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Abstract: Temporal modulation of the quantum vacuum through fast motion of a neutral body or
fast changes of its optical properties is known to promote virtual into real photons, the so-called
dynamical Casimir effect. Empowering modulation protocols with spatial control could enable the
shaping of spectral, spatial, spin, and entanglement properties of the emitted photon pairs. Space–
time quantum metasurfaces have been proposed as a platform to realize this physics via modulation
of their optical properties. Here, we report the mechanical analog of this phenomenon by considering
systems in which the lattice structure undergoes modulation in space and in time. We develop
a microscopic theory that applies both to moving mirrors with a modulated surface profile and
atomic array meta-mirrors with perturbed lattice configuration. Spatiotemporal modulation enables
motion-induced generation of co- and cross-polarized photon pairs that feature frequency-linear
momentum entanglement as well as vortex photon pairs featuring frequency-angular momentum
entanglement. The proposed space–time dynamical Casimir effect can be interpreted as induced
dynamical asymmetry in the quantum vacuum.

Keywords: dynamical Casimir effect; spatiotemporal modulation; quantum metasurfaces

1. Introduction

The generation of photon pairs out of the quantum vacuum, the so-called dynamical
Casimir effect (DCE), was originally described as a motion-induced phenomenon [1],
but it can occur when any kind of temporal modulation is exerted on the vacuum to
promote virtual photons as real photons [2–5]. Motion-induced photon generation has
not been observed to date because it requires unfeasibly large modulation frequencies
of a mechanical boundary, and several analog DCE systems have been demonstrated
involving temporal modulation of material properties [6–9]. Still, the physics of motional
dynamical Casimir effects offers interesting insights into the interplay between matter
and field fluctuations in non-equilibrium systems. Motional DCE (also known as motion-
induced or mechanical DCE) is typically described in a “field-centric” approach based
on quantum fluctuations of the electromagnetic field supplemented with time-dependent
boundary conditions. A “matter-centric” approach has been recently pursued based on
microscopic models that emulate a moving dielectric mirror as a collection of accelerated
dipoles that emit quantum radiation [10]. Interestingly, the two descriptions result in
identical predictions for the angular emission profile of DCE photons. This duality between
field-centric and matter-centric approaches also occurs in equilibrium fluctuation-induced
interactions [11]. Microscopic models can be used to study the dissipative counterpart of
DCE emission, namely the drag force on the moving mirror as well as the related problem
of quantum friction and associated near-field DCE emission of surface polaritons [12,13].

Modulation protocols with both temporal and spatial control can enable novel func-
tionalities such as the generation of complex structured Casimir light. We recently proposed
an analog dynamical Casimir effect based on the concept of space–time quantum meta-
surfaces [14], in which the optical properties of a quantum metasurface are modulated
in space and time and generate DCE photon pairs with tailored spatial profiles at giant
production rates. Here, we develop the motion-induced version of this effect based on a
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microscopic model of a spatiotemporally modulated mirror. We describe the mirror as a
collection of dipoles in which the center-of-mass coordinates are modulated in space and
in time and find that photon pairs are generated out of vacuum with tailored spatial modes
determined by the spatial modulation protocol. The collection of dipoles behaves as a
quantum phase array antenna that emits structured Casimir light. The same microscopic
theory applies to a quantum meta-mirror comprising an atomic array with modulated
lattice structure [15]. We call the proposed effect space–time DCE to distinguish it from the
standard DCE process that involves temporal modulation only.

2. Materials and Methods
2.1. Microscopic Model for Space–Time Motional DCE

A microscopic model for a spatiotemporally modulated dielectric mirror consists of
an array of N multi-level atoms, each of which undergoes its own accelerated trajectory
Rj(t) and couples to the electromagnetic field via the dipolar interaction. The trajectories
are driven by some external agent, and in this work, we consider oscillatory trajectories
typically employed in studies of the dynamical Casimir effect. We note, however, that our
theory can be extended to arbitrary trajectories. The spatial modulation is incorporated
via a synthetic phase Φ(Rj) that is imprinted by a temporal delay of the oscillation of each
atom. We thus consider

Rj(t) = Rj + ẑ∆ cos(Ωt−Φ(Rj)), (1)

where Rj is the static position of the jth atom (j = 1, ..., N), ∆ is the oscillation amplitude,
and Ω is the oscillation frequency. A conceptual representation of the spatiotemporally
modulated atoms is shown in Figure 1. For example, a traveling-wave modulation on
the x − y plane corresponds to Φ(Rj) = β · rj with rj = (xj, yj) and β = (βx, βy) being
momentum “kicks" on the same plane. A spinning-wave modulation around an axis
orthogonal to the mirror’s plane corresponds to Φ(Rj) = `ϕj, where ` is an integer denoting
an imprinted angular momentum and ϕj is the azimuthal coordinate of each atom. Note
that, under this modulation, the atoms are not rotating but the temporal dephasing of their
oscillatory motion along the z direction is spinning around the z− axis. The traveling-wave
modulation could be implemented by an acoustic perturbation that launches a plane-wave
on the surface of the mirror. In the case of a meta-mirror formed by an atomic array
monolayer trapped in a three-dimensional deep optical lattice, the modulation could be
accomplished by shaking the vertical lattice and by using spatial light modulators to set
a phase shift among the vertical trapping fields on different atoms to imprint the linear
synthetic phase.

