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Abstract: The effect of plasma Coulomb microfied dynamics on spectral line shapes is under consid-
eration. The analytical solution of the problem is unachievable with famous Chandrasekhar–Von-
Neumann results up to the present time. The alternative methods are connected with modeling of
a real ion Coulomb field dynamics by approximate models. One of the most accurate theories of
ions dynamics effect on line shapes in plasmas is the Frequency Fluctuation Model (FFM) tested
by the comparison with plasma microfield numerical simulations. The goal of the present paper is
to make a detailed comparison of the FFM results with analytical ones for the linear and quadratic
Stark effects in different limiting cases. The main problem is connected with perturbation additions
laws known to be vector for small particle velocities (static line shapes) and scalar for large velocities
(the impact limit). The general solutions for line shapes known in the frame of scalar perturbation
additions are used to test the FFM procedure. The difference between “scalar” and “vector” models
is demonstrated both for linear and quadratic Stark effects. It is shown that correct transition from
static to impact limits for linear Stark-effect needs in account of the dependence of electric field
jumping frequency in FFM on the field strengths. However, the constant jumping frequency is quite
satisfactory for description of the quadratic Stark-effect. The detailed numerical comparison for
spectral line shapes in the frame of both scalar and vector perturbation additions with and without
jumping frequency field dependence for the linear and quadratic Stark effects is presented.

Keywords: plasma spectroscopy; stark broadening; atomic physics

1. Introduction

The problem of the multiparticle perturbations effect from charged plasma particles on
atomic spectra was recognized many years ago [1,2]. The fundamental solution for the field
strength distribution function from an ensemble of static charged particles was obtained by
Holtsmark [3]. The essential property of the Holtsmark function is its difference from the
standard Gaussian distribution. This circumstance is connected with the vector nature of
field strengths sum from individual particles, where the contribution of a specific member
into the total sum is comparable with the total value. It is in contrast with the scalar sum of
field modulus, where this contribution is statistically small. The dynamics of Coulomb field
due to particles thermal motion can be recognized from Chandrasekhar–Von-Neumann
analysis of particles (stars) motion with gravitational interaction [4]. Nevertheless, the
direct transition from vector to scalar perturbation addition in the Stark broadening theory
was not demonstrated analytically up to the present time.

The effect of a multiparticle electric field E on atomic spectra is characterized by the
number of particles in the Weisskopf sphere

g = N · r3
W , (1)
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where N—the concentration of interacting particles and rW is the Weisskopf radius—the
effective particle interaction radius.

The potential of binary interacting particles has the following form

V(r) =
Cn

rn (2)

where Cn is the interaction constant and r is the distance between particles.
The parameter g can be expressed in terms of Cn and the density of particles. For the

linear Stark effect, g = N ·
(

C2

vT

)3

. As for the quadratic Stark effect, g = N · C4

vT
. Here, vT

is the thermal velocity of the particles. When g� 1, one can use the statical approximation
for line shapes (based on the vector perturbation sum), whereas for the case g � 1, the
impact theory, based on scalar perturbation sum, is valid. Both cases are established
in detail in the Stark broadening theory (see for example [5,6]). However, the correct
theory for intermediate values of the parameter g is absent. The first attempt to provide
the solution to the problem of arbitrary g for the linear Stark effect was undertaken by
V.I. Kogan [7]. He expressed their results for the spectral line profile in terms of complicated
path integrals. Unfortunately, he managed to find only the thermal corrections to the statical
Holtsmark profile.

A general solution for the quadratic Stark effect was given in the famous paper of
H.R. Griem, M. Baranger, A.C. Kolb and G. Oertel (GBKO) [1]. Their result is based on
the scalar addition of perturbation following the general scalar theory from older papers
on the broadening theory (see [2]). The general GKBO expression for the intensity profile
reproduces the impact limit for high velocities of ions. However, when coming to the
specific calculations for g� 1 in helium spectra, the authors of [1] used the “vector” static
Holtsmark distribution function. Note that the scalar theory is not automatically equal to
the binary one as it follows from general results for the Van der Waals interaction (n = 6 in
Equation (2)). This problem was considered by Chen and Takeo (CT) in [2].

