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Abstract: We prove that vector fields described by the generalized Proca class of theories do not admit
consistent coupling with a gravitational sector defined by a scalar–tensor theory of the degenerate
type. Under the assumption that there exists a frame in which the Proca field interacts with gravity
only through the metric tensor, our analysis shows that at least one of the constraints associated with
the degeneracy of the scalar–tensor sector is inevitably lost whenever the vector theory includes
coupling with the Christoffel connection.
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1. Introduction

The extension of general relativity (GR) by additional light degrees of freedom is
arguably the most natural way to provide a dynamical explanation of dark energy, thereby
dispensing with the cosmological constant as the source of the observed late-time cosmic
acceleration. Considering a single scalar field in addition to the metric tensor is, in this
regard, particularly well motivated. These so-called scalar–tensor theories of gravity [1,2]
thus provide the most minimal working changes to Einsteinian gravity in terms of local
degrees of freedom, under some standard assumptions such as Poincaré invariance and
locality. This is a virtue both from the theoretical and experimental perspectives, as its
relative simplicity allows for strong analytical control while maintaining much of the
phenomenology of GR. It is also not the least telling case for scalar–tensor theories that the
related mechanism of inflation was likely to be at work during the pre-Big Bang epoch1.

The complete classification of scalar–tensor theories thus seems to be an interesting
and timely theoretical problem. In this effort, the assumption of having precisely three local
degrees of freedom—two propagated by the metric and one by the scalar field—severely
restricts the space for possible models. Although the physically meaningful question
should make a distinction between light and heavy degrees of freedom, it has nevertheless
proved fruitful to demand the strict absence of additional fields beyond the aforementioned
three, since the resulting models often enjoy interesting properties that may have been
difficult to discover through more agnostic constructions based on the rules of effective
field theory.

This restriction on the number of degrees of freedom makes the classification problem
mathematically well defined, although not easy as it turns out. Given the symmetries of the
theory, it is sufficient to demand second-order field equations, and taking this as a premise,
the problem has indeed been fully solved. The solution is given by Horndeski’s scalar–
tensor theory [7–10]. The remarkable observation is that this premise is, however, not a
necessary one. That is, higher order equations of motion are not necessarily associated with
extra unwanted degrees of freedom—unwanted indeed, as they are generically associated
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with ghost-type instabilities according to the Ostrogradski theorem. This is so because the
equations may happen to be degenerate, in the sense that a subset of them follows as a
consequence of the others, implying in particular, a reduction of the number of pieces of
initial data that one would have naively inferred. The development and classification of
these so-called degenerate scalar–tensor theories has been an active research topic over the
past decade [11–19]. New models have been discovered throughout the years and have
been given different names. We will refer to all of them collectively as DHOST, an acronym
that stands for “degenerate higher-order scalar–tensor” theories. See [20–22] for reviews.

DHOST theories provide, then, a very interesting solution to the classification problem
of scalar–tensor gravity. They are consistent theories within the scope of that problem,
at least according to the way we have formulated it, although it is clear that physical
consistency will reduce the space of allowed models by the imposition of further con-
straints. Most of these constraints arise from experimental tests of gravity, although here
we will not be concerned with them—not because they are not important, but because their
importance is contingent on the physical context. For instance, constraints derived from
cosmological observations [23–33] need not apply to the scales of compact astrophysical
objects. Theoretical constraints on the other hand have the chance to be more generally
applicable, even if experiments must have the last word.

One such theoretical constraint that has remained largely overlooked is the question
on the consistency of matter coupling in DHOST theories. The fact that matter fields can
be problematic is seen easily in the Hamiltonian language, in which the degeneracy of
the field equations is manifested in the form of a constraint on the phase space variables.
The mixing with matter fields can then obstruct this constraint, leading to the reappearance
of the ghost degree of freedom and an inconsistent theory [34]. This may occur even
if matter is minimally coupled with the metric tensor, for an indirect coupling with the
DHOST scalar is still present. It is worth remarking that this issue is of course not specific
to DHOST theories, and may happen whenever either one or both of two theories have
constraints when considered separately, are coupled in some way [35]. It is thus a virtue of
the Hamiltonian language to make it manifest that the degeneracy condition is in truth a
constraint, on equal footing with other constraints.

Understanding the precise ways in which the DHOST constraint may be lost was the
subject of the work [36]. Let us denote the constraint by Ψ ≈ 0, where Ψ is a phase space
function to be made explicit later, and the symbol “≈” means weak equality. We can then
distinguish two types of pathological matter theories:

(I) The constraint Ψ is lost, and no analogue of it exists.
This will be the case when the rank of the Hessian matrix

HI J :=
∂2L

∂ψ̇I∂ψ̇J , (1)

(where ψI stands for all the fields) is greater than the sum of the ranks of the DHOST
and matter Hessians that one would have in the absence of coupling. This cannot
occur when the full Hessian is block-diagonal in the DHOST and matter variables.
As we are restricting our attention to minimal matter coupling, any matter Lagrangian
that does not involve the Christoffel connection will lead to a block-diagonal Hessian
and thus be safe according to this criterion. The converse of this is of course not true.
Although a non-block-diagonal Hessian is at risk of failing this consistency check, it
may still enjoy a (possibly modified) degeneracy constraint.

