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Abstract: In this work, the genuine resonance states of full-charm tetraquark systems with quantum
numbers JPC = 0++, 1+−, 2++ are searched in a nonrelativistic chiral quark model with the help
of the Gaussian Expansion Method. In this calculation, two structures, meson-meson and diquark–
antidiquark, as well as their mixing with all possible color-spin configurations, are considered. The
results show that no bound states can be formed. However, resonances are possible because of
the color structure. The genuine resonances are identified by the stabilization method (real scaling
method). Several resonances for the full-charm system are proposed, and some of them are reasonable
candidates for the full-charm states recently reported by LHCb.
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1. Introduction

In the past few decades, many charmonium-like or bottomonium-like XYZ states [1–9]
have been observed in experiments, which has generated great challenges and opportuni-
ties for researchers to study multiquark states.

Recently, the tetraquark of the all-heavy system, such as ccc̄c̄ and bbb̄b̄, has received
considerable attention due to the development of experiments. If the ccc̄c̄ or bbb̄b̄ states
steadily exist, they are most likely to be observed at LHC, Belle II and other facilities.
Double J/ψ production becomes possible [10–14] and an enhancement in the differential
production cross-section for J/ψ pairs between 6 GeV and 8 GeV can be observed [10,11].
The CMS collaboration measured pair production of Υ(1S) [15]. There was also a claim for
the existence of a full-bottom tetraquark state bbb̄b̄ [16], with a global significance of 3.6σ
and a mass of around 18.4 GeV, almost 500 MeV below the threshold of ΥΥ. Very recently,
the LHCb collaboration reported their newest finding that the full-charm states have been
observed: there is a broad structure in the range 6.2∼6.8 GeV, a narrower structure at
6.9 GeV with a significance of about 5σ, and a structure around 7.2 GeV [17]. This discovery
brought about widespread theoretical attention [18–25].

In fact, whether or not observable states of fully-heavy tetraquarks exist has been
debated for more than forty years. Theoretically, various methods are applied to study the
full-heavy tetraquark states. Some work has suggested that stable bound states should
exist [26–33]. Iwasaki [26] first argued that the bound state of c2 c̄2 can exist and esti-
mated its mass to be in the neighborhood of 6 GeV or 6.2 GeV based on a string model.
Heller et al. Claimed that the dimensions ccc̄c̄ and bbb̄b̄ are bound, and that the binding
energy ranges from 0.16∼0.22 GeV based on the potential energy arising from the MIT
bag model [27]. Lloyd et al. have used a parametrized Hamiltonian to calculate the spec-
trum of the all-charm tetraquark state and found several close-lying bound states with
two sets of parameters based on large but finite oscillator bases. For example, the lowest
state with quantum number JPC = 0++ had a mass below the threshold of two ηc(1S),
5967.2 MeV [28]. Berezhnoy et al. showed that the masses of ccc̄c̄ and bbb̄b̄ states are under
the thresholds for J = 1, 2 by taking a diquark and antidiquark as point particles and
employing the hyperfine interaction between them [29]. In a moment QCD sum rule
approach, Chen et al. studied the fully-heavy tetraquark states, and discovered that the
masses of the bbb̄b̄ tetraquarks are below the thresholds of Υ(1S)Υ(1S) and ηb(1S)ηb(1S),
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and the masses of the ccc̄c̄ tetraquarks are above the threshold [30]. Yang Bai et al. and
Esposito et al. calculated the mass of the bbb̄b̄ state to be around 100 MeV below the
threshold of ηbηb [31,32]. In recent research, Debastiani et al. used a non-relativistic model
to study the spectroscopy for a tetraquark composed of ccc̄c̄ in a diquark–antidiquark
configuration and found that the lowest S-wave ccc̄c̄ tetraquarks might exist below their
thresholds [33].

On the contrary, in other work, there is no bound full-heavy tetraquark state but
resonance states are possible [34–43]. Chao predicted full-charm diquark–antidiquark
states exist with masses in the range of 6.4∼6.8 GeV [34]. Ader et al. investigated the
full-heavy tetraquark state in a potential model and found that there no state exists below
the corresponding thresholds [35]. Barnea et al. studied a system consisting of quarks and
antiquarks of the same flavor within the hyperspherical formalism, and the mass of ccc̄c̄
was approximately 6038 MeV, which is above the corresponding threshold [36]. In the QCD
sum-rule approach, no bound state was found and several resonances for ccc̄c̄ and bbb̄b̄
systems were proposed [37]. Karliner et al. have calculated the mass spectrum of ccc̄c̄ state
and found it unlikely to be less than twice the mass of the lowest charmonium state ηc [38].
Wu et al. also found no full-heavy tetraquark with the same flavor below the thresholds
in a color-magnetic interaction model [39]. Recently in Ref. [40], Liu et al. suggested that
no bound states can be formed below the thresholds for meson pairs (c̄c)-(c̄c) within a
potential model by including the linear confining potential, Coulomb potential and spin-
spin interactions. The full-bottom tetraquark was also calculated in the chiral quark model
with the help of the Gaussian Expansion Method, and no bound states were found and a
resonance was proposed [44]. In the framework of a quark delocalization color screening
model and chiral quark model with the help of the resonating group method, the reported
state X(6900) can be explained as a compact resonance state with I JP = 00+ [45].

