Figure 31 can be used to calculate the transparency
contour. This is shown for direct J/ψ production in the y* > 0 hemisphere in Figure 34. It is
obvious that the transparency decreases with increasing y* and increases for increasing
PT . Since the transparency is a function of xR, the band structure of the plot follows the
contours of constant xR.

Another explanation for the heavy ion effect could be that the J/ψ loses momentum as
it moves through the Pb nucleus (CNM), but in so doing remains intact. However, we show
that this possibility is strongly disfavored. The effect of this momentum loss is to make
the nxR values for p–Pb collisions shown above significantly larger than the corresponding
ones for p–p collisions. We exploit this interpretation of the larger values of nxR for p–Pb
collisions by equating the value of (1 − xR)nxR of p–p collisions with that of p–Pb collisions
to solve for the value of PT0 in p–p collisions, which we assume to be the primordial value
before momentum loss following the parton–parton scattering in p–Pb collisions. Thus:

nxRp(PT0) ln(1− 2PT0 cosh(y∗)/
√

s) = nxRPb(PT) ln(1− 2PT cosh(y∗)/
√

s), (53)

where the right-hand side of the equation is fixed by the measured values of p–Pb J/ψ
production at the experimental point PT and y*, and the parameters nxR p and nxRPb are
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measured separately in each data set. We solve this equation numerically to find the value
of PT0 on the left-hand side of the equation to find the p–p scattering PT0 value which
equals the p–Pb right-hand side value. The modified transverse momentum loss is then
∆PT0 = PT0− PT . Choosing PT = 5 GeV/c and y* = 2 we find that for direct J/ψ production
in the y* > 0 hemisphere, this computes to a very large modified transverse momentum
loss, ∆PT = 14.6 − 5.0 = 9.6 GeV/c, or equivalently ∆pT = 13.8 − 2.9 = 10.9 GeV/c using
the average values of Λm given in Table 14. Such a large momentum loss would imply that
the p–Pb data at the observed low momentum came from higher momentum, well above
the influence of the Λm term in the a functions. Since the influence of the Λm term is quite
evident in the pT dependence of the a function, this momentum-loss explanation of the
heavy ion effect in J/ψ production is ruled out. A much more consistent picture is that the
differences in the nxR values arises from a transparency effect where the J/ψ disintegrates
as it moves through nuclear matter.
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Table 14. The parameters of the pT dependence of J/ψ production in p–p and p–Pb collisions. The
p–p data were taken at

√
s = 8.0 TeV and the p–Pb and Pb–p data were taken at a nucleon–nucleon

COM energy
√

s = 8.16 TeV. The values of κ for p–Pb collisions have been normalized to per nucleon
by dividing by A = 208. The numbers tabulated were computed with uncorrelated systematic errors
added in quadrature with statistical errors. The correlated systematic errors were not included. The
values of κ were computed with the weighted averages of Λm = (4.1 ± 0.1) GeV/c for p–p data and
Λm = (4.7 ± 0.1) GeV/c for p–Pb data. The p–p Λm values tend to be smaller than those of p–Pb and
Pb–p collisions by 1.7σ for direct production and 1.3σ for decay production.

Process y Range Λm (GeV/c) npT κ (nb/(GeV/c)2)