(II) The constraint Ψ (or some analogue of it) does exist, but it fails to Poisson-commute
with one or more constraints present in the matter sector.
In the absence of matter, the DHOST constraint Ψ is a primary, second-class constraint,
and it Poisson-commutes with all the other primary constraints in the gravity sector.
It therefore leads to a secondary constraint, which together with Ψ is responsible for
removing the would-be ghost degree of freedom. If now the matter sector itself has
some constraints, there is the risk that they may not commute with Ψ, implying the
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loss of the associated secondary constraint and the reappearance of the unwanted
degree of freedom.

It is not difficult to find examples that fail either of these two criteria; some explicit
pathological matter models were studied in [36]. The aim of the present article is to
analyze these consistency criteria in detail for a more interesting model, namely, the
generalization of the Proca theory of a massive spin-1 field [37,38]. This class of models,
dubbed Generalized Proca (GP), has been subject to intense scrutiny for their potential
role in cosmology for a dark energy fluid and also in the physics of compact astrophysical
objects [39–46]. GP theory extends the linear Proca model by the inclusion of derivative
interactions while maintaining the constraints that ensure that one of the components of
the vector field is non-dynamical. The theory thus falls into the “dangerous” class of matter
fields when coupled with DHOST: the non-trivial interactions produce coupling with the
Christoffel connection upon covariantization, whereas the Proca constraint risks spoiling
the Poisson algebra of the coupled DHOST-GP system.

Our main result is the proof that GP theory cannot be consistently coupled with
DHOST gravity within the framework we consider. The main assumptions are the follow-
ing: (i) We focus exclusively on the so-called quadratic DHOST class, i.e., scalar–tensor
theories whose Lagrangians involve operators that are at most quadratic in ∇2φ (where φ
is the scalar field). (ii) We consider a truncated version of GP theory with at most cubic
derivative self-interactions; (iii) the GP vector field couples with the DHOST sector only
through the metric tensor. Assumptions (i) and (ii) are not essential, and we expect all
our results to hold for more general DHOST models and for the complete GP Lagrangian.
Assumption (iii) is, on the other hand, more restrictive, but is certainly reasonable and
in line with our set-up of treating the Proca field as a matter field which couples with
gravity in accordance with the equivalence principle. We will come back to this point in
the final discussion.

2. ADM Decomposition of DHOST and GP Theories

In this section we review the definitions of the DHOST and GP theories that we focus
on in this article. We then perform a 3 + 1 decomposition of the Lagrangians in terms of
ADM variables.

2.1. DHOST Lagrangian

The gravitational sector of our framework is given by the quadratic DHOST Lagrangian:

Sg[φ, g] =
∫

d4x
√
−g
[

F(φ, X)R+ P(φ, X) + Q(φ, X)�φ+Cµνρσ[φ]∇µ∇νφ∇ρ∇σφ
]

. (2)

where R is the curvature scalar constructed from the metric gµν; F, P and Q are generic
functions of the scalar field φ; and

X := ∇µφ∇µφ . (3)

The tensor Cµνρσ is defined as

Cµνρσ := A1gµ(ρgσ)ν + A2gµνgρσ +
A3

2
(φµφνgρσ + φρφσgµν)

+
A4

2

(
φµφ(ρgσ)ν + φνφ(ρgσ)µ

)
+ A5φµφνφρφσ ,

(4)

where φµ := ∇µφ and the As are also functions of φ and X.
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For the purpose of analyzing the constraints in the Hamiltonian language, we carry
out a time-space split or 3 + 1 decomposition of the Lagrangian. The metric tensor is
expanded in ADM variables [47], i.e., the lapse N, shift Ni and 3-metric γij,

gµν =

(
−N2 + Nk Nk Ni

Nj γij

)
, gµν =

1
N2

(
−1 Ni

N j N2γij − Ni N j

)
, (5)

and the measure factor is
√−g = N

√
γ. Spatial indices are raised and lowered with the

3-metric and its inverse—for example, Ni = γijN j (the shift function is defined with an
upper index). The extrinsic curvature of the constant-time hypersurfaces is

Kij =
1

2N

(
γ̇ij − 2D(i Nj)

)
, (6)

where Di is the covariant derivative compatible with the 3-metric and a dot denotes
differentiation with respect to the time coordinate x0 = t. We also introduce

nµ :=
1
N

(
1,−Ni

)
, aµ := nν∇νnµ =

(
0,

Di N
N

)
, (7)

and note that nµnµ = −1.
In the Hamiltonian language, one introduces a canonical momentum associated with

each field velocity. The DHOST Lagrangian is a function of the second derivative of the
scalar field; therefore, both φ and ∇µφ have conjugate momenta in phase space. It is
convenient to introduce an auxiliary vector field Aµ which is constrained as Aµ = ∇µφ
by means of a Lagrange multiplier [15,48,49]. Thus the modified DHOST action we will
inspect is

Sg[φ, A, g] =
∫

d4x
√
−g
[

F(φ, X)R + P(φ, X) + Q(φ, X)∇µ Aµ

+ Cµνρσ[φ, A]∇µ Aν∇ρ Aσ + λµ(Aµ −∇µφ)
]

,
(8)

where it is understood that every instance of ∇µφ in Cµνρσ has been replaced by Aµ,
and similarly X now stands for Aµ Aµ. The Lagrangian is now purely first order in deriva-
tives and the passage to the Hamiltonian proceeds as usual. Following the analysis
of [21], we decompose the vector Aµ in its spatial components Ai and the redefined
time component

A∗ := nµ Aµ =
1
N

(
A0 − Ni Ai

)
. (9)

Details of the 3 + 1 decomposition may be found in [21,36], so here we only quote the
final result:

Sg =
∫

dtd3x
{

N
√

γ
[
AV2
∗ + 2BijV∗Kij +Kij,klKijKkl + 2C ijKij + 2C0V∗ −U

]
+ λ0

(
NA∗ + Ni Ai − φ̇

)
+ λi(Ai − Diφ)

}
,

(10)

where
V∗ :=

1
N
(

Ȧ∗ − ΞA
)

, ΞA := AiDi N + NiDi A∗ . (11)
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The coefficients appearing in (10) are given explicitly as follows:

A = A1 + A2 − (A3 + A4)A2
∗ + A5 A4

∗ ,

Bij = A∗

(
2FX + A2 −

A3

2
A2
∗

)
γij − A∗

2

(
A3 + 2A4 − 2A5 A2

∗

)
Ai Aj ,

Kij,kl =
(

F + A1 A2
∗

)
γi(kγl)j −

(
F− A2 A2

∗

)
γijγkl

+

(
2FX −

A3

2
A2
∗

)(
γij Ak Al + γkl Ai Aj

)
− A2

(
Ai A(kγl)j + Aj A(kγl)i

)
−
(

A4 − A5 A2
∗

)
Ai Aj Ak Al ,

(12)

and while the expressions for C ij, C0 and U (which multiply terms that are at most linear in
the velocities) will not be needed in our analysis; the interested reader may find them in
Appendix A.

The degeneracy of the DHOST Lagrangian is manifested in the fact that the determi-
nant of the Hessian matrix of second time derivatives vanishes identically2:

A−K−1
ij,klB

ijBkl = 0 . (13)

This relation translates into a set of algebraic equations for the coefficient functions
AI , I = 1, 2, 3, 4, 5, and the solutions have been classified in [15]. Note the implicit assump-
tion that the gravitational kinetic matrix K must be invertible, ensuring that DHOST can
be connected smoothly, in theory space, to standard GR. The inversion of K can be done
explicitly, and the reader may find the result in Appendix B.

2.2. GP Lagrangian

GP is a vector-tensor theory that describes the coupled dynamics of a vector field Bµ

and metric gµν. In isolation, this theory is consistent in the sense that it describes 3 + 2
degrees of freedom, corresponding to massive spin-1 and massless spin-2 particles, at the
complete non-linear level. The Lagrangian is given by [37,38]

SGP =
∫

d4x
√
−g

5

∑
I=2
LI [g, B] , (14)

and we have explicitly

L2 = G2(Y,F ,G) ,

L3 = G3(Y)∇µBµ ,

L4 = G4(Y)R− 2G′4(Y)
[
(∇µBµ)2 −∇µBν∇νBµ

]
,

L5 = G5(Y)Gµν∇µBν

+
G5(Y)

3

[
(∇µBµ)3 − 3(∇ρBρ)∇µBν∇νBµ + 2∇µBν∇νBρ∇ρBµ

]
,

(15)

with the definitions

Y := BµBµ , F := −1
4

BµνBµν , G := BµBνB ρ
µ Bνρ , (16)

and Bµν := ∇µBν −∇νBµ; R and Gµν are, respectively, the curvature scalar and Einstein
tensor constructed from the metric gµν. A prime on the coefficient functions denotes
differentiation with respect to the argument Y, e.g., G′4 ≡

dG4
dY . The operators in (15) do

not exhaust the whole GP class. We do not expect the additional terms to effect any of
our conclusions, so the truncated model we consider is general enough to illustrate the
message of this paper. See the final discussion section for further comments on this point.
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Like DHOST, GP is a degenerate theory in the sense that not all among the components
of Bµ are dynamical. As is well known, in the standard Proca theory there exists a (local)
frame in which B0 does not propagate, and GP theory is precisely constructed so as to
generalize this property to include non-trivial derivative interactions. In the Hamiltonian
language, this degeneracy will manifest itself in the fact that the kinetic part of the La-
grangian (i.e., the operators that are at least quadratic in the velocity variables) will be
independent of the time component of the vector field velocity.

In the following subsections we detail the 3 + 1 decomposition of the operators
entering in the GP terms defined above. The metric is again expanded in ADM variables
while the Proca field, similarly to the DHOST auxiliary vector Aµ, is decomposed into its
spatial part Bi and

B∗ := nµBµ =
1
N

(
B0 − NiBi

)
. (17)

A reader uninterested in the particulars may skip to the next section where we provide
the relevant collected results.

2.2.1. L2 Term

The GP term L2 is a generic function of the scalars Y, F and G. By expanding ADM
components, we find

Y = −B2
∗ + BiBi ,

F =
1
2

FiFi −
1
4

bijbij ,

G = B2
∗F

iFi − BiBjFiFj − 2B∗Bi
(

Fjbij +
N j

N
b k

i bjk

)
− Ni N j

N2 B2
∗b

k
i bjk ,

(18)

where
Fi :=

1
N
(

Ḃi − Υi
)

, Υi := Di(NB∗) + BjDi N j + N jDjBi ,

bij := DiBj − DjBi .
(19)

Therefore, L2 is manifestly degenerate as it is independent of Ḃ∗.

