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Abstract: We propose Green functions scattering method to obtain the Casimir–Polder potential
between anisotropic atom and one or two planar parallel plates. Lifshitz formula for pressure
between two dielectric half-spaces separated by a vacuum slit is derived within the same method.
The method is also applied to known conducting systems including graphene which are overviewed.
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spatial dispersion; polarization operator; graphene

1. Introduction

The Casimir effect [1,2] is a quantum interaction effect between macroscopic objects.
Two main ingredients of the effect are geometry of interacting objects and their material
properties [3]. Various reviews and books are dedicated to the Casimir effect or related
mathematical techniques [4–22]. In this paper we present another derivation of the Casimir
effect. One can use this paper as an introduction to the Casimir effect: detailed derivations
of classical results are presented, flat boundaries are considered.

The ground state energy of the bosonic system is defined by expression

Ẽ = ∑
i

h̄ωi
2

, (1)

where the sum is over all eigenfrequencies of the system. In quantum field theory the
ground state energy (1) needs to be regularized. After subtraction of self-energy terms one
obtains the Casimir energy E. In the system of two infinite perfectly conducting parallel
plates separated by a vacuum slit d the Casimir energy per unit area of the plates was
derived in Ref. [2] by application of Euler-Maclaurin formula:

E
S
= − π2h̄c

720d3 , (2)

here S is the plate area.
Another way of finding the Casimir energy is to use the argument principle

1
2πi

∮
φ(ω)

d
dω

ln f (ω, β)dω = ∑ φ(ω0)−∑ φ(ω∞) (3)

with
φ(ω) =

h̄ω

2
(4)

to evaluate the sum (1). Here ω0 are zeroes and ω∞ are poles of the function f (ω, β) inside
integration contour, degenerate eigenvalues are summed according to their multiplicities.
Eigenfrequencies ωi may also depend on continuous variables β. The equation for eigen-
frequencies is f (ωi, β) = 0. This technique was first applied to evaluation of the Casimir
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energy in Ref. [23]. The approach based on Formula (3) was strongly advocated in the
review [5]. Fock–Schwinger regularization was applied to derivation of the Casimir result
for two perfectly conducting plates (2) in Ref. [24]. Detailed study of the Lifshitz energy [3]
for two half-spaces separated by a vacuum slit was performed in Ref. [25] based on the
argument principle (3) and plasma model of the permittivity.

The formalism was effectively generalized to non-flat geometries. Theoretical for-
malism for evaluation of the Casimir free energy and the Casimir force in the system of
two diffraction gratings separated by a vacuum slit was developed in Refs. [26,27]. In
Refs. [26,27] the Casimir energy was expressed through Rayleigh reflection coefficients [28].
The theory [26] was found to be in agreement with experimental results of Ref. [29] for
the normal Casimir force in sphere - rectangular grating geometry. In Refs. [30,31] a com-
parison of the theory and experiment was performed in the system of two Au sinusoidal
gratings with coinciding periods, one of the gratings was skillfully imprinted at the surface
of Au sphere. Theory of the lateral Casimir force based on Rayleigh reflection coefficients
was found to be in excellent agreement with experiment [30,31], strong deviations from
proximity force approximation [32] based on Lifshitz theory for flat geometries were dis-
covered. The Casimir normal force measurements between Au sphere and Si grating [33]
and experiments [34,35] with two rectangular gratings separated by a vacuum slit were
also found to be in agreement with theoretical approach developed in Refs. [26,27]. Impli-
cation of the formalism based on Rayleigh coefficients to evaluation of torque between two
gratings separated by a vacuum slit led to theoretical discovery of geometric transitions in
Ref. [36]. An abrupt change in the energy of infinite system during an infinitesimal change
of rotation angle between gratings discovered in Ref. [36] results in a giant torque in the
system of two finite gratings.

Path-integral approach has been used to derive general analytic results for the Casimir
free energy of electromagnetic fields in the presence of several compact objects [37,38].
The Casimir energy for systems with cylindrical and spherical objects has been actively
studied [39–41].

The Casimir energy of two Chern–Simons layers in vacuum is derived in Refs. [42,43],
repulsive Casimir force between Chern–Simons layers in vacuum and Chern–Simons layers
at the boundaries of realistic dielectrics is predicted for an interval of parameters of the
layers [42–46]. When one inserts chiral medium in a slit between ordinary materials one
can also obtain Casimir repulsion [47,48].

One can extract the Casimir–Polder potential of a neutral atom from interaction energy
of two dielectrics by rarefication procedure applied to one dielectric [4,22]. In a dilute limit
one should sum the Casimir–Polder potential of every atom in the rarefied dielectric to
obtain interaction energy of two dielectrics. Please note that one must introduce anisotropic
dielectric to extract the Casimir–Polder potential for anisotropic atom or molecule by
rarefication procedure, which is definitely more complex procedure.

It is convenient to derive the Casimir–Polder potential of an atom with anisotropic
polarizability directly from first principles of quantum field theory. One can use Green
functions in the evaluation of the Casimir–Polder potential. The first calculation of this kind
was performed in Ref. [1] for the potential of anisotropic atom interacting with a perfectly
conducting plane. Direct procedure proved useful for evaluation of the Casimir–Polder
potential for non-flat geometries including perfectly conducting wedge and dielectric
diffraction grating [49–51]. Casimir repulsion emerges for anisotropic atom above a hole in
metal [52] or anisotropic atom above a dielectric grating [53]. The Casimir–Polder potential
of an anisotropic atom (molecule) interacting with Chern–Simons layer was derived in
Ref. [54]. Charge-parity-violating effects in Casimir–Polder potentials were studied in
Ref. [55]. Other approaches to derivation of the Casimir–Polder potential are based on the
harmonic oscillator models [56] and interaction of point dipoles [57].

In this paper, we start from evaluation of the Casimir–Polder potential between
anisotropic neutral atom and dielectric half-space. We use Weyl formula [58] for the Green
function of Helmholtz equation (note that Weyl formula has been used before in derivations
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of the Casimir effect, for example, in Ref. [38]), take vector potentials in a Lorentz gauge
and then express the electromagnetic field from a dipole source in terms of electric and
magnetic fields. Various boundary conditions considered in the paper are also written in
terms of electric and magnetic fields. Thus, the full procedure is clearly gauge-invariant
by construction. We demonstrate how to derive the Casimir force between geometries
with flat parallel boundaries within the same formalism and derive general formula for
the Casimir–Polder potential of anisotropic atom between two half-spaces with parallel
boundaries and given boundary conditions.