Hadron spectroscopy always plays an important role in revealing the properties of
the dynamics of the strong interaction. The fully-heavy tetraquark system provides a
good chance to test our understanding of hadron structure. To date, most calculations
for fully-heavy tetraquarks assume that the system has a given structure, meson-meson,
diquark–antidiquark, etc. A few studies have carried out calculations with structure mixing.
Such as Ref. [30], the authors calculated the mass spectra for doubly hidden-charm/bottom
tetraquark states using only the compact diquark–antidiquark configuration. Now most
calculations are usually carried out in a finite space. The finite space will discretize the
energy of the system. The bound state or genuine resonance state should have a stable
energy against an increasing space and structure mixing. To obtain the genuine resonances,
various techniques are available: the real scaling method (stabilization) [46–48], complex
scaling method [49], phase shift analysis [50,51] and so on. In the present work, we
systematically investigate the masses of full-charm tetraquarks with JPC = 0++, 1+−, 2++

in the chiral quark model, which can well describe the properties of hadrons and hadron-
hadron interactions. The method of the Gaussian Expansion Method (GEM) is employed to
carry out a high precision four-body calculation. The dynamical mixing of the meson-meson
configuration with the diquark–antidiquark configuration is also considered. One thing that
needs to be specified is that, here, the diquark–antidiquark and meson-meson configuration
is just a nomenclature for the color saturation of the system and does not correspond
to the compact tetraquark and the meson molecule configurations. For example, color
singlet-singlet 1× 1 and color octet-octet 8× 8 denotes meson-meson structure, and color
antitriplet-triplet 3̄× 3 and sextet-antisextet 6× 6̄ denotes diquark–antidiquark structure,
and their mixing is taken into account. This mixing occurs via both the spin-independent
and the spin-dependent parts of the potential. To obtain the genuine resonances, the real
scaling method is employed. In previous work [44], only the lowest resonances of the
full-bottom tetraquark were investigated. Inspired by the recent experimental results for
the full-charm tetraquark, and unlike our previous work for bbb̄b̄, the possible resonance
states with higher energies are explored in the present work.
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This paper is organized as follows. In Section 2, we briefly discuss the chiral quark
model, the wave functions of the full-heavy tetraquark, and the Gaussian Expansion
Method. In Section 3, the numerical results and discussion are presented. Some conclusions
and a summary are given in Section 4.

2. Quark Model and Wave Functions
2.1. The Chiral Quark Model

The chiral quark model has been applied both in explaining the hadron spectra and
hadron-hadron interactions successfully. We can find the details for the model in [52,53].
Three parts of the Hamiltonian are included for the ccc̄c̄ fully-heavy system: quark rest
mass, kinetic energy, and potential energy:

H =
4

∑
i=1

mi +
p2

12
2µ12

+
p2

34
2µ34

+
p2

1234
2µ1234

+
4

∑
i<j=1

(
VC

ij + VG
ij

)
, (1)

mi is the constituent mass of i-th quark/antiquark, and µij is the reduced mass of two
interacting quarks, with

µij =
mimj

mi + mj
,

µ1234 =
(m1 + m2)(m3 + m4)

m1 + m2 + m3 + m4
,

pij =
mjpi −mipj

mi + mj
,

p1234 =
(m3 + m4)p12 − (m1 + m2)p34

m1 + m2 + m3 + m4
. (2)

VC and VG represents the quark confinement and the one-gluon-exchange potential, re-
spectively. The detailed forms for the two potentials are shown below [52]:

VC
ij = (−acr2

ij − ∆)λc
i · λc

j ,

VG
ij =

αs

4
λc

i · λc
j

[
1
rij
− 2π

3mimj
σi · σjδ(rij)

]
,

δ(rij) =
e−rij/r0(µij)

4πrijr2
0(µij)

. (3)

λc are the SU(3) color Gell-Mann matrices and σ are the SU(2) Pauli matrices;
r0(µij) = s0/µij and αs is an effective scale-dependent running coupling [53],

αs(µij) =
α0

ln
[
(µ2

ij + µ2
0)/Λ2

0

] . (4)

All the model parameters are listed in Table 1, which are determined by fitting the light
and heavy meson spectra. In Table 2, the theoretical and experimental masses for the low-
lying cc̄ are demonstrated in the chiral quark model. Because the orbital-spin interactions
are not taken into account in the present calculation, the P-wave states χcJ (J = 0, 1, 2) have
the same mass.
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Table 1. Model parameters, determined by fitting the meson spectrum from light to heavy.

