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Abstract: We review a special class of N = 2 supergravity model that interpolates all the single-
dilaton truncations of the maximal SO(8) gauged supergravity. We also provide explicit non-extremal,
charged black hole solutions and their supersymmetric limits, asymptotic charges, thermodynamics
and boundary conditions. We also discuss a suitable Hamilton–Jacobi formulation and related BPS
flow equations for the supersymmetric configurations, with an explicit form for the superpotential
function. Finally, we briefly analyze certain models within the class under consideration as consistent
truncations of the maximal, N = 8 gauged supergravity in four dimensions.
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1. Introduction

Anti-de Sitter (AdS) black hole configurations are an intriguing field of research due to
the role they play in high energy theory as well as in the phenomenology of the AdS/CFT
conjecture [1]. The latter exploits a surprising geometric picture (‘holographic duality’)
for D− 1 dimensional conformal quantum field theories living at the boundary of a dual
(super)gravity model in D dimensions, also providing a concrete ‘recipe’ for relating the
bulk gravity model with the dual field theory at its boundary.1 The correspondence can then
be exploited to gain new insights into both of the dual theories since stable AdS solutions
would describe conformal critical points of the gauge theory at the boundary. This turns
out to be a realization of the holographic principle [2], being the description of the bulk AdS
spacetime encoded on the dual conformal gauge field theory. Moreover, the energy scale of
the boundary theory is related to the radial direction of the bulk spacetime [3,4] so that the
geometric radial flow can be (holographically) interpreted as the renormalization group
flow of the dual quantum field theory [5,6], the UV perturbation appearing as boundary
conditions on the supergravity fields at large radius.

In light of the above discussion, AdS black hole solutions can provide a powerful
framework to reveal specific features about a dual, strongly coupled gauge theory, provid-
ing then a possible description of many condensed matter phenomena. The thermodynamic
properties of AdS black holes were first analyzed in [7] and subsequently extended to
various other AdS black hole configurations [8–12]. These studies describe how black
holes feature specific phase structures, giving rise to critical phenomena analogous to
other common thermodynamic systems. Of particular interest are black hole solutions
preserving a certain amount of supersymmetry, since they allow mapping a weak (string)
coupling description of the system thermodynamics to the strong-coupling regime, where

1 The boundary theory is located at the UV critical point and is it possible to employ a UV/IR connection, which relates gravity degrees of freedom at
large (small) radius with the corresponding counterparts in the dual field theory at high (low) energy regime.
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a formulation in terms of a black hole configuration is valid [13]. Moreover, these solutions
can be exploited to study the BPS attractor flows in AdS spacetime [14–27].

Gauged Supergravities and Black Holes

The analysis of stationary black hole configurations was motivated by the study of
classical general relativity solutions as well as by a deeper understanding of the mentioned
AdS/CFT duality. For instance, in general relativity, these kind of solutions are important
for clarifying relevant aspects of no-hair theorems [28], the role of scalar charges for black
hole thermodynamics [29–32], and other specific features related to the stability of the
theory [33–35].

In general, the construction of black hole solutions in gauged supergravity theories
is a fundamental groundwork for (phenomenologically realistic) cosmological models,
supporting an effective cosmological constant term as well as a suitable scalar potential
and related scalar mass contributions. In this regard, gauged supergravity theories in four
dimensions provide realistic quantum field models featuring a non-trivial scalar potential:
the latter could lift the moduli degeneracy and select a consistent vacuum state for our
universe. Moreover, an embedding of the scalar potential itself in a supergravity model is
important, since many physical aspects of the theory can be better understood.

On the other hand, from the perspective of the AdS/CFT duality, the discovery of
one-parameter family of SO(8) maximal four-dimensional supergravity theories [36] led to
significant progresses toward understanding the vacuum properties and the structure of
the dual field theories [37–43]. Together with the original SO(8) model [44], other gauged
supergravities have been developed, exploiting the presence of a dyonic embedding
tensor [45–47]; these models feature a richer vacuum structure and scalar field dynamics
with respect to the original theory.

Several procedures have been proposed in order to obtain exact, regular hairy [23,47–52]
and supersymmetric black hole solutions [25,53,54] for a general scalar potential. The men-
tioned studies also seem to suggest that an important condition for the existence of hairy
black hole solutions is the presence of suitable scalar field self-interaction properties, to-
gether with an appropriate gravitational interaction determining the near-horizon behavior
as well as the far-region hair physics.2 This also implies a probable connection between the
integrability of the equations of motion and the explicit form of the scalar potential.

In the following we will review exact charged hairy black hole solutions in gauged
N = 2, D = 4 supergravity of [55].3 These hairy black hole configurations feature a
scalar potential whose specific form is connected with the existence of exact solutions and,
in turn, with a black hole solution generating technique. The dilatonic scalar field features
generalized boundary conditions preserving the conformal isometries of Anti-de Sitter
spacetime: these conditions can be interpreted, according to the holographic dictionary,
as perturbing the boundary (UV critical point) with multi-trace deformations of the dual
conformal field theory [58]. In particular, the mixed boundary conditions for the scalar
would correspond to adding a triple-trace operator to the dual field theory action.

Below, we will provide the explicit expressions for two different families of non-
extremal black hole solutions, analyzing the duality relation between them. We will then
consider the thermodynamic properties of the solutions together with the analysis of the
related boundary conditions. We will also analyze which conditions for the parameters
give rise to (non-singular) BPS configurations. In a separate section, we will exploit an
Hamilton–Jacobi formalism for our new class of black holes, characterizing their dynamics
in terms of a first-order description. Finally, we will briefly discuss specific models (within
the new general class under consideration) as consistent truncations of the maximal N = 8,
D = 4 gauged supergravity.

2 Scalar self-interactions could be relevant for dynamic and thermodynamic stability of the configuration: naively, we can imagine the condition for
the existence of hairy solutions as if the self-interaction of the scalar and the gravitational interaction were to combine such that the near-horizon
hair did not collapse into the black hole, while the far-region hair did not escape to infinity.

3 These new solutions generalize the uncharged configurations of [47,51,56,57].
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2. The Model

Let us consider an extended N = 2 supergravity theory in D = 4, coupled to nv vector
multiplets and no hypermultiplets, in the presence of Fayet–Iliopoulos terms (FI-terms).