The paper is organized as follows. We introduce the method based on Green functions
scattering in Section 2 during derivation of the Casimir–Polder potential of anisotropic
atom in its ground state interacting with a dielectric half-space with frequency dispersion of
permittivity ε(ω). In Section 3 we apply the method to derive the well-known Lifshitz result
for pressure between two dielectric half-spaces separated by a vacuum slit. In Section 4 we
derive the Casimir–Polder potential of anisotropic atom between two dielectric half-spaces
with parallel boundaries.

The method developed in Sections 2–4 is applied to known systems with 2 + 1-
dimensional conducting layers (Sections 5 and 6) and impedance boundary conditions for
metals (Section 7), an overview of results for these systems is given.

In Section 5 we discuss 2+ 1 surface conductivity and derive expressions for reflection
coefficients in this case. We also comment results obtained for systems with non-diagonal
components of conductivity.

Spatial dispersion in a boundary 2 + 1 layer is important for applications, we start
discussion of this case by writing boundary conditions in Section 6. We explain general-
izations which need to be done to write boundary conditions with a spatial dispersion
of surface conductivity at the boundary of a dielectric half-space. We introduce 2 + 1
polarization operator and express 2 + 1 surface conductivity with a spatial dispersion
in terms of a polarization operator. Reflection coefficients for a layer of 2 + 1 fermions
at the boundary of a dielectric half-space are derived and written explicitly in terms of
components of polarization operator in several convenient for use forms. Casimir and
Casimir–Polder type formulas in Sections 2–4 are valid in this case after substitution of
reflection coefficients into respective formulas.

Next we consider 2 + 1 Dirac fermions in graphene and overview main implications
for layers with graphene at finite temperature in the Casimir effect. Giant temperature
Casimir effect for systems with graphene layers is discussed.

In Section 7 we consider impedance boundary conditions and derive reflection coeffi-
cients for frequency and spatial dispersion cases.

We put h̄ = c = kB = 1 and use Heaviside-Lorentz units. We take magnetic perme-
ability µ = 1 in materials and work with a frequency dispersion of permittivity ε ≡ ε(ω) in
material volumes.

2. Casimir–Polder Potential of Anisotropic Atom above a Dielectric Half-Space

In this section, we derive the Casimir–Polder potential of a neutral anisotropic atom
in its ground state located at a distance L from a dielectric half-space.

One can substitute Weyl formula [58]

eiω|r′−r|

4π|r′ − r| = i
∫∫ ei(kx(x′−x)+ky(y′−y)+

√
ω2−k2

x−k2
y(z′−z))

2
√

ω2 − k2
x − k2

y

dkxdky

(2π)2 , (5)

valid for z′ − z > 0, into the solution of equations for vector potentials in a Lorentz gauge(
∆ + ω2)ϕ(ω, r) = −ρ(ω, r) , (6)(
∆ + ω2)A(ω, r) = −j(ω, r). (7)
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It is convenient to denote k‖ = (kx, ky). Then electric and magnetic fields propagating
downwards from the source at the point r′ = (0, 0, L) can be represented in the form

E(ω, r) =
∫ (

ρ(ω, k̃)k̃−ωj(ω, k̃)
) eik‖ ·r‖ eikz(L−z)

2kz

d2k‖
(2π)2 , (8)

B(ω, r) =
∫
[j(ω, k̃)×k̃]

eik‖ ·r‖ eikz(L−z)

2kz

d2k‖
(2π)2 , (9)

where kz =
√

ω2 − k2
‖, k̃ = (k‖,−kz), ρ(ω, k̃) and j(ω, k̃) are Fourier components of the

source current.
Consider propagation of an electromagnetic field from a dipole source at the point

r′ = (0, 0, L) characterized by electric dipole moment d. In this case, components of the
four-current density of the dipole source must be written in the form [54]

ρ(t, r) = −dl(t)∂lδ
3(r− r′) , (10)

jl(t, r) = ∂tdl(t)δ3(r− r′) . (11)

Please note that four-current density (10), (11) satisfies the continuity equation ∂tρ +
divj = 0. For the point dipole (10), (11) one should substitute

ρ(ω, k) = −dl
∫

∂lδ
3(r− r′)eik·rd3r = id · keikz L , (12)

jl(ω, k) = −iωdl
∫

δ3(r− r′)eik·rd3r = −iωdleikz L (13)

to Equations (8) and (9).
Now consider homogeneous dielectric half-space z ≤ 0 characterized by frequency

dispersion of a dielectric permittivity ε(ω). For z ≥ 0 expansions for electric and magnetic
fields can be written in the form

E1(ω, r) =
∫

f(ω, k‖)e
ik‖ ·r‖ e−ikz(z−L)d2k‖ +

∫
v(ω, k‖)e

ik‖ ·r‖ eikzzd2k‖ , (14)

B1(ω, r) =
1
ω

∫
g(ω, k‖)e

ik‖ ·r‖ e−ikz(z−L)d2k‖+

1
ω

∫ (
[k‖ × v(ω, k‖)] + kz[n× v(ω, k‖)]

)
eik‖ ·r‖ eikzzd2k‖ (15)

with vector functions f(ω, k‖), g(ω, k‖), v(ω, k‖). For a dipole source at the point (0, 0, L)
one substitutes components of the four-current density (12), (13) to electric and mag-
netic fields (8), (9) and obtains from comparison with first terms in the right-hand side
of (14), (15):

f(ω, k‖) =
i

8π2kz

(
(−d‖k‖ + dzkz)k̃ + ω2d

)
, (16)

g(ω, k‖) =
i

8π2
ω2

kz
[k̃× d]. (17)

For z ≤ 0 one can write expansions for electric and magnetic fields in the form

E2(ω, r) =
∫

u(ω, k‖)e
ik‖ ·r‖ e−iKzzd2k‖ , (18)

B2(ω, r) =
1
ω

∫ (
[k‖ × u(ω, k‖)]− Kz[n× u(ω, k‖)]

)
eik‖ ·r‖ e−iKzzd2k‖ (19)
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with Kz =
√

ε(ω)ω2 − k2
x − k2

y and vector function u(ω, k‖). Functions v(ω, k‖) and

u(ω, k‖) are expressed in terms of functions f(ω, k‖), g(ω, k‖) after imposing boundary
conditions and solution of diffraction problem.

