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Abstract: We revisit the cosmological dynamics of the cubic Galileon model in light of the recently
proposed model-independent analyses of the Pantheon supernova data. At the background level, it is
shown to be compatible with data and preferred over standard quintessence models. Furthermore,
the model is shown to be consistent with the trans-Planckian censorship conjecture (as well as other
Swampland conjectures). It is shown that for the given parametrization, the model fails to satisfy
the bounds on the reconstructed growth index derived from the Pantheon data set at the level of
linear perturbations.

Keywords: swampland; dark energy; cubic Galileon cosmology

1. Introduction

The ΛCDM flat concordance model, based on General Relativity and the assumption
of the Cosmological Principle, has been extremely successful in describing an abundance
of cosmological data despite its remarkable simplicity [1]. In this model, the late-time
acceleration of the universe is explained by the presence of a cosmological constant term [2].
Nevertheless, the true nature of dark energy, responsible for accelerated cosmic expansion,
still remains a hotly debated topic [3–10]. Put differently, the origin of this exotic non-
clustering component, which has a sufficiently negative pressure density to give rise to
accelerated expansion, is one of the most interesting outstanding puzzles in cosmology
today. Although the presence of a simple cosmological constant in the Friedmann equations
seems to satisfy all available data, there are still several reasons to look for alternative
explanations. The most important challenges to the ΛCDM model comes from theoretical
considerations—the very small magnitude of this constant is, in itself, a roadblock in
understanding this constant as the vacuum energy density [11]. Furthermore, recently there
have been hints coming in from String Theory that a pure de-Sitter (dS) solution, as would
be the case for the ΛCDM paradigm in the asymptotic future, is not compatible with a
ultraviolet (UV) complete theory of gravity [12]. This is a rather remarkable development
since it implies that the nature of quantum gravity can leave its imprint on the very late
time dynamics of the universe, albeit indirectly through the theoretical consistency of the
low energy effective field theory (EFT) being employed.

Even going beyond String Theory, there have been several quantum gravity arguments
which go against the existence of stable dS spacetimes [13–16]. In fact, there have been
interesting EFT arguments against having very long periods of accelerated expansion in
the early universe dating back several decades [17,18]. The crux of this argument—the
so-called trans-Planckian censorship conjecture (TCC) [19,20]—is that if one has too many
e-folds of accelerated expansion, one can trace back macroscopic perturbation modes to
have their origin in modes which have energies above the Planck scale MPl, a fact obviously
inconsistent with EFT on curved spacetimes. Although the origin of this argument lies
in analyzing inflationary cosmologies, recent work has found support for this conjecture
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arising from other well-known facets of String Theory [21,22]. Of course, the TCC itself was
invoked as a physical reasoning behind the (refined) dS conjecture, namely the idea that
there can be no long-lived metastable dS vacua in any EFT which can have a UV-completion
of gravity. Leaving aside details for later, all of the weight of this theoretical evidence gives
us good reason to look beyond ΛCDM for explaining the nature of dark energy.

To construct models beyond the standard ΛCDM, either we can modify the energy con-
tent of the universe [23–27], or, we can modify gravity on large cosmological scales [28–46].
While the former can be achieved by introducing a slowly rolling scalar field, known
as quintessence [23–26], modification of gravity comes in different flavours, e.g., Brans–
Dicke theory [30], f (R) theories [31,32], Dvali–Gabadadze–Porrati (DGP) model [33],
Galileon models [36], massive gravity [28,37], and so on. The scalar–tensor theories
include a wide range of gravity theories which have a scalar field in addition to the
tensor field. All such theories can be represented by the most general scalar–tensor La-
grangian, known as Horndeski theory [29]. Even though the Horndeski Lagrangian
contains higher derivation terms, it generates second order equations of motion and thus
the theory is ghost-free. Galileon models [36,47–51] are a sub-class of Horndeski theory
and preserve Galilean shift symmetry in the flat background where φ → φ + bµxµ + c,
where bµ and c are constants. The recent detection of the event of binary neutron star
merger GW170817, using both gravitational waves (GW) [52] and its electromagnetic
counterpart [53,54] rules out most of the higher derivative terms as they generically pre-
dict the speed of GWs to be different from that of the speed of light [55–57]. The only
higher derivative term allowed after the GW170817 event is the cubic term ∼ G3(φ, X)�φ,
where G3 is a function of the scalar field and its kinetic energy X ∼ (1/2)∂µφ∂µφ
(The most general surviving Lagrangian can be found, for instance, in [58].). When
G3 ∼ X, the resulting model is known as cubic Galileon theory [59–65] which can have
a linear potential. If we further generalize the potential, the Lagrangian breaks the shift
symmetry but still gives second order equation of motion. These types of models are
known as light mass Galileon, or equivalently as cubic Galileon, models [66–69] which
is our scenario under consideration in this paper. Here we should also mention that the
kinetic gravity braiding models [70,71] also incorporate the cubic term. Cubic Galileon
models without potential do not have a stable late time acceleration [48]. However, in
the light mass Galileon models, the late time dynamics is dominated by the scalar field
potential and we have a stable late time acceleration. For the same reason we also do not
have the instabilities which were discussed in [72].