Quark masses mu = md 313
(MeV) ms 536

mc 1728
mb 5112

Confinement ac (MeV fm−2) 101
∆ (MeV) −78.3

OGE α0 3.67
Λ0(fm−1) 0.033
µ0 (MeV) 36.98
s0 (MeV) 28.17

Table 2. The masses of some heavy mesons (unit: MeV). Mcal and Mexp represent the theoretical
and experimental masses, respectively.

Meson ηc J/ψ hc χc0 χc1 χc2

Mcal 2986.3 3096.4 3417.3 3416.4 3416.4 3416.4
Mexp 2983.4 3096.9 3525.4 3414.8 3510.7 3556.2

2.2. The Wave Functions of ccc̄c̄ System

The wave functions of four-quark states can be constructed in two steps for both
the meson-meson and diquark–antidiquark structure. First we obtain the wave functions
for two-body sub-clusters, and, then, secondly, couple the wave functions of these two
sub-clusters to construct the total wave functions for a four-quark state with exclusive
quantum number I JPC. To save space, only the wave functions for each degree of freedom
are shown below.

(1) Diquark–antidiquark structure
We denote α and β as the spin-up and spin-down states of the quarks and the spin

wave functions for the four-quark states takes the form of

χσ1
00 =

1
2
(αβαβ− αββα− βααβ + βαβα),

χσ2
00 =

√
1
12

(2ααββ− αβαβ− αββα

−βααβ− βαβα + 2ββαα),

χσ3
11 =

√
1
2
(αβαα− βααα), (5)

χσ4
11 =

√
1
2
(αααβ− ααβα),

χσ5
11 =

1
2
(αααβ + ααβα− αβαα− βααα),

χσ6
22 = αααα.

There are six spin wave functions for four-quark states in total, which are marked as the
superscript σi (i = 1∼6) of χ. The subscripts of χ represent the total spin and the third
projection of total spin of the system, and only one component (MS = S) is needed for a
given total spin S.

For the ccc̄c̄ system, the flavor wave function reads as follows:

χ
f
d0 = (cc)(c̄c̄). (6)
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The marks d0 of χ represent the diquark–antidiquark structure with an isospin that
equals zero.

For the color freedom, we need to obtain the color singlet wave functions for the
four-quark states. The detailed coupling pathways can be found in our previous work [54].

χc1
d =

√
3

6
(rgr̄ḡ− rgḡr̄ + grḡr̄− grr̄ḡ

+ rbr̄b̄− rbb̄r̄ + brb̄r̄− brr̄b̄

+ gbḡb̄− gbb̄ḡ + bgb̄ḡ− bgḡb̄).

χc2
d =

√
6

12
(2rrr̄r̄ + 2ggḡḡ + 2bbb̄b̄ + rgr̄ḡ + rgḡr̄

+ grḡr̄ + grr̄ḡ + rbr̄b̄ + rbb̄r̄ + brb̄r̄

+ brr̄b̄ + gbḡb̄ + gbb̄ḡ + bgb̄ḡ + bgḡb̄). (7)

where, χc1
d and χc2

d is the color antitriplet-triplet (3̄× 3) and sextet-antisextet (6× 6̄) color
configuration, respectively.

(2) Meson-meson structure
For the spin freedom, the wave functions are independent of the structure of the

system and they are the same as those for the diquark–antidiquark structure, Equation (5).
For the flavor part, the wave function takes the following form:

χ
f
m0 = (c̄c)(c̄c). (8)

The marks m0 of χ represent the meson-meson structure and isospin I = 0.
For the color freedom, the color singlet wave functions for the four-quark states are,

χc1
m =

1
3
(r̄r + ḡg + b̄b)(r̄r + ḡg + b̄b),

χc2
m =

√
2

12
(3b̄rr̄b + 3ḡrr̄g + 3b̄gḡb + 3ḡbb̄g + 3r̄gḡr

+ 3r̄bb̄r + 2r̄rr̄r + 2ḡgḡg + 2b̄bb̄b− r̄rḡg

− ḡgr̄r− b̄bḡg− b̄br̄r− ḡgb̄b− r̄rb̄b). (9)

where χc1
m and χc2

m represents the color singlet-singlet (1× 1) and color octet-octet (8× 8)
configuration, respectively.