2.2.2. L3 Term

For the GP term L3 we only need the expression

∇µBµ = −W∗ − B∗K + DiBi , (20)

where
W∗ :=

1
N
(

Ḃ∗ − ΞB
)

, ΞB := BiDi N + NiDiB∗ . (21)

We see that L3 gives a non-trivial contribution to the canonical momenta conjugate to
B∗ and γij. However, the fact that Ḃ∗ appears only linearly still ensures the degeneracy.
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2.2.3. L4 Term

We work out L4 in two steps. The non-minimal coupling to the curvature scalar is
straightforward to expand, but it must be integrated by parts so as to remove second time
derivatives. Thus we have

L(1)4 := G4R

= G4

(
KijKij − K2 + R(3) + 2∇µ(Knµ − aµ)

)
= G4

(
KijKij − K2 + R(3)

)
− 2G′4∇µY(Knµ − aµ) + t.d.

= G4

(
KijKij − K2 + R(3)

)
+ 2G′4

[
2BiBjKKij + 2B∗W∗K− 2BiFiK

− 2BiDiB∗K +
1
N

Di NDiY
]
+ t.d. ,

(22)

where K := γijKij, R(3) is the curvature scalar built out of γij, and “t.d.” means total
derivative. Next, the minimally covariantized GP term is

L(2)4 := G̃4

[
(∇µBµ)2 −∇µBν∇νBµ

]
= G̃4

[
− B2

∗(K
ijKij − K2) + 2BiBjK k

i Kjk − 2BiFjKij + 2B∗W∗K

− 2DiBiW∗ − 2DiBiB∗K− 4BiDjB∗Kij + 2B∗DiBjKij + 2DiB∗Fi

+ 2DiB∗DiB∗ + (DiBi)2 − DiBjDjBi
]

.

(23)

Note that we have “detuned” the relative coefficients multiplying L(1)4 and L(2)4 so
that we may understand later the role it plays in the coupled DHOST-GP system. When
taken in isolation, however, we see that L4 contains

L4 ⊃ 2
(

G̃4 + 2G′4
)

B∗W∗K , (24)

which mixes the Proca field and metric velocities, and thus spoils the degeneracy unless
we choose G̃4 = −2G′4, in agreement with (15).

2.2.4. L5 Term

To expand L5, we consider the two contributions separately, while again keeping the
GP “tuning” of relative coefficients for later:

L(1)5 := G5(Y)Gµν∇µBν ,

L(2)5 := G̃5(Y)
[
(∇µBµ)3 − 3(∇ρBρ)∇µBν∇νBµ + 2∇µBν∇νBρ∇ρBµ

]
.

(25)

For the sake of brevity we will focus here on the kinetic terms, i.e., the terms which
are at least quadratic in the velocities, while delegating the full expressions to Appendix A.
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For the first contribution we need the components of the Einstein tensor in
ADM variables:

G00 = − 1
2N2

(
KklKkl − K2 − R(3)

)
,

G0i =
Ni

2N2

(
KklKkl − K2 − R(3)

)
− 1

N
DjK̃ij ,

Gij = G(3)ij − Ni N j

2N2

(
KklKkl − K2 − R(3)

)
+

1
N
√

γ
∂t

(√
γ K̃ij

)
− 1

N

(
DiDjN − γijD2N

)
+

1
N

Dk

(
2N(iK̃ j)k − NkK̃ij

)
+ 2
(

Ki
kK jk − KKij

)
− 1

2
γij
(

KklKkl − K2
)

,

(26)

where K̃ij := Kij − γijK and G(3)
ij is the Einstein tensor built out of the 3-metric. Let us

emphasize that the last result is only valid in three spatial dimensions. After collecting
terms and integrating by parts, we obtain

L(1)5,kin =
1

2N
G′5Ẏ

[
B∗(KijKij − K2)− 2K̃ijDiBj

]
+ t.d. (27)

The result is proportional to G′5(Y) (the derivative of G5(Y) with respect to its argu-

ment), not surprisingly since L(1)5 is a total derivative when G5 is constant. Note that

Ẏ = 2
(
−B∗ Ḃ∗ + Bk Ḃk − NBkBlKkl − BkBl Dk Nl

)
. (28)

By expanding L(2)5 next, we can find

L(2)5,kin = G̃5

{
3
N

Ḃ∗B∗
[

B∗(KijKij − K2)− 2K̃ijDiBj

]
− B3

∗

[
K3 − 3KKijKij + 2Ki

jK
j
kKk

i

]
+ 6B∗BiBj

[
KklKikKjl − KK k

i Kjk

]
− 3

N
(KijKij − K2)B2

∗

[
Dk(NBk) + NkDkB∗

]
+ 6(K k

i Kjk − KKij)B∗
[

B∗DiBj − FiBj − 2BiDjB∗
]

− 6BiBj
[

DkBlKikKjl − Dl BlK k
i Kjk

]
+ 6Fi

[
K̃ikB∗DkB∗ + Kkl BkDiBl − KikBkDl Bl

]}
.

(29)

When comparing the two contributions, we see that the offending terms proportional
to Ḃ∗ are indeed canceled upon choosing G̃5 = 1

3 G′5.

3. Constraint Analysis

In this section we collect the contributions to the GP terms in the Hamiltonian formal-
ism and analyze the conditions for the Proca and DHOST constraints to be maintained
once the two sectors are coupled through the metric tensor. We focus on each GP term
independently, although in the end it will become clear that the results remain unchanged
if one includes the whole Lagrangian.
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3.1. L3 Term

We consider the addition to the gravitational action (2) the following GP vector
matter term:

Sm =
∫

d4x
√
−g
[

G2(Y,F ,G) + G3(Y)∇µBµ

]
=
∫

dtd3xN
√

γ
[
2C ij

mKij + 2C0W∗ −Um

]
,

(30)

where
C ij

m = −1
2

G3B∗γij ,

C0
= −1

2
G3 ,

Um = −G2 − G3DiBi .