Precision cosmological data acts as the most stringent criterion for constraining models
of dark energy [1]. Recently, a model-independent analyses of reconstructing the expansion
function and the linear growth factor from the Pantheon data set of type-Ia supernovae
(SnIa) [73] has been proposed in [74]. Without referencing any specific model, it was
shown how one can derive the expansion function with the assumptions of a spatially
homogeneous and isotropic (simply-connected) universe and that of a smooth expansion
rate. With the additional assumption that Poisson’s equation, as derived from Newtonian
gravity, is applicable for the growth of structures on the relevant local scales, one is also
able to constrain the linear growth factor from the SnIa data. Combining the value of these
two important functions, from astronomical data alone—namely, the luminosity-distance
measurements in this case—one would thus be able to constrain specific models of dark
energy. The bottom line is that since we are interested in looking beyond ΛCDM as an
explanation of dark energy, it is imperative that we use a model-independent analyses to
test our theories and the recent work of [74] provides us precisely with this.

In this work, we aim to compare the predictions of the cubic Galileon model against
the supernova data, both at the level of background evolution and linear perturbations,
and the swampland criterion to set up falsifiability conditions of the model. In Section 2,
we briefly review the swampland conjectures and, in particular, the TCC and their im-
plications for models of late-time cosmology. In Section 3, we go on to introduce our
model while choosing parameters so as to satisfy these theoretical constraints. In Section 4
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we test the predictions of our model for the expansion function and the growth factor,
for the swampland-compatible range of parameter space, against the model-independent
observational constraints. Finally, we conclude in Section 5 highlighting the advantages
of our model against other theories of dark energy such as quintessence and generalized
Proca theories [75].

2. Swampland Conjectures and Late-Time Cosmology

It has long been conjectured that not all quantum field theories (QFTs), which are con-
sistent by themselves, cannot be the low-energy limit of some quantum gravity
theory [76,77]. In fact, this has been shown to be true for concrete examples [78]. For in-
stance, the well-known N = 4 supersymmetric Yang–Mills theory in 4-dimensions can
be consistently formulated for any arbitrary gauge group G before coupling to gravity.
On the other hand, if the rank of the G is bigger than rG > 22, then such theories cannot be
consistently coupled to N = 4 supergravity in Minkowski space and they belong to the
swampland. This example exemplifies what the working definition for the swampland
is going to be for us—the set of additional consistency conditions that low-energy EFTs,
describing cosmology, must satisfy in order to be consistently completed in the UV.