In 1971, Brissaud and Frisch gave an impetus to the problem of the Stark broadening.
They introduced a new approach [8] of the spectral line shape calculation called the Model
Microfield Method (MMM). This theory is based on the assumption that all fluctuations of
electric microfield could be treated as a Markovian process. This model has been widely
used in the theory of spectral line broadening [9–11]. Better agreement with the results
of modeling the formation of the spectral line shape yielded the Frequency Fluctuation
Model (FFM) [12]. The main idea of this theory is that the electric field fluctuations induce
fluctuations of the radiation intensity and of the radiation frequency. This approach was
applied to many problems of spectral line calculations in plasma (see for example [13–16]).
In the work [17], it was shown that the usage of the FFM and the method of the kinetic
equation are equivalent. Both of these approaches lead to the same result: the resulting
spectral line shape is the functional of the static profile.

Molecular dynamics methods and computer simulations make it possible to perform
the most accurate calculations of a spectral line shape in plasmas (see for example [18–20]).
However, with a focus on accuracy, it is necessary to increase the number of particles
in the simulation, which requires the use of more computational resources. The FFM is
believed to provide the most accurate description of a spectral line profile under the action
of moving ions and lets one perform fast calculation of the intensity profile [21]. However,
in the paper [14], it was pointed out that the FFM does not reproduce the correct behavior
of the profile width in the impact limit for hydrogenic plasma. In the present paper, we
will show how the FFM can be modified to yield the correct behavior of the profile in the
impact limit. Moreover, we will compare the FFM profiles with the expression obtained
in [1] for the quadratic Stark effect.



Universe 2021, 7, 176 3 of 13

2. The Goal of the Paper

The main purpose of this article is to test the FFM procedure. If the FFM describes
the influence of ionic thermal motion on the spectral line shape with a good accuracy,
it means that the usage of the FFM can replace complicated methods of molecular dynamics
and complex analytical solutions like GKBO [1] (which, in fact, does not work for low
temperatures). In the present paper, we will consider two cases: the linear and quadratic
Stark effects.

For the linear Stark effect, there is a problem that is connected with the incorrect
dependence of the impact width on the ion’s velocity [14]. In the present paper, we will
introduce the modification of the FFM procedure, which consists of replacing the constant
jumping frequency with the non-constant one obtained in the paper [4]. Our goal is to
show that this action leads to the correct behavior of the intensity profile width in the
impact limit. In order to do this, we will perform analytical and numerical calculations.

The estimations of the impact width in the case of the quadratic Stark effect is one of
the goals of the present paper, too. Moreover, we will make the detailed comparison of the
FFM with the results of the GKBO theory.

3. A Brief Description of the FFM

The FFM procedure was suggested in order to overcome the complicated dynamics of
a Coulomb ion’s microfield [12]. At the first step, the FFM procedure was based on the idea
that ion’s thermal motion resulting in the field fluctuation would make jumps between
different Stark components with a frequency, which is equal to

ν = N1/3
i vTi, (3)

where Ni is the density and vTi is the thermal velocity of ions in plasma.
The corresponding procedure was entirely numerical and demonstrated a great suc-

cess in line shapes description tested by the comparison with computer codes based on
molecular dynamics (MMD) [19,21]. The essential development of the FFM was the theo-
rem about equivalence of the FFM procedure to the solution of the kinetic equation with
so-called “the strong collision integral” describing just the dynamics of ion microfield in
terms of jumps between different values of the field strengths responsible for time evolution
of Stark components [17]. The presentation of the FFM in terms of the kinetic equation
made it possible to obtain an analytical solution for the FFM spectral line shapes. The
solution contains only the electric field distribution function (usually Holtsmark) and the
jumping frequency so the total FFM shape was the functional of the static field distribution
function. The resulting intensity profile I(ω) can be expressed as the functional of the
normalized statistical profile W(ω) (see [17])

I(ω) =
1
π

Re

∫ W(ω′)dω′

ν+i(ω−ω′)

1− ν
∫ W(ω′)dω′

ν+i(ω−ω′)

, (4)

where ω is the energy shift from unperturbed spectral line1.
Equation (4) can be rewritten in another form that is more convenient for calculations:

I(ω) =
ν

π

J0(ω)J2(ω)− J2
1 (ω))

J2
2 (ω) + ν2 J2

1 (ω)
, (5)

where

Jk(ω) =

+∞∫
−∞

W(ω′)(ω−ω′)kdω′

ν2 + (ω−ω′)2 . (6)
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There is the connection between J0(ω) and J2(ω), which might help one to perform
calculations of the spectral line shape faster

J2(ω) = 1− ν2 J0(ω). (7)

When ν→ 0 Equation (4) turns into the statistical limit. In the denominator of (4) we
can neglect the term that is proportional to ν and obtain the following expression:

I(ω) =
1
π

Re
∫ W(ω′)(ν− i(ω−ω′))dω′

ν2 + (ω−ω′)2 =
∫

W(ω′)δ(ω′ −ω)dω′ = W(ω) (8)

The characteristic value of energy shift of the considered Stark component is equal to

ΩS
n = CS

n N
n
3

i , (9)

where CS
n is the constant of the Stark effect, which depends on the atomic quantum states.

For the linear Stark effect n = 2 in Equation (9). In a non-hydrogenic plasma the ionic
broadening is determined by the quadratic Stark effect and n = 4.

In the present paper, we will restrict ourselves to considering a single Stark component.
Different methods of approximation of the array of radiative transitions are presented
in [22–24]. The considered spectral profile can be treated as a component with an averaged
Stark shift and intensity (see [5]). Note that in the case of the linear Stark effect, every
spectral component has absolutely the same pair, but with negative value of the energy
shift (9). It is convenient to use the reduced energy shift, which is determined by the
following relation:

z =
ω

ΩS
n

(10)

Equations (5) and (6) will turn into the following formulas

I(z) =
ν̄

π

J0(z)J2(z)− J2
1 (z))

J2
2 (z) + ν̄2 J2

1 (z)
, (11)

Jk(z) =
+∞∫
−∞

W(z′)(z− z′)kdz′

ν̄2 + (z− z′)2 , (12)

where
ν̄ =

ν

ΩS
n

. (13)

The relations (7) and (8) remain the same in the framework of the reduced variables.
In the present paper, we will use a non-constant jumping frequency. In order to modify

the FFM, the jumping frequency will be considered as the function of the energy shift
ν̄→ f (ν̄, z). In this case, it is necessary to make the modification of Equations (11) and (12):

I(z) =
1
π

J′0(z)J2(z)− J1(z)J′1(z)
J2
2 (z) + J ′21 (z)

, (14)

where

Jk(z) =
+∞∫
−∞

W(z′)(z− z′)kdz′

f 2(ν̄, z′) + (z− z′)2 , (15)

J′k(z) =
+∞∫
−∞

f (ν̄, z′)W(z′)(z− z′)kdz′

f 2(ν̄, z′) + (z− z′)2 , (16)

It is easy to see that in the case of the constant jumping frequency f (ν̄, z) = ν̄,
Equations (14)–(16) turn into Equations (11) and (12).
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Equations (11)–(16) present a general solution of the spectral line broadening problem,
describing a smooth transition from static to the impact limit. This method is applicable for
arbitrary values of the parameter (1) including g = 1.

4. Stark Broadening of Hydrogen Spectral Lines

In the case of the Holtsmark theory, the static profile is equal to the following
Equation ([3,5]):

W(z) =
1
k

H
(

z
k

)
, (17)

where k = 2π

(
4

15

) 2
3

≈ 2.6031 and H(x) is the Holtsmark function, which is equal to

H(x) =
2

πx

∞∫
0

t sin t exp
[
−
(

t
x

) 3
2
]

dt. (18)

In the impact limit, when a velocity of particles is high (ν → ∞), the spectral line
shape must transform into the Lorentz profile (see for example [5]):

L(z) =
1
π

γ

γ2 + (z− z0)2 , (19)

where γ is the width of the profile and z0 is the coordinate of the center of the Lorentz profile.