The orbital wave functions for the four-quark states can be obtained by coupling the
orbital wave function for each relative motion of the system:

ΨLML =
[
[Ψl1(r12)Ψl2(r34)]l12 ΨLr (r1234)

]
LML

, (10)

where Ψl1 and Ψl2 are the orbital wave functions of the two sub-clusters, with an angular
momentum of l1 and l2, respectively. ΨLr (r1234) is the wave function of the relative motion
between two sub-clusters with orbital angular momentum Lr. The total orbital angular
momentum of the four-quark state is L. “[ ]” denotes the Clebsh–Gordan coupling. As
a preliminary calculation, here, we take an approximation that all angular momenta
(l1, l2, Lr, L) are set to zero. The Jacobi coordinates used are defined as follows:

r12 = r1 − r2,

r34 = r3 − r4,

r1234 =
m1r1 + m2r2

m1 + m2
− m3r3 + m4r4

m3 + m4
. (11)

For the diquark–antidiquark structure, the two quarks cc in one cluster are num-
bered as 1, 2, and the two antiquarks c̄c̄ in the other cluster are numbered as 3, 4; for the
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meson-meson structure, numbers 1, 2 denote the antiquark and quark c̄c in one cluster, and
numbers 3, 4 denote the antiquark and quark c̄c in the other cluster. In the mixing calcula-
tions for the two structures, the marks of the quarks, antiquarks in the diquark–antidiquark
structure are changed to be consistent with the numbering scheme in the meson-meson
structure. In GEM, the orbital wave function is expanded by a series of Gaussians [55]:

Ψlm(r) =
nmax

∑
n=1

cnψG
nlm(r),

ψG
nlm(r) = Nnlrle−νnr2

Ylm(r̂), (12)

where Nnl are normalization constants,

Nnl =

[
2l+2(2νn)

l+ 3
2

√
π(2l + 1)

] 1
2

. (13)

cn are the variational parameters, which are determined dynamically. The Gaussian size
parameters are chosen according to the following geometric progression:

νn =
1
r2

n
, rn = r1an−1, a =

(
rnmax

r1

) 1
nmax−1

. (14)

This procedure enables optimized use of Gaussians, with as small a number of Gaussians
used as possible.

So, we obtain the final channel wave function for the four-quark system ccc̄c̄ in the
diquark–antidiquark structure:

Ψ
MI MJ
I J,i,j = A1[Ψ

ML
L χσi

SMS
]
MJ
J χ

f
d0χ

cj
d ,

(i = 1 ∼ 6; j = 1, 2; S = 0, 1, 2), (15)

where A1 is the antisymmetrization operator, for the ccc̄c̄ system,

A1 =
1
2
(1− P12 − P34 + P12P34). (16)

In the meson-meson structure, the final channel wave function for the ccc̄c̄ system is
written as

Ψ
MI MJ
I J,i,j = A2[Ψ

ML
L χσi

SMS
]
MJ
J χ

f
m0χ

cj
m,

(i = 1 ∼ 6; j = 1, 2; S = 0, 1, 2), (17)

where A2 is the antisymmetrization operator, for the cc̄cc̄ system,

A2 =
1
2
(1− P13 − P24 + P13P24). (18)

Finally, we obtain the eigenenergies for the ccc̄c̄ system by solving a Schrödinger
equation:

H ΨIMI JMJ = EI JΨIMI JMJ . (19)

ΨIMI JMJ is the wave function of the four-quark states, which is the linear combinations
of the above channel wave functions, Equation (15) in the pure diquark–antidiquark
structure or Equation (17) in the pure meson-meson structure, or both wave functions of
Equations (15) and (17), respectively.
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3. Results and Discussions

In this work, we estimated the masses of the tetraquark states for ccc̄c̄ with the quan-
tum numbers JPC = 0++, 1+−, 2++ in the chiral quark model by adopting GEM. The pure
meson-meson and the pure diquark–antidiquark structure, along with the dynamical mix-
ing of these two structures are considered, respectively. In our calculations, all possible
color, and spin configurations are included, and the approximation that all orbital angular
momenta are set to 0 is used. In Table 3, we give the possible channels and corresponding
wave functions.

Table 3. The possible channels and corresponding wave functions for ccc̄c̄ tetraquarks with quantum numbers
JPC = 0++, 1+−, 2++. The channels (DA) represent the diquark–antidiquark structures and the superscripts of the
channels represent the total angular momentum J.