The model describes nv + 1 vector fields AΛ
µ , (Λ = 0, . . . , nv) and ns = nv complex

scalar fields zi (i = 1, . . . , ns). The bosonic gauged Lagrangian has the standard form

1
eD

LBOS = −R
2

+ gi ̄ ∂µzi ∂µ z̄ ̄ +
1
4
IΛΣ(z, z̄) FΛ

µν FΣ µν +
1

8 eD
RΛΣ(z, z̄) εµνρσ FΛ

µν FΣ
ρσ − V(z, z̄) , (1)

and is defined in terms of the nv + 1 vector field strengths FΛ
µν = ∂µ AΛ

ν − ∂ν AΛ
µ . The ns

complex scalars zi span a special Kähler manifold MSK [59–61] and feature non-minimal
coupling to the vector fields through the matrices IΛΣ(z, z̄),RΛΣ(z, z̄), while the form of
the scalar potential V(z, z̄) explicitly depends on the FI-terms.

The presence of a non-trivial scalar potential comes from the gauging of a U(1)-
symmetry of the corresponding ungauged model (without FI-terms) and implies the
existence of minimal couplings of the vectors to the fermion fields only.

2.1. Single-Dilaton Truncation

Let us now focus on a N = 2 model with no hypermultiplets and a single vector
multiplet (nv = 1) with a single complex scalar field z (ns = 1) [47,55]. The geometry of the
special Kähler manifold is characterized by a prepotential function with explicit form:

F (XΛ) = − i
4
(
X0)n(

X1)2−n . (2)

The coordinate z is identified with the ratio X1/X0, in a local patch in which X0 6= 0.
For special values of n, this model can be reduced to a consistent truncation of the STU
model4.

If we set X0 = 1, the holomorphic section ΩM of the model reads:

ΩM =

(
XΛ

FΛ

)
=


1
z

− i
4

n z2−n

− i
4
(2− n) z1−n

 , (3)

and, in the special coordinate frame, the lower components FΛ can be expressed as the
gradient with respect to the upper entries of the prepotential function, FΛ = ∂F

∂XΛ . The
Kähler potential K is expressed as

e−K =
1
4

z1−n (n z− (n− 2) z̄
)
+ c.c. (4)

The theory is then deformed with the introduction of dyonic, electric–magnetic FI-terms.
The latter are defined by a constant symplectic vector θM = (θ1, θ2, θ3, θ4), encoding
the gauge parameters of the model. The scalar potential V(z, z̄) can be then obtained
from [47,55]

V =
(

gi ̄ UM
i U

N
̄ − 3VM VN

)
θM θN = −1

2
θMMMN θN − 4VM VNθM θN , (5)

where

4 The STU model [62–64] is a N = 2 supergravity coupled to nv = 3 vector multiplets and characterized, in a suitable symplectic frame, by the
prepotential FSTU(XΛ) = − i

4

√
X0 X1 X2 X3, together with symmetric scalar manifold of the form MSTU = (SL(2,R)/SO(2))3 spanned by the

three complex scalars zi = Xi/X0 (i = 1, 2, 3); this model is in turn a consistent truncation of the maximal N = 8 theory in four dimensions with
SO(8) gauge group [65–68].
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VM = e
K
2 ΩM =

(
LΛ

MΛ

)
, (6)

UM
i ≡ Di VM =

(
∂i +

1
2

∂iK
)
VM =

(
f Λ
i

hiΛ

)
, (7)

The matrix M(z, z̄) is a symplectic, symmetric, negative definite matrix, expressed in
terms of IΛΣ andRΛΣ as

MMN(z, z̄) ≡
(
IΛΣ + (RI−1R)ΛΣ −(RI−1)Λ

Γ

−(I−1R)∆
Σ (I−1)∆Γ

)
, (8)

and satisfies [69,70]

MMN = −CMPMPQ CQN , CMN ≡ CMN ≡
(

0 1

−1 0

)
. (9)

The scalar manifold is endowed with a flat symplectic bundle and it is possible to
associate with each point of this space the matrixMMN , thus determining a metric on the
symplectic fiber. Being defined in terms of the coupling matrices IΛΣ,RΛΣ in the bosonic
Lagrangian (1), the matrix MMN also encodes the information about the non-minimal
couplings between the scalars and the vectors of the theory.

If we express the scalar field as

z = eλ φ + i χ , (10)

the truncation to the dilaton field φ (i.e., setting the axion χ = 0) is consistent provided:5

(2− n) θ1 θ3 − n θ2 θ4 = 0 , (11)

FΛ
µν ∂χRΛΣ FΣ

ρσ εµνρσ
∣∣

χ=0
= 0 . (12)

After the restriction to the dilaton, the scalar metric reads:

ds2 = 2 gzz̄ dz dz̄
∣∣

χ=0
dχ=0

=
1
2

λ2 n (2− n) dφ2 , (13)

and is positive for 0 < n < 2. We then express λ in terms of n as

λ =

√
2

n (2− n)
, (14)

so that the kinetic term for φ is canonically normalized.

As a function of the dilaton field only, the scalar potential has the following explicit
form [47,55]:

V(φ) = − 2 eλ φ (n−2)
(

2 n− 1
n

θ2
1 + 4 θ1 θ2 eλ φ +

2 n− 3
n− 2

θ2
2 e2 λ φ

)
−

− 1
8

e−λ φ (n−2)
(
(2 n− 1) n θ2

3 − 4 θ3 θ4 n (n− 2) e−λ φ + (n− 2) (2 n− 3) θ2
4 e−2 λ φ

)
.

(15)

2.1.1. Vacua

Let us make the change of variable

5 The conditions come from the consistency of the axion field equations after the χ = 0 truncation.
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φ → 1
λ

log y , (16)

in the potential (15), using also the consistent truncation condition (11)

θ2 =
2− n

n
θ1 θ3

θ4
. (17)

The resulting potential has the form:

V0(y) =
1

8 n2 θ2
4

y−n (F(y)− G(y)
)

, (18)

where

F(y) = −16 θ2
1 y2n−2

(
(n− 2) (2n− 3) θ2

3 y2 − 4 n (n− 2) θ3 θ4 y + n (2 n− 1) θ2
4

)
,

G(y) = n2 θ2
4

(
n (2n− 1) θ2

3 y2 + 4 n (2− n) θ3 θ4 y + (n− 2) (2n− 3) θ2
4

)
,

(19)

with the condition y > 0, to ensure the reality of the solution.

If we want to find the vacua of the theory, we have to solve the equation

dV0(y)
dy

= 0 , (20)

where the derivative of the potential has the form:

dV0(y)
dy

=
n (n− 2) θ3

8 yn+1

(
θ3 y− θ4

) (
h(y)− g(y)

)
, (21)

with

h(y) =

(
4 θ1

n θ4

)2 (
(3− 2 n) y2 n−1 + (2 n− 1)

θ4

θ3
y2 n−2

)
,

g(y) = −(2 n− 1) y− (3− 2 n)
θ4

θ3
.