(31)

With some abuse of terminology we can think of Um as a potential term because it is
independent of Ḃ∗ and Kij; however, one should keep in mind that it does depend on Ḃi.

The complete action Sg + Sm is manifestly degenerate because the Hessian matrix is
not affected by Sm as far as Ḃ∗, Ȧ∗ and Kij are concerned. Nevertheless, the primary con-
straints are still affected by the linear terms (in the velocities) brought in by L1. In particular
the Proca constraint is modified as follows:

q∗ :=
∂L
∂Ḃ∗

=
1
N

∂L
∂W∗

= −√γ G3

⇒ Λ := q∗ +
√

γ G3 ≈ 0 .
(32)

To obtain the DHOST constraint, we first compute the momenta

πij :=
∂L
∂γ̇ij

=
1

2N
∂L
∂Kij

=
√

γ
[
Kij,klKkl + BijV∗ + C ij

tot

]
,

p∗ :=
∂L

∂Ȧ∗
=

1
N

∂L
∂V∗

= 2
√

γ
[
AV∗ + BijKij + C0

]
,

(33)

⇒ Ψ′ := p∗ − 2K−1
ij,klπ

ijBkl + 2
√

γ
(
K−1

ij,klC
ij
totBkl − C0

)
≈ 0 , (34)

where C ij
tot = C ij + C ij

m includes the contribution from the matter action. This is to be
compared with the “vacuum” constraint,

Ψ := p∗ − 2K−1
ij,klπ

ijBkl + 2
√

γ
(
K−1

ij,klC
ijBkl − C0

)
≈ 0 , (35)

which one would have in the absence of matter. We conclude that there is no inconsistency
at this stage: the L3 GP term maintains the primary constraints in the coupled GP–DHOST
theory and is therefore safe with regard to the criterion (I) explained in the Introduction.

The inconsistency of the model is manifested in the failure to generate the secondary
constraints that Sg and Sm possess when taken in isolation. That is, the model fails
criterion (II). This is because the primary constraints Ψ′ and Λ do not Poisson-commute:

{
Ψ′, Λ

}
= 2
√

γK−1
ij,kl

[
δC ij

m

δB∗
+

1√
γ

δΛ
δγij

]
Bkl

= 2
√

γK−1
ij,klG

′
3(Y)

(
B2
∗γ

ij − BiBj
)
Bkl .

(36)

Clearly, G′3 6= 0, since otherwise L3 is a total derivative and hence trivial. Thus the
only way for the constraints to commute is that

K−1
ij,kl

(
B2
∗γ

ij − BiBj
)
Bkl = 0 . (37)
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Recall that this condition should be understood as an identity valid for all field
configurations. It implies a set of equations for the coefficients AI . We can see that (37) has
a unique solution when complemented with the DHOST constraint (13),

A1 = −A2 = 2FX , A3 = A4 = A5 = 0 , (38)

which is in fact the same solution that yields Bij = 0 = A. The vanishing of both Bij and A
is trivially a sufficient condition for both constraints to hold; what we have proved is that it
is also a necessary condition.

With the result (38) for the functions AI the covariant DHOST action reduces to

Sg =
∫

d4x
√
−g
[

FR + 2FX

(
∇µ∇νφ∇µ∇νφ− (�φ)2

)]
, (39)

which is nothing but the non-degenerate quadratic (in ∇2φ) Horndeski Lagrangian.

3.2. L4 Term

Next we consider adding to the DHOST action (2) the L4 GP term:

Sm =
∫

d4x
√
−g
[

G2(Y,F ,G) + G4(Y)R + G̃4(Y)
(
(∇µBµ)2 −∇µBν∇νBµ

)]
=
∫

dtd3xN
√

γ
[
2BijW∗Kij +K

ij,kl
m KijKkl + 2C ij

mKij + 2C0W∗ −Um

]
,

(40)

where

Bij
= (2G′4 + G̃4)B∗γij ,

Kij,kl
m =

(
G4 − G̃4B2

∗

)(
γk(iγj)l − γijγkl

)
+ 2G′4

(
γijBkBl + γkl BiBj

)
+ 2G̃4B(iγj)(kBl) ,

C ij
m = −2G′4Bk(Fk + DkB∗)γij − G̃4

(
B(iFj) + B∗DkBkγij − B∗D(iBj) + B(iDj)B∗

)
,

C0
= −G̃4DiBi ,

Um = −G2 − G4R(3) −
2G′4
N

Di NDiY

− G̃4

[
2DiB∗(Fi + DiB∗) + (DiBi)2 − DiBjDjBi

]
.

(41)
As before, we are abusing the notation by including the velocities Ḃi (contained in the

definition of Fi; see Equation (19)) into the above coefficient tensors; note that such terms
will not affect the degeneracy conditions within our set-up.