Although there are many facets of the swampland, the most interesting bound for cos-
mology, in this context, comes from the so-called dS conjecture [14,79,80]. As is well-known,
dS space plays a key role in our current understanding of both early and late-time descrip-
tion of cosmology. So why is dS space in conflict with string theory? Consider some field φ.
Without gravity, the range of this field is typically infinite but the swampland distance
conjecture says that once the field excursion |∆φ| > MPl, then there are many (expo-
nentially) light states which descend from the UV, destroying an EFT description [81–87].
Starting from this observation, it can be shown (say, using entropy arguments [88] or the
species bound [89–91]) that as one goes to these parametrically large regions of field space,
the potential of the field must behave as [92]

V ∼ e−cφ/MPl (1)

for φ � MPl. Of course, this is just a generalization of the Dine-Seiberg runaway for
moduli fields. Given this, it is easy to derive the (refined) dS conjecture [14], which goes as

|V′|
V

>
c

MPl
, or

V′′

V
< − c̃

M2
Pl

, (2)

with c, c̃ beingO(1) numbers. These imply that either the potential is steep or it can have an
unstable maxima with large tachyonic directions. This, of course, rules out any meta-stable
dS vacua. Furthermore, general arguments from string compactifications also suggest that
MPl [|V′|/V]∞ ≥

√
2/3 [76]. Of course, all of these arguments rely on calculation for large

distances on field space and one might wonder if they are of any relevance for late-time
cosmology. Specifically, one expects field excursions, say of a quintessence field, to be
much smaller than MPl and therefore, invalidate the regime where one can use the distance
conjecture as the starting point for deriving the (asymptotic) dS one.

If the above restrictions on the potential are only applicable in these “corners” of
moduli space, a natural question to ask is whether there are any restrictions appearing at
all for the potential in the regimes where |∆φ| � MPl. Firstly, note that, keeping in mind
the specific behavior the potential must satisfy for large φ, it would be extremely unnatural
for the potential to be completely unconstrained far inside moduli space. On the other
hand, the above restrictions Equation (2) seem to be only strictly applicable in the case
of large asymptotic regions. Furthermore, this is where the trans-Planckian censorship
conjecture comes in. The idea here is to restrict the form of the potential, or equivalently,
the life-span of any dS space, from general quantum gravity arguments rather than focus-
ing on specific stringy constructions, as mentioned in the introduction. The mathematical
statement of the TCC is as follows [19]: no classical macroscopic perturbation with a physi-
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cal wavelength larger than the Hubble radius should ever originate from trans-Planckian
quantum modes, i.e.,

a f

ai
<

MPl
H f

⇒ N < ln

(
MPl
H f

)
, (3)

where a(t) denotes the scale factor, H the Hubble parameter, and N the number of e-
foldings, respectively. i and f stand for initial and final times. Without going into the details
of the origin of the TCC (the TCC is really a statement regarding non-unitarity of Hilbert
spaces on expanding backgrounds [93,94]. From this point of view, one can get some O(1)
number refinements of it [95].), the remarkable thing is that it produces the dS conjecture
Equation (2), for asymptotic regions of field space. In other words, starting from
the TCC, one finds

[
|V′|
V

]
∞
<

√
2
3

1
MPl

, (4)

specifying a concrete value for the O(1) parameter c introduced in Equation (2). Al-
though we skip the derivation here, and refer the interested reader to [19,21], this result
is true for any potential and one does not have to choose any specific form (such as an
exponential one) to arrive at it. More interestingly, starting from the TCC bound on the
number of e-folds for any accelerating spacetime, it can be shown that metastable dS
spacetimes are now allowed for small field excursions with the following upper limit on
the lifetime of such dS solutions [19]

T <
1√
V

ln
(

MPl√
V

)
. (5)

Let us now review our main guiding principles coming out of the swampland. Either
we give up on dS spacetimes altogether (as suggested by the dS conjecture) or even if we
are to have one, it must be extremely short-lived (as suggested by the TCC). The trouble is
that the main approaches to constructing dS spacetimes in string theory, such as the KKLT
and the LVS scenarios, all have lifetimes which are exponentially bigger than what the
TCC restricts it to be [19,96], not to mention the numerous obstructions one faces when
building an explicit example [15,97,98]. Furthermore, there are also other indications that
meta-stable dS spaces must be short-lived coming from other general arguments [99,100].
Keeping these in mind, the lesson for late-time cosmology seems to be to look beyond
standard ΛCDM scenario. However, in doing so, the alternative proposals must satisfy the
constraints on the potential, as imposed by the swampland. More concretely, the specific
constraints for us are going to be:

• For the late-time model we are interested in, the field space excursion is automatically
small ∆φ� 1, thereby satisfying the distance conjecture.

