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Abstract: Introducing some fundamental concepts of quantum physics to high school students,
and to their teachers, is a timely challenge. In this paper we describe ongoing research, in which a
teaching–learning sequence for teaching quantum physics, whose inspiration comes from some of the
fundamental papers about the quantum theory of radiation by Albert Einstein, is being developed.
The reason for this choice goes back essentially to the fact that the roots of many subtle physical
concepts, namely quanta, wave–particle duality and probability, were introduced for the first time in
one of these papers, hence their study may represent a useful intermediate step towards tackling the
final incarnation of these concepts in the full theory of quantum mechanics. An extended discussion
of some elementary tools of statistical physics, mainly Boltzmann’s formula for entropy and statistical
distributions, which are necessary but may be unfamiliar to the students, is included. This discussion
can also be used independently to introduce some rudiments of statistical physics. In this case, part
of the inspiration came from some of Einstein’s papers. We present preliminary, qualitative results
obtained with both teachers and selected pupils from various high schools in southern Italy, in the
course of several outreach activities. Although the proposal was only tested in this limited context for
now, the preliminary results are very promising and they indicate that this proposal can be fruitfully
employed for the task.

Keywords: physics teaching; history of physics; quantum physics; statistical physics

I have thought a hundred times more about quantum problems
than I have about general relativity. (A. Einstein to O. Stern)

1. Introduction

The world around us is becoming increasingly more complex and technological,
making basic scientific literacy essential for citizens. It is also likely that, in the near future,
quantum technologies will be at everyone’s disposal. Thus, it is becoming more and more
important that average educated people have at least a basic understanding of quantum
physics, which today is still a prerogative of physics graduates. This is also desirable in
view of the great cultural significance of quantum physics. It is not surprising then that, in
many countries, quantum physics is now part of high school curricula, along with elements
of other important parts of twentieth century physics, such as the theories of relativity,
nuclear and particle physics, astrophysics and cosmology, and chaos theory. This state
of things is currently challenging teachers, and also researchers in physics education, to
develop educational tools aimed at introducing high school students, who have studied
the basics of classical physics, to the main concepts of modern physics and of quantum
theory in particular [1]. This is a highly non trivial task (not only at the high school level,
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but also at university), considering the intrinsic difficulty of the subject, which moreover
has the reputation of being awkward and counterintuitive. To make things more difficult,
there is the problem that high school teachers themselves may lack a proper education in
modern physics. For example, in the case of Italy, some of the teachers have a major in
mathematics, but until recent years, the curriculum of mathematics majors, in particular of
those who intended to pursue a career in school teaching, did not include any quantum
theory. While things are changing, the gap remains, and in the attempt of filling it, many
universities organize dedicated courses aimed at teachers or directly at their students. It
is therefore important to design appropriate teaching–learning sequences which can give
them a solid grounding in quantum physics.

It is well established that the history of physics can be helpful to teaching in multiple
ways (see e.g., [2]). A first advantage of using history surely consists in the possibility
of putting physics topics in context, by embedding them in the time in which they were
developed and linking them with other disciplines, especially in the humanities, whose
teaching is intrinsically historical. Then there is the possibility of taking inspiration from
the reading of original texts by the founders of the subject, which can be useful especially
for modern physics, which involves subtle conceptual steps. In fact, due to the particularly
counterintuitive nature of the subject, and to the large number of new concepts involved,
which required a very long gestation, the teaching of quantum physics is very often
developed by following a historical path. In fact, a typical teaching–learning sequence for
quantum physics, both at the high school and the undergraduate level (see, for example, the
textbooks [3–6]), will start from Planck’s formula for black body radiation, and gradually
introduce the main physical concepts that in the end will be coherently subsumed in the
theory of quantum mechanics, roughly in the same order in which they were discovered for
the first time (of course complemented with a discussion of all the relevant experiments, in
which the phenomena which motivated the introduction of these concepts were discovered).
We do not have any objection towards this way of developing the subject but we are also
conscious that history is far more complex and richer than any didactic presentation.
While it is of course inconceivable to present the full complexities of history in a didactic
course, it may still be the case that some of the parts of history, that are generally excluded
in modern streamlined presentations, may provide additional precious insight. In the
present paper we suggest that such insight can be found in some works by Einstein
in quantum physics1. As historians know very well [8,9], Einstein’s contributions to
quantum theory were many and multifaceted, and several of them were actually ground-
breaking. In fact, many of the fundamental concepts that nowadays are at the core of
quantum mechanics have actually been introduced in some seminal paper by Einstein.
Despite this, much of this work is not included in usual curricula. As an example, we
may think of the way light quanta are introduced. After discussing Planck’s radiation
formula and its explanation in terms of the energy quantization formula ε = hν, it is
customary to go on immediately to the explanation of the photoelectric effect in terms
of light quanta, as if there was no conceptual leap between Planck’s statisticalhypothesis
of energy quantization and the interaction of individual light quanta with electrons in a
metal. Students in this way may get the idea that light quanta were introduced by Planck,
and Einstein’s contribution was limited to an application of this idea, while actually the
concept was born in Einstein’s work. The explanation of the photoelectric effect is of course
a revolutionary contribution2 (after all, it earned Einstein a Nobel prize) but it is, more
often than not, the only contribution of Einstein that is mentioned. The deep difference
between Planck’s hypothesis of energy quantization and Einstein’s hypothesis of light
quanta is not emphasized enough. Nor is there any mention of Einstein’s compelling
statistical reasoning (in fact, much simpler than Planck’s one) in order to put forward the
hypothesis that radiation itself is quantized [11]. The already mentioned great conceptual
leap involved in going from both energy quantization and the light quanta hypotheses,
which are statistical in nature, to the application of the latter to the photoelectric effect, in
which individual quanta are involved, is often not acknowledged. The photoelectric effect
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was not the only phenomenon which was explained by Einstein with his hypothesis. The
application of light quanta to fluorescence and Stokes’ rule, which is very insightful despite
being so simple, is often not considered. Yet, it provides a link between quantum physics
and everyday phenomena, which is highly desirable in teaching.

Apart from the mentioned issues, we recall that, historically, between the light quanta
hypothesis of 1905 and Bohr’s atomic theory of 1913 (which is typically the next topic in
courses), in 1909 there was the pivotal introduction by Einstein of the idea of wave–particle
duality for light, which was again the result of a statistical reasoning applied to the black
body radiation formula [12] (see also [13])3, and it shows that in fact both the wave and the
particle nature of light (i.e., not just the latter) are necessary for accounting for the observed
spectrum. This brilliant paper is usually left out of curricula.

Going some years forward, we arrive in 1916 at Einstein’s derivation of the Planck
formula in terms of atomic transitions [15] (also discussed by him in [16,17]). This result
actually sometimes does find its place in courses. However, the emphasis is nearly always
on the process of stimulated emission, which is of course a very important aspect to
be considered, in view of the fact that it was introduced for the first time in this paper,
and that it is the theoretical basis of modern lasers. On the conceptual level, the truly
revolutionary aspect of that paper was the recognition of the intrinsically probabilistic and
causality violating nature of the process of spontaneous emission. This was in fact the
first appearance of what can surely be considered one of the most puzzling, misconceived
and characteristic aspects of quantum physics, that is, the fact that quantum processes are
intrinsically probabilistic4.

In the literature, there are actually several references which do discuss one or more
of the aspects we listed at the undergraduate or graduate level, for example [18–24], even
if the practical necessity of going straight to full quantum mechanics and its applications
does not leave much time for exploring them. Typical high school books, on the other hand,
completely neglect these developments. It is our opinion instead that also high school
students should benefit from their discussion, if of course they are presented in a suitably
simple way. The same is true for teachers, with the advantage of their wider mathematical
and physical background, which allows them to appreciate deeper and more complete
treatments.

Most of Einstein’s papers are uniformly models of deep and clear physical thinking,
and they are also full of marvellous insight and philosophical discussions. Unlike many
papers by contemporaries, these works turn out to be very readable also for modern readers.
This is famously true for Einstein’s first paper about special relativity, dating back to 1905,
which is still quite useful to modern students. The same can be said about the above cited
pivotal papers about light quanta and quantum theory in general. Einstein’s papers can
therefore be a wonderfully stimulating reading for both teachers and, in a suitable selection,
students, who can then be enriched also from the general cultural point of view. Luckily,
they are also easily accessible: all of Einstein’s writings (up to May 1927 at the moment)
are freely available in English translation on the web [25], and translations in many other
languages are often republished. Among the enormous scholarly literature on Einstein’s
work, several excellent expositions of Einstein’s ideas on quantum physics are available.
For example, concerning the aspects we discuss, we mention [26,27].

Inspired by the above considerations, we have extracted a didactic path to quantum
physics from the papers by Einstein [11,12,15], which all deal with the quantum theory of
radiation. This topic is therefore the Ariadne thread of the path. This path could fruitfully
supplement and complement a standard history-based introduction to the subject. The
path is divided in three parts, each of which focusing on one of the papers by Einstein cited
above. In the present paper we describe the path in detail, by considerably extending the
outline we gave in [28].