The dipole array interacts with the electromagnetic field via the Hamiltonian (SI units
used throughout):

H(t) = −∑
j

dj(t) ·
[
E(Rj(t), t) + vj(t)× B(Rj(t), t)

]
, (2)

where dj(t) is the electric dipole operator of atom j, E(R, t) and B(R, t) are the electric and
magnetic fields both evaluated at the atomic positions, and vj(t) = −ẑΩ∆ sin(Ωt−Φ(Rj))
is the (non-relativistic) velocity of each atom. In this paper, the atomic internal degrees
of freedom and the electromagnetic field are treated as quantum dynamical variables
while the atomic center-of-mass is a classical prescribed motion. The first term in the
Hamiltonian is the usual electric dipole interaction, and the second is the so-called Röntgen
interaction. We note that the Röntgen term must be taken into account in the DCE far-field
emission of photons, as we study here. For the DCE problem of emission in the near-field,
e.g., pairs of surface polaritons induced on a surface by a close-by moving atom, it can be
neglected [12,13]. The non-zero matrix elements of the electric dipole operator dj(t) in the
interaction picture are
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Figure 1. Concept of space–time motion-induced DCE. An atomic array is externally driven by a
spatiotemporal modulation of their center-of-mass coordinates. Atoms oscillate along the z-direction
and are temporally dephased by a linear synthetic phase distribution Φ(R) = βx. The modulation
produces a traveling wave of ripples moving along the x-direction. Pairs of photons (red and green
arrows) are emitted with in-plane linear momentum adding up to the momentum kick β.

〈gj|dj(t)|ej〉 = η̂jdege−iωegt, (3)

where |gj〉 is the ground state of atom j, |ej〉 is an excited state, η̂ is a real unit vector
denoting the orientation of the jth dipole, and deg is the matrix element. Note that all atoms
have the same deg as we assume identical atoms and that we are not restricted to two-level
atoms.When the atoms are isotropic, the sum over orientations of any given atom gives
∑η̂j

(ηj)a(ηj)b = δab. We consider that the atoms are sufficiently spaced within the array to
neglect multiple scattering of photons among different atoms, rendering the evolution of
different atoms identical irrespective of their location within the array. The electromagnetic
field in the interaction picture is then simply given by the free field that we expand in a set
of modes in the usual way:

E(R, t) = i ∑
γ

( h̄ωγ

2ε0V

)1/2
[Eγ(R)aγe−iωγt − E∗γ(R)a†

γeiωγt],

B(R, t) = ∑
γ

( h̄
2ε0Vωγ

)1/2
[∇× Eγ(R)aγe−iωγt +∇× E∗γ(R)a†

γeiωγt]. (4)

Here, V is a quantization volume, Eγ(R) is the spatial mode, ωγ > 0 is the mode frequency,
and a†

γ and aγ are creation and annihilation operators of photons in mode γ. The specific
choice of modes is determined by the symmetries of the synthetic phase, as we discuss
later in the paper.
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2.2. Two-Photon Emission Rate

We assume that the initial state of the N-atom system plus electromagnetic field is all
of the identical atoms in their ground state and the field in vacuum, i.e., |ψ(0)〉 = |{g}; vac〉,
where we denote |{g}〉 = |g1, g2, ..., gN〉 as the multi-atom ground state. The time-evolved
state in the interaction picture to second order in the dipolar couplings deg is

|ψ(t)〉 ≈ c0(t)|{g}; vac〉+ ∑
j

∑
ej ,η̂j

∑
γ

c
(ej)
γ (t)|ej, {g}j; γ〉

+ ∑
j 6=j′

∑
ej ,η̂j

∑
ej′ ,η̂j′

∑
γ1,γ2

c
(ej ,ej′ )
γ1,γ2 (t)|ej, ej′ , {g}j,j′ ; γ1, γ2〉

+ ∑
j 6=j′

∑
ej ,η̂j

∑
ej′ ,η̂j′

c
(ej ,ej′ )

0 (t)|ej, ej′ , {g}j,j′ ; vac〉+ 1
2 ∑

γ1,γ2

cγ1,γ2(t)|{g}; γ1, γ2〉. (5)

We denote |ej, {g}j〉 = |g1, ..., gj−1, ej, gj+1, ..., gN〉 as the state in which one atom is excited
and |ej, ej′ , {g}j,j′〉 = |g1, ..., gj−1, ej, gj+1, ..., gj′−1, ej′ , gj′+1, ..., gN〉 as the state in which two
atoms are excited. We make the crucial assumption that the modulation frequency is much
smaller than any atomic transition frequency from the ground state, Ω � ωeg. In this
approximation, the second, third, and fourth terms give transition amplitudes that are
non-resonant and their contributions to the process of one- and two-photon generation
are negligible and discarded in the following. In this regime, the DCE process is solely
given by the fifth term, for which photon pairs are generated, and all atoms remain in their
ground state.

One can compute the transition amplitude cγ1,γ2(t) in two ways: (a) use second-order
time-dependent perturbation theory based on the bilinear Hamiltonian H(t) that depends
on field and atomic degrees of freedom or (b) use first-order time-dependent perturbation
theory based on an effective Hamiltonian He f f (t) that depends quadratically on field
degrees of freedom and contains information about the atoms through their ground-state
polarizability. Approach (b) was used in [10] for the case of a single atom and no synthetic
phase: the atom-field interaction was written in the atom’s co-moving frame as the standard
static dipolar interaction; it was then re-written as an effective Hamiltonian that traces over
the atom’s internal degrees of freedom rendering the interaction quadratic in the field and
depending on the atomic ground-state dynamic polarizability; and finally, the Hamiltonian
was Lorentz boosted to the lab frame to get He f f (t). Although approach (b) is technically
simple, it has the drawback that it obscures the joint atom-field dynamics. Furthermore,
for multiple atoms and non-zero synthetic phases, it requires the introduction of multiple
co-moving frames because atoms in the array have different instantaneous velocities. For
these reasons, in this work, we prefer to follow the physically more transparent albeit more
cumbersome approach (a).