• For explicit potentials involving scalar fields, Equation (2) must always be satisfied
with some number c consistent with the TCC.

• Since the lifetime of any consistent dS space is strictly constrained by the TCC
Equation (5), it means that our alternate scenario should never asymptote towards a
dS attractor.

3. The Cubic Galileon Model

Our starting point is to consider the following action with a potential V(φ) [66,67]

S =
∫

d4x
√
−g
[M2

Pl
2

R− 1
2
(∇φ)2

(
1 +

α

M3�φ
)
−V(φ)

]
+ Sm + Sr , (6)
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where M is a constant of mass dimension, MPl = 1/
√

8πG is the reduced Planck mass and
α is a dimensionless constant. Sm and Sr correspond to the matter and radiation action,
respectively. It is straightforward to see that one can rescale the parameter α to replace M
by MPl and reduce the amount of free parameters. This action can be realized as a sub-class
of Horndeski theories and one can recover the usual quintessence models on taking α→ 0.
This type of cubic self-interaction term can also originate from the decoupling limit of the
DGP model [101,102].

As mentioned in the introduction, the primary advantage of the cubic Galileon model
is that its action gives rise to late-time acceleration without violating any of the astrophysical
constraints especially due to multi-messenger GW astronomy. The local physics is also
preserved through the Vainstein mechanism [103]. However, even the cubic Galileon, with a
linear potential and tracker behavior [104] or without potential [105], is strongly disfavored
when taking Integrated Sachs-Wolfe effect (ISW) measurements into account [104]. On the
other hand, for thawing dynamics, when the Galileon scalar field dynamics is mostly
dependent on the potential, the constraint coming from ISW can be relaxed [57]. For our
case, we shall introduce a potential other than the linear one, by introducing an exponential
potential. Firstly, note one needs to add such a potential term in order to get ghost-free,
stable late-time acceleration in cubic Galileon [48,51]. Moreover, if our goal is to show
that the inclusion of higher derivative terms shall lead to dark energy models which can
be made to obey both observational constraints and the swampland conjectures, this is a
dual task that is not fulfilled by simpler quintessence models [106–108]. We shall elaborate
on this later. Furthermore, quantum corrections typically give rise to the appearance
of higher derivative terms in Galileon theories when the non-renormalizable theorem is
violated [109], when the Galileon symmetry is not weakly-broken. Finally, the form of the
potential is chosen to be an exponential one since it is the least-constrained form of scalar
potential, as per the swampland [110].

The background Einstein equations for the cubic Galileon model can be obtained by
varying the action equation (6) with respect to (w.r.t.) the metric gµν:

3M2
plH

2 = ρm + ρr + ρφ , (7)

M2
pl(2Ḣ + 3H2) = −ρr

3
− Pφ , (8)

where

ρφ =
φ̇2

2

(
1− 6α

M3 Hφ̇
)
+ V(φ) , (9)

Pφ =
φ̇2

2

(
1 +

2α

M3 φ̈
)
−V(φ) . (10)

where ρm and ρr are the energy densities of non-relativistic matter (Pm = 0) and radiation
(Pr = ρr/3) respectively. The background EOM for the Galileon field is similarly given by

φ̈ + 3Hφ̇− 3α

M3 φ̇
(

3H2φ̇ + Ḣφ̇ + 2Hφ̈
)
+ V′(φ) = 0 , (11)

where we have everywhere assumed a spatially flat, Friedmann–Lemaître–Robertson–
Walker (FLRW) metric ds2 = −dt2 + a2(t)dr2, the spatially flat assumption being the same
as what has been assumed for the model-independent reconstruction of the expansion
function and the growth index from supernovae data.
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The background cosmological dynamics is governed by the following autonomous
system of equations [66,67]:

dx
dN

= x
( φ̈

Hφ̇
− Ḣ

H2

)
(12)

dy
dN

= −y
(√3

2
λx +

Ḣ
H2

)
(13)

dε

dN
= ε

( φ̈

Hφ̇
+

Ḣ
H2

)
(14)

dΩr

dN
= −2Ωr

(
2 +

Ḣ
H2

)
(15)

dλ

dN
=
√

6xλ2(1− Γ) (16)

where N = ln a is the number of e-folds. In order to bring the evolution equations to this
form, we have defined the dimensionless quantities

x =
φ̇√

6HMpl
, (17)

y =

√
V√

3HMpl
, (18)

