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Abstract: The two-neutrino double-beta decay (2νββ-decay) process is attracting more and more
attention of the physics community due to its potential to explain nuclear structure aspects of
involved atomic nuclei and to constrain new (beyond the Standard model) physics scenarios. Topics
of interest are energy and angular distributions of the emitted electrons, which might allow the
deduction of valuable information about fundamental properties and interactions of neutrinos once
a new generation of the double-beta decay experiments will be realized. These tasks require an
improved theoretical description of the 2νββ-decay differential decay rates, which is presented. The
dependence of the denominators in nuclear matrix elements on lepton energies is taken into account
via the Taylor expansion. Both the Fermi and Gamow-Teller matrix elements are considered. For
nuclei of experimental interest, relevant phase-space factors are calculated by using exact Dirac
wave functions with finite nuclear size and electron screening. The uncertainty of the angular
correlation factor on nuclear structure parameters is discussed. It is emphasized that the effective
axial-vector coupling constant geff

A can be determined more reliably by accurately measuring the
angular correlation factor.

Keywords: two-neutrino double-beta decay; angular correlation factor; angular and energy distributions

1. Introduction

There is an increased interest in the two-neutrino double-beta decay (2νββ-decay)
mode with an emission of two electrons and two antineutrinos

(A, Z)→ (A, Z + 2) + 2e− + 2νe, (1)

which was suggested by Maria Goeppert-Mayer in 1935 [1]. The 2νββ-decay is the second
order process of weak interaction fully consistent with the Standard model (SM) of particle
physics, where two neutrons are simultaneously transformed into two protons inside
an atomic nucleus, and two pairs of electrons and antineutrinos are emitted. It is the
rarest process measured so far in nature with a half-life above 1018 years. The first direct
observation of this process dates back to 1987 [2]. Currently, the 2νββ-decay has been
observed in eleven even–even nuclei for transition to ground state and in two cases also
for transition to the first excited 0+1 state of the final nucleus [3].

Several next-generation double-beta experiments with a variety of suitable isotopes
are in different stages of construction or preparation and planning. Their main goal is
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the observation of the neutrinoless double-beta decay (0νββ-decay), a double-beta decay
mode violating the total lepton number, in which only two electrons are emitted. It would
prove that neutrinos are Majorana particles (i.e., neutrinos are their own antiparticles),
as most theories beyond SM requires. Besides the Majorana nature of the neutrino, valuable
information on the origin of neutrino masses, violation of CP in the lepton sector and
possible existence of sterile neutrinos is expected, as well.

An important by-product of these experimental searches will be a precise measurement
of the 2νββ-decay with high statistics. The study of this process is important on its own
and represents a research program with many important questions waiting for the answers.
The 2νββ-decay provides insights into nuclear structure [4] of nuclear systems under
consideration which can then be used in a reliable calculation of the nuclear matrix elements
(NMEs) for 0νββ-decay, necessary to extract the particle physics parameters responsible for
the lepton number violation [5] or in fixing the effective value of the axial-vector coupling
constant geff

A [6–9].
With the increasing statistics of the 2νββ-decay, the possibility of exploring new

physics beyond SM with this process becomes more and more reliable. The 2νββ-decay can
be, and it is used for the search of the right-handed neutrino interactions without having
to assume their nature [10], the neutrino self-interactions [11], the sterile neutrinos with
masses up to Q-value of the process [12], the bosonic neutrino component [13], the violation
of the Lorentz invariance [14–17], the 0νββ-decays with Majoron(s) emission [18,19] and
the quadruple-β decay [20].