The transition amplitude is given by the usual expression in second-order time-
dependent perturbation theory:

cγ1,γ2(t)=−
1
h̄2

∫ t

0
dt′
∫ t′

0
dt′′∑

j
∑

ej ,η̂jγ

〈{g}; γ1, γ2|H(t′)|ej, {g}j; γ〉〈ej, {g}j; γ|H(t′′)|{g}; vac〉

(6)
which sums over intermediate virtual states |ej, {g}j; γ〉. In the limit, when the relevant
field wavelengths are much larger than the atomic displacements, ω∆/c � 1, we can
approximate the Röntgen term of the Hamiltonian by evaluating the fields at the static
atomic positions, so that it has a time-dependency ∼ sin(Ωt− Φ(Rj)) arising from the
velocity. Additionally, the dipolar term in the Hamiltonian can be expanded around the
equilibrium positions, giving a time-dependency ∼ cos(Ωt − Φ(Rj)) from the spatial
gradient of the field. After these approximations, the concatenated time integrals in
Equation (6) can be readily evaluated as they are reduced to integrals of products of simple
harmonic functions. The final result is a sum of various terms that oscillate in time. We
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drop the co-rotating term ei(ω1+ω2+Ω)t because it averages out to zero, and we focus on
frequencies ω1,2 ≤ Ω� ωeg for which the only counter-rotating term that gives a resonant
contribution is (ω1 + ω2 −Ω)−1 × ei(ω1+ω2−Ω)t. Upon using all of these considerations,
the transition amplitude results

c(Φ)
γ1,γ2(t) ≈ ei(ω1+ω2−Ω)t/2 Ω∆

√
ω1ω2

2cV

(
∑

e

2d2
eg

3ε0h̄ωeg

) sin[(ω1 + ω2 −Ω)t/2]
ω1 + ω2 −Ω

×∑
j

eiΦ(Rj)W∗γ1,γ2
(Rj), (7)

where we already performed the sum over orientations of the isotropic dipoles. Here,

Wγ1,γ2(Rj) =
c
Ω

ẑ·∇j[Eγ1(Rj)·Eγ2(Rj)]− ẑ·[ c
ω2

Eγ1(Rj)×(∇j×Eγ2(Rj)) + 1↔ 2]. (8)

Note that the factor involving the summation over excited states is the ground state static
polarizability of an isotropic atom, α0 = ∑e(2d2

eg/3ε0h̄ωeg). As expected, this expression for
the transition amplitude is identical to the one that results from the effective Hamiltonian
approach and first-order time-dependent perturbation theory. As already mentioned,
the merit of the presented approach is that it highlights atom-field dynamical processes
that remain obscured in the approach that starts out from polarizabilities.

The rate of production of photon pairs in modes γ1, γ2 is obtained taking the long time
limit r(Φ)

γ1,γ2 = limt→∞(1/t)|c(Φ)
γ1,γ2(t)|2, which is to be understood within time-dependent

perturbation theory: t is typically not longer than a fraction of the relevant atomic life
times. Finally,

r(Φ)
γ1,γ2 =

πα2
0ω1ω2Ω2∆2

8c2V2 δ(ω1 + ω2 −Ω)
∣∣∣∑

j
e−iΦ(Rj)Wγ1,γ2(Rj)

∣∣∣2. (9)

The Dirac delta ensures energy conservation in the DCE process and the last factor contains
other conservation laws that depend on the synthetic phase, as described below. This factor
has the form of an array form factor akin to classical antenna theory: Each atom emits
a phase e−iΦ(Rj) weighted by Wγ1,γ2(Rj). Interestingly, the atomic array is like a driven
quantum antenna emitting DCE photon pairs.

3. Results
3.1. Linear Synthetic Phase

In the case Φ(R) = β · r, we quantize the electromagnetic field using plane-wave
modes labelled by γ = {K, λ}, where K = (k, kz) is the wave-vector with k its projection
on the x− y plane, kz is the normal projection, and λ is the polarization state. The field
modes are E(γ)

ω (R) = ei(k·r+kzz)êK,λ, where êK,λ are the polarization unit vectors and
ω2/c2 = |k|2 + k2

z is the dispersion relation. In the continuum limit for the momenta
∑K → V(2π)−3

∫
dK, the two-photon emission rate into modes K1, λ1; K2, λ2 is

r(β)
K1,λ1;K2,λ2

=
α2

0ω1ω2Ω2∆2

16(2π)5c2 δ(ω1+ω2−Ω)|W̃K1,λ1;K2,λ2 |
2
∣∣∣∑

j
ei(k1+k2−β)·rj

∣∣∣2∣∣∣∑
j

ei(k1z+k2z)zj
∣∣∣2,

(10)
where

W̃K1,λ1;K2,λ2 =
c
Ω

( k1zK2

K1
+

k2zK1

K2

)
(êK1,λ1 · êK2,λ2)

−(K̂2 · êK1,λ1)(ẑ · êK2,λ2)− (K̂1 · êK2,λ2)(ẑ · êK1,λ1) (11)
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with K̂1,2 = K1,2/K1,2 and K1,2 = ω1,2/c. Note that W̃K1,λ1;K2,λ2 = W̃K2,λ2;K1,λ1 . The rate is
equal to that for a single oscillating atom multiplied by a multi-atom correction that has
the form of a product of two array form factors.