In each part, we have tried to stay as close as possible to Einstein’s original reasoning,
while at the same time simplifying the mathematics whenever possible, and paying atten-
tion to not losing physical insight. Rigorous derivations that would be too demanding for
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the high school level have been substituted by heuristic, intuitive arguments. Of course
such a task requires that emphasis be put on clarity rather than on mathematical rigor.
Moreover, we have used modern notation. These choices should make the presented topics
and derivations affordable by students in the second half of their last high school year
(which is when they are typically exposed to quantum physics anyway), which have a
background in classical physics, including elementary kinetic theory and electromagnetic
waves5, and have already been exposed to elementary differential and integral calculus.
This way of presenting the material should also be useful for teachers (although in their
case one could well settle at a higher level, and in some case we give suggestions for
more advanced topics which can be introduced), since it puts it in a form that can then be
proposed by them in class.

Since basically all of Einstein’s fundamental ideas on light quanta came from statistical
considerations, we also included an introduction to the necessary tools of statistical physics,
again trying to explain them in as simple a way as possible, starting from the elementary
notions of kinetic theory that students can be assumed to possess. In particular, we intro-
duce Boltzmann’s entropy and its computation for the ideal gas case, which is necessary
for understanding part 1, and after that we discuss the Maxwell-Boltzmann distribution,
which is needed in part 3, and the Gibbs distribution together with its application to the
computation of statistical fluctuations, which are used in part 2. Einstein was a master of
statistical physics, and he gave fundamental contributions to it besides using it to uncover
quantum mysteries. Both in his papers on statistical and quantum physics it is customary
to find very clear explanations of statistical tools. Therefore we naturally took some of
these as inspirations for this part, when possible.

The statistical physics part could as well stand on its own to constitute the core of a
proposal to teach the elements of this subject to high school students. In fact, the teaching
of basic statistical physics is itself a very active area of research, with many different
proposals (see e.g., [29–33] for a sample; of these, the last one is especially suitable for high
school students).

Parts of this program are being currently tested during various outreach initiatives
aimed at introducing students and teachers to 20th century physics. We still do not have
quantitative results concerning the effectiveness of this approach (this will be the object of
a forthcoming publication). However, very encouraging preliminary results were obtained,
which prompted us to publish the general idea of our approach.

The paper is organized as follows: in Section 2 we give a summary of Planck’s law,
limiting the choice of topics to what is needed in the following. In Section 3 we describe
the statistical reasoning which led Einstein to the light quanta hypothesis, and discuss
the application to the Stokes rule of fluorescence. In Section 4, we discuss the statistical
computation which led Einstein to conceive wave–particle duality for light. In Section 5,
after a lightning resume of the postulates of Bohr’s theory, Einstein’s discussion of the
Planck’s distribution in terms of atomic processes is described. In Section 6 we develop
the needed tools of statistical physics, starting from Boltzmann’s formula for entropy and
its application to the ideal gas, and then going on to statistical distributions and energy
fluctuations. In Section 7 we describe how we are implementing our program, and the
preliminary results we got thus far. In Section 8 we give some suggestions about some
ways in which our program can be used and complemented.

2. Setting the Stage. Cavity Radiation and Planck’s Law

As most treatments on quantum physics, ours begins with a discussion of radiation
inside a cavity at thermal equilibrium, which as well known is an effective model of a black
body, that is, an object which can absorb electromagnetic radiation of any wavelength with
perfect efficiency. A black body is a remarkably good model to describe the electromagnetic
radiation emitted by a body in thermal equilibrium with its surroundings. This topic can
be treated in a standard way, and in this section we limit ourselves to highlighting the main
points which must be touched in order to understand the following discussions.
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Black body radiation has a well known experimental spectrum, which is of course
described by Planck’s law

u(ν, T) =
8πhν3

c3
1

e
hν

kBT − 1
, (1)

where c is the light velocity, kB is the Boltzmann constant and h is the Planck constant. The
quantity6 u(ν, T)dν is the energy density of radiation7 of frequency ν (or, more rigorously,
with frequency included in the very narrow interval between ν and ν+ dν) inside the cavity,
which is in equilibrium at temperature T. This law can be introduced as a phenomenological
function which fits experimental data on thermal radiation8.

Some discussion about the attempt to explain the above law by using classical physics
should be included. In particular, a heuristic discussion about how principle of equipar-
tition of energy (which students should know from elementary kinetic theory), when
applied to electromagnetic waves in a cavity, does not reproduce Planck’s law, but rather
the Rayleigh-Jeans law9

u(ν, T)dν =
8πν2

c3 kBTdν, (2)

should be given. The factor Z(ν) = 8πν2

c3 dν can be intuitively introduced as the “number
of electromagnetic waves” of frequency ν per unit volume, with ε = kBT being the average
thermal energy associated with each of them, hence equipartition tells us that the average
energy density per unit volume is given by (2). Intuitively, the “ultraviolet catastrophe” can
be understood by observing that the numbers of higher and higher frequency waves grows
unboundedly, so equipartition assigns them exceedingly large amounts of energy. This
will allow a heuristic explanation of why energy quantization, that is, the hypothesis that
energy can be exchanged between radiation and the walls of the cavity only in multiples of
the quantity ε = hν, affects the principle of equipartition of energy and allows us to obtain
Planck’s formula. A very nice discussion can be found in [34].

For what follows, it is vital to point out that the Planck distribution is essentially a
function of the ratio hν

kBT , that is of the energy quantum over the average thermal energy
per degree of freedom. Energy quanta associated with frequency low enough to ensure
that hν

kBT � 1 (the temperature, which sets the scale of what is meant by “low enough”, is
considered fixed), therefore, are much smaller than the average thermal energy, hence the
effect of energy quantization should be negligible. Indeed, we can use the fact that10, for
small x, ex ≈ 1+ x, to show the distribution (1) reduces to the Rayleigh-Jeans law (2), which
was obtained by a reasoning which ignored energy quanta. Notably, Planck’s constant h is
erased in the process. For this reason, this situation may be dubbed the “classical limit”.

On the other hand, energy quanta associated with a frequency high enough that the
condition hν

kBT � 1 is achieved, are much bigger than average thermal energy. In this
case the effects of energy quantization are expected to be maximally evident, so that this
limit can be christened the “extreme quantum limit". In this limit the exponential in the
denominator becomes much bigger than the −1, which can be neglected, and Planck’s law
reduces to the so-called Wien’s law11:

u(ν, T) =
8πh
c3 ν3e−

hν
kBT . (3)

In fact, as we shall see in the next section, it was by studying Wien’s distribution law
that Einstein was led to the hypothesis of light quanta. After this discussion, which shows
that this law is valid precisely when quantum effects are most evident, this should feel a
bit less surprising.
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3. Part 1. Einstein 1905: Light Quanta

In his 1905 paper [11], Einstein computed in an ingenious way the thermodynamic
entropy associated with thermal radiation described by Wien’s distribution (3), and com-
bined the result with the Boltzmann principle in order to understand its statistical origin.
The computation involves ordinary thermodynamics and the integration of a logarithmic
function, so it can be followed by students.

3.1. Entropy of Thermal Radiation

Let us start form the first principle of thermodynamics

TdS = dE + p dV, (4)

which implies that, when the volume is constant, that is, dV = 0,

dS
dE

=
1
T

. (5)

As announced, we are going to apply this formula to thermal radiation in a cavity,
in the extreme quantum limit, which is described by Wien’s law. Since the radiation
components of each frequency are independent by the superposition principle, we restrict
to a very narrow interval of frequencies [ν, ν + dν], that is, we consider monochromatic
radiation. What we shall say will hold for any value of the frequency ν (such of course
that the condition hν

kBT � 1 remains valid). Since we are at equilibrium, the energy of the
radiation in the cavity is uniformly distributed over the volume, so we can express the total
energy contained in the radiation in the considered interval of frequency as:

E = Vudν, (6)

where u is given by Wien’s law (3). We express the entropy in an analogous way:

S = Vϕ dν, (7)

where ϕ dν is the entropy density of radiation in the chosen frequency interval. Substitut-
ing (6) and (7) into (5) we get

dϕ

d u
=

1
T

. (8)

From this equation, we can compute ϕ. Inverting Wien’s law with respect to 1/T,
we have

1
T

= − kB
hν

ln
u c3

8πhν3 =
dϕ

d u
, (9)

so that

ϕ(u, ν) = − kB
hν

∫
ln
(

c3u
8πhν3

)
d u. (10)

This integral can be easily done by putting c3

8πhν3 u = x and integrating by parts:

ϕ(u, ν) = − kB
hν

u
(

ln
c3u

8πhν3 − 1
)
+ C, (11)
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where C is an integration constant. This expression, recalling Equation (7), allows us to
write down the entropy of the radiation in the cavity as a function of the volume:

S(V) = Vϕ dν = − kB
hν

V u dν ln
(

c3 E
8πhν3 V dν

− 1
)
+ C′, (12)

where C′ = VCdν. Our aim is to compute the entropy variation under an isothermal
and adiabatic transformation. Of course the calculation can be repeated for a cavity with
different volume V0, with the same E and T. The variation of entropy between these two
configurations is in fact given by a much simpler expression (in particular, the integration
constant C′ is the same in both cases, so it is erased):

S(V)− S(V0) = −
kBE
hν

ln
V0

V
=

kBE
hν

ln
V
V0

= kB ln
(

V
V0

) E
hν

. (13)

Strikingly, this has exactly the same form of the Boltzmann entropy variation for an
analogous transformation of an ideal gas, that is, the Joule free expansion, which is given

by: S(V)− S(V0) = kB ln
(

V
V0

)N
(this equation is derived in Section 6.1 from the Boltzmann

principle), provided we identify

E
hν

= N or E = Nhν. (14)

This identification has been boldly interpreted by Einstein by saying that the radiation
behaves statistically as if it were made up of N independent “quanta”, each of which has
energy given by Planck’s expression ε = hν, so that the total energy is the sum of the
energies of the individual quanta (which are independent just like the molecules of an
ideal gas).