The critical question is whether we can find analogues of the DHOST and Proca
primary constraints for this theory. To address this we compute the canonical momenta:

q∗ = 2
√

γ
[
BijKij + C

0
]

,

p∗ = 2
√

γ
[
AV∗ + BijKij + C0

]
,

πij =
√

γ
[
Kij,kl

tot Kkl + BijV∗ + B
ijW∗ + C ij

tot

]
,

(42)

where Kij,kl
tot = Kij,kl +Kij,kl

m and C ij
tot = C ij + C ij

m. In order for the two constraints to exist,
the Hessian matrix must possess two independent null eigenvectors. We will demand that
one of them be in Ḃ∗ direction—this is essentially what we mean by a GP theory, although it
is in principle possible that the Proca constraint be realized in a more general way. This

vector will be a null eigenvector if and only if Bij
= 0 identically, and so we recover the

usual relation G̃4 = −2G′4 of GP theory.
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Given this condition, the DHOST constraint will be present if and only if

A−K−1
tot ij,klB

ijBkl = 0 . (43)

There are two ways for this relation to hold. First, we may choose to define the
DHOST sector independently of the GP sector, so that we would have the usual constraint
A = K−1

ij,klB
ijBkl . This would be in line with the treatment of the GP vector as a matter

field which couples with the gravitational sector described by DHOST only through the
metric, in the same way as any other matter field. The second way is to include the GP
vector field in the very definition of the DHOST Lagrangian and impose the condition
A = K−1

tot ij,klB
ijBkl as a constraint on the coefficient functions. This option would be akin

to constructing a particular type of scalar-vector-tensor model from the bottom-up, and is
therefore beyond our current scope exposed in the Introduction.

Focusing then on the first possibility, we investigate whether the equation(
K−1

ij,kl −K
−1
tot ij,kl

)
BijBkl = 0 , (44)

could hold as an identity. We first note that the matrix on the left-hand side can be written as

K−1
ij,kl −K

−1
tot ij,kl = K

−1
tot ij,mnK

mn,pq
m K−1

pq,kl . (45)

Inverting the matrix Ktot requires some formidable amount of algebra, so for conve-
nience we will expand perturbatively in the Proca field Bµ, i.e.,

K−1
ij,kl −K

−1
tot ij,kl = K

−1
ij,mnK

mn,pq
m K−1

pq,kl −K
−1
ij,mnK

mn,pq
m K−1

pq,rsKrs,tu
m K−1

tu,kl +O(K
3
m) . (46)

Note that it does not matter in which order in Bµ the tensor Km starts. Indeed we have

Kij,kl
m =

(
G4 + 2G′4B2

∗

)(
γk(iγj)l − γijγkl

)
+ 2G′4

(
γijBkBl + γkl BiBj

)
− 4G′4B(iγj)(kBl) ;

(47)
that is, regardless of the form of G4(Y), each tensor structure in Km starts in the same order
in Bµ. This may seem to require that G4(Y) be an analytic function of Y; however, in reality
all we demand is that there exists a field configuration for which an expansion in powers of
Km is admissible, as in Equation (46). For instance, any G4(Y) admitting a Laurent series
representation near Y = 0 would give such a consistent expansion.

Equation (44) together with the DHOST condition (13) gives two equations that must
be satisfied identically. After replacing Ai Ai = X + A2

∗, BiBi = Y + B2
∗ and AiBi = Z +

A∗B∗ (where Z := AµBµ), the equations can be expanded in powers of A∗ and B∗ so that
the coefficient of each monomial must separately vanish. This yields a system of equations
which at leading order in Km, i.e., keeping only the first term on the RHS of (46), involves
only the DHOST functions AI and F. We found two independent solutions. The first is
given by

A1 = A2 = A5 = 0 , A3 = −A4 = −4FX
X

, (48)

and the second corresponds to Bij = 0. The latter of course solves the degeneracy condi-
tions not just to leading order in Bµ but in general.

Among these two candidate solutions, the first yields A = K−1
ij,klB

ijBkl = 0, so that
the DHOST constraint is indeed satisfied. However, the modified degeneracy condition
fails at the next order in Km in (46) (except in the trivial cases where FX = 0 or G′4 = 0).
In conclusion, the unique consistent solution to the degeneracy conditions (44) and (13) is
the trivial one with Bij = 0, which takes us again back to (39), i.e., the standard Horndeski
scalar–tensor theory.
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3.3. L5 Term

Focusing next on the L5 GP term, we envisage the matter action

Sm =
∫

d4x
√
−g
[

G2(Y,F ,G) + G5(Y)Gµν∇µBν

+ G̃5(Y)
(
(∇µBµ)3 − 3(∇ρBρ)∇µBν∇νBµ + 2∇µBν∇νBρ∇ρBµ

)]
=
∫

dtd3xN
√

γ
[
2Dij,klW∗KijKkl + 2BijW∗Kij +

2
3
J ij,kl,mn

m KijKklKmn

+Kij,kl
m KijKkl + 2C ij

mKij + 2C0W∗ −Um

]
,

(49)

where

Dij,kl
= −1

2
(G′5 − 3G̃5)B2

∗

(
γi(kγl)k − γijγkl

)
,

Bij
= (G′5 − 3G̃5)B∗

(
D(iBj) − γijDkBk

)
,

J ij,kl,mn
m = −

G′5
2

[
BiBjγk(mγn)l − BiBjγklγmn + (2 perm.)

]
+ 3G̃5

[
BiBkγj(mγn)l − BiBkγjlγmn + (2 perm.)

]
− 3G̃5

2
B∗
[
γijγklγmn −

(
γijγk(mγn)l + (2 perm.)