In principle, each atom emits independently of its neighbors, resulting in incoherent
emission of DCE photon pairs that should scale linearly in the number of atoms in the
array. However, since EM quantum fluctuations have all possible wavelengths, there are
large-wavelength fluctuations that coherently couple to all atoms and coherent emission à
la super-radiance should be possible. In this case, the rate should scale as the square of
the number of atoms, which we now show is indeed the case. To get a close and simple
expression for the form factors, we assume atoms are arranged into a finite size cubic array
with inter-atom distance d. We choose the coordinate system so that the static positions
of the atoms are Rj = dmx x̂ + dmyŷ + dmzẑ, where 1 ≤ mi ≤ Ni, dNi = Li is the size of
the array in each direction, and N = Nx NyNz is the total number of atoms. We compute
the modulus square of each of the summations in Equation (10) and express the result as
F1(k1, k2; β) F2(k1z, k2z), where the array form factors are

F1(k1, k2; β) = ∏
i=x,y

sin2[(k1i + k2i − βi)Li/2]
sin2[(k1i + k2i − βi)Li/2Ni]

,

F2(k1z, k2z) =
sin2[(k1z + k2z)Lz/2]

sin2[(k1z + k2z)Lz/2Nz]
. (12)

Both array form factors are periodic functions of their arguments. In the Nx, Ny � Nz limit,
which mimics a finite-width large-area slab, the first array factor is approximately equal to
a two-dimensional comb of sharp peaks, all of equal height and proportional to the square
of the total number of in-plane atoms, (Nx Ny)2. This indicates that, in the large-N limit, the
emission is coherent. Figure 2 shows how the momentum kick controls the directionality
of the emitted DCE pairs. In the figure, the emission direction of one of the photons is fixed
vertical (k2 = 0) and we trace over its polarization state. The emission lobes of the other
photon are plotted for different values of β. For each β, maximal emission is when k1 = β.
The emission rate for TM photons is always larger than that for TE photons.

For an infinite atomic array in the xy-plane and finite along the z direction, i.e., mimick-
ing a finite-width infinite-area slab, one can calculate the summation over in-plane atomic
positions taking advantage of periodicity. In this case, we used the lattice summation identity∣∣∣∑

j
ei(k1+k2−β)·rj

∣∣∣2=(2π)2 An2
S ∑

q
δ(k1 + k2 − β + q), (13)

where the sum over q corresponds to reciprocal momenta. Here, A is the (infinite) area
of the slab and nS = Nx Ny/A = 1/d2 is the number surface density of atoms. When all
relevant wavelengths are much larger than the inter-atomic distance d, one can take the
continuous limit approximation in which only q = 0 survives the sum over q. Non-zero
values of the reciprocal momentum correspond to high-order diffraction modes that are
evanescent and do not contribute to the generation of DCE photons. Then, we obtained the
in-plane linear momentum conservation condition:

k1 + k2 = β. (14)

The time-evolved quantum state can be written as

|ψ(β)(t)〉 = ∑
k

∫ Ω

0
dω c(β)

ω,k(t)|ω, Ω−ω〉 ⊗ |k, β− k〉, (15)

and corresponds to a frequency-linear momentum entangled superposition.
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Figure 2. Two-photon angular emission. Emission lobes in the xz-plane of one of the DCE emitted
photons with (a) TE and (b) TM polarization for various magnitudes of the momentum kick β = βx̂,
namely, cβ/Ω = 0 (blue), ±0.1 (red), ±0.2 (orange), ±0.3 (cyan), and ±0.4 (purple). Solid (dashed)
curves correspond to positive (negative) values of β. The other photon is assumed to be emitted
along the z-direction, and we trace over its polarization degree of freedom. The parameters are
Nx = Ny = 50, Nz = 1, Lx = Ly = 20c/Ω, and ω1 = ω2 = Ω/2. The emission rate is normalized to
r0 = N2

x N2
y N2

z α2
0Ω3∆2/16(2π)3c2.

In the absence of kick (β = 0), the angular spectrum of the emitted photons is always
symmetric with respect to the normal of the slab, k1 = −k2, which is what happens in the
standard DCE problem of a rigidly oscillating mirror [10]. In stark contrast, when β 6= 0,
the traveling-wave modulation generates directed ripples on the mirror and produces
photons that are emitted asymmetrically. This steered DCE emission can be interpreted as
a modulation-induced asymmetry of the quantum vacuum.

The DCE emission rate is obtained by integrating out one of the photons in the emitted
pair, r(β)

K1,λ1
= ∑λ2

∫
dK2r(β)

K1,λ1;K2,λ2
. For the finite-width infinite-area atomic array, the in-

plane momentum k2 is fixed by the momentum conservation condition k2 = β − k1,
and the out-of-plane momentum is also fixed by the dispersion relation and the energy
conservation condition, k2z = ζ2[(Ω− ω1)

2/c2 − |β− k1|2]1/2, where ζ2 = ±1 gives the
two possible emission directions normal to the array. Hence, the momentum integration
above can be performed straightforwardly and only the summation over polarization
states remains. Note that propagative DCE photons can be emitted only when k1z =
ζ1(ω

2
1/c2 − |k1|2)1/2 and k2z are real. The spectral photon emission rate for photons with
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polarization λ1, in-plane momentum in the interval (k1, k1 + dk1), out-of-plane direction
ζ1, and frequency in the interval (ω1, ω1 + dω1) takes the form

dΓ(β)
ζ1,λ1

(k1, ω1)

dk1dω1
=

ω1r(β)
K1,λ1

c2|k1z|
=

An2
Sα2

0∆2Ω4ω1

16(2π)3c5|k1z|
f (β)
ζ1,λ1

(k1, ω1), (16)

where

f (β)
ζ1,λ1

(k1, ω1) =
ω1(Ω−ω1)

2

Ω2c|k2z| ∑
ζ2,λ2

F2(ζ1|k1z|, ζ2|k2z|)W̃2
K1,λ1;K2,λ2

. (17)

We perform the calculations in the linear polarization basis. Emitted photon pairs
can be co-polarized, i.e., both transverse electric (TE) or both transverse magnetic (TM),
with W̃2

K1,TM;K2,TM > W̃2
K1,TE;K2,TE. In addition, they can also be cross-polarized, i.e., one

TE and one TM, with the rate being proportional to

W̃2
K1,TE;K2,TM ∼ [ẑ · (k1 × k2)]

2. (18)