As stated in the introduction, is important to emphasize that this statement is much
more revolutionary than Planck’s hypothesis, according to which only the exchange of
energy between the radiation and the walls of the cavity are discrete, but the radiation
propagates as waves as usual between emission and absorption. Here instead it is argued
that radiation itself is quantized, at least in the limit where quantum effects dominate
and Wien’s distribution law is valid. This hypothesis meant a complete divorce with
Maxwell’s very successful theory of electromagnetism and light, and a reconciliation
would have begun only later with the concept of wave–particle duality (see next section),
which showed that far from the Wien limit radiation is actually more complex than an ideal
gas of independent quanta.

It may be also appreciated that in this work Einstein used the Boltzmann entropy in
a peculiar and illuminating way [8], namely exploiting the expression of entropy coming
from thermodynamics to infer the statistical behavior of radiation, rather than the opposite
as was customary at the time. The statistical behavior that came out is just the same as that
of a bunch of molecules.

3.2. Some Applications of Light Quanta

The argument of the preceding section shows that cavity radiation behaves from
a thermodynamical point of view as an ideal gas of light quanta. There are however
more direct ways of confirming this conclusion, based on experimental evidence. These
applications actually go one step further because they assume that not only the statistical
behavior of the radiation is given by its corpuscular nature, but that the physical effects of
individual quanta can be measured. Hence they show that quantization of radiation is a
fundamental feature of Nature. It is to be stressed that these applications could not have
been imagined thinking about Planck’s theory, since, once again, in that theory radiation is
not quantized. In his paper [11], Einstein considered three applications, one of which is the
famous one to the photoelectric effect, which as we already remarked must be included in
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the track; here we omit it, as it can be treated in a standard way (e.g., as in [3]). However,
Einstein gave two more applications in his paper [11], which are never mentioned. These
are ionization by UV quanta and the explanation of Stokes’ rule of fluorescence. We have
found that the second one in particular can be useful and instructive. Such rule, in fact,
states simply that, when a fluorescent material absorbs light, it re-emits it with a lower
frequency. A well-known effect is the violet glow of white clothes which are exposed to
ultraviolet light, which is a phenomenon students have likely experienced (if they like
going to the disco for example). This rule is readily understandable in terms of light
quanta. Namely, a fluorescent material can absorb a light quantum, whose energy is ε = hν,
and emit it back. Since part of the energy is absorbed, the light quantum is emitted back
with a lower energy ε′ < ε. However, ε′ = hν′, hence ν′ < ν, which is precisely Stokes’
rule. Thus, the latter comes as an immediate consequence of the proportionality of energy
and frequency of light quanta. The last application, ionization by UV light quanta, can
be considered as well. In fact, the understanding of light as being constituted by light
quanta can give student an intuitive grasp of why radiation of short wavelength and high
frequency, such as UV light (and even more, X-rays and γ-rays), can be dangerous for the
health. Indeed, one speaks of ionizing radiation. The ionizing power of such radiation is
unexplained by the wave picture, while it is promptly understood by realizing that the
energy of high frequency radiation is distributed in a small number of “bullets”, which
therefore have enough energy to tear electrons away from atoms.

4. Part 2. Einstein 1909: Wave-Particle Duality for Light

At this point an important observation can be done. We have seen that the Planck
distribution reduces, in the classical limit, to the Rayleigh-Jeans law, which can be obtained
by applying the equipartition theorem to classical electromagnetic waves, while in the
“most quantum limit” it reduces to Wien’s law, which as showed above leads to considering
radiation as an ideal gas of non-interacting light quanta. The full Planck distribution
contains both these limits, and this means that, while for extreme values of the frequencies
either a purely wave or a purely corpuscular description of radiation can be used, for
intermediate values both aspects are relevant. In 1909 Einstein, in a brilliant paper [12],
gave a quantitative foundation to this observation. In fact, he again applied his mastery of
statistical physics to thermal radiation, this time to the full Planck distribution (1). This
time, instead of entropy, he computed quadratic fluctuations of the energy of thermal
radiation. This computation can be reproduced by using elementary statistical physics
methods, namely the Gibbs distribution, which implies that quadratic energy fluctuations
in a system at thermodynamic equilibrium are given by the equation:

(∆E)2 = kBT2 dE
dT

, (15)

where E is the average internal energy of the system. We introduce the Gibbs distribution
and prove the above equation in Section 6.3. In this case, the average energy of radiation of
frequency ν is given by

E = V u(ν, T)dν = V
8πhν3

c3
1

e
hν

kBT − 1
dν, (16)

where u(ν, T) is Planck’s distribution. Substituting this in (15) gives, after a straightforward
comoutation:

(∆E)2 =

[
hνu +

c3

8π

u2

ν2

]
Vdν, (17)

which was Einstein’s main result in [12]. We see that (17) is the sum of two terms. It is
apparent that the second term is the dominating one for low frequencies. This is the only



Universe 2021, 7, 184 9 of 25

one we would have got if the Planck distribution we had used the Rayleigh-Jeans one. In
fact, the form of this term is consistent with thermal radiation being made up of waves: if
we have a bunch of randomly superimposed waves in a cavity, at a certain point a wave of
a given frequency can interfere with a wave of slightly different frequency, creating beats
which in turn cause energy fluctuations. Thus, in such a picture fluctuations are given by
interference effects. This leads to their being quadratic in the energy density. Intuitively, the
latter fact can be inferred by the fact that the energy of a wave is proportional to the square
of its amplitude, so a fluctuation which doubles the amplitude makes the energy four times
bigger. This was originally argued by Einstein in [12] using dimensional analysis, while
explicit computations can be found in [20,22,23].

Concerning the first term, it is the leading one on high frequencies, where as we saw
the quantum aspect dominates. In fact, had we used the Wien distribution in place of the
Planck one, we would have only had this term. Consistently, it describes the fluctuations of
an ideal gas of corpuscles, all with the same energy ε = hν. This can be seen by observing
that in such a gas there will be on average N = E

hν corpuscles, so the quadratic energy
fluctuations can also be computed by (∆E)2 = ε2N = (hν)2N = hνE = hνuVdν, which is
just the first term of (17)12.

Equation (17) thus shows that the energy fluctuations for the full Planck distribution
involve both a particle contribution and a wave contribution, and that both are equally
important, apart from special limits in which one or the other dominates.

In this way, Einstein found that the statistical properties of thermal radiation are a
mixture of those expected from a wave theory and those expected from a particle theory,
with both contributions equally important at not too low or not too high frequencies. He
was led to suggest that this was leading to

a theory of light which can be interpreted as a kind of fusion of the wave and the
emission [that is, the corpuscular] theory

and he stated that

the wave structure and the quantum structure [...] are not to be considered
mutually incompatible.

This was the first time wave–particle duality was hypothesized, even if only for light.
This idea is particularly striking, since in classical physics the concepts of wave and of
particle seem to be mutually exclusive. In 1925 Einstein extended this argument to matter
particles [14], thus putting light and matter on the same footing.

Further elaboration allows us to introduce at this stage a fundamental principle of
quantum mechanics, namely the principle of correspondence, which is usually introduced
in connection with the Bohr atom (introducing it in that context would in fact be more
adherent to history, but we allowed ourselves to take licenses from history for didactic
purposes). In fact, light quanta are in a sense “smaller” if they are associated with radiation
of lower frequency, which means that radiation of very low frequency contains a lot of
them. Thus, in the expression E = Nhν for the energy, the number N, which may be
considered a first instance of a quantum number, assumes a very large value in this limit.
This is thus a situation in which a classical picture (the wave one) emerges when a quantum
number becomes large, which is precisely the content of the correspondence principle.

It is to be stressed that, while the argument presented in this section is statistical in
nature, the concept of wave–particle duality actually applies to the individual elementary
constituents of radiation. In fact, radiation can be regarded as being made of light quanta
for all frequencies, and these light quanta which have a double nature, of both waves and
particles. In fact, a frequency is associated with light quanta in all regimes. In particular, in
the Wien limit, such quanta have high energy, hence they are not many, and they are very
far away from each other; furthermore, they are associated with waves whose frequency
is very high, and hence of very short wavelength. Hence the wave nature is not evident,
consistently with the fact that radiation behaves as an ideal gas of light quanta. On the
other hand, as stressed in the preceding paragraph, in the classical limit the number of
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individual light quanta is much bigger, so they are on average much closer to each other.
Moreover, their associated waves have long wavelength, so they overlap and interfere
with each other, and classical electromagnetic waves emerge. The same double picture
holds for material particles such as electrons, in which case one speaks of matter waves.
This picture is still quite heuristic though, since in the full theory of quantum mechanics,
the famous Born rule interprets these waves as probability waves, which describe the
probability for the associated quantum to be in a certain position, while clearly wavelike
behavior manifests itself only when many quanta are involved, as it happens in classical
electromagnetic waves, or in electron beam diffraction experiments. Moreover, direct
measurements can never highlight wave behavior and particle behavior at the same time
(this is an instance of Bohr’s principle of complementarity).