)
+
(

γj(kγl)(mγn)i + γi(kγl)(mγn)j
)]

,

Kij,kl
m = G′5

[
B∗

(
BmFm + BmDmB∗ +

1
2N

NmDmY
)(

γi(kγl)k − γijγkl
)

+
(

BiBjD(kBl) + BkBl D(iBj)
)
− DmBm

(
BiBjγkl + BkBlγij

)]
+ 6G̃5

[
− 1

2N
B2
∗(Dm(NBm) + NmDmB∗)

(
γi(kγl)k − γijγkl

)
+ B∗

(
(B∗DiB(k − BiF(k − 2BiD(kB∗)γl)j + (1 perm.)

)
− B∗

(
(B∗D(iBj) − B(iFj) − 2B(iDj)B∗)γkl + (1 perm.)

)
−
(

B(iDj)B(kBl) − DmBmB(iγj)(kBl)
)]

.

(50)

Once again we abuse the notation to include terms involving Ḃi in these coefficient
tensors. The remaining coefficients are entered into (49); the ones most linear being the
velocity variables and of no immediate interest in the constraint analysis, are provided in
full in Appendix A.

The relevant set of canonical momenta is given by

q∗ = 2
√

γ
[

Dij,klKijKkl + B
ijKij + C

0
]

,

p∗ = 2
√

γ
[
AV∗ + BijKij + C0

]
,

πij =
√

γ
[
J ij,kl,mn

m KklKmn + 2Dij,klW∗Kkl +K
ij,kl
tot Kkl + BijV∗ + B

ijW∗ + C ij
tot

]
,

(51)

where Kij,kl
tot = Kij,kl +Kij,kl

m and C ij
tot = C ij + C ij

m. It is clear that in the absence of the GP
tuning, the standard Proca constraint fails to be realized; i.e., the Hessian matrix does
not have a null eigenvector along the Ḃ∗ direction. As before, we will insist that this
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eigenvector be present while keeping in mind that other options may be available in

principle. Therefore, at this stage we set G̃5 = 1
3 G′5, so that in particular Dij,kl

= 0 = Bij
.

The novelty brought in by the L5 GP term is that the relation between Kij, V∗ and the

canonical momenta πij, p∗ is now non-linear because of the presence of the tensor J ij,kl,mn
m

(which is non-zero since G′5 6= 0; otherwise L5 is a total derivative). Such a non-linear
system can only be degenerate in a trivial manner, i.e., if the coefficients are such that one
of the variables disappears from the system. In this case, for V∗ to drop out, we must have
A = 0 = Bij. The conclusion is that the L5 term of GP does not admit a consistent coupling
to DHOST except in the non-degenerate case of Horndeski theory.

4. Discussion

We have demonstrated that generalized Proca fields described by GP theory do not
allow for a consistent coupling with a gravitational sector given by the DHOST class of
models. Although our analysis considered the individual GP Lagrangians separately, it
is clear in hindsight that none of the results would change if we were to envisage the
complete model: the L5 GP term immediately spoils the DHOST degeneracy because of
the cubic operators in the extrinsic curvature, and the L4 also fails the degeneracy test
irrespective of L3. The exceptions that bypass our no-go result are rather trivial, at least
from the perspective of the constraint structure: either the DHOST sector must reduce to
the standard, non-degenerate Horndeski theory, or the GP sector must reduce to the L2
term which is independent of the Christoffel connection.

It is important to emphasize the relation between having the correct number of
constraints and the consistency of the theory. The appearance of an additional degree of
freedom in the DHOST sector as a consequence of the coupling with GP theory is expected
to be associated with a ghost instability. This follows from the Ostrogradsky theorem, since
the DHOST equations of motion are higher than second order, and when the constraint is
thwarted, there is no degeneracy responsible for reducing the number of pieces of initial
data. Hence, the Hamiltonian in this situation is unbounded from below and an instability
will be present. As usual, this instability may be non-linear; i.e., the ghost mode need
not appear as a linear perturbation in every background field configuration, but it will
necessarily manifest itself in some backgrounds or at the non-linear level, as it occurs with
the Boulware–Deser ghost in massive gravity [50].

We stressed in the introduction that our set-up relies on various assumptions which
we think worth reiterating. The GP–DHOST system we studied is not the most general one.
The analysis of the full model including all known operators would be a straightforward
extension of our work, and we expect our main conclusions to remain unchanged. Indeed,
the additional terms of the GP class that we have omitted contain operators that are cubic
and quartic in powers of∇µBν; hence, they are likely to lead to the same issues as the L5 GP
term. More crucial was the assumed prescription for coupling the GP and DHOST sectors.
The premise was that there exists a Jordan frame such that all matter fields experience
gravity through the same metric tensor and that our Proca field follows suit. Relaxing this
assumption would be tantamount to constructing a scalar–vector–tensor type of theory
in which all three fields interact in a non-trivial way. It would be interesting to address
this problem within the context of degenerate theories (see, e.g., [51–55] for some recent
related work).

Finally, an additional assumption was made in the analysis of the primary constraints,
where we demanded that the Proca constraint had to match that of GP theory—that is,
with a Hessian null eigenvector that is such that the time component of the vector field is
rendered non-dynamical (in some local frame). It would be intriguing to explore whether
this hypothesis might be dropped in order for the Proca and DHOST constraints to be
realized in a way that would mix the canonical momenta associated with the vector and
scalar fields. We remark that a related generalization of the Proca constraint has been
studied recently in [56] in the context of pure vector–tensor theories. We plan to revisit
these questions in future work.
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Appendix A. Full Results of the ADM Decomposition

In the main text we omitted the explicit results for some of the coefficient tensors
appearing in the 3 + 1-decomposed DHOST and L5 GP term Lagrangians. Those terms
are not important for the constraint analysis, but we provide the full expressions in this
Appendix for the sake of completeness.