(22)

A first vacuum solution is given by

y1 =
θ4

θ3
if

θ4

θ3
> 0 , (23)

while other vacuum configurations come from the solutions of the equation

h(y) = g(y) . (24)

The above Equation (24) has a variable number of solutions, depending on the range
of values to which the number n belongs. Table 1 summarizes the number, types and mass
of vacuum solutions for each possible interval of values of n [47].
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Table 1. Vacuum types.

0 < n <
1
2

θ4/θ3 < 0
θ4/θ3 > 0

1 Anti-de Sitter
3 Anti-de Sitter

m2 L = 6
m2 L = −2, 6

Figure 1a
Figure 1b

n =
1
2

θ4/θ3 > 0 1 Anti-de Sitter m2 L = −2 Figure 1c

1
2
< n < 1 θ4/θ3 < 0

θ4/θ3 > 0
1 de Sitter

1 Anti-de Sitter
m2 L = 6

m2 L = −2
Figure 1d
Figure 1c

n = 1 θ4/θ3 > 0 1 Anti-de Sitter m2 L = −2 Figure 1c

1 < n <
3
2

θ4/θ3 < 0
θ4/θ3 > 0

1 de Sitter
1 Anti-de Sitter

m2 L = 6
m2 L = −2

Figure 1d
Figure 1c

n =
3
2

θ4/θ3 > 0 1 Anti-de Sitter m2 L = −2 Figure 1c

3
2
< n < 2 θ4/θ3 < 0

θ4/θ3 > 0
1 Anti-de Sitter
3 Anti-de Sitter

m2 L = 6
m2 L = −2, 6

Figure 1e
Figure 1f

(a) (b)

(c) (d)

(e) (f)

Figure 1. Vacua potential graphics.

2.1.2. Redefinitions

We now consider the shift

φ → φ− 2 ν

λ (ν + 1)
log(θ2 ξ) , (25)
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and redefine the FI-terms as:

θ1 =
ν + 1
ν− 1

θ
− ν−1

ν+1
2 ξ−

2 ν
ν+1 , θ3 = 2 α(ξ θ2)

ν−1
ν+1 s , θ4 =

2 α

θ2 ξ s
, (26)

having also introduced the quantity

ν =
1

n− 1
, (27)

together with the parameters α, s and

ξ =
2 L ν

ν− 1
1√

1− α2 L2
, (28)

expressed in terms of the AdS radius L. The above definitions ensure the existence of an
AdS vacuum without further constrains on the original FI-terms components [55].

The truncation to the dilaton is consistent provided Equations (11), (12) are satisfied.
The former, in the new parametrization (26), is rewritten as

(s2 − 1) (ν2 − 1) α
√

1− L2 α2 = 0 , (29)

which is solved, excluding n = 0 and n = 2, either for α = 0 (pure electric FI-terms) or for
s = ±1: since we are interested in dyonic FI-terms configurations, we will restrict ourselves
to the latter case.

After the shift (25), the scalar field z is expressed as

z = (θ2 ξ)−
2 ν

ν+1 eλ φ , (30)

and the same redefinition in the potential (with s = ±1) yields

V(φ) = − α2

ν2

(
(ν− 1)(ν− 2)

2
e−φ ` (ν+1) + 2(ν2 − 1) e−φ ` +

(ν + 1)(ν + 2)
2

eφ ` (ν−1)
)
+

+
α2 − L−2

ν2

(
(ν− 1)(ν− 2)

2
eφ ` (ν+1) + 2(ν2 − 1) eφ ` +

(ν + 1)(ν + 2)
2

e−φ ` (ν−1)
)

,
(31)

where ` =
λ

ν
.

After the restriction to the dilaton, the matrix RΛΣ vanishes, while the IΛΣ takes a
diagonal form and, if we define the canonically normalized gauge fields

F̄1 =
1
2

√
1 + ν

ν
(θ2 ξ)

1−ν
1+ν F1 , F̄2 =

1
2

√
−1 + ν

ν
(θ2 ξ) F2 , (32)

the action takes the explicit form

S =
1

8πG

∫
d4x

√
−g
(
− R

2
+

∂µφ ∂µφ

2
− 1

4
e(−1+ν) ` φ

(
F̄1
)2
− 1

4
e−(1+ν) ` φ

(
F̄2
)2
− V(φ)

)
. (33)

3. Results
3.1. Hairy Black Hole Solutions

Now we consider two distinct families of solutions, which we refer to as electric and
magnetic, respectively [55].
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3.1.1. Family 1 – Electric Solutions

A first family of solutions is given by

φ = −`−1 ln(x) , F̄1
tx = Q1 x−1+ν, F̄2

tx = Q2 x−1−ν, Υ(x) =
xν−1 ν2L2

η2 (xν − 1)2 , (34)

f (x) =
x2−ν η2 (xν − 1)2

ν2
k

L2 + α2L2
(
−1 +

x2

ν2

(
(ν + 2) x−ν − (ν− 2) xν + ν2 − 4

))
+

+ 1 +
x2−ν η2 (xν − 1)3

ν3L2

(
Q2

1
(ν + 1)

−
Q2

2
(ν− 1)

x−ν

)
, (35)

ds2 = Υ(x)
(

f (x) dt2 − η2

f (x)
dx2 − L2 dΣk

)
, (36)

where η is an integration constant and dΣ2
k = dϑ2 + sin2(

√
k ϑ)

k dϕ2 is the metric on the
2D-surfaces Σk = {S2, H2, R2} with constant scalar curvature R = 2 k. 6

Boundary conditions, mass and thermodynamics for the electric solutions.

We now consider the change of coordinates [55]

x = 1±
(

L2

η r
+ L6 1− ν2

24 (η r)3

)
+ L8 ν2 − 1

24 (η r)4 , (37)

to make contact with AdS canonical coordinates in the asymptotic limit, the + (−) sign
holding for x > 1 (x < 1). The corresponding asymptotic behavior of the scalar field is

φ = L2 φ0

r
+ L4 φ1

r2 + O
(

r−3
)

= ∓L2 1
` η r

+ L4 1
2 ` η2 r2 + O

(
r−3
)

. (38)

The coefficients of the leading and subleading coefficients read

φ0 = ∓ 1
` η

, φ1 =
`

2
φ2

0 , (39)

and correspond to AdS invariant boundary conditions, namely a triple-trace deformation
in the boundary theory preserving the boundary conformal symmetry. The asymptotic
expansion of the spacetime (36) in the new coordinates reads [55]

gtt =
r2

L2 + k− µE L4

r
+ O

(
r−2
)

, grr = − L2

r2 − L6 k L−2 + 1
2 φ2

0
r4 + O

(
r−5
)

, (40)

where

µE = ±
(

ν2 − 4
3 η3 α2 L2 − k

η L2 +
Q2

2
η (ν− 1) L2 −

Q2
1

η (ν + 1) L2

)
. (41)

The black hole mass can be read-off from the above expansion and reads7

ME =
σk

8πG
L4 µE , (42)

6 The explicit form of the solution makes the uncharged limit well-defined, giving the hairy black hole configurations of [47]; the result should be not
taken for granted, since in the standard literature the uncharged limit gives either Schwarzschild or Schwarzschild–AdS spacetime.