5. Part 3. Einstein 1916: Probability

In another breakthrough paper [15], written in 1916, Einstein considered black body
radiation again, this time using concepts introduced by Bohr in his theory of atomic
structure, which had been introduced in 1913. In this paper, Einstein did not start from
the spectral distribution of thermal radiation, rather he investigated how a bunch of atoms
interacting with radiation, could be in thermal equilibrium with the radiation itself. In this
way he showed that equilibrium is achieved precisely when radiation obeys Planck’s law.
He thus had found, to use his words “an amazingly simple derivation of Planck’s formula,
I should say the derivation (Letter to M. Besso, 11 August 1916, emphasis in original)”.

In what follows, we shall not strictly follow Einstein’s treatment, rather we shall adapt
it to our purposes. In fact, our aim is not to derive Planck’s formula (although Einstein’s
derivation is in fact likely the simplest one in the literature, and could be affordable by
high school students), but rather to use it in order to gain information on the nature of the
elementary processes by which atoms interact with radiation.

Of course, Bohr’s theory is included in any course of quantum theory, and it can
actually be treated in a standard way (as e.g., in [3]). For what follows all we have to recall
is that, according to Bohr, electrons in atoms and molecules can only occupy one of a set
of stationary states with discrete energies ε1, ε2, and so forth, and transitions between
these states can occur (these are the famous quantum leaps). According to the Bohr theory
postulates, in the transition between a state with energy εm and another state with energy
εn < εm, the electron emits radiation with frequency given by the equation

εm − εn = hν, (18)

which represents the conservation of energy in the process. The inverse transition can be
induced if the electron absorbs radiation with the same frequency. This allowed Bohr to
explain qualitatively (quantitatively in the case on one electron atoms) line spectra of atoms
and molecules.

As said, Einstein considered an ensemble of atoms or molecules, which continuously
absorb or emit light quanta. He investigated in much greater detail than Bohr the elemen-
tary processes of atom-light interactions, singling out three of them, namely absorption of
a light quantum, stimulated emission (in which a light quantum hits an atom, stimulating
its decay to a lower energy state with emission of another quantum), and spontaneous
emission (in which an atom spontaneously decays to a state with lower energy emitting a
quantum). The process of stimulated emission was introduced for the first time by Einstein
in this work, and it is at the basis of modern lasers. As we shall see, it is crucial to include
it in order to account for the whole Planck distribution. Since the system is assumed to be
at thermal equilibrium, the various states of the atoms will be distributed according to the
Maxwell-Boltzmann distribution, and moreover this distribution should not change with
time, meaning that on average each transition from a state to another must happen with
the same rate as the inverse transition. This translates in a detailed balance equation, from
which the Planck distribution for the energy density of radiation follows. An interesting
historical fact underlines the revolutionary nature of these developments. When Bohr
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developed his atomic theory, he did not believe in light quanta; for him, in a transition, an
atom emitted a bunch of classical monochromatic electromagnetic waves. Einstein, on the
other hand, assumed that in any atomic transition, radiation is emitted or absorbed as a
single light quantum, whose energy matches the energy difference between the two states
involved in the transition, and he actually gave substantial evidence for that in the second
part of his paper (which however is too advanced to be considered here)13.

Let consider the three processes in more detail, starting with the process of absorption.
When a light quantum of frequency ν hits the molecule, if it has the right energy, it can
trigger a transition from a state Zn to a higher energy state Zm. Then the light quantum
yields all its energy to the atom, disappearing; in other words, it is absorbed by the atom.
We assume that the transition happens with a certain probability, which is proportional to
the spectral energy density of radiation u(ν, T) (such a process can be expected to occur
more often when there are more light quanta around). Specifically, the probability that the
transition happens in the time δt is given by:

δWa
n→m = Bmnuδt. (19)

Stimulated emission occurs when a light quantum hitting a molecule in the state Zm,
triggers a transition to a lower energy state Zn, with the emission of a second light quantum.
Since also this process relies on light quanta hitting the atom, the probability for it to occur
in the time δt is again proportional to the energy density:

δWst
m→n = Bnmuδt, (20)

where again Bmn is a constant.
Finally, spontaneous emission occurs when a molecule is in an excited state Zm. Then it

will decay to a lower energy state Zn spontaneously, that is, without an external stimulation,
with the emission of a light quantum. Since this process does not depend on the presence
of external light quanta, the probability for it to occur in the time δt is not proportional to
the energy density:

δWsp
m→n = Anmδt. (21)

In Equations (19)–(21), the quantities Bmn, Bnm and Anm are constants, depending on
the two states involved, which include the detailed information about the molecule.

As announced, let us now consider a bunch of atoms or molecules in thermal equilib-
rium with radiation, continuously emitting and absorbing radiation by means of the above
described elementary processes. In order to avoid unnecessary complications, we shall
assume that only one species of atom or molecule is present.

The hypothesis of thermal equilibrium means two things. First, the states of the
molecules will be distributed according to an exponential distribution, that is, the probabil-
ity for the atom to be in a stationary state with energy εn will be given by (this is justified
in Sections 6.2 and 6.3):

p(εn) = Apne−εn/kBT , (22)

where A is an inessential normalization constant and pn is the number of stationary
states which have energy εn, which is called the degeneracy of the energy level. In the
following, for simplicity, we shall assume that energy levels are not degenerate, that is, that
pn = 1 for any n. The inclusion of the degeneracies can be achieved in a straightforward
manner, but it would unnecessarily complicate the algebra. Second, being an equilibrium
distribution, (22) should not change with time, that is, it should not be altered despite
the atoms change state all the time. The latter condition means that any transition must
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occur with the same rate as the inverse transition, which in turns requires the validity of a
detailed balance equation. This condition is written as:

e−εn/kBTδWa
n→m = e−εm/kBT(δWst

m→n + δWsp
m→n), (23)

or, more explicitly,

e−εn/kBT Bmnu(ν, T) = e−εm/kBT(Bnmu(ν, T) + Anm). (24)

This relation must hold at any temperature T (as long as this is not so high as to ionize
the molecules, which anyway happens at a very high temperature). Solving Equation (24)
with respect to u(ν, T) we obtain

u(ν, T) =
Anm

Bmne(εn−εm)/kBT − Bnm
(25)

From Bohr’s postulate we have εn − εm = hν. We thus see that the above expression
looks like the Planck distribution (1). The latter is thus reproduced only if the A and B
coefficients satisfy the following relations:

Bmn = Bnm, (26)

and

Anm

Bnm
=

8πhν3

c3 or Anm =
8πhν3

c3 Bnm. (27)

Thus, by studying atoms in thermal equilibrium with radiation in terms of elementary
atomic processes, and by requiring that the result is in agreement with experiments (which
happens if the energy density is described by Planck’s law), we get much information
about the atomic processes themselves, through the relations (26) and (27)14. The first
tells us that the probabilities per unit time of the processes of absorption and stimulated
emission are equal. These processes are thus to be considered the inverse of each other, and
the equality of the probabilities signals their reversibility. The second relation expresses
the spontaneous emission coefficients as the product of the stimulated emission coefficient
associated with the same transition, multiplied by the factor 8πhν3

c3 which, as we recall,
describes the “number of waves” of frequency ν in the cavity (per unit volume). Intuitively,
this factor may be regarded as counting how many possibilities there are for emitting a
light quantum, or in other words how many possible states there are for the emitted light
quantum. The larger this number, the more probable is spontaneous emission, since there
are more possibilities for the light quantum to be emitted. The factor 8πhν3

c3 evidently grows
with the energy hν of the emitted photon15, meaning that spontaneous emission dominates
over stimulated emission in the high frequency limit. Since the temperature is fixed, this
is precisely what we dubbed the “extreme quantum limit”. A confirmation of this comes
from the observation that, if we assume that there is no stimulated emission, Equation (24)
reduces to:

e−εn/kBT Bmnu(ν, T) = e−εm/kBT Anm, (28)

which, upon solving with respect to u(ν, T), and using the Bohr postulate has the same
form of Wien’s distribution law (3), which is fully reproduced if Anm = 8πhν3

c3 Bmn. This
relation replaces (26) and (27) in this regime.

On the other hand, since for any frequency u(ν, T) grows with temperature, for T
high enough the spontaneous emission term will be negligible compared with the others
(in other words, there are so many light quanta around that stimulated emission occurs
much more frequently than spontaneous emission). This is precisely the regime where the
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Rayleigh-Jeans law (2) holds. In fact, the limit of large T with fixed frequency corresponds
to the regime in which the classical limit is valid.