Without loss of generality, we may use polar coordinates in two dimensional (kx, ky)
momentum space and orthogonal local basis er, eθ , ez so that k‖ = krer, kr = |k‖|. Reflected
and transmitted electric fields are transverse (note that in the local basis v(ω, k‖)k‖ = vrkr,
u(ω, k‖)k‖ = urkr):

vrkr + kzvz = 0 , (20)

urkr − Kzuz = 0. (21)

Continuity of tangential components of the fields at the boundary of dielectric half-
space z = 0 yields four conditions:

ur = vr + freikz L , (22)

uθ = vθ + fθeikz L , (23)

Kzuθ = −kzvθ + greikz L , (24)

−kruz − Kzur = −krvz + kzvr + gθeikz L. (25)

Reflected and transmitted fields are expressed in terms of fr, fθ , gr, gθ :

vr = −eikz L kz

ω2(Kz + εkz)
(Kzgθ + εω2 fr) , (26)

vθ = eikz L 1
kz + Kz

(gr − fθKz) , (27)

vz = eikz L kr

ω2(Kz + εkz)
(Kzgθ + εω2 fr) , (28)

ur = eikz L Kz

ω2(Kz + εkz)
(−kzgθ + ω2 fr) , (29)

uθ = eikz L 1
kz + Kz

(gr + fθkz) , (30)

uz = eikz L kr

ω2(Kz + εkz)
(−kzgθ + ω2 fr) . (31)

In general, vi = Pijdj. Non-diagonal components of the matrix Pij do not contribute
to the Casimir–Polder potential of a neutral atom interacting with a dielectric half-space.
Diagonal components of the matrix Pij can be found from (16), (17) and (26)–(28):

Prr(ω, kr) = −
i

8π2 eikz LkzrTM(ω, kr) , (32)

Pθθ(ω, kr) =
i

8π2 eikz L ω2

kz
rTE(ω, kr) , (33)

Pzz(ω, kr) =
i

8π2 eikz L k2
r

kz
rTM(ω, kr), (34)

where rTM(ω, kr) and rTE(ω, kr) are Fresnel reflection coefficients

rTM(ω, kr) =
εkz − Kz

εkz + Kz
, rTE(ω, kr) =

kz − Kz

kz + Kz
. (35)
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At this point it is natural to define atomic polarizability αij(ω) following definitions
from Ref. [59]:

αij(t1 − t2) = i〈T(d̂i(t1), d̂j(t2))〉 , (36)

αij(t) =
∫ ∞

−∞
exp(−iωt)αij(ω)

dω

2π
, (37)

where d̂i(t) in (36) are operators of electric dipole moment, T indicates that the expression
is to be evaluated by time-ordering. Additionally, we use relation

Dij(t− t′, r, r′) = i〈T(Êi(t, r)Êj(t′, r′))〉. (38)

To find the Casimir–Polder potential at zero temperature one can use definition for
the change of the ground state energy level ∆E0 after actuation of the interaction V̂ in the
Hamiltonian H = H0 + V̂ [60]:

〈0|Ŝ|0〉 = e−i∆E0τ , τ → +∞ , (39)

here τ = τ1 − τ2 is the time interval which enters standard definition of Ŝ(τ1, τ2), Ŝ-matrix
is defined in the interaction representation [61]:

Ŝ(τ1, τ2) ≡ exp(iH0τ1) exp(−iH(τ1 − τ2)) exp(−iH0τ2) , (40)

Ŝ ≡ Ŝ(+∞,−∞) = T exp(−i
∫ +∞

−∞
dtV̂(t)) . (41)

The vacuum element (39) includes disconnected diagrams. We take

V̂(t) =
∫

d3r Ĵµ(t, r)Âµ(t, r) (42)

with operators d̂l(t) in the four-current density (10), (11) and obtain

∫
dtV̂(t) =

∫
dtd3r

(
Âl(t, r)∂td̂l(t)δ3(r− r′)− Â0(t, r)d̂l(t)∂lδ

3(r− r′)
)
=∫

dtd3r
(
(∂l Â0(t, r)− ∂0 Âl(t, r))

)
d̂l(t)δ3(r− r′) = −

∫
dtÊ(t, r′)d̂(t). (43)

In the second order perturbation theory we use (41)–(43), definitions of atomic polar-
izability (36), (37) and electric field propagator (38) to obtain

〈0|Ŝ(2)|0〉 = 1
2

∫∫
dtdt′αij(t− t′)

(
Dij(t− t′, r, r′)− D(0)

ij (t− t′, r, r′)
)∣∣∣

r′→r
=

τ

2

∫ +∞

−∞

dω

2π
αij(ω)DE

ij(|ω|, r′, r′) = iτ
∫ +∞

0

dω

2π
αij(iω)DE

ij(iω, r′, r′). (44)

In the last equality of (44) we use αik(ω) = αki(−ω) [62] and make Wick rotation
afterwards. When one evaluates the Casimir–Polder potential of a neutral atom in the
presence of a dielectric half-space one should use the difference between the full propagator
with dielectric half-space and the vacuum propagator at the position of the atom outside
dielectric. This calculation leads to the finite value of the Casimir–Polder potential. As
a result, one always needs the scattering part of the full propagator to determine the
Casimir–Polder potential. The scattering part of the electric field propagator is defined by

DE
ij(t− t′, r, r′) = Dij(t− t′, r, r′)− D(0)

ij (t− t′, r, r′). (45)
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From (39) and (44) the Casimir–Polder potential is defined in terms of scattering
electric Green function (45):

U(L) = −
∞∫

0

dω

2π
αij(iω)DE

ij(iω, r′, r′). (46)

Diagonal components of the scattering electric field propagator can be immediately
written from (14) and (32)–(34):

DE
xx(ω, r′, r′) =

∫
eikz L(Prr(ω, kr) cos2 θ + Pθθ(ω, kr) sin2 θ

)
d2k‖ , (47)

DE
yy(ω, r′, r′) =

∫
eikz L(Prr(ω, kr) sin2 θ + Pθθ(ω, kr) cos2 θ

)
d2k‖ , (48)

DE
zz(ω, r′, r′) =

∫
eikz LPzz(ω, kr)d2k‖. (49)

Please note that in expressions (47)–(49) we put r′ = (0, 0, L). We substitute expres-
sions (47)–(49) into a general Formula (46) and find the Casimir–Polder potential of a
neutral polarizable atom separated by a distance L from a dielectric half-space [15]:

U(L) = −
∞∫

0

dω

2π

∞∫
0

dkrkr

2π

exp(−2
√

ω2 + k2
r L)

2
√

ω2 + k2
r

[
rTM(iω, kr)k2

r αzz(iω)+

1
2
(
rTM(iω, kr)(ω

2 + k2
r )− rTE(iω, kr)ω

2)(αxx(iω) + αyy(iω)
)]

. (50)

In this paper, we do not construct electric Green functions on the basis of existing trans-
verse electric (TE) and transverse magnetic (TM) mode solutions as it is usually done [63].
In the method developed in this paper TE and TM reflection coefficients appear in solu-
tions of electric Green functions (47)–(49) on the fly from the system of Equations (20)–(25)
resulting from transversality conditions and boundary conditions imposed on electric and
magnetic fields.