Direct p–p 2.0 < y* < 4.5 4.1 ± 0.2 6.9 ± 0.3 (4.7 ± 0.2) ×106

Direct p–Pb 1.5 < y* < 4.0 4.8 ± 0.2 7.5 ± 0.2 (1.2 ± 0.1) × 107

Direct Pb–p −5.0 < y* < −2.5 4.6 ± 0.1 7.5 ± 0.2 (2.3 ± 0.2) × 107

Decay p–p 2.0 < y* < 4.5 4.1 ± 0.1 5.6 ± 0.1 (8.0 ± 0.3) × 104

Decay p–Pb 1.5 < y* < 4.0 4.6 ± 0.3 6.0 ± 0.3 (2.7 ± 0.2) × 105

Decay Pb–p −5.0 < y* < −2.5 4.3 ± 0.3 5.9 ± 0.3 (4.2 ± 0.6) × 105
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The a functions and xR functions shown in the figures above can be used to study the
Cronin effect [77]. The ratio of the a functions, each determined by the extrapolation of
xR → 0, is especially interesting in that it sheds light on the pT dependence of the Cronin
effect independent of the complicating influence of the kinematic boundary, thus of soft
processes, and, as we have seen in the discussion above, also independent of transparency.
Since the a functions are independent of y*, evidence of a Cronin effect in the a function
ratio would be evidence that the effect arises from the hard-scattering domain rather than
softer processes such as the subsequent fragmentation and hadronization following hard
scattering. As a demonstration, we plot the ratio R(pA/pp) = A(pA)/A(pp), the ratio of a
functions for the respective pA and p–p collisions, for direct J/ψ production measured by
the LHCb collaboration [46,76] in Figure 35.
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ratio using the a function parameters (red dotted lines) given by Equation (54) extrapolated to
pT = 100 GeV/c for each of the four combinations of direct, decay, y* > 0 (direct y* > 0 (a), decay
y* > 0 (b), direct y* < 0 (c), decay y* < 0 (d)) and y* < 0 J/ψ production at

√
s = 8.16 TeV. The data in all

combinations show broad peaks at pT ~ 6 to 9 GeV/c. Small adjustments upward in the magnitude
of the red dotted curves have been made in the direct data ratios of 10% for y* > 0 and 5% for y* < 0,
both well within the error caused by our using an average Λm value for all p–Pb data and similarly
for the p–p data, rather than using each Λm value for each a function.

Our analysis of the a functions for inclusive single particle production is parameterized
by three terms, κ, Λm and npT , where the amplitude factor, κ, has been normalized to
describe the cross section per nucleon. The suppression at low pT follows from the smaller
values of npT and Λm for p–p than for the p–Pb data. Thus, the Cronin effect in the a
function is controlled by these terms when different for p–A, A–A and p–p collisions. The
Cronin effect by the a function ratio is therefore given by:
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where pT is the standard transverse 3-momentum, and κi,j; Λmi,j and ni,j are the parameters
of the respective a functions. (We have simplified our notation by call ni ≡ npTi.) The ratio
so expressed has a maximum at a pT value given by:

pTmax =

√√√√Λ2
j ni −Λ2

i nj

nj − ni
. (55)

Additionally, Rij has a maximum value at pTmax given by:

Ri/j(pTmax) =
κi
κj

(
Λ2

j −Λ2
i

nj − ni

)(nj−ni)/2 n
nj/2
j

nni/2
i

. (56)

Therefore, the Cronin effect in the a function ratio at finite momentum requires three
conditions to be met: (1) the indices of the modified transverse momentum power law have
to be unequal, nj 6= ni, (2) the Λµ terms must be different Λmj 6= Λmi and (3) the factor
underneath the radical of Equation (55) must be positive. Note that if the a function ratio were
plotted vs. the modified transverse momentum PT the ratio would be monotonic and there
would be no peak. All four combinations of these LHCb data, such as direct, decay, y* > 0 and
y* < 0 show peaks as shown in Figure 35. Referring to the correlation of Λm with m displayed
in Figure 20a, we expect that the ‘Cronin’ peak in the a function ratio will be at smaller pT
values for lighter particles so long as the three conditions listed above are met.

Thus, there is little physical significance in the a function ratio peak—it is simply the
result of the power law parameters in Equation (54) above. The theory challenge then is
to determine why the pT and Λm parameters for p–Pb collisions are different from p–p
collisions. The model of Krelina and Nemchik [78,79], for example, is based on initial state
interactions with the nuclear broadening calculated by a color dipole formalism.