7 Since the solution preserves conformal symmetry at the boundary, the mass can be directly extracted from the metric [30,31,71].
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where σk =
∫

dΣk. The energy density of the system [72] is expressed as

ρE =
1

8πG
L2 µE , (43)

the dual boundary field theory living then on a manifold of radius L. The temperature and
the entropy are given by

T =
| f (x)′|
4π η

∣∣∣∣
x=x+

, S =
σk

4 G
L2 Υ(x+) , (44)

where f (x+) = 0. Finally, the physical charges and electric potentials are

q1 =
σk

8πG
L2 Q1

η
, ΦE

1 = Q1
xν
+ − 1

ν
; q2 =

σk
8πG

L2 Q1

η
, ΦE

2 = Q2
1− x−ν

+

ν
, (45)

and it is possible to verify that these quantities satisfy the first law of thermodynamics:8

dME = T dS + ΦE
1 dq1 + ΦE

2 dq2 . (46)

3.1.2. Family 2 – Magnetic Solutions

A second family of solutions is given by

φ = `−1 ln(x) , F̄1
ϑϕ = P1

sin(
√

k ϑ)√
k

, F̄2
ϑϕ = P2

sin(
√

k ϑ)√
k

, Υ(x) =
xν−1 ν2 L2

η2 (xν − 1)2 , (47)

f (x) =
x2−ν η2 (xν − 1)2

ν2
k

L2 +
(

1− α2L2
)(
−1 +

x2

ν2

(
(ν + 2) x−ν − (ν− 2) xν + ν2 − 4

))
+

+ 1 +
x2−ν η4 (xν − 1)3

ν3 L6

(
P2

1
(ν + 1)

−
P2

2
(ν− 1)

x−ν

)
, (48)

ds2 = Υ(x)
(

f (x) dt2 − η2

f (x)
dx2 − L2 dΣk

)
. (49)

The electric and magnetic solutions are related to each other by means of electromag-
netic duality

φ → −φ , α2 → L−2 − α2 , (50)

and the corresponding transformation of the electromagnetic fields (see also Section 4.1).
In each of the two families, the asymptotic region is found for x = 1. The geometry and
scalar field are singular at x = 0 and x = ∞ and, therefore, the configuration features two
inequivalent, disjoint geometries for x ∈ (1, ∞) or x ∈ (0, 1).

Boundary conditions, mass and thermodynamics for the magnetic solutions.

The metric of the magnetic family can be obtained from the electric solutions by means
of the transformation

Qi →
η

L2 Pi , α2 → L−2 − α2 , (51)

and, therefore, the same analysis performed for the electric family can be exploited in the
magnetic frame. In the latter case, the scalar asymptotic leading and subleading coefficients
satisfy

φ1 = − `

2
φ2

0 , (52)

which correspond again to AdS invariant boundary conditions (triple-trace deformation in
the boundary theory). We introduce the quantity [55]

8 We do not have to modify the 1st law with the contribution of scalar charges having preserved the boundary conformal symmetry [30,31,73].
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µM = ±
(

ν2 − 4
3 η3 (1− α2 L2)− k

η L2 +
η P2

2
(ν− 1) L6 −

η P2
1

(ν + 1) L6

)
, (53)

where the + (−) corresponds to x > 1 (x < 1) and express the black hole mass as

MM =
σk

8πG
L4 µM . (54)

The magnetic charges and potentials are given by

p1 =
σk

8πG
P1 , ΦM

1 =
P1 η

L2
xν
+ − 1

ν
; p2 =

σk
8πG

P2 , ΦM
2 =

P2 η

L2
1− x−ν

+

ν
, (55)

and it is possible to verify that the above quantities satisfy the first law of thermodynamics:

dMM = T dS + ΦM
1 dp1 + ΦM

2 dp2 . (56)

3.1.3. Case n = 1 or ν = ∞

The action in this special case9 has the explicit form

S =
1

8πG

∫
d4x

√
−g
(
− R

2
+

∂µφ ∂µφ

2
− 1

4
e
√

2 φ
(

F̄1
)2
− 1

4
e−
√

2 φ
(

F̄2
)2

+
1
L2

(
2 + cosh(

√
2 φ)

))
. (57)

The scalar potential coming from (5) in the n = 1 limit is redefined through the shift

φ → φ−
√

2 log
(

ρ L
2

)
, (58)

and writing the FI-terms as:

θ1 =
cos(ζ)

ρ L2 , θ2 =
ρ

4
cos(ζ) , θ3 = ρ sin(ζ) , θ4 =

4 sin(ζ)
ρ L2 , (59)

while the field strengths have the form

F̄1 = (ρ L)−1 F1 , F̄2 =
ρ L
4

F2 . (60)

The above Lagrangian yields a consistent truncation of the N = 2 minimal coupling
supergravity [74] (corresponding to the n = 1 case) if the constraints (11), (12) are satisfied.
In particular, the latter explicitly reads

F̄1 ∧ F̄1 − e−2
√

2 φ F̄2 ∧ F̄2 = 0 . (61)

The theory features an explicit dyonic solution of the form [55]

9 This particular class of solutions is noteworthy as it can be embedded in gauged N = 8 supergravity [74].
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φ = − ln(x)/
√

2 , (62)

F̄1
tx = Q1 , F̄1

ϑϕ = P1
sin(
√

k ϑ)√
k

, (63)

F̄2
tx =

Q2

x2 , F̄2
ϑϕ = P2

sin(
√

k ϑ)√
k

, (64)

f (x) =
k η2 (x− 1)2

L2 x
+ 1 +

η2 (x− 1)3

L2 x

(
Q2

1 −
Q2

2
x
− η2

L4
P2

1
x

+
η2

L4 P2
2

)
, (65)