ε = −6
α

M3 Hφ̇ , (19)

Ωr =
ρr

3M2
PlH

2
, (20)

λ = −Mpl
V′

V
, (21)

and the equation-of-state (EoS) parameters,

weff = −1− 2
3

Ḣ
H2 =

3x2(4 + 8ε + ε2)− 2
√

6xy2ελ− 4(1 + ε)
(
3y2 −Ωr

)
3(4 + 4ε + x2ε2)

, (22)

wφ =
Pφ

ρφ
= −

12y2(1 + ε) + 2
√

6xy2ελ− x2(12 + 24ε + ε2(3−Ωr)
)

3(4 + 4ε + x2ε2)(y2 + x2(1 + ε))
, (23)

where weff and wφ are the effective and scalar field EoS. The parameter Γ = VV,φφ/V2
,φ

which, for our choice of an exponential potential,

V(φ) = V0e−λφ/MPl , (24)

implies Γ = 1 since λ = const.. The background Friedmann Equations (7) and (8), can be
used to obtain

Ḣ
H2 =

2(1 + ε)(−3 + 3y2 −Ωr)− 3x2(2 + 4ε + ε2) +
√

6xεy2λ

4 + 4ε + x2ε2 , (25)

φ̈

Hφ̇
=

3x3ε− x
(

12 + ε(3 + 3y2 −Ωr)
)
+ 2
√

6y2λ

x(4 + 4ε + x2ε2)
. (26)

Rewriting the matter density Ωm := ρm/(3M2
PlH

2), one can express the constraint
equation as Ωm + Ωr + Ωφ = 1 where

Ωφ = x2(1 + ε) + y2 , (27)

where we have introduced the density parameter of the Galileon field as Ωφ := ρφ/(3M2
PlH

2).
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The fixed point analyses for the cubic Galileon model, with an exponential potential,
has been extensively studied elsewhere [69] and we only quote a few results here. Firstly,
note that the parameter ε denotes the deviation of this system from standard quintessence
scenario, as evidenced from Equations (9)–(11) and (19). From Equation (11) it can be
understood that the contribution from the higher derivative term in the cubic Galileon
Lagrangian can act as a frictional term. This can be achieved by considering positive initial
values of ε. In Figure 1 we have shown this effect for different initial values of ε i.e., εi and
we can see that as we increase the value of εi the scalar field EoS, at present, moves towards
the de Sitter case. This freedom makes this model more consistent with both observation
and string swampland conjectures than the quintessence model [67,69]. Similar behavior
can be obtained by changing the initial value of x for non-zero εi [69].

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

-0.70

Log
10
H1+ zL

w
Φ

Εi =0

Εi =10

Εi =20

Figure 1. Evolution of scalar field EoS has been shown. Green (dotted), red (dashed) and blue (solid)
curves correspond to εi = 0, 10, 20 respectively for λ = 1 and Ωm0 = 0.3.

Now, although the overall number and character of the fixed points of this model differ
with those for quintessence [111], at late times, this model has an attractor point exactly the
same as the one for quintessence, labeled by the following values:

(
Ωφ = 1, Ωm = 0, ε = 0,

x = λ/
√

6, y =
√

1− λ2/6
)

. Interestingly, the most important property of this fixed point
of the Galileon model is that ε flows to zero on the four-dimensional phase space which
we have shown in Figure 2 for different values of εi. Figure 1 also shows that the cubic
Galileon model reduces to the the quintessence model in the future.

-2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

Log10(1+z)

ϵ

ϵi=10

ϵi=50

ϵi=100

Figure 2. Evolution of ε has been shown. Dotted, dashed, and solid curves correspond to
εi = 10, 50, 100 respectively.