Our analysis has one caveat, however. Our procedure assumes that the parton dis-
tributions of the nucleons in the Pb nucleus are not so different from that of the proton
as to significantly affect the a function. A measure of a possible operative difference is to
compare the integrated cross section in each fragmentation region—namely, p forward vs.
Pb forward in the p–Pb collisions. A difference in the parton distributions in the nucleon–
nucleon COM would skew the parton–parton COM and make the average value of βcm
different for the two fragmentation regions. This putative asymmetry would change the
number of events in each hemisphere. Integrating the cross sections over their respective
y* and pT ranges, we find that for direct production, σ(Pb–p)/σ(p–Pb) = 1.0 ± 0.1; and for
decay production, σ(Pb–p)/σ(p–Pb) = 0.8 ± 0.1. Note that the ∆y* intervals are the same
for y* > 0 and y* < 0 but the y* ranges are different: 1.5 < y* < 4.0 and −5.0 < y* < −2.5,
respectively. The errors in the ratios were computed by adding the statistical and systematic
errors in quadrature, but the systematic errors dominate. These cross section ratios indicate
that the putative parton differences in the relevant kinematic regions are small. However, a
more complete analysis would correct for any differences in the parton distribution of the
Pb nucleus and the proton.

The xR variable is a natural probe of transparency and/or energy loss since it is
linearly proportional to the energy of the inclusively detected particle in the COM unlike
the rapidity, y, which is mostly a measure of the COM angle. The techniques for computing
the transparency and/or the energy loss through CNM (or through the Quark Gluon
Plasma (QGP)) can be deployed for other heavy quark production studies as well as for
jet quenching. The only requirement is to measure the inclusive cross sections in two
dimensions, namely to measure both the pT as well as the y distributions in a double
differential cross section. Furthermore, binning the double differential cross section data in
centrality would allow quite interesting probes of the underlying physics to be performed.
High statistical measurements would enable the transparency as well as the energy loss
to be determined as a function of centrality and nucleus A number. The ratio of the a



Universe 2021, 7, 196 57 of 66

functions of heavy ion collisions over that of p–p collisions should yield information about
the underlying hard scattering independent of the final-state soft physics.

In summary, studying the ratio R(AA/pp) integrated over y, as traditionally per-
formed, is a rather blunt tool for probing nuclear effects. Much more incisive is to compare
the A(pT) functions and the xR dependencies separately, as shown here.

10. Conclusions

This paper demonstrates the utility of a formulation of inclusive invariant hadronic
cross sections in p–p scattering at various values of

√
s in terms of the transverse momen-

tum pT and xR, the ratio of the energy of the detected particle to the maximum energy
possible in the collision COM. This paper attempts to relate observables to the underlying
parton physics—especially to their primordial 2→ 2 hard scattering [80]. Several novel
functions/concepts are introduced—the A(

√
s, pT , Λm) function, the F(

√
s, xR) function,

the spine function Sj,γ(pT) and the dimensional custodian.
The invariant cross sections can be factorized in terms of two separable pT depen-

dences, a [pT −
√

s] sector and an [xR − pT −
√

s] sector, for many different inclusive
reactions. Expressing invariant inclusive cross sections in terms of these variables allows
different reactions to be compared without the particular distortions of the kinematic
boundary that depend on the experimental pT and rapidity acceptance. The [pT −

√
s]

sector is used to construct the A(pT) function while the byproducts of its determination
define the [xR − pT −

√
s] sector, which leads to the nxR vs. pT relation and, in the case of

inclusive jets, B± and b-jets, to the corresponding F(xR) functions.
An alternate description of inclusive cross sections is referenced in [80] and discussed

in the Supplemantary Materials.
Inclusive cross section data gathered at the LHC followed the high energy imperative.

Data were taken mostly at the highest value of
√

s = 13 TeV for searches for exotic heavy
objects that would indicate physics beyond the standard model. Data at lower energies
were accumulated only during the commissioning phase of the collider and at a few
selected energies for the heavy ion program. Here, we have shown that measuring the s
dependence uncovers systematic effects beyond what can be observed through just the pT
and y dependences at the highest value of

√
s. Given the long period over which the data

were taken and the natural maturation process in equipment calibrations and alignments,
analysis and simulations, the errors of the inclusive jet and photon measurements are
probably underestimated.