Υ(x) =
x L2

η2 (x− 1)2 , (66)

ds2 = Υ(x)
(

f (x) dt2 − η2

x2 f (x)
dx2 − L2 dΣk

)
, (67)

and the above constraint (61) requires

P1 Q1 − P2 Q2 = 0 . (68)

4. Discussion
4.1. Duality Relation between the Two Families of Solutions

The two families of solutions can be related by an electric–magnetic duality symme-
try.10 The transformation of the non-dynamical of θM amounts to a change in the theory,
the duality being then interpreted as an equivalence between different models. Consider a
generic N = 2 theory described by the Lagrangian (1), the scalar potential V(θ, φs) given
by Equation (5). Let us introduce the magnetic field strengths

GΛ µν = − εµνρσ
δLBOS

δFΛ
ρσ

= RΛΣ FΣ
µν − IΛΣ

∗FΣ
µν , (69)

and the symplectic field strength vector

FM =

(
FΛ

µν

GΛ µν

)
. (70)

The special Kähler manifold spanned by the scalars has a flat symplectic bundle
structure, the matrixMMN acting as a metric on the symplectic fiber. With each isometry
g of the scalar manifold, it can be associated a constant symplectic matrix R[g] such that,
if φ′s = φ′s(φt) is the action of g on the scalars,MMN(φ

s) transforms as [69,70]:

M(φ′s) = (R[g]−1)TM(φs)R[g]−1 , (71)

having suppressed symplectic indices. Then, if we transform correspondingly the Maxwell
fields FM and the FI-terms θM,

FM
µν → F′Mµν = R[g]M N FN

µν , θM → θ′M = (R[g]−1)N
M θN , (72)

the equations of motion are left invariant.

10 The latter is a non-perturbative (global) symmetry of the ungauged theory and is extended to the gauged one if the constant tensor θM is made to
transform under it as well [69,70].
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Aside from the above duality, it is possible to redefine FM and θM as [55]:

Fµν →
(

A 0
0 (A−1)T

)
Fµν , θ →

(
(A−1)T 0

0 A

)
θ , (73)

where A = (AΛ
Σ) is a generic real, invertible matrix. This amounts to a change of basis

in the symplectic fiber and does not alter the physics of the model. We can apply this
mechanism to our truncated single-dilaton model, taking care that the transformations do
not turn on the truncated axion χ. The absence of the latter implies RΛΣ = 0, while the
isometries of the dilaton can be expressed as

φ → φ′ = φ + β , (74)

φ → φ′ = −φ , (75)

β being a constant. The transformation (74) was used in Section 2.1.2 to reabsorb the θ2
dependence of the FI-terms, the latter then depending only on α. This was then followed
by the redefinition (73) of the field strengths and θM terms. If we now focus on the duality
transformation (75), it is possible to verify that the associated transformation R[g] is given
by matrix C. In particular, we find:

M(φ′) = M(−φ) = (C−1)TM(φ)C−1 .(
F̄′Λµν

Ḡ′Λ µν

)
= C

(
F̄Λ

µν

ḠΛ µν

)
=

(
ḠΛ µν

−F̄Λ
µν

)
.

(76)

and, applying shift symmetry (74) and the above redefinition, the new FI-terms θ̄M have
the form

θ̄M =

(√
ν + 1

ν

√
L−2 − α2 ,

√
ν− 1

ν

√
L−2 − α2 , α s

√
ν + 1

ν
,

α

s

√
ν− 1

ν

)
. (77)

Now it is possible to prove that the scalar potential satisfies

V(θ̄, φ) = V(θ̄′, φ′) , θ̄′ = C θ̄ , (78)

or, equivalently
V(α, φ) = V(α′, φ′) , α′ 2 = L−2 − α2 , (79)

θ̄ only depending on α. Then, if the electric solution

φ(x) , F̄Λ
µν(x) , gµν(x) , (80)

solves the field equations with parameter α, the magnetic configuration

φ′(x) = −φ(x) , Ḡ′Λ µν(x) = −F̄Λ
µν(x) , g′µν(x) = gµν(x) , (81)

is a solution with parameter α′.

4.2. Supersymmetric Solutions

Now we want to study supersymmetryc configurations for our model, imposing the
vanishing of the SUSY variations [75] (see Appendix A). First, it is useful to make a change
of coordinates that puts metric (36) in the standard form

ds2 = e2 U(r) dt2 − e−2 U(r)
(

dr2 + e2 Ψ(r) dΣ2
k

)
. (82)
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This can be achieved through the change of coordinate

x(r) =

(
1 +

L2 ν

η (r− c)

) 1
ν

, (83)

c being an integration constant.

4.2.1. Family 1

The scalar field z in the new parametrization has the form

z = (θ2 ξ)−
2 ν

1+ν

(
1 +

L2 ν

η (r− c)

)−1

, (84)

while the electric–magnetic charges explicitly read

ΓM =

(
mΛ

eΛ

)
=



0
0

L2

2 η
Q1

√
1+ν

ν (θ2 ξ)
1−ν
1+ν

L2

2 η
Q2

√
−1+ν

ν θ2 ξ


. (85)

The solution is supersymmetric if the following relations are satisfied:

Q1 = −Q2

√
−1 + ν

1 + ν
+

k η

α L2

√
ν

1 + ν
,

Q2 =

(
k η

2 α L2 +
α L2 (1 + ν)

2 η

)√
−1 + ν

ν
.

(86)

4.2.2. Family 2

The scalar field z reads

z = (θ2 ξ)−
2 ν

1+ν

(
1 +

L2 ν

η (r− c)

)
, (87)

while the electric–magnetic charges are

ΓM =

(
mΛ

eΛ

)
=


2 P1

√
ν

1+ν (θ2 ξ)
−1+ν
1+ν

2 P2

√
ν

−1+ν (θ2 ξ)−1

0
0

 . (88)

The solution is supersymmetric if

P1 = − P2

√
−1 + ν

1 + ν
+

k L√
1− α2 L2

√
ν

1 + ν
,

P2 =

(
k L

2
√

1− α2 L2
+

L3 (1 + ν)

2 η2

√
1− α2 L2

)√
−1 + ν

ν
.

(89)

The supersymmetric magnetic condition can be obtained from the supersymmetric
electric condition by means of the duality transformation
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Qi →
η

L2 Pi , α2 → L−2 − α2 . (90)

4.3. Old and New Solutions

Here we briefly mention already known configurations as particular cases of our new
general solutions [55].