The primary goal of our paper is to illustrate the method on several examples which
are overviewed at the same time.

3. Force between Two Dielectric Half-Spaces

Consider two dielectric half-spaces z ≤ 0, z ≥ d and the vacuum slit 0 < z < d
between them. We evaluate the Casimir force and the Casimir–Polder potential of a neutral
atom in this system.

Consider propagation of an electromagnetic field from a point dipole located at
r′ = (0, 0, z0), z0 < d. Electric and magnetic fields propagating upwards from the dipole
source can be represented in the form

E =
∫

Neik‖ ·r‖ eikz(z−z0)d2k‖, (51)

B =
1
ω

∫
[k×N]eik‖ ·r‖ eikz(z−z0)d2k‖ =

1
ω

∫
Meik‖ ·r‖ eikz(z−z0)d2k‖, (52)

where N = −i
(
(k · d)k− ω2d

)
/(8π2kz), M = [k×N]. For z ≤ d electric and magnetic

fields reflected from a boundary z = d have the form

E1R(ω, r) =
∫

v1eik‖ ·r‖ e−ikzzd2k‖ , (53)

B1R(ω, r) =
1
ω

∫ (
[k‖ × v1]− kz[n× v1]

)
eik‖ ·r‖ e−ikzzd2k‖, (54)
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where we assume that vector function v1 depends on ω, k‖, external geometric parameters
of the system z0, d and the dipole moment d. Transmitted electric and magnetic fields for
z ≥ d have the form

E1T(ω, r) =
∫

u1eik‖ ·r‖ eiKz1zd2k‖ , (55)

B1T(ω, r) =
1
ω

∫ (
[k‖ × u1] + Kz1[n× u1]

)
eik‖ ·r‖ eiKz1zd2k‖. (56)

One may use the local basis er, eθ , ez for every k‖ to find local contributions to the
components of the fields. Electric field is transverse:

u1rkr + Kz1u1z = 0 , (57)

v1rkr − kzv1z = 0 . (58)

Tangential components of electric and magnetic fields are continuous at z = d, which
yields four conditions:

u1reiKz1d = v1re−ikzd + Nreikz(d−z0) , (59)

u1θeiKz1d = v1θe−ikzd + Nθeikz(d−z0) , (60)

−Kz1u1θeiKz1d = kzv1θe−ikzd + Mreikz(d−z0) , (61)

−kru1zeiKz1d + Kz1u1reiKz1d = −krv1ze−ikzd − kzv1re−ikzd + Mθeikz(d−z0). (62)

One can express reflected fields in terms of Nr, Nθ , Mr, Mθ :

v1r =
kzeikz(2d−z0)

ω2(εkz + Kz1)
(Kz1Mθ − εω2Nr) , (63)

v1θ = − eikz(2d−z0)

kz + Kz1
(Mr + NθKz1) , (64)

v1z =
kreikz(2d−z0)

ω2(εkz + Kz1)
(Kz1Mθ − εω2Nr), (65)

where

Nr = −
i

8π2 (krdz − kzdr) , (66)

Nθ =
i

8π2
ω2

kz
dθ , (67)

Nz = −
kr

kz
Nr. (68)

Finally, one finds:

v1r = −NrrTM1eikz(2d−z0) , (69)

v1θ = NθrTE1eikz(2d−z0) , (70)

v1z = NzrTM1eikz(2d−z0). (71)
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To obtain the components of reflected fields vx, vy one should use rotation between
two local bases and make substitutions for every given k‖ in expression (53) for the
reflected field:

dr = dx cos θ + dy sin θ , (72)

dθ = dx sin θ − dy cos θ , (73)

v1x = v1r cos θ + v1θ sin θ , (74)

v1y = v1r sin θ − v1θ cos θ. (75)

Therefore, the electric field reflected from a boundary z = d can be written in the
form (53) with vector functions (69)–(71) in the basis er, eθ , ez. Reflected and transmitted
electric fields after diffraction at the boundary z = 0 can be written as

E2R =
∫

v2eik‖ ·r‖ eikzzd2k‖ , (76)

E2T =
∫

u2eik‖ ·r‖ e−iKz2zd2k‖, (77)

where now one finds

v2r = −v1rrTM2 = NrrTM1rTM2eikz(2d−z0) , (78)

v2θ = v1θrTE2 = NθrTE1rTE2eikz(2d−z0) , (79)

v2z = v1zrTM2 = NzrTM1rTM2eikz(2d−z0). (80)

If one continues along the same lines then, for example, after n reflections from
z = d boundary

vnr = −Nreikz(2nd−z0)rn
TM1rn−1

TM2 , (81)

and for consecutive reflection from z = 0 boundary

v(n+1)r = Nreikz(2nd−z0)rn
TM1rn

TM2. (82)

After summation of all reflections of the electric field which first reflects from z = d
boundary one obtains

Eup(r) =
∫

d2k‖e
ik‖ ·r‖ eikz(2d−z0)

1− rTM1rTM2e2ikzd

[
er Nr(rTM1rTM2eikzz − rTM1e−ikzz)+

eθ Nθ(rTE1rTE2eikzz + rTE1e−ikzz) + ezNz(rTM1rTM2eikzz + rTM1e−ikzz)
]
. (83)

In full analogy, after summation of all reflections of the electric field which first reflects
from z = 0 boundary one derives

Edown(r) =
∫

d2k‖e
ik‖ ·r‖ eikz(2d+z0)

1− rTM1rTM2e2ikzd

[
er Ñr(rTM1rTM2e−ikzz − rTM2eikzz)+

eθ Ñθ(rTE1rTE2e−ikzz + rTE2eikzz) + ezÑz(rTM1rTM2e−ikzz + rTM2eikzz)
]
, (84)

where

Ñr =
i

8π2 (krdz + kzdr) , (85)

Ñθ =
i

8π2
ω2

kz
dθ , (86)