The last two observations tell us that the extreme quantum regime and the classical
regime are dominated respectively by spontaneous emission and stimulated emission,
which in turn means that the quantum features are captured by spontaneous emission.
In fact, the process of spontaneous emission has a fundamental difference with respect
to the other two, since it is not triggered by the interaction with a light quantum. Since
there is no trigger, there is no way of predicting when spontaneous emission will take
place. The process seems to have no apparent cause, and it is necessary to assume that it
occurs, in a given interval of time, with a given probability, which is all we can know or
predict about it16. Since the radiation is emitted in a single quantum, this quantum has
to be emitted in a given direction. The direction in which the emerging light quantum is
emitted is unpredictable as well, that is, it ruled by a probabilistic law (which is simply a
uniform distribution since all directions are equiprobable). Thus, spontaneous emission is
an intrinsically probabilistic process, which seems to violate the principle of causality. This
behavior is actually analogous to that of radioactive decay of a nucleus, and in fact (21) was
introduced in analogy with the probability law for a radioactive decay. The upshot of all
this is that the full Planck distribution can only be reproduced if intrinsically probabilistic
and causality violating processes occur, and moreover these processes capture the “most
quantum” part of it, while they are suppressed in the classical limit. This means that
the quantum behavior, which, as we know very well by now, is encoded in the Planck
distribution, is inextricably linked with probability. This fact, which emerged in Einstein’s
work for the first time17, then became a pillar of the complete theory of quantum mechanics,
in fact constituting one of its most characteristic and mind-blowing features. It is to be
emphasized that this probabilistic aspect is very different from the one which characterizes
statistical physics (see next section). The latter, in fact, is due to the ignorance of the
observer of the underlying microscopic dynamics, and hence it is not intrinsic to the
latter. On the other hand, the probabilistic aspect of spontaneous emission is considered
to be fundamental, that is, intrinsic to the microscopic dynamics. It is an unavoidable
characteristic of the elementary atomic processes. Since a very common misconception
is that probability in quantum mechanics is due to instrumental limitations, just like
probability in statistical physics, this aspect has to be properly emphasized in the course.

6. Tools from Statistical Physics

Since basically all of Einstein’s fundamental ideas on light quanta came from statistical
physics, it is desirable to enhance our path by introducing the necessary tools of this
subject, starting from the elementary notions of kinetic theory that are part of the standard
curriculum. It is therefore the aim of this section to review, in a pedagogical way, some tools
of elementary statistical physics which are needed for discussing Einstein’s papers. As
stated in the introduction, also for these topics we take inspirations from Einstein’s papers
themselves. This part can be considered on its own as part of an introduction to elementary
statistical physics to high school students, who are already familiar with elementary kinetic
theory of gases as it is usually taught at school, and in fact the first half of it was used in
this way by us. The level of this section is comparable to that of the rest of the paper.

We start by introducing Boltzmann’s postulate for the entropy (which is also part of
the standard high school curriculum) and by using it for the computation of the entropy
variation of an ideal gas undergoing free expansion. This result is of course needed in Part
1 of the track for comparison with the entropy of radiation. For this topic to be followed,
some basics of probability theory, which should be part of the toolbox of any last year
pupil, are needed. For Parts 2 and 3 a slightly more sophisticated tool is needed, namely
the probability distribution of the energies of states of a system in thermal equilibrium, and
its application to computing averages and fluctuations. This is introduced starting from the
Maxwell distribution of velocities of the molecules in an ideal gas at equilibrium, which
again is part of standard curricula. This tool is used in Part 2 to compute the quadratic
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fluctuations of energy and in Part 3 to describe the equilibrium distribution of atomic states.
Some familiarity with the use of probability distributions, which again should be part of
the standard mathematics curriculum, is desirable.

6.1. Boltzmann’s Formula and the Entropy of an Ideal Gas

In kinetic theory and statistical physics, an ideal gas is modelled as a set of N non-
interacting molecules18, which for a monatomic gas are considered Newtonian point
particles. It is of course not our aim to dwell on the various conceptual subtleties involved
in this topic. Instead of computing the entropy of the ideal gas in a given state (the so-
called Sackur-Tetrode entropy), which requires quite sophisticated tools, we shall actually
limit ourselves to computing the entropy variation under an adiabatic and isothermal
expansion, since this is all we need for dealing with light quanta. We shall give an intuitive,
yet quantitative treatment, which is an elaboration of that presented by Einstein in 1905
(cf. [11], Section 5).

One of the basic postulates of statistical physics (called Boltzmann’s principle) says
that the entropy of a given thermodynamic configuration M of a thermodynamic system,
which for us is our ideal gas, is given by

S(M) = kB ln W(M) + C, (29)

where C is a constant which depends on the system, and the quantity W(M) (which may be
called multiplicity) is the number of possible configurations of the gas molecules (which are
called microstates) which build up the thermodynamic state M (which is called macrostate)
in question. Another fundamental principle of statistical physics is that all microstates
are equiprobable.

The quantity W(M) can be intuitively considered a measure of the disorder of the
state, in the sense that a disordered state can be made up in more ways, therefore more
information is hidden to the macroscopic observer. The precise definition of W(M) is
somewhat subtle, but this is not actually a problem for us, for the following reason. In
view of the principle of equiprobability of microstates, we can define the probability of the
macrostate M by using the naive frequentist definition

P(M) =
W(M)

total number of microstates
. (30)

The “total number of microstates” is actually a subtle quantity whose definition is
highly nontrivial. However, for what will concern us here, it will cancel out without giving
any problem (the same considerations apply to the constant C in (29), by the way).

As is known from thermodynamics, an equilibrium state of the ideal gas is specified
by the variables p, V and T. However, just two of them are independent as a consequence
of the equation of state pV = nRT, where R is the universal constant of ideal gases. If we
choose to use V and T, then Boltzmann’s principle allows us to write down the entropy
associated with the thermodynamic state (V, T) as:

S(V, T) = kB ln W(V, T) + C. (31)

Accordingly, the quantity W(V, T) represents the number of configurations of the N
molecules compatible with the fact that a macroscopic observer measures a volume V and
a temperature T for the gas.

Let us now consider the following situation: an ideal gas is initially in equilibrium
at temperature T in a volume Vi. We denote this macrostate as Mi = (Vi, T). Then, while
being isolated from the outside world, the gas is allowed to freely expand to a volume
Vf > Vi. This is known as Joule expansion, and the thermodynamic of the ideal gas
tells us that this is an adiabatic and isothermal process. Therefore, when the gas reaches



Universe 2021, 7, 184 15 of 25

equilibrium again, it will have the same temperature T. This means that the final macrostate
will be M f = (Vf , T). The variation of entropy in the process is thus given by:

∆S = S(Vf , T)− S(Vi, T) = kB ln
W(Vf , T)
W(Vi, T)

= kB ln
P(Vf , T)
P(Vi, T)

. (32)

We see that the troublesome “total number of microstates” cancels out when com-
puting ratios of the W’s, which are therefore the same as ratios of the probabilities. The
constant C cancels out as well. This is the main advantage in computing an entropy varia-
tion rather than an entropy. Now ratios of probabilities are computed straightforwardly
by an elementary symmetry argument, based on the postulate that all microstates are
equiprobable19. Suppose we only have one molecule. Since the molecule a priori has the
same probability of being in any point of space, the ratio of the probabilities that it be inside
two volumes is the same as the ratio of the volumes themselves

P1 molecule(Vf , T)
P1 molecule(Vi, T)

=
Vf

Vi
. (33)

This is true for any molecule of the gas. Since the gas is ideal, so by hypothesis there
is no interaction between the molecules, all the molecules are independent. Therefore we
have, for N molecules

P(Vf , T)
P(Vi, T)

=

(Vf

Vi

)N

, (34)

by the law of multiplication of probabilities of independent events. Thus

∆S = kB ln
P(Vf , T)
P(Vi, T)

= kB ln
(Vf

Vi

)N

= NkB ln
Vf

Vi
. (35)

If we recall from kinetic theory that N = nNA and NAkB = R, where NA is the Avo-
gadro number, we see that we have recovered the well known result from thermodynamics

that ∆S = nR ln
Vf
Vi

for the Joule expansion. The intuitive meaning of this formula is that if
the volume occupied by the gas increases, the disorder grows, since there are more ways
of putting N molecules in a bigger volume than in a smaller one, therefore the entropy
variation is positive. Viceversa, if the volume decreases (we can think of a configuration in
which all the molecules occupy only a small fraction of the available volume), the entropy
decreases. To use an ever more intuitive picture (which will be familiar to untidy students),
we can think of a room in which many objects are scattered all around, as opposed to the
situation in which all the objects are put in order in drawers, cupboards, and so forth.

6.2. The Maxwell-Boltzmann Distribution

As already noticed, the computations performed in Einstein’s papers of 1909 and
1916, involve the statistical distribution of energies at thermal equilibrium. This tool can
be introduced and discussed at various levels. A standard derivation from Boltzmann’s
postulate involves Stirling’s approximation and Lagrange multipliers, hence it is not
suitable to high school students20. However, for our purposes it is sufficient to have an
intuitive insight into it. In this subsection and in the next, we seek to provide such an
insight, with no claim of mathematical rigor, for the case of the ideal gas. In particular,
we shall not attempt to prove that the results we get also hold for non-ideal systems like
thermal radiation far from the extremely quantum limit, limiting ourselves to assume that.