In the case of the linear Stark effect γ ∼ 1
ν̄

[5]. However, in the work [14], the authors
showed that the joint usage of the FFM and the quasi-contiguous approximation for the line

shape modeling in plasmas [22] leads to the wrong result in the impact limit: γFFM ∼
1√
ν̄

.

We shall show how to reach the correct result for the line width by introducing a non-
constant jumping frequency.

In order to give a solution to this problem and overcome this discrepancy, we will
modify the FFM by introducing the non-constant jumping frequency f (ν, z). To per-
form calculation of the spectral line shape of the single Stark component, we will use
Equation (14). The field dependent jumping frequency can be extracted from the paper [4]
by interpolation between small and large values of an electric field strength2

fc(ν̄, z) = ν̄
3.67
τ(z)

, (20)

where
τ(z) =

1.37z

1.37 + z
3
2

. (21)

While calculating the spectral line shape in a plasma one deals with pairs of the same
Stark components, which are symmetric about the center of the spectral line. In the case of
a single Stark component, integrands in (16) are actually integrated from zero to infinity.
Consideration of two Stark components implies integration from minus to plus infinity.
In order to consider this case, we need to change the static profile W(z) to W(|z|).

We can perform simple analytical estimations of the impact width. In order to do this,
we will use the fact that all normalized profiles I(z), which are symmetric around zero,
have the following property:

I(0) ∼ 1
γ

, (22)

where γ is the width of the profile I(z).
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Firstly, we will obtain the dependence on the impact width in the case of the constant
jumping frequency. Using Equation (12), it is easy to see that J1(0) = 0 because we integrate
the odd function over the symmetric interval. Using Equation (11), one will obtain

I(0) =
ν̄

π

J0(0)
J2(0)

. (23)

Now we need to estimate the values of J0(0) and J2(0) when ν̄� 1.

J0(0) =
2
ν̄2

+∞∫
0

W(z′)dz′

1 + (z−z′)2

ν̄2

∼
∞∫

ν̄

W(z′)dz′

1 + (z−z′)2

ν̄2

∼ 2
ν̄2 +

const1

ν̄7/2 (24)

J2(0) =
2
ν̄2

+∞∫
0

W(z′)z′2dz′

1 + (z−z′)2

ν̄2

∼ const2

ν̄3/2 (25)

In these calculations, we used the asymptotic behavior of the Holtsmark profile
W(z� 1) ∼ z−5/2. While calculating these integrals, it should be taken into account that
the main contribution to the value of the integral is made by the interval from ν̄ to ∞.

Substitution of (24) and (25) in Equation (23) leads to the following result:

I(0) ∼ 1
ν̄1/2 . (26)

After comparison of Equations (26) and (22), we can conclude that for large values of

ν̄: γFFM ∼
1

ν̄1/2 . This dependence of the impact width on the parameter ν̄, obtained for

the two symmetrical Stark components, coincides with the result from [14].
In the case of the non-constant jumping frequency, we also have to change fc(ν̄, z) to

fc(ν̄, |z|). According to Equation (15)3, the value of J1(0) is much smaller than all other
FFM functions when z = 0. Because of that, we can neglect the second terms both in
numerator and denominator of Equation (14). It leads to the following formula for the
non-constant jumping frequency:

I(0) =
1
π

J′0(0)
J2(0)

. (27)

Using again the asymptotic behavior of the Holtsmark profile and the formula for
Chandrasekhar—von Neumann jumping frequency (20), we will estimate the values of
J′0(0) and J2(0).

J′0(0) ∼
1
ν̄

, (28)

J2(0) ∼
1
ν̄2 , (29)

I(0) ∼ 1
ν̄

. (30)

Equations (27)–(30) lead to the following dependence of the impact width on ν̄:

γFFM ∼
1
ν̄

. According to the basic results of the impact theory [5], this is correct behavior
of the profile width.

The normalized intensity profiles as the function of the reduced energy shift is pre-
sented in Figure 1. Using Equation (14), we performed calculations for the spectral line
shape of two symmetrical Stark components in two cases: f (ν̄, z) = ν̄ (constant) and
f (ν̄, z) = fc(ν̄, z) according to Equation (20) (non-constant). For small ion velocities or high
densities, according to the relation (8), the intensity profiles are close to each other. As the
parameter ν̄ grows, the difference between graphs increases. For large values of ν̄, width of
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profiles calculated using non-constant jumping frequency is noticeably lower than in the
case of constant f (ν̄, z) = ν̄.