In the absence of momentum kick, the in-plane momenta of the photon pairs are collinear
(k1 = −k2) and then cross-polarized emission is not possible. For non-zero momentum
kick, the in-plane momenta are no longer collinear and cross-polarized emission is allowed.
Figure 3 depicts f (β)

ζ,λ (k, ω) for the case of an infinite monolayer, λ = TE polarization and
ζ = 1 (by symmetry, the plots for ζ = −1 are identical). Polar density plots are shown
both for the high-frequency (ω1 > Ω/2) and low-frequency (ω2 < Ω/2) photons in the
emitted pair. In the absence of kick, there is rotational invariance along the azimuthal
direction both for the high- and low-frequency photons. However, the former has a
maximum polar angle of emission (panel a, area to the right of the central vertical solid
line) while the latter can be emitted in any polar angle (panel a, area to the left of the
central vertical solid line). The spherical emission profile (not shown, see [14]) for the
low-frequency photon has a dome-like shape and for the high-frequency photon has a
cone-like shape. As the magnitude of the momentum kick β increases, the azimuthal
rotational symmetry is broken and the distributions undergo intricate changes. The region
of allowed emission for the high-frequency photon becomes deformed when the kick is
non-zero, and at a critical value cβ = Ω− ω1 (between panels d and e), an “island” of
emission appears surrounded by a sea of forbidden emission directions (shaded areas).
The island drifts to higher polar angles until it touches the grazing emission line when
cβ = 2ω1 −Ω (between panels e and f). The island starts to shrink in size (panels f-j),
and finally, at βmax = Ω/c, it collapses to a point (after panel j, not shown) and the
photon is only emitted parallel to the kick. Far-field emission above that value of the kick
is not possible. All of these plots can be interpreted in terms of the spherical emission
profile: the cone at β = 0 becomes tilted and deformed as β increases. Regarding a
low-frequency photon, its emission distribution remains mostly unperturbed until at
cβ = Ω− 2ω2 two areas of forbidden emission appear at large polar angles and opposite
to the kick direction (between panels e and f). The forbidden region grows until it engulfs
its allowed emission region and a second island forms at cβ = Ω− ω2 (between panels
h and i). Finally, it ends up being emitted at a grazing angle but in a direction anti-
parallel to the kick (after panel j, not shown). All of these plots can be interpreted in terms
of the spherical emission profile: the dome at β = 0 gets deformed as the momentum
kick increases [14]. The modulation also excites hybrid entangled pairs composed of
one photon and one evanescent surface wave (shaded areas), and when β > βmax, only
evanescent modes are created on the atomic monolayer and subsequently decay via non-
radiative loss mechanisms. At any given β, the maximal and minimal polar angles of
emission for the high-frequency photon are θ1,max(β) = Re arcsin[(cβ + Ω)/ω1 − 1] and
θ1,min(β) = max{0, Re arcsin[(cβ−Ω)/ω1 + 1]}. The low-frequency photon has a minimal
polar angle of emission equal to θ2,min(β) = max{0, Re arcsin[(cβ−Ω)/ω1 + 1]}. Figure 4
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shows the results for λ = TM polarization. The overall structure of allowed and forbidden
regions as a function of β is identical to the TE case, with the maximal and minimal
polar angles of emission given by the same expressions. There are, however, some distinct
features in the shape of the angular emission spectrum at fixed β. The case β = 0 has already
been studied in [10]: For the low-frequency photon, emission is minimal at θ2 = 0 and
gradually grows as the emission angle approaches the grazing direction, with the spherical
emission profile having an inverted dome-like structure. For the high-frequency photon,
emission is minimal at θ1 = 0, grows to a maximum as θ approaches arcsin[Ω/ω1 − 1]
(border of the cone), and then abruptly decays to zero for larger polar angles. As in the
TE case, for β > 0, the inverted dome and cone become deformed as the momentum kick
increases.

In both the TE and TM cases, the emission directions of the two photons in a pair are
correlated as

ω1 sin θ1 sin ϕ1 + ω2 sin θ2 sin ϕ2 = 0
ω1 sin θ1 cos ϕ1 + ω2 sin θ2 cos ϕ2 = cβ. (19)

In the figures, we highlight two correlated emission directions for the low- and high-
frequency photons, respectively, denoted as orange and green circles. The low-frequency
photon is fixed at emission direction ϕ2 = 0, θ2 = π/3, and the high-frequency photon is
emitted at ϕ1 = π (anti-parallel to the kick) for cβ < ω2 sin θ2 and at ϕ1 = 0 (parallel to the
kick) for cβ > ω2 sin θ2. Note that ϕ = ±π are degenerate directions, and we only show
the green circle at ϕ = π to avoid confusion.

Figure 3. Density polar plots of emitted radiation in TE polarization. The function f (β)
ζ,λ (k, ω) is

plotted for various amplitudes of the momentum kick cβ/Ω, varying from 0 to 0.9 in steps of 0.1
(a–j), respectively, for the infinite periodic monolayer. The angles ϕ and θ are the usual azimuthal
and polar angles. The kick is along the in-plane (θ = π/2) direction ϕ = 0. Emission is independent
of ζ, i.e., emission towards z > 0 and z < 0 are identical. The areas to the right (left) of the central
vertical solid line correspond to the emission of the high- (low-) frequency photon in a pair. Orange
circles denote a given emission direction of the low-frequency photon, fixed in all panels to ϕ2 = 0
and θ2 = π/3. Green circles denote the correlated emission direction of the high-frequency photon,
ϕ1(β) and θ1(β). Shaded areas highlight regions of forbidden two-photon emission. The parameters
are ω1/Ω = 0.7 and ω2/Ω = 0.3.



Universe 2021, 7, 189 10 of 16

Figure 4. Density polar plots of emitted radiation in TM polarization. Plots correspond to the same
momentum kicks as in Figure 3. The shown correlated emission directions (orange and green circles),
as well as employed parameters, are the same as in Figure 3.