The energy distribution can be thought as a generalization of the Maxwell distribution
for the velocities of the molecules in an ideal gas at equilibrium. The probability that the
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velocity of a gas molecule is comprised in the very narrow interval between v = (vx, vy, vz)
and v + d v = (vx + dvx, vy + dvy, vz + dvz) is given by21 dP(v) = f (v)dvxdvydvz, where

f (v) = Ae−
mv2

2kBT , (36)

where A is an inessential normalization factor, whose role is to ensure that the probabilities
for all possible events sum up to one, and m is the mass of the molecules. For simplicity, we
consider a gas made up of a single species of molecules, which therefore are all identical.
Since the distribution depends only on the modulus of the velocity, it can be cast in a way
that gives the probability of v being comprised between v and v + dv. In this way, the
Maxwell distribution tells us that

dP(v) = Ae−
mv2

2kBT 4πv2dv. (37)

This is the form of the distribution which is usually shown to students22. One way
to understand intuitively the factor 4πv2 is the following. The fact that there are many
possible velocity vectors that share the same modulus v has to be taken into account. These
vectors in fact point in all possible directions and have the same length, hence they are like
the radii of a sphere of whose radius length is v. Such a sphere has a surface 4πv2; this
quantity gives a measure of the number of velocity vectors with modulus v. It is what is
commonly called the density of states in more advanced treatments.

We recognize, in the exponent of the distribution, the kinetic energy of a molecule with
speed v, that is, ε = 1

2 mv2. Instead of the distribution of velocities then, we may consider
the distribution of energies, and give the probability that the a molecule has kinetic energy
in the narrow interval between ε and ε + dε is:

dP(ε) = Ae−
ε

kBT ω(ε)dε. (38)

where by a slight abuse of notation we again denote by A the normalization constant, and
ω(ε) is essentially the number of possibilities for a particle to have kinetic energy ε (it is the
analog of the 4πv2 in (37)23). This form of the distribution is sometimes referred to as the
Maxwell-Boltzmann distribution. The probability of being in an interval that is not narrow

is of course P(ε1 < ε < ε2) = A
∫ ε2

ε1
e−

ε
kBT ω(ε)dε.

While we have considered the ideal gas case, the Maxwell-Boltzmann distribution in
fact describes the equilibrium distribution of the energies ε of the elementary constituents
of more general thermodynamic systems. It is possible for example that the elementary
constituents can occupy only a discrete set of levels. In that case the statistical distribution
is expressed as

P(εn) = Apne−
εn

kBT , n = 1, 2, . . . , N. (39)

where pn is the number of levels which share the same energy (it is the analog of the
function ω(ε)), and N is the number of elementary constituents. In the 1916 paper [15],
Einstein considered in fact atoms or molecules with discrete energy levels according to
Bohr’s theory, and thus used the Maxwell-Boltzmann distribution in this form.

Once we have the probability distribution of the energies, we can use it to compute
the average value of the energy of an elementary constituent (i.e., of a molecule in the case
of the ideal gas). As with any probability distribution, this is computed by:

ε = ∑
n

εnP(εn) = A ∑
n

εn pn e−εn/kBT (40)

for the case of (39), and by

ε =
∫

εP(ε)ω(ε)dε = A
∫

εe−ε/kBTω(ε)dε (41)



Universe 2021, 7, 184 17 of 25

for the case of (38). Here the integral is extended to all possible values of the energies. In
the case of the ideal gas, it is possible to show that this computation reproduces the result
from elementary kinetic theory that ε = 3

2 kBT (if the gas is monatomic).
Let us now keep in mind the case of the ideal gas for simplicity. While the average

energy per molecule is ε, any particular molecule will have an energy which is different
from that value: either higher, or lower. It is said that the energies of the molecules
fluctuate around the average value ε. To quantify these fluctuations we could consider
all the possible differences ∆ε = ε− ε and average them with the Boltzmann distribution.
Actually, since by definition ∆ε = ε− ε = 0 (the contribution of molecules with lower than
average energies compensates that of molecules with higher than average energy) this
will work if we take the squares (∆ε)2 = (ε− ε)2. The average of this quantity, (∆ε)2 is

the so-called quadratic fluctuation, or equivalently its square root
√
(∆ε)2 if we want to

keep the same dimensions, measures how much the energies of the molecules tend to be
different from the average, that is, it measures how wide the probability distribution is. In
1909 Einstein actually computed the energy fluctuations of the whole radiation contained
in the cavity. In the ideal gas case, this corresponds to computing the thermal fluctuations
of the energy of the whole gas. In the next subsection we shall see what that means, and
how it can be done.

6.3. The Gibbs Distribution and Energy Fluctuations

In order to understand Einstein’s 1909 computation, one more tool is needed, namely,
the Gibbs (ensemble) distribution, which describes the distribution of energies of the
whole system, rather than those of its elementary constituents, like the Maxwell-Boltzmann
distribution. A rigorous discussion of the Gibbs distribution would require introducing the
ensemble picture of statistical physics, in which the focus is not on the many elementary
constituents of a single copy of the system, but rather on many different copies of the
system. This topic has subtle foundations, and introducing it properly would require quite
a large conceptual leap. Therefore, in this subsection, we introduce this distribution in a
non-rigorous, yet intuitive way, for the case of the ideal gas.

The starting point is the observation that even if the gas is enclosed into a container, it
will likely not be isolated from the external environment. Rather, the gas will be able to
exchange energy with the external environment through the walls of the container. In fact,
it is exactly this energy exchange which allows the gas to be in thermal equilibrium with the
environment. When this is the case, the energy that the gas absorbs from the environment
has to be on average equal to that that it gives back to the environment, otherwise it will
heat up or cool down, in contradiction with the hypothesis of equilibrium. However, since
the exchange of energy between the gas and the environment is ultimately due to atoms
hitting the wall, and such atoms are not infinitely small, the energy of the gas will not be
exactly equal to its average, but it will fluctuate around it, hence it will be described by a
probability distribution, just like the energies of the individual molecules. This is the Gibbs
distribution. In fact, for the ideal gas case, the Gibbs distribution can be obtained by a quite
straightforward extension of the Maxwell-Boltzmann one, and the two distributions share
the same mathematical form. According to the Gibbs distribution, the total energy of the
system is comprised in the narrow interval between E and E + dE with the probability

dP(E) = Ae−
E

kBT ω(E)dE (42)

where as usual A is a normalization constant and ω(E) denotes the number of possible
ways for the system of having energy E. Again, the actual computation of this factor
involves several subtleties, but fortunately its exact form is not needed for our discussion.
The standard way of interpreting (and proving) this distribution consists in imagining a set
(in French, an ensemble) of identical copies of the container with the ideal gas, all at thermal
equilibrium with the environment, and each one with a value of the total energy24. Then
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Equation (42) describes the distribution of the values of the energy among all the copies of
the system. For this reason this is also referred to as the Gibbs ensemble distribution.

A possible way of justifying this expression is the following. Due to the absence of
interactions and correlations, an ideal gas can be thought as an ensemble of copies of a
single molecule. The energies of the molecules, hence of the copies, as we saw in the
previous subsection, are distributed according to the Maxwell-Boltzmann distribution (38).
By drawing a parallel between the molecules in a single copy and the ensemble copies
of the ideal gas, one may intuitively grasp why the two distributions have the same
mathematical form.

The Gibbs distribution allows us to compute the average value of the energy of the
system and its quadratic fluctuations. Since it has exactly the same mathematical form
of (38), the average energy will be given by a formally identical expression:

E =
∫

EP(E)ω(E)dE = A
∫

Ee−E/kBTω(E)dE (43)

The energy fluctuations can be computed by an effective formula, which was derived
by Einstein himself in 1904 [41]25. As we noticed above, we have ∆ε = ε− ε = 0 for the
single molecule energy. Analogously, we have ∆E = E− E = 0 for the energy of the whole
system. This equality can be written explicitly as

0 = A
∫ (

E− E
)
e−E/kBTω(E)dE. (44)

Now, we can differentiate both sides of this equation with respect to the temperature T:

0 = A
∫ (
− dE

dT
e−E/kBT +

(
E− E

)
e−E/kBT E

kBT2

)
ω(E)dE

= A
∫ ( E2

kBT2 −
EE

kBT2 −
dE
dT

)
e−E/kBTω(E)dE =

E2

kBT2 −
(E)2

kBT2 −
dE
dT

, (45)

where in the last equality we used Equation (43). This can be rearranged as:

kBT2 dE
dT

= E2 − (E)2. (46)

The second term is nothing but the quantity we are looking for, since it can be ex-
pressed as:

(∆E)2 = E2 − 2EE + (E)2 = E2 − 2(E)2 + (E)2 = E2 − (E)2, (47)

so we obtain the final formula26

(∆E)2 = kBT2 dE
dT

, (48)

This result has the interesting meaning (greatly emphasized by Einstein himself) that
the quadratic energy fluctuations are proportional to Boltzmann’s constant kB. This means
that, in typical situations, they are to be expected to be small. In other words, the size of
fluctuations is related to that of atoms. Moreover, we notice that the derivative in the right
hand side of Equation (48) describes the variation of the internal energy of the system with
the temperature. In other words, it is the specific heat of the system, which describes the
ability of the system to absorb energy without raising its temperature too much. From
the macroscopic point of view, as well-known, when a system absorbs energy, much of
which is then turned into heat (a typical example being friction), this energy is said to have
been dissipated. Hence, Equation (48) links the fluctuations of the energy to the ability of
the system to absorb energy and dissipate into heat. It is thus an example of a so-called



Universe 2021, 7, 184 19 of 25

fluctuation-dissipation relation. Such relations are ubiquitous in statistical physics, and
indeed the earliest examples of them are found in Einstein’s works [8].