JPC = 0++ JPC = 1+− JPC = 2++

Channels Wave Functions Channels Wave Functions Channels Wave Functions

(ηcηc)0 χσ1
00 χ

f
m0χc1

m (ηc J/ψ)1 χσ3
11 χ

f
m0χc1

m (J/ψJ/ψ)2 χσ6
22 χ

f
m0χc1

m

(η8
c η8

c )
0 χσ1

00 χ
f
m0χc2

m (η8
c J/ψ8)1 χσ3

11 χ
f
m0χc2

m (J/ψ8 J/ψ8)2 χσ6
22 χ

f
m0χc2

m

(J/ψJ/ψ)0 χσ2
00 χ

f
m0χc1

m (J/ψηc)1 χσ4
11 χ

f
m0χc1

m (DA)2 χσ6
22 χ

f
d0χc1

d

(J/ψ8 J/ψ8)0 χσ2
00 χ

f
m0χc2

m (J/ψ8η8
c )

1 χσ4
11 χ

f
m0χc2

m

(DA)0
1 χσ2

00 χ
f
d0χc1

d (DA)1 χσ5
11 χ

f
d0χc1

d

(DA)0
2 χσ1

00 χ
f
d0χc2

d

The single-channel and channel-coupling calculations are performed in the present
work. To determine whether or not any bound states exist, Table 4 gives the low-lying
energies for ccc̄c̄ tetraquarks with quantum numbers JPC = 0++, 1+−, 2++, respectively.
From the table, we find that all the energies obtained are above the corresponding theoreti-
cal thresholds, so no bound states are formed in our calculations. In addition, the energies
of the hidden-color states with color configurations 8× 8, 3̄× 3 and 6× 6̄ are higher than
those with color 1× 1.

Although there is no bound state for the fully-heavy tetraquark system, resonance
states with energies higher than the corresponding thresholds are possible because of the
color structures of the system. In the present work, we employ the dedicated real scaling
(stabilization) method to determine the genuine resonances. Because the calculation is
carried out in a finite space, all the energies obtained are discrete. The bound state has a
stable energy in the channel coupling calculation, while the resonance has a quasi-stable
energy with increasing space after coupling to the scattering states. The real scaling method
has been often used for analyzing electron–atom and electron–molecule scattering [46].
In the present approach, the real scaling method is realized by scaling the Gaussian size
parameters rn in Equation (14) just for the meson-meson structure with the 1× 1 color
configuration, i.e., rn → αrn, where α takes values between 0.9 and 1.7.
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Table 4. The low-lying energies of the ccc̄c̄ states with JPC = 0++, 1+−, 2++ in single channel
and full-channel coupling calculations. Etheo

th and Eexp
th represent the theoretical and experimental

thresholds, respectively (unit: MeV).

Channel E Etheo
th Eexp

th

JPC = 0++

(ηcηc)0 5973.4 5972.6 5966.8

(η8
c η8

c )
0 6373.2

(J/ψJ/ψ)0 6193.7 6192.8 6193.8

(J/ψ8 J/ψ8)0 6356.9

(DA)0
1 6360.2

(DA)0
2 6390.9

full-channel coupling 5973.4 5972.6 5966.8

JPC = 1+−

(ηc J/ψ)1 6083.6 6082.7 6080.3

(η8
c J/ψ8)1 6349.8

(J/ψηc)1 6083.6 6082.7 6080.3

(J/ψ8η8
c )

1 6349.8

(DA)1 6397.6

full-channel coupling 6083.6 6082.7 6080.3

JPC = 2++

(J/ψJ/ψ)2 6193.7 6192.8 6193.8

(J/ψ8 J/ψ8)2 6365.3

(DA)2 6410.4

full-channel coupling 6193.7 6192.8 6193.8

(a) JPC = 0++: There are six channels in this case. The stabilization plots for some
channels are given. The first channel corresponds to the (ηcηc)0 configuration. Figure 1
shows the behavior of the energy spectrum of the first channel under the scaling of space.
In this figure, most energies for the states decrease with increasing α, and they are scattering
states. However, there are several horizontal lines, which correspond to the thresholds,
ηc(1S)ηc(1S), ηc(1S)ηc(2S), ηc(1S)ηc(3S) and ηc(2S)ηc(2S). The second channel is the
hidden-color channel (η8

c η8
c )

0. η8
c is the color octet state of cc̄ with spin 0. To check the

α dependence of the energies of the hidden color channel, we also changed rn to αrn
for the relative motion between two sub-clusters in the hidden color channel. Figure 2
gives a stabilization plot of the second channel, and all the energies are stable against the
scaling of space. Figure 3 shows the stabilization plot for the third channel, (J/ψJ/ψ)0

configuration. We observe similar behavior as that found for the first channel (ηcηc)0 and
some thresholds appear. The remaining three channels (J/ψ8 J/ψ8)0, (DA)0