Figure 1. The normalized intensity profile of two symmetrical Stark components as the function of the
reduced energy shift. Comparison of the FFM profiles calculated with the constant and non-constant
jumping frequencies. Calculations are presented for different values of ion’s velocity. The value of
the reduced constant jumping frequency ν̄ is written in the brackets.

Comparison of the FFM profiles in the cases of constant and non-constant jumping
frequencies with it’s approximation by the function (19) is presented in Figure 2. In this
calculation, we put ν̄ = 15. In order to do this approximation, we used the the method of
least squares. It is easy to see that the FFM reproduces a Lorentzian profile in the impact
limit. However, the width of the profiles in the cases of the constant jumping frequency
f (ν̄, z) = ν̄ and non-constant f (ν̄, z) = fc(ν̄, z) have completely different values. One of
the goals of the present paper is to confirm the analytical results (26) and (30) for the impact
width γ = γFFM by numerical calculations. In order to do that, we will calculate the FFM
profiles with different values of ν̄. Then every intensity profile will be approximated by the
Lorentzian (19). After this fitting, we will approximate the obtained impact width by the
following functions:

yc =
A√

ν̄
, (31)

for the constant jumping frequency

yn =
B
ν̄

, (32)

for the non-constant jumping frequency.
In Figure 3, one can see the values of the impact width as the function of the constant

jumping frequency ν̄4. The specific curves (31) and (32) that approximate the function
γFFM = γFFM(ν̄) are also presented in Figure 3. We used the method of least squares to
approximate the function γFFM(ν̄).

Figure 3 shows that the analytical results for the impact width are in agreement with
numerical calculations.
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Figure 2. The normalized intensity profile of two symmetrical Stark components as the function of
the reduced energy shift. Comparison of the FFM profiles calculated with constant and non-constant
jumping frequency and its approximation by the Lorentz profile; ν̄ = 15.

Figure 3. The impact width as the function of the constant jumping frequency ν̄. The comparison
of two cases of spectral line shape calculation: the usage of constant and non-constant jumping

frequency; furthermore, presented the specific curves yc =
16.6√

ν̄
and yn =

30.4
ν̄

, which approximate

the dependence of the impact width on ν̄.

Within the margin of numerical error (double usage of the least squares method), we can
conclude that γFFM can be approximated by Equations (31) and (32) with a good accuracy.

To sum it all up, the modification of the FFM, which consists in the usage of the
non-constant jumping frequency, yields the correct results for the limit of low and high
temperatures. For the case of ν̄ . 1, the profiles calculated with constant and non-constant
jumping frequency are close to each other. The results presented in [19,21] show that
when ν̄ ∼ 1, the FFM calculations are in agreement with computer modeling. So we can
conclude that the modified FFM gives the correct description of the spectral line shape for
all temperatures.
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5. Stark Broadening of Non-Hydrogenic Spectral Lines

In the case of non-hydrogenic atoms, the ionic broadening is determined by the
quadratic Stark effect. It leads to the transformation of the static profile W(z)

Wq(z) =
1

2
√

z
W(
√

z), (33)

where Wv
q (z) is the statistical profile of the single Stark component for the energy shift,

which is proportional to the squared electric filed.
Equation (17) will take the form

Wv
q (z) =

1
2
√

zk
H
(√

z
k

)
, (34)

where the upper index ’v’ means that this profile was obtained using the vector addi-
tion theory.

Using the theory of the scalar addition of perturbations, the authors in works [1]
(GKBO) and [2] (CT) obtained the static profile in the case of the quadratic Stark effect:

Ws
q(z) = Cs ·

∞∫
0

cos (zt− at
3
4 ) exp (−bt

3
4 )dt, (35)

where a = 14.0309 and b = 5.81178;

Cs =

[ +∞∫
−∞

dz
∞∫

0

cos (zt− at
3
4 ) exp (−bt

3
4 )dt

]−1

(36)

The scalar addition theory is not applicable in the static case ν̄ −→ 1. It means that
Equation (35) is not correct. However, it would be interesting to compare the Holtsmark
profile (34) with (35) and understand how scalar and vector theories differ from each other.