Although our heuristic discussion holds only for the case of the ideal gas, the Gibbs
distribution actually is valid for much more general systems in thermal equilibrium with
their surroundings. In particular, it holds in situations where there are interactions and/or
correlations between the elementary constituents of the system. In fact, in more advanced
courses (a standard reference is [43]) one typically derives this distribution first, and then
applies it to the ideal gas, where it is shown that the energies or the velocities of the indi-
vidual molecules obey the Maxwell-Boltzmann distribution by exploiting the fact that (up
to a combinatorial subtlety) the Gibbs distribution factorizes. The distribution of discrete
energy levels of elementary constituents (39) can be derived from the Gibbs distribution
in the hypothesis that there are no correlations among the elementary constituents. It
is possible to prove that this is exactly the case for a bunch of atoms in interaction with
radiation, since (apart from special situations such as lasers) light thermalizes much more
quickly than atoms. This justifies the use of the distribution (39) in Section 5.

The justification of the use of the Gibbs distribution and of formula (48) in Section 4
comes then from the fact that thermal radiation is a system at equilibrium as well. It
is worth noticing that thermal radiation is an ideal gas only in the Wien limit, while in
general it is not describable as a system of independent light quanta27. In [12] Einstein
computed the thermal fluctuations of thermal radiation for all regimes using the fluctuation
Formula (48). We discuss this computation in Section 4. In the next subsection, instead,
following [41], we apply the fluctuation formula to the ideal gas case.

6.4. Thermal Stability of the Ideal Gas

To use Formula (48), we need to know the average internal energy for the ideal gas.
Let us consider for simplicity the monatomic case. In that case, we know from kinetic
theory that ε = 3

2 kBT. Then the average internal energy is given by E = Nε = 3
2 NkBT, so

we get

(∆E)2 =
3
2

N(kBT)2. (49)

The quantity that measures wether fluctuations are small (in Einstein’s words, the
thermal stability of the system) is actually the ratio of the fluctuations with the energy, that
is, the relative fluctuations. This may be defined as

ξ =

√
(∆E)2

E
. (50)

According to Einstein, if this quantity is large, fluctuations of the systems are very
large and can be observed. For the ideal gas we have

ξ =

√
2

3N
∼ 1√

N
. (51)

This shows that the relative strength of the fluctuations decreases as the number
of molecules N grows, in agreement with the expectation that for very large number of
molecules, fluctuations with respect to the average values of thermodynamic quantities
should be unobservable. Historically [8], it was likely the realization that fluctuations
would be very difficult to observe in typical systems such as gases that led Einstein to
study both thermal radiation and the Brownian motion28. In fact, ref. [41] was the very first
instance in which Einstein computed energy fluctuations of thermal radiation, although in
that case he got a wrong result [8].
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7. Implementation and Preliminary Results

The track was tested with both teachers and selected students attending their last year.
Students were initially exposed only to part 1, and to the Boltzmann entropy part. More
recently, we began introducing them also to the Maxwell-Boltzmann distribution (without
the fluctuation formula) and part 3. Teachers instead were also exposed to part 2, and in
some cases to all three parts, including a review of the statistical tools. This was done in
the course of outreach activities performed in various high schools in southern Italy. The
preliminary results are very encouraging. Informal tests were administered to teachers and
students before and after the lectures, in order to evaluate their progress. Before the course,
a part of the teachers admitted having some difficulties with quantum physics. After
the course, most teachers claimed having obtained a more intuitive grasp of the relevant
quantum concepts. Two facts seem to have concurred to this result. First, the concepts
were not introduced in an abstract way, but rather with constant reference to a concrete
physical system, namely thermal radiation; the continuous confrontation with the still more
visualizable model of the ideal gas also helped. Second, the historical development was
really seen as accompanying an increasing clearer and more detailed picture of quantum
phenomena, specifically those concerning light and light-matter interaction.

The responses of the teachers emphasized how they managed to see quantum physics
from a new point of view, which helped them to overcome some criticalities in their
understanding. All of the tested teachers, including those whose major was in physics and
therefore had had a more complete education in quantum physics, appreciated the fact that
the presented material was new for them, since it was not presented in the textbooks they
studied, nor in the ones they use in teaching. While most teachers were in fact familiar with
the idea of light quanta, they considered the statistical picture of wave–particle duality as
a useful complement to the usual one that is taught, namely the De Broglie one. In fact,
before being exposed to Part 2 of the track, many teachers did not actually realize that
Planck’s law does not imply in general that light is made up of an ideal gas of quanta: this
picture is actually valid only in the Wien limit, while in general it is more correct to think at
thermal radiation as a manifestation of both the wave and the particle natures of light (or
by a quantum ideal Bose gas, although this goes beyond our track). Usual treatments do
not clearly state this, hence generating this diffuse misconception.

The introduction in Part 3 of probability in analogy with radioactive decay was judged
useful as well. In fact, as we already remarked, a diffuse misconception is the belief that
the probability of spontaneous emission is conceptually the same as the probability in
classical statistical physics, that is, due to the limited amount of information available
on the inner workings of atoms, rather than an intrinsic feature of Nature. After all, this
view was advocated by Einstein himself. We observe that analogous misconceptions are
often observed concerning Heisenberg’s uncertainty principle, which often is thought to
be due to instrumental limits (see e.g., [1,44]) rather than fundamental. Therefore, proper
emphasis has to be devoted to this issue while developing Part 3. If this is not done, indeed,
there is the risk that the above misconception is propagated. Stressing this aspect, instead,
allows attendees to reach an increased consciousness of the intrinsic nature of probability
in quantum mechanics, and should equip them to appreciate also the related fundamental
nature of the uncertainty principle, when they tackle it in their later studies.

The students, for their part, all claimed to be intrigued by quantum physics and by
the possibility of understanding it better, and also by the fact of being exposed to less
well-known parts of Einstein’s work. In fact, while most of them did know that Einstein
contributed to quantum physics, they did not perceive how great his contribution was.
Students admitted that they found the study of the presented material quite demanding,
but also rewarding. Students, like their teachers, claimed that the deep study of a definite
physical system had been helpful. In fact, some of the students had already been exposed to
the concept of thermal radiation and of energy quantization, and had found them obscure
and detached from subsequent topics. Einstein’s treatment had the result of clarifying
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that. As a final outcome, we also observed that students found the explicit application of
Boltzmann’s entropy to the ideal gas and to radiation useful and illuminating.

8. Discussion and Conclusions

In this paper, we have described a teaching–learning sequence aimed at introducing
high school teachers to some relevant concepts in quantum and statistical physics. Our
inspiration was found in the history of physics, which has often been considered as useful
in teaching. Preliminary investigations with both teachers and selected students, performed
in the course of outreach activities, gave encouraging results, clearly showing that the track
helped the attendees clarify some conceptual issues and to get some intuitive grasp of the
involved concepts. This has stimulated both a larger scale research, also with the inclusion
of more students, which should begin in the near future, and also the extension of the
track presented to students by the incorporation of more statistical mechanics. We plan to
present quantitative results and a more complete study in a forthcoming publication. It is
clear to us that Part 3 and especially Part 2, with the related discussion of the Boltzmann
distribution and of fluctuations, are a bit more demanding for students than Part 1. A full
course including all the material can easily exceed time constraints, especially if proposed
in the regular school hours (but it can still be considered in outreach activities). However,
the reduced path consisting of only Part 1 and the discussion of Boltzmann’s entropy has
already proven very useful. In fact, this was the original seed from which the whole path
grew up. We also believe that a very good compromise for high school students is the
combination of Part 1 plus Part 3, with a discussion of the material in Section 6.1 and
of the first half of Section 6.2, omitting the discussion on the Gibbs distribution and of
fluctuations. However, we aim at testing the response of students to the remaining parts
to students in a future publication. Preliminary results instead seem to indicate that a full
discussion of Parts 1, 2 and 3, with the related statistical tools and various complements can
instead safely be proposed to teachers undergoing in-service or pre-service formation. We
also think a slightly modified form, our track can also form the basis of an undergraduate
course emphasizing the more historical aspects of quantum physics. In this context, one
can of course also exploit the excellent dedicated literature [20–23].