1 and (DA)0
2

show similar behavior as observed for the second channel (η8
c η8

c )
0, which is omitted here

to save space. From these three figures, we can see that the energies of the hidden-color
channels are independent with the scaling of space, but for the 1× 1 color configuration.
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Figure 1. The stabilization plots for the energies of (ηcηc)0 state of JPC = 0++ with respect to the
scaling factor α. The horizontal axis shows the value of α and the vertical axis represents the energy
of the states, which is the same for the following figures.
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0 states for JPC = 0++ with respect to
the scaling factor α.
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Figure 3. The stabilization plots for the energies of the (J/ψJ/ψ)0 states for JPC = 0++ with respect
to the scaling factor α.
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To show the coupling effect, the following calculations were carried out. We first
studied the coupling effects between hidden-color channels. In Table 5, the energies for
the single hidden-color channel and hidden-color channels coupling are shown. To save
space, only the first ten energies are listed. From the table, we can see that the coupling
has important effects on the energy spectrum because all the energies of the hidden-color
channels lie in the same energy range. For example, hidden-color meson-meson structure
has the lowest energy of 6328 MeV, while the diquark–antidiquark structure has a lowest
energy of 6344 MeV, and the coupling between structures reduces this energy to 6253 MeV.
The coupling results for all hidden-channels are stable against the scaling of space, which
is shown in Figure 4. The energy of the lowest state is 6253 MeV. There is another state
close to it with an energy of 6316 MeV. At around 6500 MeV, there are two states, and,
in the range of 6700–7000 MeV, 8 resonance states appear. Which resonance states can be
observed among these states? A calculation for the coupling of the hidden-color channels
to the scattering states is required.

Table 5. The energy spectra for the ccc̄c̄ states with JPC = 0++ in the single hidden-color channel and hidden-color channels
coupling (unit: MeV).

Channel (η8
cη8

c)
0 (J/ψ8 J/ψ8)0 (η8

cη8
c)

0+(J/ψ8 J/ψ8)0 (DA)0
1 (DA)0

2 (DA)0
1+(DA)0

2 (η8
cη8

c)
0+(J/ψ8 J/ψ8)0+(DA)0

1+(DA)0
2

Energy 6371 6355 6328 6388 6358 6344 6253

6708 6717 6402 6756 6690 6400 6316

6973 6951 6657 6841 6763 6683 6528

7036 7065 6765 6848 6974 6759 6577

7140 7142 6944 7149 7022 6763 6714

7301 7258 6978 7196 7063 6840 6763

7357 7393 6987 7200 7102 6849 6805

7448 7453 7110 7262 7268 6972 6849

7507 7490 7130 7266 7326 7021 6877

7613 7577 7154 7281 7329 7063 6886
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Figure 4. The stabilization plots for the energies of the states for JPC = 0++ in the full hidden-color
channels coupling ((η8

c η8
c )

0+(J/ψ8 J/ψ8)0+(DA)0
1+(DA)0

2) with respect to the scaling factor α.

Figure 5 shows the results obtained by considering the coupling between hidden-color
channels (η8

c η8
c )

0+(J/ψ8 J/ψ8)0 and the two scattering states (ηcηc)0+(J/ψJ/ψ)0. One can
find that all the resonance states from the hidden color channels ((η8

c η8
c )

0+(J/ψ8 J/ψ8)0)
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below 7100 MeV are missing. Only one resonance with an energy of 7138 MeV sur-
vives the coupling to the scattering states. Because there is no scattering state in the
diquark–antidiquark structure, we also perform a channel coupling calculation involv-
ing two diquark–antidiquark structures, (DA)0

1+(DA)0
2, and the two scattering states,

(ηcηc)0+(J/ψJ/ψ)0. The results are displayed in Figure 6. Unlike the channel coupling
calculations between the hidden-color channels (η8

c η8
c )

0+(J/ψ8 J/ψ8)0 and the two scat-
tering states (ηcηc)0+(J/ψJ/ψ)0, several resonance states appear in the spectral region of
6700–7200 MeV. So, to identify the resonance states, full channel-coupling calculations are
needed. From these calculations, we also find that the low-lying resonance states in the
hidden-color channels are all missing.

To understand the reason behind the missing low-lying resonance states, we carried
out the following calculations: Figure 7 illustrates the results obtained for the coupling
between all hidden-color channels and the color-singlet channel (ηcηc)0. The lowest state
with energy of 6253 MeV disappears, which means that the state strongly couples to (ηcηc)0.
The resonance states around 6500 MeV are also missing in the coupling. Figure 8 gives the
results for the coupling between all hidden-color channels and the color-singlet channel
(J/ψJ/ψ)0. The second lowest state with energy of 6316 MeV disappears, which denotes
that this state couples strongly to (J/ψJ/ψ)0. So, the resonance states below 6714 MeV are
all missing after coupling to the scattering states.
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Figure 5. The stabilization plots for the energies of the states for JPC = 0++ obtained by considering
the coupling between hidden-color channels (η8

c η8
c )