Ñz =
kr

kz
Ñr. (87)
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The electric field E(r) from a dipole source at the point (0, 0, z0) between two dielectric
half-spaces separated by a distance d is the sum of (83) and (84):

E(r) = Eup(r) + Edown(r). (88)

It is convenient to write local components of electric Green functions for a given k‖ in
a local basis er, eθ , ez:

DE
rr(ω, kr) =

ikz

2∆TM

[
eikzz(rTM1rTM2eikz(2d−z0) − rTM2eikzz0

)
+

e−ikzz(rTM1rTM2eikz(2d+z0) − rTM1eikz(2d−z0)
)]

, (89)

DE
θθ(ω, kr) =

iω2

2kz∆TE

[
eikzz(rTE1rTE2eikz(2d−z0) + rTE2eikzz0

)
+

e−ikzz(rTE1rTE2eikz(2d+z0) + rTE1eikz(2d−z0)
)]

, (90)

DE
zz(ω, kr) =

ik2
r

2kz∆TM

[
eikzz(rTM1rTM2eikz(2d−z0) + rTM2eikzz0

)
+

e−ikzz(rTM1rTM2eikz(2d+z0) + rTM1eikz(2d−z0)
)]

, (91)

where we defined ∆TM ≡ 1 − rTM1rTM2e2ikzd, ∆TE ≡ 1 − rTE1rTE2e2ikzd. One derives
components of electric Green functions from (89)–(91):

DE
xx(ω, r, r′) =

∫ (
DE

rr(ω, kr) cos2 θ + DE
θθ(ω, kr) sin2 θ

)
eik‖(r‖−r′‖)

d2k‖
(2π)2 , (92)

DE
yy(ω, r, r′) =

∫ (
DE

rr(ω, kr) sin2 θ + DE
θθ(ω, kr) cos2 θ

)
eik‖(r‖−r′‖)

d2k‖
(2π)2 , (93)

DE
zz(ω, r, r′) =

∫
DE

zz(ω, kr)e
ik‖(r‖−r′‖)

d2k‖
(2π)2 . (94)

Electric Green functions (92)–(94) agree with electric Green functions from Ref. [63].
Magnetic Green function can be evaluated from electric Green function:

DH
il (ω, x, x′) =

1
ω2 εijkεlmn

∂

∂xj
∂

∂x′m
DE

kn(ω, x, x′). (95)

One can find local components of magnetic Green functions for a given k‖ in a local
basis er, eθ , ez:

DH
rr (ω, kr) =

ikz

2∆TE

[
eikzz(rTE1rTE2eikz(2d−z0) − rTE2eikzz0

)
+

e−ikzz(rTE1rTE2eikz(2d+z0) − rTE1eikz(2d−z0)
)]

, (96)

DH
θθ(ω, kr) =

iω2

2kz∆TM

[
eikzz(rTM1rTM2eikz(2d−z0) + rTM2eikzz0

)
+

e−ikzz(rTM1rTM2eikz(2d+z0) + rTM1eikz(2d−z0)
)]

, (97)

DH
zz(ω, kr) =

ik2
r

2kz∆TE

[
eikzz(rTE1rTE2eikz(2d−z0) + rTE2eikzz0

)
+

e−ikzz(rTE1rTE2eikz(2d+z0) + rTE1eikz(2d−z0)
)]

. (98)
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The components DH
ii (ω, r, r′) can be evaluated from local components (96)–(98) in

complete analogy to (92)–(94). One can check that for every 0 < z0 < d

DE
θθ(z0, z0) + DH

rr (z0, z0)− DH
zz(z0, z0) =

2ikzrTE1rTE2e2ikzd

∆TE
, (99)

DE
rr(z0, z0)− DE

zz(z0, z0) + DH
θθ(z0, z0) =

2ikzrTM1rTM2e2ikzd

∆TM
. (100)

Tzz component of the energy-momentum tensor is expressed in terms of electric and
magnetic Green functions:

Tzz(z0) = −
i
2

∫ +∞

−∞

dω

2π

[
DE

xx(z0, z0) + DE
yy(z0, z0)− DE

zz(z0, z0)+

DH
xx(z0, z0) + DH

yy(z0, z0)− DH
zz(z0, z0)

]
. (101)

We use identities (99), (100) to derive the Casimir pressure at zero temperature between
two dielectric half-spaces separated by a distance d:

P = Tzz(z0) = −
1

2π2

∫ ∞

0
dω

∫ ∞

0
dkrkr exp(−2

√
ω2 + k2

r d)
√

ω2 + k2
r×(

rTE1(iω, kr)rTE2(iω, kr)

∆TE(iω, kr)
+

rTM1(iω, kr)rTM2(iω, kr)

∆TM(iω, kr)

)
. (102)

Casimir pressure between two dielectric half-spaces separated by a vacuum slit (102)
was derived in Ref. [3] by use of Green functions and fluctuation-dissipation theorem. The
Casimir effect theory based on Green functions was further developed in Refs. [4,64–69].

In Ref. [4] the Lifshitz force is expressed through Tzz component of the energy-
momentum tensor and, by making use of fluctuation-dissipation theorem, through retarded
Green functions. Furthermore, in Ref. [4] authors search solution for Green functions be-
tween two dielectric half-spaces which does not depend on z + z0, where z and z0 are two
arguments of the Green function in real space. In our opinion, an important physical part
of the solution is therefore not present in Ref. [4]. Although one obtains the result for
standard Lifshitz pressure (102) in Ref. [4], absence of z + z0 terms in Green functions in
Ref. [4] does not give correct values of propagators at coincident points z = z0 to derive
the Casimir–Polder potential of a neutral atom between two dielectric half-spaces. In
our derivation performed in this section z + z0 terms are rigorously derived for all Green
functions. In Section 4 we derive expression for the Casimir–Polder potential of a neutral
atom between two dielectric half-spaces with parallel boundaries.