Of course, as it is developed in this paper, our track does not constitute a complete
course in quantum physics but rather, as explicitly stated in the introduction, it is meant to
supplement such a course. Obviously, the parts that we streamlined in this presentation,
because we thought that they could be treated in a standard way, must be fully developed
in a complete course.

The track is centered on (or better limited to) the most important contributions by
Einstein to thermal radiation theory, but of course these were not the only ones. Our
choices were dictated by didactic, not historical, purposes even though in the course of
developing the path a good number of interesting historical facts can be told. While we
aimed at making some parts of Einstein’s physics more well-known among students and
teachers, our intention was not to do justice to all of his contributions to quantum theory.
Such an exposition would require a long and far too advanced course. However, many
more of Einstein’s contributions could be of didactic relevance, also at the high school level.
For example, Einstein’s explanation of the low temperature behavior of the specific heat
of solids in terms of quantum theory [45] is at least as ground-breaking as the work on
radiation, proving in particular that quantum effects were pervasive and not specific to
thermal radiation. We are currently considering the possibility of modifying the path by
including this and other results.

More importantly, the path entirely unfolds in the realm of old quantum theory. After
it is completed, an introduction to the basics of the full theory of quantum mechanics must
be given. For this, a very rich literature has developed (see e.g., [1] and references therein),
hence there are various ways in which our proposal can be complemented. Currently, the
merging with other paths which are more oriented towards the full theory of quantum
mechanics and more modern and trendy topics, such as entanglement, teleportation
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and quantum computation (and of course the EPR argument), is under study. We have
developed our own proposal for such a path in [46], again taking some inspiration from
the heroic history of quantum mechanics.
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Notes
1 Interestingly, Einstein himself adopted a point of view concerning the conceptual use of history in teaching similar to

that expressed by the present authors in the wonderful book [7].
2 It has even been proposed that it should be the starting point for teaching quantum physics [10] (this is also the

teaching strategy of [3], but only in newer editions), since it avoids the subtleties of statistical physics. We may
agree with this claim if the teaching–learning sequence is severely time constrained, but we think that students can
benefit from a suitable treatment of statistical physics, and it is our point here that such a treatment can indeed help
in grasping some quantum concepts. Moreover, thermal radiation is a very important topic in its own right, with
many applications.

3 This result was later extended by him to the case of matter along the same lines [14]. Thus Einstein introduced
wave–particle duality indipendently of De Broglie, and his arguments rest on a completely different basis. The two
approaches can be regarded as complementary, since Einstein’s one is statistical in nature, while De Broglie’s one
applies to individual (light or matter) quanta.

4 It is fair to recall that Einstein himself, unlike other founders of quantum mechanics, did not regard this introduction
of probability as a fundamental one, but rather due to our ignorance of the true internal working of atoms. Hence,
for him, this probabilistic aspect was not fundamentally different from those emerging in statistical physics. He was
very disturbed by the lack of causality (“I, at any rate, am convinced that He is not playing at dice.” Letter from A.
Einstein to M. Born, 4 December 1926, emphasis in original), and famously kept this viewpoint for all his life.

5 We point out in passing that for a better grasp of the topics of the path, and of elementary quantum theory in general,
at least the qualitative idea that accelerated electric charge radiate electromagnetic waves has to be introduced.
Because of the complexity of a full treatment, this topic is usually omitted from high school courses. However, this
idea underlies thermal radiation and it was the main motivation for the inadequacy of Rutherford’s atom and its
substitution with Bohr’s model. Hence, when presenting the material to students, we typically include this topic as a
preliminary, with a brief discussion of Larmor’s formula, without derivation of course.

6 A word about notation: in this paper we deal with thermodynamic systems made up of a large number of elementary
constituents, hence different notions of energy come into play. We denote by E the total energy of the system, by u
the spectral (i.e., per unit frequency) energy density, and by ε the energy of an elementary constituent, such as a gas
molecule or a light quantum.

7 Students should have the notion of the volumic energy density of an electromagnetic field.
8 In fact, before explaining it with energy quantization, Planck wrote it down by fitting the experimental curve.
9 We point out that a very clear discussion can be found in the first section of [11], to the point that some authors, such

as [8], refer to (2) as the Rayleigh-Einstein-Jeans law.
10 To avoid discussing Taylor series this can be easily explained by saying that the exponential function is approximated

by its tangent in the point x = 0 in a neighborhood of that point.
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11 In fact this law (not to be confused with Wien’s displacement law) was obtained before Planck’s one by a semi
empirical reasoning based on the Maxwell distribution, which indeed has a very similar mathematical form (cf.
Section 6.2).

12 A more rigorous explanation of why this result has the same form as that expected for a bunch of independent
molecules involves the Poisson distribution, which describes “counting” particles, and can be found for example
in [35] or in [36].

13 The crucial idea is that, unlike the emission of a spherical electromagnetic wave, the emission of a light quantum is
intrinsically directional, hence the atom recoils after the emission.

14 At this level, there is no way of computing the A and B coefficients. The computation of these coefficients by first
principles was achieved in 1927 by Dirac, when quantum mechanics was fully developed and applied to radiation.

15 Another thing to notice is that, since there are many possible states in which the emitted quantum can go, the process
of spontaneous emission is irreversible in a statistical sense. Actually, by engineering appropriate cavities, it is
actually possible to change the number of states, which through Equation (27) allows us to actually manipulate
the spontaneous emission probability, which can be suppressed or enhanced. For example, by considering a cavity
which is so small that, so to speak, there is no room for the waves to be into it (i.e., if the dimensions of the cavity are
smaller than the wavelength), the number of possible states can be greatly reduced, and this in fact can suppress
spontaneous emission. In extreme cases, the number of possible states can be reduced to one, thus making the
process of spontaneous emission reversible. Radiation stays in the cavity long enough that it can be reabsorbed
by the atom before being dissipated, and this generates oscillations between lower and higher atomic states. Such
phenomena are the object of a very active research area nowadays (see e.g., [37] for a very clear review).

16 The other two processes depend on a well defined cause, that is the molecule being hit by a light quantum, so in that
case the probability is related to the occurrence of that event. Hence the probabilistic nature of spontaneous emission
is on a very different footing with respect to that of absorption and stimulated emission.

17 True, the same law appeared even earlier in radioactive decay, but for many years nobody could tell whether the
nucleus obeyed the same quantum laws which hold at the atomic scales.

18 This model of course is good for describing the equilibrium state, not the process of relaxation to it, for which it
is necessary to consider collisions between molecules; the equilibrium state is then characterized as non-changing
under collisions. Here we only consider equilibrium states, so we do not need to concern about this complication.

19 This is a simple generalization of the argument by which we say a priori that in tossing a coin we get heads with
probability 1/2.

20 This derivation, originating from [38], is excellently presented in [39], and it can be used in place of the arguments in
this subsection with a more advanced audience.

21 Usually the Maxwell distribution is expressed in terms of the number of molecules with velocity comprised in that
interval, which is dN(v) = NdP(v), where N is the total number of molecules.

22 Typically high school students are exposed to the Maxwell distribution without proof. In that case, instructors may
consider devoting some time to a simple proof of it. A very nice and instructive one which can be considered is
that given by Maxwell himself in 1860 [40]. This proof uses the fact that an ideal gas is isotropic, and the statistical
independence of the probabilities associated with each component of the velocity. The latter observation implies
that we may write the function f as a product of functions, each one expressing the probability associated with
that component; by isotropy, the distribution of the velocities along the three directions must be the same, hence
these three functions must be equal. Hence we may write: f (v) = g(vx)g(vy)g(vz), for some function g. However,
isotropy also means that f (v) can depend on v only through its modulus v. These two conditions are satisfied by the

function (36), since Ae−
mv2

2kB T = Ae−
m(v2

x+v2
y+v2

z )
2kB T = Ae−

mv2
x

2kB T e−
mv2

y
2kB T e−

mv2
z

2kB T , hence g(x) = 3
√

Ae−
mx2
2kB T .

23 It can be computed by changing variables from v to ε in the differential, since it is defined by 4πv2dv = ω(ε)dε;
however its precise form is of no interest to us. In fact ω(ε) ∼

√
ε.

24 This is the canonical Gibbs distribution, which is the appropriate one to use if the system is exchanging only energy
with the environment. This is the only case we consider here.

25 Einstein gave a derivation of this formula also in his 1909 paper [12], however that derivation involves Taylor series,
and therefore it is not suited for high school students. It can nevertheless be employed when proposing this material
to a more advanced audience. The 1909 derivation is actually quite interesting also because it again involves a
reversal of Boltzmann’s principle, analogous to that he used in 1905, which we saw in Section 3 [42].

26 We notice that, again because of the fact that the Maxwell-Boltzmann and the Gibbs distribution have the same form,
a formally identical equation can be derived to describe the fluctuations of the energies ε of the molecules of the gas
around the average value ε.
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27 It is a so-called quantum ideal (Bose) gas, which like the usual (classical) ideal gas is made up by many identical
particles. However, in this case the latter are not independent far from the Wien limit, because of quantum correlations
(cf. the discussion at the end of Section 4).

28 It is in fact safe to assert that fluctuations constitute the Leitmotiv of most of Einstein’s work in statistical physics [8].
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