The tensors C ij, C0 and U that are entered into the DHOST action are

C ij = −
(

2FX AkDk A∗ + Fφ A∗ +
1
2

QA∗

)
γij + A∗

[
− A1D(i Aj) − A2DK Akγij

+
A3

2

(
Ai AjDk Ak − Ak Al Dk Alγ

ij
)
+ A5 Ak Al Dk Al Ai Aj

]
,

C0 = −1
2

Q−
(

A2 −
A3

2
A2
∗

)
Di Ai −

(
A3

2
− A5 A2

∗

)
Ai AjDi Aj

+
(

A3 + A4 − 2A5 A2
∗

)
Ai A∗Di A∗ ,

U = −R(3) + 2Di

(
FXDiX + Fφ Ai

)
− P−QDi Ai −

(
A1Di AjDi Aj + A2(Di Ai)2

+ A3 Ai AjDi AjDk Ak + A4 Ai AjDi AkDj Ak + A5 Ai Aj Ak Al Di AjDk Al

)
+ (2A1 − A4 A2

∗)Di A∗Di A∗ + (A4 − 4A5 A2
∗)Ai AjDi A∗Dj A∗

+ 2A∗Di A∗
(

A3 AiD)jAj + A4 AjDj Ai + 2A5 Ai Aj AkDj Ak

)
.

(A1)

The tensors C ij
m, C0

and Um that are entered into the L5 GP term are

C ij
m =

3G̃5

N

[
(NFk − Nlbkl)

(
B∗D(iB∗γj)k − B∗DkB∗γij + DkB(iBj) − DmBmB(iγj)k

)
− B∗

2

(
2NDkB∗DkB∗ + N(Dl Bk)2 + 2NkDkB∗Dl Bl + 2BkDk NDl Bl

− 2NkDkBl Dl B∗ + 2NkDl BkDl B∗ − NDkBl Dl Bk
)

γij

+ NB∗
(

DiB∗DjB∗ − DkB(iDj)Bk + D(iBj)DkBk
)
+ B∗Nk

(
DkB∗D(iBj)

− DkB(iDj)B∗ + D(iBkDj)B∗
)
+ NkB(i

(
Dl Bj)bl

k − bj)
kDl Bl

)
+ NB(i

(
Dj)BkDkB∗ + DkBj)DkB∗ − 2Dj)B∗Dl Bl

)
+ B∗BkDk ND(iBj)

]
,

C0
=

3G̃5

2

[
DiBjDjBi − (DiBi)2

]
,

Um = −3G̃5

N

[
2(NFi − N jbij)

(
DiB∗DkBk − DkB∗DiBk

)
+

N
3

(
(DiBi)3

− 3DiBiDjBkDkBj + 2DiBjDjBkDkBi
)
+ 2N

(
DiBiDjB∗DjB∗ − DiBjDiB∗DjB∗

)
+ 2Ni

(
DiBjDjBkDkB∗ − DjBkDjBiDkB∗ − bijDjB∗DkBk

)]
.

(A2)
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Appendix B. Inverse of DHOST Kinetic Tensor

The metric kinetic tensor that appears in the Hamiltonian analysis of DHOST has the
following structure (see Equation (10)):

Kij,kl = aγi(kγl)j + bγijγkl + c
(

γij Ak Al + γkl Ai Aj
)

+ d
(

Ai A(kγl)j + Aj A(kγl)i
)
+ eAi Aj Ak Al .

(A3)

We wish to find the inverse tensor such that

Kij,mnK−1
mn,kl = δi

(kδ
j
l) . (A4)

This is achieved by taking the ansatz

K−1
ij,kl = a′γi(kγl)j + b′γijγkl + c′

(
γij Ak Al + γkl Ai Aj

)
+ d′

(
Ai A(kγl)j + Aj A(kγl)i

)
+ e′Ai Aj Ak Al ,

(A5)

and a straightforward calculation yields

a′ =
1
a

,

b′ =
1
a

x
(
c2x− b(2d + ex)

)
− ab

a2 + 3ab + ax(2(c + d) + ex) + 2x(2bd + bex− c2x)
,

c′ =
1
a

−ac + 2bd + bex− c2x
a2 + 3ab + ax(2(c + d) + ex) + 2x(2bd + bex− c2x)

,

d′ = −1
a

d
a + dx

,

e′ =
1
a
−a2e + a

(
−3be + 3c2 + 4cd + 2d2 + dex

)
+ d
(
2bd + bex− c2x

)
(a + dx)(a2 + 3ab + ax(2(c + d) + ex) + 2x(2bd + bex− c2x))

,

(A6)

with x := Ai Ai.

Notes
1 In the context of higher-derivative theories, it is worth remarking that the Starobinsky model of inflation provides a

healthy and consistent example of this class [3]. See also [4–6] for related works on inflationary models based on
generalized scalar–tensor theories.

2 It is important to remark that the vanishing of the Hessian determinant implies the existence of a primary constraint,
which is not by itself enough to remove a full Lagrangian degree of freedom. Nevertheless, the existence of an
associated secondary constraint is guaranteed by the general covariance of the action, as shown explicitly in [15].
The same consideration holds for the situation wherein the DHOST constraint is modified in the presence of matter
(as exemplified in Equation (43)), provided of course the latter admits consistent coupling according to the criteria
explained in the introduction.
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