The DCE spectral emission rates for photons with polarization λ are obtained by
integrating over all emission directions

dΓλ(ω, β)

dω
=

An2
Sα2

0Ω4∆2

16(2π)3c5 ∑
ζ

∫
dk

ω f (β)
ζ,λ (k, ω)

|k1z|
(20)

and depends only on the modulus of the kick. The TE and TM spectral emission rates are
shown in Figure 5 as a function of frequency and momentum kick. At zero momentum
kick, they are both symmetric with respect to ω = Ω/2 and the rate of TE emission is
smaller than TM emission (note the different vertical scales in the plots). The two rates
are identical to those derived in [10] for the standard DCE problem in the absence of
synthetic phase. At non-zero kick, they both become slightly asymmetric, with the peak
of the TE (TM) moving to frequencies larger (smaller) than ω = Ω/2. The origin of the
asymmetry is the non-zero cross-polarized emission. Indeed, the TE spectral emission
rate has contributions from two terms, W̃2

K1,TE;K2,TE and W̃2
K1,TE;K2,TM. The first term is

symmetric around ω = Ω/2 because, upon interchanging frequency, momentum, and spin
indices, one gets W̃2

K1,TE;K2,TE = W̃2
K2,TE;K1,TE. However, the second term is not symmetric

because the same interchange gives W̃2
K1,TE;K2,TM = W̃2

K2,TM;K1,TE 6= W̃2
K2,TE;K1,TM. The

same argument applies to the TM spectral emission rate. The spectral emission rate
summed over polarizations is symmetric, though.

The total rate per polarization is obtained by integrating over frequency

Γλ(β) =
∫ Ω

0
dω

dΓλ(ω, β)

dω
. (21)

As shown in Figure 6, the TM rate has a monotonous decay to zero at βmax = Ω/c, while the
TE rate decays non-monotonically. Furthermore, ΓTE(β) < ΓTM(β) and their difference di-
minishes as the kick grows. The figure also shows the emission rate for circularly polarized
photons, which is the same for right- and left-circular polarization, ΓR(β) = ΓL(β) and is
initially flat and then decays monotonically to zero. As follows from the figure, ΓTE(β) <
ΓR/L(β) < ΓTM(β) and the total rate verify Γ(β) = ΓTE(β) + ΓTM(β) = 2ΓR/L(β).
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Figure 5. Spectral emission rate of DCE photons versus frequency and momentum kick for (a) TE and
(b) TM photons. Panels (c,d) show cuts of the spectrum for TE and TM polarizations, respectively,
at fixed cβ/Ω = 0 (blue), 0.2 (orange), 0.4 (green), 0.6 (red), 0.8 (purple), and 0.95 (brown). We
assume a monolayer with in-plane periodic boundary conditions. The spectral rates are normalized
to Γ0/Ω = An2

Sα2
0Ω6∆2/16(2π)3c6. For β = 0, the spectra are symmetric with respect to ω/Ω = 0.5.

Figure 6. Total photon creation rate for the system considered in Figure 4 for TE (blue), TM (orange),
and circularly (green) polarized photons.

3.2. Spinning Synthetic Phase

In this section we briefly discuss the case of a spinning synthetic phase Φ(R) = `ϕ.
Due to the symmetry properties of the phase, one needs to quantize the electromagnetic
field with angular momentum. Usually, this is performed in the paraxial approximation
in terms of Laguerre–Gauss modes that carry orbital angular momentum [16]. How-
ever, for DCE, this is not appropriate because the emitted photon pairs are non-paraxial,
and a more general approach is required. We follow the quantization scheme based on
vector-Bessel modes that form a complete basis for the electromagnetic field with angular
momentum and do not require any paraxial approximation [17]. In this scheme, neither
orbital angular momentum (OAM) nor spin angular momentum (SAM) are good quantum
numbers; only their sum is. Vector-Bessel modes are labelled by γ = {k, kz, η, m}, where
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k ≥ 0 is the transverse linear momentum, kz is the axial linear momentum, η = ±1 is
associated with the sign of the transverse spin st = ±h̄ckz/ω, and m is the total angular
momentum (OAM plus SAM). The dispersion relation ω2/c2 = k2 + k2

z = K2 does not
depend on m or η. In cylindrical coordinates, the vector-Bessel mode has the following
components:

Eρ =
ieikzzeimϕ

√
2(2π)

[
kz+ηK

2K
Jm−1(kρ)− kz−ηK

2K
Jm+1(kρ)

]
Eϕ = − eikzzeimϕ

√
2(2π)

[
kz+ηK

2K
Jm−1(kρ)+

kz−ηK
2K

Jm+1(kρ)

]
Ez =

eikzzeimϕ

√
2(2π)

k
K

Jm(kρ), (22)

where Jm(x) are Bessel functions. Note that these modes are non-diffracting (constant
amplitude along the z direction), have a topological vortex singularity along the z-axis for
m 6= 0 with a phase wrapping equal to 2πm, and decay along the radial direction.

The two-photon generation rate is

r(`)γ1,γ2 =
πα2

0ω1ω2Ω2∆2

8(2π)2c2 δ(ω1 + ω2−Ω)
∣∣∣∑

j
ei(k1z+k2z)zj

∣∣∣2∣∣∣∑
j

Tγ1,γ2(ρj)e
i(m1+m2−`)ϕj

∣∣∣2, (23)

where we took the continuum limit ∑k,kz → V
∫ ∞
−∞ dkz

∫ ∞
0 kdk. The function Tγ1,γ2(ρj)

results from plugging the vector Bessel mode into Equation (9) and has a cumbersome
expression that we do not write here (it is written below after performing the summation
over j). Emitted photon pairs can have the same (η1η2 = 1) or opposite (η1η2 = −1) signs
of transverse spin. In contrast to the rate for the linear synthetic phase Equation (10), it
is not possible to express the rate Equation (23) as that of a single atom multiplied by a
multi-atom correction. The underlying reason is the nontrivial topology of the imprinted
modulation, which is ill-defined for a single atom.