At leading order, the EoS, at this attractor point, is given by
(
wφ = −1 + λ2/3 = weff

)
.

The crucial feature of this attractor fixed point, from the point of view of the TCC, is
that it is distinct from the dS attractor solution. The dS critical point is characterized
by (Ωφ = 1, Ωm = 0, ε = 0, x = 0, y = 1) and the late-time fixed point of our model
approaches the dS one only in the limit λ → 0. Therefore, since the TCC rules out a dS
attractor solution, future evolution in our model is completely safe and navigates clear of
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the swampland, especially in light of the O(1) number λ which we shall require of our
solution later on.

4. Comparison with Model-Independent Analyses of Snia Data

Having introduced our model, we now need to specify the observable constraints that
we shall require it to satisfy in order to be phenomenologically viable. Naturally, this is
being done after we imposed the theoretical swampland constraints in the previous section
to make our model already consistent with quantum gravity. To compare the scenario
under consideration with the Pantheon sample of SNIa observation [73], we will follow
the approach considered in [74,107]. In [107], the authors reconstructed two functions,
q(a) and γ(a), corresponding to the background expansion and the growth index of linear
perturbations, respectively.

For a homogeneous and isotropic background, one can define the cosmic expansion
function E(a) in terms of the Hubble parameter H(a), a being the scale factor of the FLRW
metric, as

E2(a) :=
(

Ωr0a−4 + Ωm0a−3 + ΩDE(a)
)
=

H2(a)
H2

0
, (28)

where H0 is the Hubble parameter today. The Ω’s denote the energy density corresponding
to radiation, matter, and dark energy and subscripts 0 represent energy densities at their
present values. For ΛCDM, one would replace the time-dependent dark-energy density
parameter ΩDE(a) by the value of the cosmological constant density ΩΛ0 today. However,
the above expression is more general and allows us to calculate the expansion function
given a general dark energy model.

Once we assume a homogeneous and isotropic universe, then the background dy-
namics must be described by a single degree of freedom. Without resorting to any specific
functional form for the cosmic expansion factor, which would require some specific under-
lying theoretical model, the authors of [74] reconstruct E(a) using the luminosity-distance
measurements in Pantheon SN-sample of type Ia supernovae [73]. We do not go into the
details of this analyses here, which has as its input the redshifts z and distance moduli µ of
individual supernovae and then uses shifted Chebyshev polynomials for the expansion.
We refer the reader to the original work [74] for details. For our purposes, we want to use
the findings of the model-independent reconstruction of the expansion function to see if
our late-time cosmology model is able to fit the data. We emphasize that we do not wish to
carry out the model-independent reconstruction or review the analyses but rather just to
check whether the predictions of our model fall within the constraints derived from such a
procedure. More specifically, since we are interested in the late-time dynamics, we define a
function q(a), following [107]

q(a) :=
E2(a)−Ωm0a−3

(1−Ωm0)
, (29)

such that we can plot this function from the reconstructed E(a). For the standard ΛCDM
universe, q(a) = 1. For our cubic Galileon model, the dark energy density ΩDE = Ωφ.

Just as the expansion function can be a powerful observable to constrain a dark energy
model, similarly one can also use the growth function of linear density perturbations to
do the same. To define the growth index γ(a) let us first consider the following perturbed
metric in the Newtonian gauge

ds2 = −(1 + 2Ψ)dt2 + a(t)2(1− 2Φ)dr2, (30)

where Ψ and Φ are the scalar potentials. For the cubic Galileon, Ψ = Φ [66,68], i.e., there is
no anisotropic stress. Now, as we are interested in the scales which are large but sub-Hubble
we will impose the usual subhorizon (k2 � H2) and quasistatic (|φ̈| . H|φ̇| � k2|φ|)
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approximations. Under these assumptions, the evolution equation of the matter density
contrast δm = δρm/ρm, where δρm is the perturbation in matter energy density, in Fourier
space, for the action equation (6), becomes [66,68]

δ̈m + 2Hδ̇m −
3
2

Geff
G

ΩmH2δm = 0 , (31)

where the effective Newton’s constant

Geff = G
2P

2P−Q2 , (32)