0+(J/ψ8 J/ψ8)0 and the two scattering states
(ηcηc)0+(J/ψJ/ψ)0 with respect to the scaling factor α. The red horizontal line represents the
resonance states and the blue horizontal line represents the threshold, which is the same for the
following figures.
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Figure 6. The stabilization plots for the energies of the states for JPC = 0++ obtained by considering
the coupling between two diquark–antidiquark structures (DA)0

1+(DA)0
2 and the two scattering

states (ηcηc)0+(J/ψJ/ψ)0 with respect to the scaling factor α.
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Figure 7. The stabilization plots for the energies of the states for JPC = 0++ obtained by considering
the coupling between all hidden-color channels and the color-singlet channel (ηcηc)0 with respect to
the scaling factor α.
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Figure 8. The stabilization plots for the energies of the states for JPC = 0++ obtained by considering
the coupling between all hidden-color channels and the color-singlet channel (J/ψJ/ψ)0 with respect
to the scaling factor α.

To identify the genuine resonances, the full channel-coupling calculations are per-
formed and the results are shown in Figure 9. The first resonance state R(6763) appears
at an energy of 6763 MeV. There are two other resonances below 7000 MeV, with ener-
gies of 6849 MeV and 6884 MeV, which can be good candidates for the narrow structure
around 6.9 GeV reported by the LHCb collaboration. The broad structure in the range
6.2∼6.8 GeV is due to the effect of the mixture of scattering channels, J/ψJ/ψ, ηc(1S)ηc(2S)
and J/ψψ(2S) opening and the resonance R(6763). As for the structure around 7.2 GeV,
there are too many resonances here and our present calculations cannot give a clear picture.
More scattering states with non-zero orbital angular momentum are required to be added.

(b) JPC = 1+−: There are five channels, four with a meson-meson structure and one
with a diquark–antidiquark structure. The possible resonances, the results for all hidden-
color channels coupling are given in Figure 10. After coupling to the scattering channels,
the remaining resonances can be read from Figure 11. From Figure 10, one can see that
the energy of the lowest state is 6346 MeV in the hidden-color channels, but this state
disappears after coupling the open channel, ηc(1S)J/ψ. However, the second lowest state
survives the coupling (see Figure 11), so we obtain a resonance state with an energy of
6383 MeV. There are several resonance states around 6.8 GeV, R(6749), R(6793), R(6828)
and R(6835). There are also several resonances above 7.0 GeV, R(7100), R(7112), R(7173),
R(7173), R(7185), R(7247), R(7249) and R(7264). In the meson-meson structure, there
are also states with JPC = 1++. The calculation shows that there are no resonances below
7.3 GeV, and the results are omitted here to save space.
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Figure 9. The stabilization plots for the energies of the states for JPC = 0++ obtained by considering
the full-channel couplings with respect to the scaling factor α.
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Figure 10. The stabilization plots for the energies of the states for JPC = 1+− obtained by considering
the full hidden-channels coupling with respect to the scaling factor α.
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Figure 11. The stabilization plots for the energies of the states for JPC = 1+− obtained by considering
the full-channel couplings with respect to the scaling factor α. Upper for energies 6000–7000 MeV
and down for energies 7000–7300 MeV.

(c) JPC = 2++: There are three channels, two with a meson-meson structure and
one with a diquark–antidiquark structure. The results for the two hidden-color channels
coupling are given in Figure 12. After coupling to the scattering channel (J/ψJ/ψ)2,
the possible resonances can be read from Figure 13. There are three hidden-color states with
energies of 6335 MeV, 6590 MeV and 6742 MeV, below 6800 MeV, respectively. However,
they all disappear after coupling to the scattering channel (J/ψJ/ψ)2. The surviving states
after the coupling are shown in Figures 13. These states are R(6855), R(7085), R(7139),
R(7204) and R(7270).
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Figure 12. The stabilization plots for the energies of the states for JPC = 2++ obtained by considering
the full hidden-channels coupling with respect to the scaling factor α.
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Figure 13. The stabilization plots for the energies of the states for JPC = 2++ obtained by considering
the full-channel couplings with respect to the scaling factor α. Upper for energies 6100–7000 MeV
and down for energies 7000–7300 MeV.
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Table 6 collects all possible resonance states with quantum numbers JPC = 0++, 1+−, 2++.
The lowest observable resonance is the state with energy of 6383 MeV with JPC = 1+−,
and, below 7.0 GeV, there are nine states, which are separated into three groups. The first
group has one state with an energy of 6383 MeV; the second group has three states with
energies in the range of 6.75∼6.8 GeV, and the final group has five states with energies
around 6.85∼6.9 GeV. The broad structure in the region 6.2∼6.8 GeV observed by the
LHCb collaboration can be explained by the mixed effects of the resonance states in the
first and second groups, and the thresholds for double J/ψ and ηc(1S)ηc(2S). The narrow
structure around 6.9 GeV can be well explained by the resonances R(6849) and R(6884)
with JPC = 0++ and/or R(6855) with JPC = 2++. As for the resonances above 7.0 GeV,
we obtain nine states below 7.3 GeV with double J/ψ as the final states (JPC = 0++, 2++).
Here, we have mentioned that not all the states can be observed, because we have not taken
into account angular excited scattering states, such as χcJχcJ .