The a function, defined as the limit of the invariant inclusive cross section as xR → 0
evaluated at constant pT , is a determination of the pT dependence of the cross sections
at a unique (virtual) kinematic point and are useful in comparing different processes. By
virtue of its definition, the A(pT) function is free of final-state soft processes, such as
fragmentation and hadronization. Inclusive jets, inclusive direct photons, inclusive heavy
quark mesons and the Z-boson have this common behavior—they all, with the exception
of the Z-boson, have an A(pT) function that, to a good approximation, follows a pT power
law with a signature power exponent, npT . The power index of the a function is closely
correlated with the low-x behavior of the colliding partons. Even the heavy meson and
baryon inclusive cross sections follow a power law, not in the transverse momentum pT ,

but in the modified transverse momentum PT ≡
√

p2
T + Λ2

m. Additionally, for these heavy
particle production cross sections, determining the power law behavior in PT enables the
mass of the heavy quark/meson/baryon to be cross checked through the Λm– m relation.
We demonstrated that the a function expressed in the modified transverse momentum, PT
for B0 and B± measured at low pT by the LHCb collaboration, has the same PT power of
the a function for inclusive b-jets measured by ATLAS.

An explanation of the power npT ~ 6, being strikingly different from the naïve expec-
tation of ~ 4 is understood for inclusive jet production to involve the “shingled roof” ŝ
—weighted pT segment distributions controlled by the primordial parton–parton scattering
cross section dσ̂/dt̂ between the experimental pTmin and the high- pT kinematic bound-
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ary pT ≤
√

ŝ/2. Deviations from this power law are related to the detailed shape of the
colliding PDFs at low x. It was demonstrated that the power index, npT , for inclusive jets
is strongly influenced by the power index µ(x, Q) that characterizes the (1/x)µ(x,Q) low-x
behavior of the gluon PDF. This enables the effective µ value of the colliding partons to be
determined through the µ– npT relation.

The
√

s dependence of the magnitude of the A(pT) function can be expressed as a
power law in

√
s of the form κ(

√
s) = κ0(

√
s)ns where the ns power index is controlled

by the pT power law index, npT . This so-called dimensional custodial, which relates the
s dependence of the a function with its pT dependence, arises from the constraint that
the dimensions of the invariant cross section has to be 1/(GeV/c)4. By the factorization
hypothesis, this dimension is that of the underlying parton–parton hard scattering. The
spine function for inclusive jets and photons demonstrates the s independence of the
A(
√

s, pT , Λm) power law, except for its magnitude which is controlled by κ(s).
The residual power of the a function, [ nr = npT − ns − 4], arises from the Q2 depen-

dence of the strong coupling constant, αs(Q2)—estimated by its slope at the lowest pT of
the data set and evolution of PDFs. Its experimental evaluations in this paper for inclusive
jets and inclusive direct photons are consistent with theory.

Every aspect of the hard scattering and subsequent fragmentation and hadronization
goes into the xR distribution. Consequently, the xR behaviors of the invariant cross sections
are much more diverse among different inclusive reactions than the corresponding pT
distributions characterized by the a functions. For example, inclusive jets have a positive
D term, whereas inclusive photon and heavy mesons do not follow such a simple form.
Comparisons of the corresponding xR distributions with QCD simulations are therefore
much more stringent tests of theory than comparisons of the pT distributions. Even though
nxR(pT) and nxRQ(pT) are always well defined, as is the a function, the F-function exists
only for those cross sections where D(pT) and DQ(pT) can be fit by Equation (10).

A Toy MC was developed and used to explore the dependence of the invariant cross
section on the underlying parton distributions and the parton–parton scattering cross
sections. It provided insights into the pT dependences of inclusive jets and photons and
their xR distributions. The model is successful in simulating the main power law features of
the A(pT) functions for inclusive jets and photons, but is only qualitative in emulating the
xR dependences of these reactions, as it is in simulating both the pT and xR distributions of
heavy meson production.

An application to heavy ion collisions using LHCb p–Pb data was given, where
the transparency of nuclear matter probed by the J/ψ as it moves through the Pb nu-
cleus/proton debris is determined. The attenuation of the J/ψ is more severe when the
meson penetrates the Pb nucleus than when co-traveling with the Pb fragmentation debris
for both direct and decay production. The transparencies for both direct and decay J/ψ
productions are the same within errors when the J/ψ has to penetrate the Pb nucleus.