Figure 4 shows graphs of Equations (34) and (35). For small values of z, one can see a
big difference between two profiles. The scalar one is equal to zero for z < 8.1. This strange
result is connected with strong oscillations of the integrand in Equation (35). Both of these
functions decrease much slower than the Holtsmark static profile for the linear Stark effect.

Figure 4. The normalized static profile as the function of the reduced energy shift. The comparison
of two cases: vector (Holtsmark) and scalar (CT and GKBO) perturbation addition theories.
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In the work [2], the authors obtained the general expression for a static profile for
any type of interaction (in the framework of the theory of scalar perturbation addition).
However, for the linear Stark effect the formula for the static profile is expressed in terms of
the divergent integrals. For this reason, we do not provide a comparison similar to shown
in Figure 4.

Using the theory of scalar addition of perturbations, the authors of [1] obtained the
intensity profile (GKBO) of a single component for any ion temperature:

IGKBO(ν̄, z) =
1
π

Re
[ ∞∫

0

dt exp (izt + g(ν̄, t))
]

, (37)

where

g(ν̄, t) = 2πν̄

∞∫
0

ρdρ

+∞∫
−∞

dt1

(
exp

{
−i

1
2ν̄ρ3 ϕ(ν̄, t, t1, ρ)

}
− 1
)

, (38)

ϕ(ν̄, t, t1, ρ) = arctan
{

ν̄(t− t1)

ρ

}
+ arctan

{
ν̄t1

ρ

}
+

ν̄(t− t1)ρ

ρ2 + ν̄2(t− t1)2 +
ν̄t1ρ

ρ2 + ν̄2t2
1

(39)

For large values of ν̄, Equation (37) reproduces the impact theory for the quadratic
Stark effect:

IGKBO(ν̄� 1, z) =
1
π

γGKBO

γ2
GKBO + (z− ∆GKBO)2

, (40)

where

γGKBO = ν̄
1
3 π

(
π

2

) 2
3

Γ
(

1
3

)
cos

π

3
= 5.6863ν̄

1
3 , (41)

∆GKBO = ν̄
1
3 π

(
π

2

) 2
3

Γ
(

1
3

)
sin

π

3
= 9.8489ν̄

1
3 , (42)

where Γ(z) is the gamma function.
The comparison of the FFM and GKBO profiles for ν̄ = 25 is presented in the Figure 5.

These calculations show that the usage of the constant jumping frequency works much
better than non-constant. The closest to GKBO graph is the FFM profile with constant
frequency and Holtsmark static profile (34).

Figure 5. The normalized intensity profile as the function of the reduced energy shift. The comparison
of the FFM profiles calculated using the theories of scalar and vector addition as well as constant and
non-constant jumping frequencies with GKBO profiles; ν̄ = 25.
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The comparison of the FFM and GKBO profiles is presented in Figure 6. Firstly, the
usage of the Holtsmark distribution (34) as the static profile in the FFM procedure gives
better results for high temperatures than the scalar one (35). Secondly, when ν̄ . 1, the
shape of the FFM profiles changes very slowly. Finally, the FFM spectral line shapes for the
quadratic Stark effect are asymmetric about the center of the profile. As we can see from
Figures 5 and 6, for ν̄� 1, the joint usage of the FFM and the theory of vector addition of
perturbations gives the results which are close to the GKBO profiles.

Figure 6. The normalized intensity profile as the function of the reduced energy shift. The comparison
of the FFM profiles calculated using the theories of scalar and vector addition with GKBO profiles;
values of ν̄ are written in the brackets.

The asymptotic estimations for ν̄� 1, similar to those that were done for the Linear
Stark effect, of the integrals (13) leads to the following results:

J0(0) ∼
1
ν̄2 ,

J1(0) ∼
1

ν̄7/4 ,

J2(0) ∼
1

ν̄3/4 .