4.3.1. Duff–Liu

The Duff and Liu solution [65] features singular supersymmetric configurations, while
some of their non-extremal solutions can be put in relation with our model for special
values of the ν parameter. The theory under consideration is the well known STU model of
gauged N = 8 supergravity with three scalar fields ϕ1, ϕ2, ϕ3 .

The T3 model. If we equal the three scalars, ϕ1 = ϕ2 = ϕ3, we obtain the so-called T3

model. The latter coincides with our formulation (33) for ν = −2.
The n = 1 or ν = ∞ model. In this case, we set ϕ1 = ϕ3 = 0. The STU model then

reduces to the n = 1 model, coinciding with our (57). The Duff–Liu configuration can be
recovered from our solution provided either the magnetic or the electric charges are set
to zero.

4.3.2. Cacciatori–Klemm

This model was important since it provided the first non singular supersymmetric
black holes in AdS4 [14].

The T3 model. The spherically symmetric, purely magnetic supersymmetric solution
can be obtained from our prepotential (2) with n = 1

2 , corresponding to ν = −2, and pure
magnetic θM = (ξ0, ξ1, 0, 0) FI-terms.

4.4. New BPS Black Holes with Finite Area
4.4.1. Family 1: BPS Electric Black Holes

The electric family has BPS black holes of finite area for α2 = L−2. In this case, we
find [55]:

f (x+) = 0 =⇒ xν
± =

ν2 − 1− k η2 L−2

ν− 1− k η2 L−2 ± ν

√
ν2 − 1− 2 k η2 L−2

ν− 1− k η2 L−2 , (91)

and it is possible to verify that x± is an even function of ν, x±(ν) = x±(−ν), so that we
can restrict our analysis to the ν > 1 interval.

Keeping in mind that the spacetime has disjoint and inequivalent geometries for
x ∈ (0, 1) and x ∈ (1, ∞) (the asymptotic region being located at x = 1), we can characterize
the location of the horizon as follows

k = 0 : in the flat case the location of the horizon is very simple (see the above (91)) and
it follows that xν

+ > 0 and xν
− < 0, so we conclude that only x+ exists;

k = −1 : in the hyperbolic case, x+ > 1 always exists while the solution 0 < x− < 1
exists provided η2 L−2 > ν + 1 ;

k = +1 : for spherical black hole only x+ exists, provided ν− 1 > η2 L−2 > 0 .

Using BPS conditions (86), we can write the explicit form for the physical charges and
electric potentials for the supersymmetric solutions as [55]:

qBPS
1 = ± L2σk

8πG

(
k

2 L
+

L (1− ν)

2 η2

)√
ν + 1

ν
, ΦBPS

1 = ±
(

k η

2 L
+

L (1− ν)

2 η

)
xν
+ − 1

ν

√
ν + 1

ν
,

qBPS
2 = ± L2σk

8πG

(
k

2 L
+

L (1 + ν)

2 η2

)√
ν− 1

ν
, ΦBPS

2 = ±
(

k η

2 L
+

L (1 + ν)

2 η

)
1− x−ν

+

ν

√
ν− 1

ν
,

(92)
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having fixed α = ± L−1. The mass of the electric BPS black hole configuration is given by

MBPS
E =

L4 σk
8πG

ν2 − 1
3 η3 , (93)

and it is then verified the extremality condition

δMBPS
E = ΦBPS

1 δqBPS
1 + ΦBPS

2 δqBPS
2 . (94)

4.4.2. Family 2: BPS Magnetic Black Holes

We can again restrict to the ν > 1 case, and verify that this family has BPS black holes
of finite area for α2 = 0 (electric gauging). In this case, the metric for the magnetic solution
is the same than for the electric one, implying a coinciding analysis about the location of the
horizons. The extremality of the magnetic solutions is the same as for the electric solutions
when the electric charges and potentials are interchanged by their magnetic counterparts.

4.5. Hamilton–Jacobi Formulation

If we consider a stationary dilatonic black hole configuration with radial dependence
for the scalar field, φ = φ(r), the most general metric ansatz, with spherical or hyperbolic
symmetry, has the form (82),

ds2 = e2 U(r) dt2 − e−2 U(r)
(

dr2 + e2 Ψ(r) dΣ2
k

)
. (95)

We can obtain the equations of motion coming from the bosonic gauged Lagrangian
(1), with the above metric ansatz, from a one-dimensional effective action that, apart from
total derivative terms, has the form

Seff =
∫

dr Leff =
∫

dr
[

e2 Ψ
(

U̇2 − Ψ̇2 +
1
2

φ̇2
)
−Veff

]
, (96)

where the prime stands for derivative with respect to r and where we can define an effective
potential

Veff = − e2(U−Ψ) VBH − e−2(U−Ψ) V + k , (97)

in terms of the scalar potential V and the (charge-dependent) black hole potential VBH.
The latter can be written in the symplectically covariant form [75–77]

VBH = − 1
2

ΓTM Γ , (98)

in terms of the magnetic and electric charges and scalar-dependent matrixM. The black
hole potential (98) can also be schematically rewritten in terms of the central charges
as [75–77]

VBH = |DZ | − |Z |2 . (99)

Once given the effective action, one can make use of the Hamilton–Jacobi formalism
and derive a system of first-order equations (flow equations) for the warp factors U(r), Ψ(r)
and scalar fields φ(r).

Flow equations

If we collectively denote the metric and scalar degrees of freedom characterizing
the solution by q I = {U(r), Ψ(r), φ(r)}, we can rewrite the effective Lagrangian of
Equation (96) as

Leff = GI J q̇ I q̇ J −Veff , (100)

with
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GI J =

 e2 Ψ

−e2 Ψ

1
2 e2 Ψ

 . (101)

The conjugate momenta are obtained from

pI =
δLeff

δq̇ I = 2GI J q̇ J . (102)

while the Hamiltonian can be written as

H = pI q̇ I −L = GI J q̇ I q̇ J + Veff , (103)

together with the energy conservation constraint H = k .

Let us now consider a BPS configuration. If a superpotential function W(q I) can be
defined for the latter, then the radial evolution of the system can be described in terms of
equations of the form

q̇ I = G I J ∂W
∂q J . (104)

BPS hairy black hole. The superpotential function for our electric solution has the
explicit form

Wφ = −e2Ψ−U |P(φ)| , (105)

where P(φ) = e2(U−Ψ) Z (φ) + iW(φ) is written in terms of the central charge Z and
complex superpotentialW obtained from the geometry of the supergravity Kähler mani-
fold [75]. The above superpotential correctly satisfies equations (104) for the hairy black
hole configuration, namely

U̇ = e−2Ψ ∂Wφ

∂U
,

Ψ̇ = −e−2Ψ ∂Wφ

∂Ψ
,

φ̇ = 2 e−2Ψ ∂Wφ

∂φ
,

(106)

when evaluated on the solution.