P = 1− 2α

M3 (φ̈ + 2Hφ̇) , (33)

Q =
α

M3MPl
φ̇2 . (34)

where G is the Newton’s constant. For ΛCDM as well as for the minimally coupled
quintessence field, Geff = G. Therefore, the structure of Equation (31) looks the same
for both ΛCDM and quintessence but the difference is incorporated in the expansion
history H(a). For cubic Galileon, the difference is also incorporated in the evolution of the
effective Newton’s constant (Geff). In Figure 3, we have shown the evolution of Geff in cubic
Galileon model and we can see that, at present, the model can behave rather differently
from quintessence even at the level of linear perturbations. In the future, the model merges
with the quintessence model and Geff becomes the Newton’s constant G.
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Figure 3. Evolution of Geff has been shown. Green (dotted), red (dashed), and blue (dot-dashed)
curves correspond to εi = 0, 10, 100 respectively for the exponential potential with slope λ = 1.

Since δm(t,~k), commonly referred to as the density contrast, satisfies a homogeneous
Equation (31), it can be separated into a t-dependent and a k-dependent part as δm(x, t) =
D(t)δ(0,~k), where δ(0,~k) is related to the primordial density fluctuations and D(t) satisfies
the following evolution equation

D′′ +
(

2 +
H′

H

)
D′ − 3

2
Geff
G

ΩmD = 0 . (35)

where prime denotes a derivative with respect to ln a. Out of the two linearly-independent
solutions of this equation, we focus on the growing solution denoted by D+(a) from which
we can define the growth factor as

f (a) =
d ln D+

d ln a
, (36)

which satisfies the following evolution equation:

f ′ + f 2 +
1
2
(1− 3weff) f − 3

2
Geff
G

Ωm = 0 . (37)
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Finally, the growth index γ is related to the growth factor f through the following
parametrization [112,113]

f (a) = Ωγ(a)
m (a) , (38)

γ generally varies very slowly with redshift z (though there are models where it can
vary significantly, e.g., f (R) models [114]). For ΛCDM, γ = 0.554 at z = 0 and γ = 0.545
for large z and Ωm0 = 0.3. Therefore, sometimes we approximate γ = 6/11 as a constant
for ΛCDM [112,113]. Considering this slow variation in γ it has been parameterized
earlier in terms of the dark energy EoS [115]. In Reference [74], γ has been approximately
parametrized in terms of the Hubble parameter and the matter density parameter as

γ =
β + 3ω

2β + 5ω
, (39)

where

β = 3 + 2
d ln E
d ln a

= −d ln Ωm

d ln a
, (40)

ω = 1−Ωm , (41)

Ωm =
Ωm0a−3

E2 . (42)

The interesting thing to note is that once the cosmic expansion function E is recon-
structed from supernovae data in a model-independent way, one can use that to reconstruct
the growth index γ, using Equation (39), and put observational constraints on it in a
model-independent manner as well. Furthermore, this is what has precisely been done in
Reference [74] using the Pantheon data set of SNIa [73]. In this paper, we use the recon-
structed E and γ from the Reference [74] and compare our models with the Pantheon data
set of SNIa.

In Figure 4, we have shown the evolution of q(z) for λ = 0.8. The shaded region
in the plot is the 1σ uncertainties of the reconstructed q(z) from the Pantheon data set
of SNIa. From the figure, it is clear that the cubic Galileon model can be more suitable
than the quintessence model as we increase the value of εi. At the level of background
evolution, the cubic Galileon model can accommodate a larger value for λ, as required
by the swampland, and yet be completely consistent with data. Importantly, the future
fixed point for the Galileon model is not a dS attractor, as this is the case for some other
dark energy models such as Proca theories [116]. This makes this model consistent with
the TCC, as described earlier.
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Figure 4. Evolution of q(z) has been shown. The shaded region is the 1σ uncertainty in the recon-
structed q(z) from the Pantheon data set of SNIa [73]. The brown (long-dashed) line represents q(z)
for ΛCDM. For both the figures Ωm0 = 0.3. (a) Green (dotted), red (dashed), and blue (dot-dashed)
curves correspond to εi = 0, 10, 100 respectively for the exponential potential with slope λ = 0.8;
(b) Green (dotted), red (dashed), and blue (dot dashed) curves correspond to λ = 0.4, 0.7, and 1
respectively. We have kept εi = 10.
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Let us now compare the growth index γ(z) from this model with data. Before doing so,
for low redshift, we need to rewrite the Equation (39) in terms of the scalar field EoS by using