To perform the sum over atoms, we assume they are arranged into a cylindrical
geometry of radius R and height Lz. The axis of the cylinder coincides with the axis of
spinning modulation axis (z-direction). Equation (23) is the product of two array form
factors: one is the same F2 discussed in the previous section, and the other is a new F3
that depends on all quantum numbers k1, k2; k1z, k2z; η1, η2; m1, m2 of the two photons. We
compute F3 in the continuum limit and replace the sum over atoms with an integral. Then,

F3 = (2π)2n2
Sδm1+m2,`

[ ∫ R

0
dr rTγ1,γ2(r)

]2
, (24)

where nS is the number of atoms per unit of disk area. The spinning modulation generates
vortex photon pairs for which the angular momentum must add up to the imprinted
topological charge `:

m1 + m2 = ` (25)

in agreement with angular momentum conservation. For ` = 0, the generated photons in a
pair have opposite twist. The two-photon state is frequency-angular momentum entangled,

|ψ(`)(t)〉 = ∑
m

∫ Ω

0
dω c(`)ω,m(t)|ω, Ω−ω〉 ⊗ |m, `−m〉. (26)

The total emission rate from the modulated atomic array is

Γ` =
πα2

0Ω2∆2

8(2π)2c6

∫ Ω

0
dω ω2(Ω−ω)2 f`(ω). (27)
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The spectral weight function f`(ω) sums the product F2F3 over all degrees of freedom
of the two photons except the frequency of one of them. In the case of zero imprinted
angular momentum, the total rate is identical to that derived in [10] for the standard
DCE problem: Γ`=0 = Γβ=0 = ΓΦ=0. To analyze the angular momentum content of the
emitted radiation, we expand the spectral weight function into different m contributions,
f`(ω) = [π2n2

Sc4/ω2(Ω−ω)2]∑m f`(ω, m). The angular momentum spectrum is

f`(ω, m) =
∫ u

0
dκ
∫ 1−u

0
dκ′ ∑

ζ,ζ ′=±1
∑

η,η′=±1
(ta + tb + tc + td + te)

2, (28)

where the different terms are written in dimensionless variables u = ω/Ω, κz = ζ[u2 − κ2]1/2,
and κ′z = ζ ′[(1− u)2 − (κ′)2]1/2, as

ta =
[
[κz + κ′z(1 + (1− u)−1)](κz + ηu)(κ′z − η′(1− u))

+
(κ′)2(κz + ηu)

2(1− u)
+

κ2(κ′z − η′(1− u))
2u

]
H(−)

m,` , (29)

tb =
[
[κ′z + κz(1 + u−1)](κ′z + η′(1− u))(κz − ηu)

+
κ2(κ′z + η′(1− u))

2u
+

(κ′)2(κz − ηu)
2(1− u)

]
H(+)

m,` , (30)

tc =
[
κz(2 + u−1) + κ′z(2 + (1− u)−1)

]
κκ′H(0)

m,`, (31)

td = −
[ (κ′)2(κz + ηu)

2(1− u)
+

κ2(κ′z − η′(1− u))
2u

]
I (−)m,`

−
[ (κ′)2(κz − ηu)

2(1− u)
+

κ2(κ′z + η′(1− u))
2u

]
I (+)

m,` , (32)

te =
mκ(κ′z + η′(1− u))

u
J (−)

m,` +
mκ(κ′z − η′(1− u))

u
J (+)

m,`

+
(`−m)κ′(κz + ηu)

1− u
K(−)

m,` +
(`−m)κ′(κz − ηu)

1− u
K(+)

m,` . (33)

Here, we defined dimensionless integrals that are functions of κ, κ′, andR = ΩR/c:

H(±)
m,` = −(−1)m−`

∫ R
0

dy yJm±1(κy)Jm±1−`(κ
′y)

H(0)
m,` = (−1)m−`

∫ R
0

dy yJm(κy)Jm−`(κ
′y)

I (±)m,` = −(−1)m−`
∫ R

0
dy yJm±1(κy)Jm∓1−`(κ

′y)

J (±)
m,` = −(−1)m−`

∫ R
0

dy Jm(κy)Jm∓1−`(κ
′y)

K(±)
m,` = (−1)m−`

∫ R
0

dy Jm±1(κy)Jm−`(κ
′y). (34)

For ` = 0, the integralsH(±) andH(0) are one of Lommel’s integrals and have a closed
form, but the other three integrals do not. In the limit R → ∞, all of the integrals are of
the Weber–Schafheitlin form,

∫ ∞
0 dyyq Jµ(κy)Jν(κ′y), with exponent q = 1 or q = 0. The

above expressions allow us to calculate f`(ω, m) in space–time motion-induced DCE under
spinning modulation. Direct inspection of f`(ω, m) shows that it satisfies the condition
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f`(ω, m) = f`(Ω − ω, ` − m). This identity states the simple fact that, as photons are
emitted in pairs satisfying energy and angular momentum conservation, the emission
rate of a photon with given frequency and angular momentum must be the same as the
emission rate at the complementary frequency and angular momentum. In [14], we
studied the angular momentum spectrum for DCE photons emitted from a quantum
metasurface with spinning modulation of its optical properties. We numerically found that
the angular momentum spectrum for the high-frequency photon f`(ω1, m) is symmetric
and maximal around the driving angular momentum (m = `) and that the one for the
low-frequency photon f`(ω2, m) is symmetric and maximal around the complementary
angular momentum (m = 0). The same properties are expected to occur for the case of
space–time mechanical DCE.