(43)

It is easy to see that in the framework of asymptotics (43), the second terms both in
numerator and denominator of (11) could be neglected. Again, we can use the relation (22).
In this case, γFFM ∼ ν̄1/4, which is slightly different from the correct GKBO result. As nu-
merical calculations show this “impact” asymptotic starts working for ν̄ ∼ 104. This slow
convergence to the impact asymptotic is connected with the fact that now the FFM profile
center is not located at zero. These estimations work when we can neglect the shift of the
profile compared to its width. However, for lower ν̄, the coordinate of the maximum of the
profile is of the same order of magnitude as it’s width. Such values of ν̄ are non-realistic
for ions in plasmas. So, this asymptotic of the impact width should be treated just as
mathematical fact.

Direct use of Equation (37) will make calculations of a spectral line shape very cum-
bersome. Moreover, the GKBO results are incorrect for low temperatures (high densities).
The FFM allows one to perform calculations of a spectral line shape much faster and it
gives correct results for low temperatures (high densities). The numerical calculations,
analogous to those which were done for the linear Stark effect, shows that in the impact
limit, the profile width changes slowly. This means that the FFM produce the impact limit
for the quadratic Stark effect (γ ∼ ν̄1/3). The verified analytical theory for the case of ν̄ ∼ 1
does not exist. However, in the work [21], it was shown that the FFM spectral line shape
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is close to the profile obtained by the usage of method of molecular dynamics for ν̄ ∼ 1.
We can conclude that the FFM can be a good approximation for the intensity profile of a
Stark component when 0 < ν̄ < 30.

6. Conclusions

The problem of the influence of ions’ thermal motion on the shape of spectral lines in
plasmas has not been solved yet. There is the strict analytical solution for the case of zero
temperature of ions. This result is obtained in the framework of the theory of the vector
addition of perturbations from every particle. Furthermore, V.I. Kogan obtained the thermal
corrections to this result [7]. However, if we change vector addition of perturbations to
scalar [1]), we will obtain the result, which is correct for high temperatures. Unfortunately,
the strict theory for intermediate values of temperature has not been constructed yet.

Consideration of the ionic motion as a stochastic process leads us to the FFM proce-
dure. The main results of the FFM is that spectral line shape in a plasma with arbitrary
temperature depends on the static profile and the jumping frequency (3) (see Equation (4)).
It allows one to perform fast calculations of the intensity profile.

In the impact limit, the FFM procedure with the constant jumping frequency gives
the wrong dependence of the impact width on the ion’s thermal velocity in the case of the
linear Stark effect (see the work [14] and Figure 3). However, if we change the constant
jumping frequency to Equation (20), obtained in the work [4], the FFM will reproduce the
impact limit. Thus, we can strictly assert that the modified FFM gives the correct results
in the limits of low and high temperatures. The numerical analysis and comparison with
computer modeling [21] of an ion’s microfield dynamics shows that the FFM works well in
the case of ν̄ ∼ 1 (see Equation (13)). We can conclude that the modified FFM is applicable
for any ionic temperatures and densities.

For the quadratic Stark effect, the FFM procedure does not turn the static profile to
the impact one. Analytical estimations show that for large values of ν̄, the behavior of the
impact width is close to the correct one, but does not exactly match (γGKBO/γFFM ∼ ν̄1/12).
Note that the convergence of the FFM profile to the impact asymptotic is very slow. It
is achieved at non-physical values of ν̄. However, for high ionic temperatures, the joint
usage of the FFM with constant jumping frequency and the Holtsmark theory (vector
addition) yields the results that are very close to the GKBO profiles. The numerical analysis
demonstrated in the present paper and the results from the work [21] show that the FFM
approximates the spectral line shape of a Stark broadened profile in the physical domain
0 < ν̄ < 30.
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Notes
1 All over the paper atomic units are used: e = m = h̄ = 1, where e— the elementary charge, m—the mass of an electron,

h̄ is the Planck constant.
2 More details about stochastic problems connected with field distribution one can find in [25].
3 This fact was verified by numerical calculations.
4 Situation when ν̄� 10 rarely realized for ions in practice. Realistic values of ν̄ one can find in [5]. Calculations for

such big ν̄ were performed to show how the FFM formally turns into the impact theory.
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