wφ =
1

3(1−Ωm)

d ln Ωm

d ln a
, (43)

and Equation (41) as

γ =
3(wφ − 1)
6wφ − 5

. (44)

Equation (44) was first calculated in Reference [113] for a constant EoS w and for
ΛCDM we get γ = 6/11. Here we should also note that both the Equations (39) and (44)
are approximations for the growth index γ(z).

As is clear from Figure 5, the γ(z) for the cubic Galileon model fails to satisfy the 1− σ
bound of the reconstructed data, for all z. Although the predictions of our model fit the data
better at the present time than quintessence, it does not have the right shape to be consistent
at large redshifts. Firstly, note that this constitutes a falsifiability condition for the cubic
Galileon model, emerging at the level of perturbations. This is a new result for the model,
in contrast to the features that have been studied thus far [69]. Nevertheless, one should also
keep in mind that Equation (39), which has been extensively used in the model-independent
reconstruction, was derived using the approximation ln Ωm = ln(1−ω) ≈ −ω [74], which
should probably be valid only at low z. Therefore, one should reconstruct the growth index
without making this assumption to see if the results hold at large redshifts. Finally, note
that if the model-independent reconstruction of the growth index does hold true at large z,
then even the ΛCDM model is disfavoured according to this.
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Figure 5. Evolution of γ(z) has been shown. The shaded region is the 1σ uncertainty in the recon-
structed γ(z) from the Pantheon data set of SNIa [73]. The brown (long-dashed) line represents γ(z)
for ΛCDM. For both of the figures Ωm0 = 0.3. (a) Green (dotted), red (dashed), and blue (dot-dashed)
curves correspond to εi = 0, 10, 100 respectively for the exponential potential with slope λ = 0.8.;
(b) Green (dotted), red (dashed), and blue (dot dashed) curves correspond to λ = 0.4, 0.7, and 1
respectively. We have kept εi = 10.

5. Conclusions

In this work, we present some theoretical motivations to look beyond the standard
ΛCDM paradigm and look at alternative models of dark energy. Specifically we consider
the cubic Galileon model, which has not yet been ruled out by multimessenger gravitational
wave observations [55–57]. We find that the cubic Galileon model fits the background data
much better than quintessence while at the same time being consistent with the swampland
conjectures. However, at the level of linear perturbations, the model fails to satisfy the
bounds on the reconstructed growth index derived from Pantheon data set of SNIa [73].

One way to satisfy the bounds on the growth index might be to look at models of dark
energy allowing for a phantom regime. In [107], Proca theories were considered, which is
an example of such models. However, although such theories do fit the data much better,
the future fixed point of it is an asympototically dS spacetime, which is ruled out by the
TCC due to theoretical consistency. Therefore, our future goal would be to look for models
which, even on allowing for phantom regimes, do not have dS fixed points like in the case



Universe 2021, 7, 167 12 of 15

of quintessence. These might be able to simultaneously fit the data as well as be consistent
with the swampland.

Given the myriad of alternative theories of dark energy, it is important to make
progress by checking these theories against both theoretical and observational consistency
conditions. In this context, it is interesting to note how linear perturbation theory can
test the viability of a given cosmological model in different ways. In this paper, we
impose the TCC—a condition which arises from the non-unitarity of the Hilbert space
of linear perturbations on an accelerating background—as a theoretical consistency for a
dark energy model. On the other hand, the growth index, parametrizing the growth of
linear perturbations, turns out to be a crucial feature in constraining dark energy models
from observed data. We believe that, moving forward, this reconstructions of background
expansion functions, together with that for the growth index, would be extremely useful in
constraining other (theoretically) well-motivated models of dark energy.
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