Table 6. The resonance states with quantum numbers JPC = 0++, 1+−, 2++ for the ccc̄c̄ system
(unit: MeV).

State 0++ 1+− 2++

Energy 6763 6383 6855

6849 6749 7085

6884 6793 7139

7063 6828 7204

7098 6835 7270

7138 7100

7156 7112

7200 7173

7185

7247

7249

7264

In order to identify the structures of these possible resonances, we calculated the
distance between c and c̄ quark, denoted as Rcc̄, as well as the distance between c and c
quark, denoted as Rcc for the resonance states, respectively, which are shown in Table 7.
From this table, we can see that for all the states with JPC = 0++ and 2++, and some states
with JPC = 1+−, Rcc and Rcc̄ are all in the range of 0.6∼1.0 fm, which means that the states
are in the diquark–antidiquark structure. For the other states with JPC = 1+−, Rcc and Rcc̄
are larger than 1 fm, which means that the states are very likely to be molecular. The large
Rcc̄ is due to the antisymmetrization and it gives the average distance between c and two c̄.
The distance between c and c̄ in one sub-cluster can be extracted from Rcc and Rcc̄, which
is round 0.6 fm; this is consistent with the results obtained for charmonium.
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Table 7. The distances between c and c(c̄) quark for the possible resonance states of the ccc̄c̄ system.

State Resonance (MeV) Rcc̄ (fm) Rcc (fm)

0++ 6763 0.68 0.82

6849 0.66 0.70

6884 0.80 0.85

7063 0.80 1.01

7098 0.84 1.03

7138 0.96 0.98

7156 0.88 0.81

7200 0.83 0.73

1+− 6383 0.85 0.88

6749 1.20 1.39

6793 0.52 0.48

6828 0.75 0.97

6835 1.35 1.31

7100 1.75 2.42

7112 1.00 1.26

7173 1.13 1.51

7185 1.55 1.66

7247 1.59 1.54

7249 1.60 1.50

7264 1.58 1.49

2++ 6855 0.66 0.71

7085 0.94 0.74

7139 0.88 0.80

7204 0.84 0.72

7270 0.76 0.85

4. Summary

In this work, we studied the mass spectra of the fully-charm ccc̄c̄ system with quantum
numbers JPC = 0++, 1+−, 2++ in the chiral quark model with the help of GEM. The dynam-
ical mixing of the meson-meson structure and the diquark–antidiquark structure, along
with all possible color, spin configurations were taken into account. The predicted masses
for the lowest-lying ccc̄c̄ states are all above the corresponding two meson decay thresholds,
leaving no space for bound states. By adopting the real scaling method, we identify the
genuine resonance states for the JPC = 0++, 1+−, 2++ ccc̄c̄ system. The lowest observ-
able resonance state has quantum numbers JPC = 1+− with energy 6.38 GeV, and there
are several states with quantum numbers JPC = 0++, 2++ with energies in the region of
6.85∼6.90 GeV, which can be used to explain the narrow structure around 6.9 GeV in the
double J/ψ invariant mass spectrum reported by the LHCb collaboration. There are many
resonance states above 7.0 GeV„ which are worth further study by including the angular
excited scattering channels.

In general, the QQQ̄Q̄ (Q = b, c) resonance states mainly decay into two QQ̄ meson
final states by spontaneous dissociation. For the full-charm ccc̄c̄ tetraquarks, they can decay
via the spontaneous dissociation mechanism since they lie above the two-charmonium
thresholds. The doubly hidden-charm tetraquarks can be clearly differentiated in exper-
iments because of their much heavier energies than conventional charmonium mesons
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cc̄. However, it is more difficult to produce ccc̄c̄ states because two heavy quark pairs
need to be created in vacuum. However, the running of the LHC provides a chance for
the observation of double heavy quarkonium. For example, the recent observations of
the J/ψJ/ψ [10–14], J/ψΥ(1S) [56] and Υ(1S)Υ(1S) [15] events, shine a light for the pro-
duction of ccc̄c̄ and bbb̄b̄ tetraquarks. With the accumulation of experimental data and
the advancement of theoretical work, the nature of the fully-heavy tetraquark states will
become more clear.
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