Finally, we briefly discuss the structure of the energy density and Poynting vector in
space–time DCE with spinning synthetic phase. Their expectation values on the evolved
quantum state have a single vortex singularity along the z-axis for ` 6= 0. The reason
why there is a single vortex line is the non-diffracting nature of the vector-Bessel modes
employed in the non-paraxial quantization scheme. Photons have well-defined projection
of angular momentum along the z-axis and not with respect to their individual emission
directions. Therefore, for ` 6= 0, there is only one non-diffracting vortex line along the
vertical direction and diffracting dual vortices do not occur.

4. Discussion

As mentioned in the Introduction, motional DCE involving temporal modulation
of a boundary has not been observed to date because experimentally feasible mechan-
ical modulation frequencies are insufficient for generating a large amount of photons.
For example, the rate of photon creation from an oscillating perfectly reflecting mirror
of area A is ΓDCE = AΩ5∆2/15(2π)2c4 [18], which gives ∼ 10−21 photons s−1 for a mir-
ror of 1 cm2 area, modulation frequency Ω/2π ∼ 1 MHz, and modulation amplitude
∆ ∼ 100 nm. An alternative approach to moving the whole mirror is to make its surface
oscillate by launching acoustic waves, a scheme that is related to the proposed space–
time motional DCE. However, usual materials can bear maximal relative deformations
δmax = ∆max/(vs/ωw) ∼ 10−2 (vs is the speed of sound, and ωw is the frequency of the
acoustic wave) and have maximal velocities of the boundary vmax ∼ δmaxvs ∼ 50 m/s,
which again lead to negligibly small photo-production rates [2]. The same limitation occurs
in space–time motional DCE. According to Figure 5, the maximal rate happens for zero
synthetic phase and is

Γmax ≈ 0.34Γ0 =
0.34

16(2π)3
An2

Sα2
0Ω7∆2

c6 . (35)

We estimate it for experimentally feasible parameters of a spatiotemporally modulated
meta-mirror consisting of an array of 87Rb atoms (ground state polarizability α0 = 5.9×
10−28m3 [19]) loaded into a 2D square optical lattice and vertically trapped by another
shaking optical lattice. For a lattice constant d = 532 nm, unit filling, N ∼ 200 atoms
(A ∼ 50 µm2, nS ∼ 4 µm−2) [20], modulation amplitude ∆ ∼ 100 nm, and modulation
frequency Ω/2π ∼ 10 kHz [21,22], the maximal rate is Γmax ∼ 10−77 photons s−1. Again,
unrealistic large modulation frequencies would be required to get measurable DCE rates.

In order to face these severe limitations of both standard and space–time motional DCE,
analog DCE set-ups based on modulation of optical properties are required. For standard DCE,
the experiment [6] based on a superconducting microwave coplanar waveguide is an analog
of a one-dimensional DCE mirror, with the rate given by Γ = (Ω/12π)(ve f f /c)2, where ve f f
is the effective velocity of the mirror. For the experimental parameters Ω/2π = 11 GHz and
ve f f /c = 0.05, the estimated rate is Γ ∼ 106 photons s−1. For space–time DCE, a possible analog
of a DCE mirror is a set-up consisting of a graphene-disk metasurface in which the electro-optical
properties are spatiotemporally modulated and photon pairs are emitted into the full solid angle
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(as a three-dimensional DCE mirror). As shown in [14], all-optical modulation of the Fermi energy
at THz frequencies enables giant rates Γ ∼ 1012 photons s−1 from centimeter-sized metasurfaces.

5. Conclusions

The space–time dynamical Casimir effect offers a novel degree of control over photo-
production from the quantum vacuum. A space-dependent synthetic phase distribution
imprinted on the temporal modulation protocol of optical properties or geometrical bound-
aries enables the generation of photon pairs with tailored spatial modes and entanglement
properties. Travelling-wave modulations, such as parallel ripples propagating on the
surface of a mirror, generate steered photon pairs that are frequency-path entangled.
Spinning-wave modulations, such as twisting ripples on the mirror, produce vortex photon
pairs featuring frequency-angular momentum entanglement. The synthetic phase can be
reconfigured on-demand by changing the modulation protocol, allowing to modify the
nature of entanglement between the generated photon pairs.

We end the paper with a conjecture. As discussed above, the synthetic phase distribu-
tion Φ(r) is imprinted onto space–time quantum metasurfaces via temporal delay of the
modulation signal on different meta-atoms [14]. The meta-atoms can all have the same
geometry, as the case of the atomic array meta-mirror, or the surface can even have no
meta-atoms (unstructured), as is the case of a flat mirror. In both scenarios, the spatial
profile of the emitted DCE photons is controlled by the synthetic phase imprinted by
the modulation. On the other hand, a phase distribution Ψ(r) can be imprinted onto a
static surface by decorating it with meta-atoms with judiciously designed geometrical
parameters, so-called gradient metasurfaces. For example, a blazed grating mirror or a
meta-mirror with resonators of varying size. The phase distribution controls the spatial
profile of light reflected from the static metasurface. An interesting question is as follows:
What is the nature of DCE emission when such gradient metasurfaces are set in motion
along a direction normal to the metasurface plane? We conjecture that, when Ψ(r) = Φ(r),
the emitted Casimir light from the moving gradient metasurface has the same properties
as the Casimir light generated by the space–time modulation on an unstructured surface.
For example, the blazed grating mirror moving orthogonal to the grating plane should
produce steered frequency-path entangled photon pairs, just as a flat mirror under a spa-
tiotemporal modulation with a linear synthetic phase would. A test of this conjecture
will require to calculate DCE emission from moving surfaces decorated with complex
nanostructures, an overwhelmingly challenging analytical calculation and a very hard
numerical task on its own. Were the conjecture proven to be correct, it would allow for
a much simpler evaluation of DCE emissions from moving structured bodies by simply
considering unstructured bodies modulated with the appropriate synthetic phase.
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