4. Casimir–Polder Potential of Anisotropic Atom between Two Dielectric Half-Spaces

We use expression (46) and electric propagators for two half-spaces (92)–(94) at r‖ = r′‖,
z = z0 ≡ L to derive the Casimir–Polder potential of a neutral anisotropic atom between
two dielectric half-spaces with parallel boundaries separated by a distance d:

U(L, d) = −
∞∫

0

dω

2π

∞∫
0

dkrkr

2π

[
exp(−2

√
ω2 + k2

r L)
2
√

ω2 + k2
r

[
rTM2(iω, kr)

∆TM(iω, kr)
k2

r αzz(iω)+

1
2

(
rTM2(iω, kr)

∆TM(iω, kr)
(ω2 + k2

r )−
rTE2(iω, kr)

∆TE(iω, kr)
ω2
)(

αxx(iω) + αyy(iω)
)]
+

exp(−2
√

ω2 + k2
r (d− L))

2
√

ω2 + k2
r

[
rTM1(iω, kr)

∆TM(iω, kr)
k2

r αzz(iω)+

1
2

(
rTM1(iω, kr)

∆TM(iω, kr)
(ω2 + k2

r )−
rTE1(iω, kr)

∆TE(iω, kr)
ω2
)(

αxx(iω) + αyy(iω)
)]]

+ U2(d), (103)
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where

U2(d) =
∞∫

0

dω

2π

∞∫
0

dkrkr

2π

exp(−2
√

ω2 + k2
r d)

2
√

ω2 + k2
r

[(
αxx(iω) + αyy(iω)

)
×

(
rTM1(iω, kr)rTM2(iω, kr)

∆TM(iω, kr)
(ω2 + k2

r ) +
rTE1(iω, kr)rTE2(iω, kr)

∆TE(iω, kr)
ω2
)

− 2
rTM1(iω, kr)rTM2(iω, kr)

∆TM(iω, kr)
k2

r αzz(iω)

]
. (104)

Quantum-electrodynamic level shifts of anisotropic atom between parallel perfectly
conducting mirrors are considered in Ref. [70]. To proceed it is convenient to introduce
a dimensionless variable ξ = π(2L− d)/d. We substitute reflection coefficients rTM = 1,
rTE = −1 to (103) and use integrals

∫ ∞

0

dρρ3

exp(2πρ)− 1
=

1
240

, (105)∫ ∞

0
dρρ3 cosh ξρ

sinh πρ
=

3− 2 cos2(ξ/2)
8 cos4(ξ/2)

(106)

to obtain the result which agrees with Barton [70] for the ground state energy of anisotropic
atom at large distances from perfectly conducting mirrors:

U(ξ, d) = − π2

12d4

(
αxx(0) + αyy(0) + αzz(0)

)3− 2 cos2(ξ/2)
8 cos4(ξ/2)

+ (107)

π2

1440d4

(
αxx(0) + αyy(0)− αzz(0)

)
.

The result (107) is valid at large distances of the atom from mirrors L, d− L� λ0 ≡ 2π/ω0,
λ0 is a wavelength corresponding to a typical absorption frequency ω0. At large distances
from materials one can effectively take atomic polarizabilities at zero frequencies: the
result (107) depends on αxx(0), αyy(0), αzz(0).

Various confined cases have been studied before: Casimir interaction of two rectangu-
lar and circular cylinders between two parallel plates [71,72], the Casimir–Polder effect for
a perfectly conducting wedge [49], interaction of compact objects with a mirror plane due to
quantum fluctuations of a scalar or electromagnetic field [73], Casimir–Polder interaction of
two anisotropic atoms in front of a perfectly conducting plate as well as Casimir interaction
of two perfect spheres in front of a perfectly conducting plate [74], Casimir interactions of
an object inside a spherical metal shell [75], Casimir interaction of objects inside a perfectly
conducting cylindrical shell [76].

5. Conducting 2 + 1 Layer

The conducting plane 2 + 1 layer with surface conductivity σ(ω) at the boundary of a
dielectric half-space can be introduced by imposing boundary conditions

(Em − Ev)× n = 0, (108)

(Hm −Hv)× n = σ(ω)Ev. (109)

Here Em, Hm and Ev, Hv are electric and magnetic fields in the medium and vacuum,
respectively. We consider diffraction from a layer z = d at the boundary of a dielectric half-
space z > d, n = (0, 0,−1). We work in the same system of coordinates as in the previous
section and use the same notations. From boundary conditions (108), (109), transversality
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of fields and expansions (51)–(56) one writes system of equations for a given k‖ in a local
basis er, eθ , ez:

u1rkr + Kz1u1z = 0, (110)

v1rkr − kzv1z = 0, (111)

v1re−ikzd + Nreikz(d−z0) = u1reiKz1d, (112)

v1θe−ikzd + Nθeikz(d−z0) = u1θeiKz1d, (113)

− Kz1u1θeiKz1d = kzv1θe−ikzd + Mreikz(d−z0) + σ(ω)ω
(
v1θe−ikzd + Nθeikz(d−z0)

)
, (114)

σ(ω)ω
(
v1re−ikzd + Nreikz(d−z0)

)
− kru1zeiKz1d + Kz1u1reiKz1d =

− krv1ze−ikzd − kzv1re−ikzd + Mθeikz(d−z0). (115)

One finds

v1r = −NrrTM1eikz(2d−z0), (116)

v1θ = NθrTE1eikz(2d−z0), (117)

v1z = NzrTM1eikz(2d−z0), (118)

where

rTM1 =
σ(ω)ωkzKz1 + ω2(εkz − Kz1)

σ(ω)ωkzKz1 + ω2(εkz + Kz1)
, (119)

rTE1 =
σ(ω)ω + kz − Kz1

σ(ω)ω + kz + Kz1
. (120)

One can find reflection of electromagnetic field from a conducting layer located at
z = 0 in a similar way. Then it is immediate to see that Casimir and Casimir–Polder
formulas derived in previous sections are valid in the present case if one substitutes
reflection coefficients (119) and (120). Conducting planes with constant conductivities have
been studied in Refs. [77,78].

Non-diagonal components of the surface conductivity are also important for applica-
tions. The Casimir force between 2 + 1 layers in the quantum Hall regime described by
quantized conductivities of the layers has been studied in Ref. [79], the force is repulsive
for layers with the same type of carrier. Chern insulator is an example of 2 + 1 layer with a
conductivity quantized when no external magnetic field is present [80]. Please note that
the Casimir force between identical Chern insulator plates with vanishing longitudinal
conductivities and small values of non-diagonal conductivities is repulsive; however, for
large values of non-diagonal conductivities the Casimir force is attractive and coincides
with the Casimir force between two perfectly conducting plates in the limit of infinite
conductivities [42]. In Ref. [43] general result for the Casimir energy of two plates with
arbitrary values of non-diagonal constant conductivities is derived. A review of Casimir
physics for novel materials including Chern and topological insulators can be found
in Ref. [17].
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6. Polarization Operator of 2 + 1 Fermions and Graphene

Spatial dispersion yields possibility to generalize boundary condition (109). For sys-
tems invariant under rotation around z axis one can introduce longitudinal and transverse
conductivities σr(ω, kr), σθ(ω, kr) and write boundary conditions:

(Em − Ev)× n = 0 (121)[
(Hm(ω, k‖)−Hv(ω, k‖))× n

]
r = σr(ω, kr)Ev

r (ω, k‖) (122)[
(Hm(ω, k‖)−Hv(ω, k‖))× n

]
θ
= σθ(ω, kr)Ev

θ (ω, k‖) (123)

Boundary conditions (122), (123) yield equations

− Kz1u1θeiKz1d = kzv1θe−ikzd + Mreikz(d−z0) + σθ(ω, kr)ω
(
v1θe−ikzd + Nθeikz(d−z0)

)
, (124)

σr(ω, kr)ω
(
v1re−ikzd + Nreikz(d−z0)

)
− kru1zeiKz1d + Kz1u1reiKz1d =

− krv1ze−ikzd − kzv1re−ikzd + Mθeikz(d−z0). (125)

The solution of Equations (110)–(113), (124) and (125) can be written in the form

v1r = −NrrTM1eikz(2d−z0), (126)

v1θ = NθrTE1eikz(2d−z0), (127)

v1z = NzrTM1eikz(2d−z0), (128)

where now reflection coefficients rTM1, rTE1 depend on two different conductivities σr(ω, kr)
and σθ(ω, kr):

rTM1 =
σr(ω, kr)ωkzKz1 + ω2(εkz − Kz1)

σr(ω, kr)ωkzKz1 + ω2(εkz + Kz1)
, (129)

rTE1 =
σθ(ω, kr)ω + kz − Kz1

σθ(ω, kr)ω + kz + Kz1
. (130)

Please note it is impossible to define two conductivities with a frequency dispersion
for a given layer. One needs vector k‖ to determine spatial direction of the incident wave
and define longitudinal and transverse conductivities.

As soon as one determines conductivities σr(ω, kr), σθ(ω, kr) one can find the Casimir
force and Casimir–Polder potentials by direct substitution of the coefficients (129), (130) to
general results (50), (102) and (103).

Now we express conductivities σr(ω, kr), σθ(ω, kr) in terms of components of polariza-
tion operator for 2 + 1-dimensional fermions. Consider polarization operator Πνρ(ω, k‖)
of 2 + 1-dimensional fermions in the plane layer z = 0. One can evaluate the components
of the polarization operator in the plane layer and then extend it to 3+ 1 space by condition
Πµ3 = Π3µ = 0.

We first find reflection coefficients from the plane layer z = 0 of 2 + 1-dimensional
fermions in vacuum without specifying a concrete form of the polarization operator for
2 + 1-dimensional fermions in a layer. One can write equations for electromagnetic field in
this case:

∂µFµν + δ(z)Πνρ Aρ = 0 , (131)

where Fµν = ∂µ Aν − ∂ν Aµ. Equations (131) lead to conditions

∂z Am|z=+0 − ∂z Am|z=−0 = Πmn An|z=0. (132)
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Gauge potentials should be continuous through z = 0:

Am|z=+0 = Am|z=−0. (133)

We select Az = 0 gauge for convenience. Then equations for reflection of the TE wave
may be written as follows:

Aθ = eikrreikzz + rTEeikrre−ikzz for z < 0 , (134)

Aθ = eikzzeikrrtTE for z > 0 , (135)

and one obtains
Πθn An = −Πθθ(ω, kr)Aθ . (136)

Continuity of vector potentials at z = 0 yields 1 + rTE = tTE. From the condition (132)
one derives

rTE(ω, kr) =
Πθθ(ω, kr)

−2ikz −Πθθ(ω, kr)
. (137)

Please note that conditions Aθ = 0, ωA0 = kr Ar are imposed on TM wave. For A0
one can write

A0 = eikrreikzz + rA0 eikrre−ikzz for z < 0 (138)

A0 = eikzzeikrrtA0 for z > 0. (139)

Current conservation yields conditions

ωΠ00(ω, kr)− krΠr0(ω, kr) = 0,

ωΠ0r(ω, kr)− krΠrr(ω, kr) = 0,

which result in
ω2Π00(ω, kr) = k2

r Πrr(ω, kr). (140)

Now we can write

Π00 A0 + Π0r Ar = − k2
z

ω2 Πrr A0 = − k2
z

ω2 Πrr A0. (141)

Equation (132) results in

2ikz(tA0 + rA0 − 1) = − k2
z

ω2 Πrr A0(1 + rA0). (142)

From equality rTM(ω, kr) = −rA0(ω, kr) one obtains

rTM(ω, kr) =
ikzΠrr(ω, kr)

−2ω2 + ikzΠrr(ω, kr)
. (143)

By making use of identities

σr(ω, kr) =
−iΠrr(ω, kr)

ω
, (144)

σθ(ω, kr) =
−iΠθθ(ω, kr)

ω
(145)

one can check that reflection coefficients (137), (143) coincide with reflection coefficients (129),
(130) for ε = 1.

Reflection coefficients of electromagnetic field from a plane layer of 2 + 1-dimensional
fermions at the boundary of a dielectric half-space with a frequency dispersion of per-
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mittivity ε ≡ ε(ω) can be immediately expressed in terms of components of polarization
operator Πνρ(ω, kr) for 2 + 1-dimensional fermions in a layer:

rTM =
−iΠrr(ω, kr)kzKz + ω2(εkz − Kz)

−iΠrr(ω, kr)kzKz + ω2(εkz + Kz)
, (146)

rTE =
−iΠθθ(ω, kr) + kz − Kz

−iΠθθ(ω, kr) + kz + Kz
. (147)

The Casimir force and the Casimir–Polder potential of an anisotropic atom can be
found by substitution of reflection coefficients (146), (147) to expressions (50), (102) and (103).

We define trΠ ≡ Πm
m. By making use of Equation (140) and equality

trΠ(ω, kr) = Π00(ω, kr)
k2

r −ω2

k2
r
−Πθθ(ω, kr) (148)

one can express reflection coefficients (146) and (147) in terms of Π00(ω, kr) and trΠ(ω, kr).
In the case of a fermion layer in a vacuum (ε = 1) we obtain reflection coefficients in a

form first given in [81]:

rTM(ω, kr) =
kzΠ00

kzΠ00 + 2ik2
r

, rTE(ω, kr) = −
k2

zΠ00 + k2
r trΠ

k2
zΠ00 + k2

r (trΠ− 2ikz)
. (149)

Components of polarization operator for 2 + 1 Dirac fermions at finite temperature
were first evaluated in Ref. [81] during evaluation of the Casimir free energy of a graphene
layer—metal half-space system.