A method using the xR variable to determine particle or jet momentum/energy loss
in a QGP was described. We show that the momentum loss can be estimated by the
numerical solution of a log-cosh non-linear equation (Equation (53)). The a functions can be
deployed to determine the Cronin effect. We give a formula for determining its peak value
and position in terms of the parameters κ, npT and Λm that characterize the a functions.
Additionally, we have shown that the a function for inclusive jet production at

√
s = 2.76

TeV Pb–Pb collisions has the same pT power index as the corresponding a function for p–p
collisions, suggesting that HI effects are mostly in the [pT − xR] sector.

Other applications of our formulation are envisioned, such as a study of inclusive
production of selected topologies of jets. For example, gluon-initiated jets should have
larger values of D and nxR0 than quark-initiated jets. The correlation of the event topology,
such as jet multiplicity or N-jettiness [81] with the corresponding a functions and xR
distributions, using our formulation could provide interesting tests of QCD. Remaining
to do are detailed comparisons of MC simulations, such as Pythia and JETPHOX, with
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data through our variables. More sophisticated fitting procedures of global data could be
followed where all the correlated errors are accommodated.

This analysis suggests a rather inexpensive physics program for the LHC to operate at
various values of

√
s with controlled pileup to gather inclusive data, such as jets, heavy

mesons and baryons and gauge bosons. These systematic data would take advantage of
reduced errors as well as the refinements of tracking and calorimeter algorithms that were
developed as the LHC physics program matured. One anomaly in this study is that the
inclusive jet data at

√
s = 5.02 TeV that seem more like those of 7 TeV. Another is the s

dependence of the nxR(pT) functions of inclusive Z-boson production.
After analyzing such a broad list of inclusive cross sections, it has become apparent to

this author that that there is an imperative that diverse collaborations present their data in
a coherent manner, using the same definitions of signals, background estimations, and pT
and y finite binning corrections.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/universe7060196/s1, A discussion of the Tsallis description [80] can be found in the Supple-
mentary Materials to this paper.
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Appendix A

The results of Minuit fits to the ATLAS inclusive jet data (R = 0.4) are tabulated as a
function of

√
s.

Table A1. The kinematic regions of inclusive jet data.

√
s (TeV) pT (GeV/c) |y|

2.76 25 ≤ pT ≤ 285 0 ≤ |y| ≤ 4.4
5.02 45 ≤ pT ≤ 716 0 ≤ |y| ≤ 2.8
7.00 25 ≤ pT ≤ 1100 0 ≤ |y| ≤ 4.4
8.00 77.5 ≤ pT ≤ 1040 0 ≤ |y| ≤ 3.0

13.00 108 ≤ pT ≤ 1420 0 ≤ |y| ≤ 3.0

Table A2. The κ-npT parameters are tabulated for a two-parameter fit where both κ and npT are computed and for
a one parameter fit where κ(s) is determined for a fixed npT = 6.28, the unweighted average of the ATLAS jet data
(2.76 ≤

√
s ≤ 13 TeV).

√
s (TeV) κ

[pb (GeV/c)npT−2] npT
χ2/d.f.

p-Value
κ(npT = 6.28)

[pb (GeV/c)npT−2]
χ2/d.f.

p-Value

2.76 (4.9 ± 1.8) × 1012 6.18±0.09 6.7/7
p = 0.46 (2.8 ± 0.3) × 1012 208/8

p = 0

https://www.mdpi.com/article/10.3390/universe7060196/s1
https://www.mdpi.com/article/10.3390/universe7060196/s1
http://durpdg.dur.ac.uk/HEPDATA
https://www.hepdata.net/
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Table A2. Cont.

√
s (TeV) κ

[pb (GeV/c)npT−2] npT
χ2/d.f.

p-Value
κ(npT = 6.28)

[pb (GeV/c)npT−2]
χ2/d.f.

p-Value

5.02 (4.7 ± 1.5) × 1013 6.41±0.06 9/11
p = 0.62 (2.4 ± 0.1) × 1013 13/12

p = 0.37

7.00 (1.6 ± 2.6) × 1013 6.10±0.03 41/13
p = 9.5 × 10−5 (3.6 ± 0.1) × 1013 67/14

p = 7 × 10−9

8.00 (9.0 ± 1.0) × 1013 6.37±0.02 43/27
p = 2.6 × 10−2

(5.45 ± 0.07) ×
1013

61/28
p = 3 × 10−4

13.00 (2.1 ± 0.3) × 1014 6.35±0.02 33/29
p = 0.28

(1.44 ± 0.02) ×
1014

42/30
p = 7 × 10−2

The unweighted average value npT = 6.28 ± 0.12.