4.6. N = 8 Truncations
4.6.1. Uncharged Case

The infinitely many theories defined by the model under consideration comprise all
the possible one-dilaton consistent truncations of the ω-deformed, SO(8) gauged maximal
supergravities [36,42,45,46,69,70,78,79]11.

Let us consider the following truncation to gravity and scalar field sector of the
maximal supergravity [81,82]:

S
(

gµν,~φ
)
=
∫
M

d4x
√
−g
[
−R

2
+

1
2
(
∂~φ
)2 −V

(
~φ
)]

, (107)

with 7 independent scalars ~φ ≡ φi (i = 1, . . . , 8, ∑8
i=1 φi = 0) and scalar potential

V
(
~φ
)
= − g2

32

[
cos2(ω)

(( 8

∑
i=1

Xi

)2
− 2

8

∑
i=1

X2
i

)
+ sin2(ω)

(( 8

∑
i=1

X−1
i

)2
− 2

8

∑
i=1

X−2
i

)]
, (108)

11 The construction of these models was carried out by exploiting the freedom in the initial choice of the symplectic frame of the maximal theory, that
is, gauging a group in different symplectic frames by rotating the original one [44,80] making use of a suitable symplectic matrix, thus obtaining a
one-parameter class of inequivalent theories (ω-deformed models).
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where

Xi = e2 φi ,
8

∏
i=1

Xi = 1 . (109)

A single-scalar field reduction preserving SO(p)×SO(8− p) can be obtained through [55]

φ1 = · · · = φp =
1

2
√

2
σ φ , φp+1 = · · · = φ8 = − 1

2
√

2
φ

σ
, (110)

having defined:

σ =

√
8− p

p
=

√
ν− 1
ν + 1

, p =
4 (ν + 1)

ν
, (111)

that also implies

X1 = · · · = Xp = X := e
1√
2

σ φ , Xp+1 = · · · = X8 = Y := e−
1√
2

φ
σ . (112)

With the above choices, we can obtain a consistent truncation of the ω-rotated SO(8)
gauged maximal supergravity. The corresponding action is invariant under σ → 1/σ,
φ → −φ and p → 8− p and reduces, in the absence of vector fields, to the action (33)
upon identifications:

g =

√
2

L
, cos(ω) = L α , sin(ω) =

√
1− L2 α2 , (113)

or, changing φ into −φ in (112),

g =

√
2

L
, sin(ω) = L α , cos(ω) =

√
1− L2 α2 . (114)

We conclude that our new single-scalar models with vanishing vector fields coincide
with gauged ω-deformed maximal supergravity truncations to a singlet sector, with respect
to the following subgroups of the SO(8) gauging [55]:

ν = 4
3 → SO(7) ,

ν = 2 → SO(6)× SO(2) ,

ν = 4 → SO(5)× SO(3) ,

ν = ∞ → SO(4)× SO(4) .

(115)

In particular, ν = ∞ or ν = ±2 correspond to models which can be embedded in
the STU truncation of the SO(8) gauged N = 8 supergravity. Therefore, the new black
hole solutions, in the absence of electric and magnetic charges, can all be embedded in the
maximal theory.

4.6.2. Charged Case

Now we consider charged solutions and their possible embedding in the dyonic,
SO(8) gauged maximal supergravity [55].

ν = 4 case.

Let us consider first the ω = 0 case. These solutions describe gravity coupled to one
scalar and two vector fields. The latter, when identified with their counterparts in the
maximally supersymmetric theory, should not excite other fields in the model: this requires
the condition Fλ ∧ Fσ = 0 in our solution12, again with the presence of seven independent

12 λ, σ label the 28 vectors of the maximal theory, while m, n are the symplectic indices of the 56 electric and magnetic charges.
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scalar fields ~φ = φi (i = 1, . . . , 8, ∑8
i=1 φi = 0) parameterizing the Cartan subalgebra of

e7(7).
Then, we want to further truncate the model to a single scalar φ, singlet with respect

to the subgroup SO(5)× SO(3) of SO(8). The two vector fields of the charged solution
are identified with two of the 28 vectors of the maximal theory that do not source the six
scalars we want to vanish. We then express ~φ as [55]:

φ1 = −1
2

√
3

10
φ + ϕ1 , φ2 = −1

2

√
3
10

φ + ϕ2 , φ3 = −1
2

√
3

10
φ + ϕ3 ,

φ4 = −1
2

√
3

10
φ + ϕ4 , φ5 = −1

2

√
3
10

φ−
4

∑
k=1

ϕk , φ6 =
1
2

√
5
6

φ + ϕ5 ,

φ7 =
1
2

√
5
6

φ + ϕ6 , φ8 =
1
2

√
5
6

φ− ϕ5 − ϕ6 .

(116)

The equations for the six scalars ϕ` (` = 1, . . . 6) are satisfied when ϕ` ≡ 0, while φ
enters the kinetic terms of the vector fields as in (33), with ν = 4, after identifying the two
vectors A1

µ and A2
µ as:

1
2

AI J
µ TI J = A1

µ J1 + A2
µ J2 , (117)

in terms of the AI J
µ of the maximal theory and the SO(8) generators TI J = −TJ I (I, J =

1, . . . , 8).13 The two field strengths F̄1
µν, F̄2

µν in (33) can be in turn identified with the FI J
µν of

the maximal theory as [55]:

F12
µν =

√
2
5

F̄1
µν , F34

µν =
ε1√

5
F̄1

µν , F35
µν =

ε2√
5

F̄1
µν , F45

µν =
ε3√

5
F̄1

µν ,

F67
µν =

1√
3

F̄2
µν , F68

µν =
ε4√

3
F̄2

µν , F78
µν =

ε5√
3

F̄2
µν .