Graphene is a system of 2 + 1 Dirac fermions with a linear dispersion law ω =
vFk (vF ≈ c/300 is a Fermi velocity, c is a speed of light). This description is valid for
quasiparticles of pristine graphene [82,83] at energies less than 2 eV. There are N = 4
species of fermions in graphene.

Interaction of ideal metal with graphene layer at temperature T = 0 is studied
in Ref. [84]. Finite temperature Casimir interaction in graphene layer—metal systems
including ideal metal and Au half-space is studied in Ref. [81]. One can write finite
temperature expansions for kr → 0 (for zero mass gap and zero chemical potential):

Π00(iω = 0, kr) =
4αNT ln 2

v2
F

+
αNk2

r
12T

+ . . . , (150)

trΠ(iω = 0, kr)−Π00(iω = 0, kr) =
αNv2

Fk2
r

6T
+ . . . , (151)

α is the coupling constant, which lead to the following high-temperature behavior of the
free energy in the graphene-ideal metal system (higher order terms in vF are omitted):

F0TM = − Tζ(3)
16πa2 + . . . , (152)

F0TE = −
αNv2

F
192πa3 + . . . . (153)

Please note that

FDrude|T→∞ =
1
2
Fid|T→∞ = − Tζ(3)

16πa2 (154)

is the high-temperature metal–metal asymptotics of the free energy for a Drude model of
permittivity, which is also one half of the high-temperature asymptotics of the free energy
for perfectly conducting boundary conditions. Detailed analysis [81] has demonstrated
that the high-temperature behavior in the graphene layer—metal system can be observed
at separations of the order 100 nm at room temperature.
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In Ref. [85] the Casimir force in the system of an Au-coated sphere and a graphene
layer deposited on a SiO2 film covering a Si plate is measured. Experimental results of
Ref. [85] are found to be in a good agreement with the theory based on the polarization
operator of graphene.

Planar QED at finite temperature and density and its relation to minimal conductivity
of graphene is considered in Ref. [86]. The origin of the high-temperature behavior (152) for
2D materials with a frequency dispersion is discussed in Ref. [87]. In Ref. [88] a convenient
representation of graphene polarization operator is applied at nonzero temperature to
study properties of graphene reflectivity at real frequencies. A review of recent results in
graphene physics obtained by use of polarization operator can be found in Ref. [89].

7. Impedance Boundary Conditions

Impedance boundary conditions are defined as follows:

Et = ζ(ω)[Ht×n]. (155)

Tangential components of the electromagnetic field are continuous through the bound-
ary of metal in this case. For impedance boundary conditions (155) one must write three
equations to determine reflected electromagnetic field. We impose impedance boundary
conditions at z = d and consider reflection of an electromagnetic field (51), (52) from a
metallic half-space z ≥ d. The reflected electric field is transverse:

v1rkr − v1zkz = 0. (156)

Impedance boundary conditions (155) and expansions (51)–(54) yield two equations
in a local basis er, eθ , ez:

Nreikz(d−z0) + v1re−ikzd = −ζ(ω)(−krv1ze−ikzd − kzv1r + Mθeikz(d−z0)) , (157)

Nθeikz(d−z0) + v1θe−ikzd = ζ(ω)(kzv1θe−ikzd + Mreikz(d−z0)). (158)

One finds in this case

v1r = −NrrTM1eikz(2d−z0) , (159)

v1θ = NθrTE1eikz(2d−z0) , (160)

v1z = NzrTM1eikz(2d−z0) , (161)

where

rTM1 =
kz − ζ(ω)ω

kz + ζ(ω)ω
, (162)

rTE1 =
ζ(ω)kz −ω

ζ(ω)kz + ω
. (163)

One can generalize impedance boundary conditions to spatial dispersion case:

Etr = ζr(ω, kr)[Ht×n]r , (164)

Etθ = ζθ(ω, kr)[Ht×n]θ . (165)

Then one obtains two independent equations in a local basis er, eθ , ez:

Nreikz(d−z0) + v1re−ikzd = −ζr(ω, kr)(−krv1ze−ikzd − kzv1r + Mθeikz(d−z0)) , (166)

Nθeikz(d−z0) + v1θe−ikzd = ζθ(ω, kr)(kzv1θe−ikzd + Mreikz(d−z0)) , (167)
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and reflection coefficients (162), (163) are generalized to

rTM1 =
kz − ζr(ω, kr)ω

kz + ζr(ω, kr)ω
, (168)

rTE1 =
ζθ(ω, kr)kz −ω

ζθ(ω, kr)kz + ω
. (169)

with two functions ζr(ω, kr), ζθ(ω, kr). Impedance approach was first studied in the
framework of the Casimir effect in Ref. [90] for evaluation of the Casimir force between
two metals. In Ref. [91] the Casimir force at finite temperature is studied in impedance
approach with concrete models of the function ζ(ω) with a frequency dispersion. The
high-temperature behavior of the Casimir free energy for two metals has received much
attention [92,93].

8. Discussion

In this paper, we present an explicit gauge-invariant derivation of the Casimir–Polder
potential and the Casimir pressure starting from the four-current (10), (11) [54] and
interaction (42).

Green functions scattering method is first applied to obtain the Casimir–Polder poten-
tial of anisotropic atom above a dielectric half-space (50) and obtain result for the Lifshitz
pressure (102) in Sections 2 and 3 respectively. In Section 4 we derive the Formula (103) for
the Casimir–Polder potential of anisotropic atom between two dielectric half-spaces with
parallel boundaries. The result (107) [70] for the ground state energy shift of anisotropic
atom between two perfectly conducting mirrors agrees with general Formula (103).

In consequent Sections the method is applied to 2 + 1 conductivity layer with a
frequency dispersion (Section 5), 2 + 1 layer with spatial dispersion of conductivity and
polarization operator of graphene (Section 6), impedance boundary conditions (Section 7),
an overview of known results for these conducting systems is given.

The method developed for half-space geometries can be immediately generalized to
obtain results for the Casimir–Polder potential between anisotropic atom and one or two
planar plates with parallel boundaries and the Casimir pressure between two planar plates
with parallel boundaries: one just must substitute reflection coefficients from the plate(s)
to general Formulas (50), (103) and (102) to obtain the Casimir–Polder potential between
anisotropic atom and one or two planar parallel plates and the Casimir pressure between
two planar parallel plates.
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