Table A3. The D-nxR0 parameters are tabulated. The D value for 5.02 TeV is larger than the
general trend.

√
s (TeV) D (GeV/c) nxR0 χ2/d.f. p-Value

2.76 113 ± 75 3.4 ± 1.0 1.9/7 0.97
5.02 473 ± 169 3.1 ± 0.7 2.6/11 1.00
7.00 183 ± 73 4.0 ± 0.5 2.5/13 1.00
8.00 228 ± 66 4.1 ± 0.2 16.9/27 0.93

13.00 700 ± 112 3.6 ± 0.2 14.3/29 0.99

Table A4. The DQ-nxRQ0 parameters are tabulated.

√
s (TeV) DQ (GeV/c)2 nxRQ0 χ2/d.f. p-Value

2.76 (2.0 ± 2.1) ×103 0.6 ± 0.4 2.2/7 0.95
5.02 (5.5 ± 3.5) ×104 0.1 ± 0.4 3.3/11 0.99
7.00 (9.2 ± 1.5) × 103 0.7 ± 0.2 2.9/13 1.00
8.00 (2.0 ± 1.5) ×104 0.3 ± 0.1 22.9/27 0.69

13.00 (1.5 ± 0.4) × 105 0.1 ± 0.1 23.7/29 0.74

Appendix B

Shown are the complete set of parameter dependences resulting from our simulation
of 13 TeV jets with the simplified gluon distributions xG(x) = 1/xµ and xG(x) = (1 − x)ν,
with αs(Q2) evolved by Q = pT . The fits to the Toy MC data were performed by MINUIT in
ROOT. Each cross section ‘data’ point was assigned a 2% error. As discussed in the text,
the two strongest behaviors are that npT of the A(pT) function depends on the low x shape
of the gluon distribution characterized by µ, whereas the parameters nxR0 and nxRQ0 of
the F(xR) function have a roughly linear dependence on the large x shape of the gluon
PDF parameterized by ν. Thus, measuring both the a function and the F-function gives
information about the shape of the colliding parton distribution functions in the low-x and
high-x regions, respectively.

We find that µ PDF case produces a purer power law than ν as determined by com-
parisons of log–log linear vs. log–log quadratic fits of the a function. In the case of the
Pomeron, the deviation from the 1/pnpT

T power law is ~ ± 5%, whereas for the ν case with
ν = 3, the deviation from a pure power law is ~ ± 10%.
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Notes
1 Here we note that 1 × 10−13 cm = (0.1975 GeV/c)−1.
2 This variable is usually called the ‘transverse mass’, mT, but we prefer to call it the ‘modified transverse momentum’ since at large pT

>> m, PT ≈ pT, becoming the usual transverse momentum, essentially independent of mass.
3 The power law fits to A(pT) were performed by MINUIT through calculating the full correlation matrixes. For subtle details of

fitting to power laws, see: Goldstein, M.L.; Morris, S.A.; Yen, G.G., Problems with fitting to the power-law distribution. Eur. Phys.
J. B 2004, 41, 255; https://doi.org/10.1140/epjb/e2004-00316-5.

4 In a special study, we simulated g g→ g g scattering but allowed the final-state gluons to fragment by PGG(z) ~ z/(1 − z) + (1
− z)/z + z(1 − z) in the range 0.85 ≤ z ≤ 0.95 with the gluon fragment lost. We find npT = 6.60 ± 0.03 in comparison with no
fragmentation npT = 6.56 ± 0.03—hence there is little sensitivity of the A-function power law to fragmentation.

5 It is interesting to note that, although the two differential cross section definitions are well defined without singularities over the
entire kinematic phase space, the Jacobian of the coordinate transformation between the two schemes has a singularity of the
form ~1/sinh(η) for η ~ 0. This is because at this kinematic point, η and xR are orthogonal implying that a variation in η does not
change xR.

6 pA collisions, even at the LHC, are understood to be not hot enough to produce a Quark Gluon Plasma. This is discussed in [73].
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