(118)

In the ω 6= 0 case, the same generators TI J are gauged by linear combinations of AI J
µ

and AI J µ of the form
ÂI J

µ = cos(ω) AI J
µ − sin(ω) AI J µ , (119)

which amounts to gauging SO(8) in a different symplectic frame, with ÂI J
µ electric vector

fields (the hat denoting indices in the new ω-rotated symplectic frame). The related
symplectic vector of electric and magnetic field strengths in the new frame is obtained from
the relation [55]:

F̂m̂
µν = Em

m̂ F̂m
µν , Em

m̂ =

(
cos(ω) 128×28 sin(ω) 128×28

− sin(ω) 128×28 cos(ω) 128×28

)
, (120)

while the deformed kinetic matrixMm̂n̂(φ, ω) is expressed in terms of theMmn(φ) in the
original frame as:

Mm̂n̂(φ, ω) = E−1(ω)m̂
m E−1(ω)n̂

nMmn(φ) . (121)

After the truncation, the vector kinetic terms in the new symplectic frame will depend
on ω through the restrictions to ÂΛ̂

µ = (Â1
µ, Â2

µ). The dependence can be disposed of at

the level of field equations and Bianchi identities, since the latter depend on F̂M̂
µν only in

symplectic-invariant contractions with the matrixMM̂N̂(φ, ω) and its derivatives. The ω
dependence of the terms involving the vector field strengths can be undone redefining

13 We explicitly have J1 =
√

2
5

(
T12 +

ε1√
2

T34 +
ε2√

2
T35 +

ε3√
2

T45

)
, J2 = 1√

3
(T67 + ε4 J68 + ε5 J78), ε2

` = 1 [55].
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the latter, which amounts to express them in terms of their counterparts in the original
frame (F̄1

µν, F̄2
µν and their magnetic duals) through the matrix E. Upon these redefinitions,

the bosonic field equations of the truncated model coincide with those obtained from the
action (33), with ν = 4, provided we identify [55]:

g =

√
2

L
, sin(ω) = L α , cos(ω) =

√
1− L2α2 . (122)

The embedding of the ν = 4/3 model in the maximal theory will be studied in the
future. In the remaining cases ν = ∞ or ν = ±2, our solutions can be extended to charged
solutions within SO(8) gauged N = 8 supergravity within the bosonic part of the STU
truncation of it.
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Appendix A. Supersymmetric Black Hole Solutions

In order to obtain supersymmetric configurations, we have to impose the vanishing of
the SUSY transformations in addition to solving the equations of motion.

The relevant supersymmetry variations can be expressed as:

δψµA = DµεA + i T−µν γν εAB εB + i SAB γµ εB ,

δλiA = i ∂µzi γµ εA − 1
2

gi ̄ f̄ Λ
̄ IΛΣ F−Σ

µν γµν εAB εB + WiAB εB ,
(A1)

with γµν = γ[µγν].14 The covariant derivatives are written as

DµεA = ∂µεA +
1
4

ωµ
ab γab εA +

i
2

(
σ2
)

A
B AM

µ θM εB +
i
2
Qµ εA , (A2)

with
Qµ =

i
2

(
∂ı̄K ∂µ z̄ı̄ − ∂iK ∂µzi

)
, (A3)

and, in the chosen parametrization, we also have [75]:

14 For the gamma-matrices we can use the conventions of App. A of [83].
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F±µν =
1
2
(

Fµν ± Fµν

)
, G±µν =

1
2
(
Gµν ± Gµν

)
,

Tµν = LΛ IΛΣ FΣ
µν =

1
2i

LΛ(N−N
)

ΛΣ FΣ
µν = − i

2

(
MΣ FΣ

µν − LΛ GΛµν

)
=

i
2
VM CMN FN

µν ,

T−µν = LΛ IΛΣ F−Σ
µν =

i
2
VM CMN F−N

µν ,

Ti µν = DiTµν = f Λ
i IΛΣ FΣ

µν = − i
2

(
hiΣ FΣ

µν − f Λ
i GΛµν

)
=

i
2
UM

i CMN FN
µν ,

SAB =
i
2

(
σ2
)

A
C εBC θM VM =

i
2

(
σ2
)

A
C εBC W ,

Wi AB = i
(

σ2
)

C
B εCA θM gi ̄ UM

̄ ,

(A4)

having used properties

NΛΣ F−Σ = G−Λ , LΛ NΛΣ = MΣ . (A5)

The kinetic matrix N is defined as

N = R+ i I , (A6)

and can be expressed in terms of the prepotential as [84]

NΛΣ = ∂Λ̄∂Σ̄F + 2 i
Im[∂Λ∂ΓF ] Im[∂Σ∂∆F ] LΓ L∆

Im[∂∆∂ΓF ] L∆ LΓ , (A7)

with ∂Λ = ∂
∂XΛ , ∂Λ̄ = ∂

∂X̄Λ . We emphasize that, in the special coordinate frame, the whole
N = 2 Lagrangian can be written in terms of the holomorphic prepotential function F (X)
(if any) and its derivatives.

From an explicit computation of the supersymmetry variations (A1), we find the
following relations for the warp factors [75]

U′ = eU−2Ψ Re
[
e−iα Z

]
+ e−U Im

[
e−iαW

]
,

Ψ′ = 2 e−U Im
[
e−iαW

]
,

(A8)

and for the scalars
z′ i = e−U eiα gi ̄ D ̄

(
e2U−2Ψ Z − iW

)
, (A9)

the above covariant derivative acting on objects with weight p = −1, and having intro-
duced two projectors relating the spinor components as [15,16,75,85]

γ0 εA = i eiα εAB εB ,

γ1 εA = eiα δAB εB .
(A10)

The choice of phase α turns out to be irrelevant from the physical point of view (due
to the presence of the U(1)R symmetry), while it will amount to putting the symplectic
sections of the vector multiplet moduli space in a particular frame [15,16].
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The Killing spinors must satisfy the relations [75]

εA = χA e
1
2 (U−i

∫
drB) ,

εA = i e−iα εAB γ0 εB ,
(A11)

where we have

∂rχA = 0 ,

B = Qr + 2 e−U Re
[
e−iαW

]
,

(A12)

and the following expression for the phase α holds [75]:

∂rα = −B . (A13)

The chosen type of Killing spinors explicitly break 3/4 of the supersymmetry, i.e., the
solution is 1/4 BPS, meaning that only 2 supercharges are preserved, corresponding to
the 2 degrees of freedom of the complex B(r) function parameterizing the ε1, ε2 Killing
spinors [15,16].

Finally, from the SUSY variations we obtain the property [75]

Im
[
e−iα Z

]
= −e2Ψ−2URe

[
e−iαW

]
, (A14)

and, using also the ansatz

FM =

(
FΛ

GΛ

)
= e2(U−Ψ)CMPMPN ΓN dt ∧ dr + ΓM fk(ϑ) dϑ ∧ dϕ = dAM , (A15)

for the FM symplectic vector, we find for the AM
µ components:

AM
t θM = 2 eU Re

[
e−iαW

]
,

AM
r = 0 ,

AM
ϑ = 0 ,

AM
ϕ = −ΓM

k
cos
(√

k ϑ
)

,

(A16)

together with the relation
ΓM θM = k . (A17)
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