A necessary condition to gain rich information about fundamental properties and
interactions of neutrinos from the precisely measured differential characteristics of the
2νββ-decay is that all atomic and nuclear structure physics aspects of this process are
well understood. Recently, the theoretical description of the shape of single and summed
electron energy distributions of the 2νββ-decay has been significantly improved by taking
into account the dependence on lepton energies from the energy denominators of nuclear
matrix elements [6], which was commonly neglected. However, their importance was
already manifested by the study of 2νββ-decay energy and angular distributions within
the framework of the Single State Dominance (SSD) versus Higher State Dominance (HSD)
hypothesis in [21,22]. In this paper, the theoretical study of Ref. [6] is extended to analyze
the angular correlations of outgoing electrons by considering both the Fermi and Gamow-
Teller components of the 2νββ-decay nuclear matrix elements. For nuclei of experimental
interest, all phase-space factors are calculated by using exact Dirac wave functions with
finite nuclear size and electron screening.

2. The 2νββ Angular Distribution

The inverse half-life of the 2νββ-decay transition to the 0+ ground state of the final
nucleus is defined as [

T2ν
1/2

]−1
=

Γ2ν

ln (2)
, (2)

where Γ2ν is the decay rate. If the contribution of higher partial waves of electron and
higher order terms of the nucleon current are neglected as they are strongly suppressed [23],
the angular distribution of emitted electrons takes the form [10]

dΓ2ν

d(cos θ)
=

1
2

Γ2ν
(

1 + K2ν cos θ
)

, (3)

where

K2ν = −Λ2ν

Γ2ν
(4)
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is the angular correlation factor and θ is the angle between the emitted electrons. The decay
rates are given by{

Γ2ν

Λ2ν

}
=

me(Gβm2
e )

4

8π7 (geff
A )4 1

m11
e

∫ Ei−E f−me

me
pe1 Ee1

∫ Ei−E f−Ee1

me
pe2 Ee2

×
∫ Ei−E f−Ee1−Ee2

0
E2

ν1
E2

ν2

{
A2νFss(Ee1)Fss(Ee2)
B2νEss(Ee1)Ess(Ee2)

}
dEν1 dEe2 dEe1 ,

(5)

with

Fss(E) = g2
−1(E) + f 2

1 (E),

Ess(E) = 2g−1(E) f1(E). (6)

Here, Gβ = GF cos θC (GF is the Fermi constant and θC is the Cabbibo angle [24]) and me is

the mass of electron. Ei, E f and Eei (Eei =
√

p2
ei
+ m2

e , i = 1, 2) are the energies of initial and

final nuclei and electrons, respectively. g−1(E) ≡ g−1(E, r = R) and f1(E) ≡ f1(E, r = R)
are radial components of electron wave functions evaluated at nuclear surface with radius
R, which will be introduced in the following sections. A2ν and B2ν consist of products of
the Fermi and Gamow-Teller nuclear matrix elements, which depend on lepton energies:

A2ν =
1
4

∣∣∣∣∣∣
(

gV

geff
A

)2(
MK

F + ML
F

)
−
(

MK
GT + ML

GT

)∣∣∣∣∣∣
2

+
3
4

∣∣∣∣∣∣
(

gV

geff
A

)2(
MK

F −ML
F

)
+

1
3

(
MK

GT −ML
GT

)∣∣∣∣∣∣
2

,

(7)

B2ν =
1
4

∣∣∣∣∣∣
(

gV

geff
A

)2(
MK

F + ML
F

)
−
(

MK
GT + ML

GT

)∣∣∣∣∣∣
2

−1
4

∣∣∣∣∣∣
(

gV

geff
A

)2(
MK

F −ML
F

)
+

1
3

(
MK

GT −ML
GT

)∣∣∣∣∣∣
2

,

(8)

where

MK,L
F = me ∑

n

MF(0+n )
(

En(0+)− (Ei − E f )/2
)

[
En(0+)− (Ei − E f )/2

]2
− ε2

K,L

,

MK,L
GT = me ∑

n

MGT(1+n )
(

En(1+)− (Ei − E f )/2
)

[
En(1+)− (Ei − E f )/2

]2
− ε2

K,L

,

(9)

with

MF(n) =
〈

0+f
∥∥∥∑

m
τ+

m
∥∥0+n

〉〈
0+n
∥∥∑

m
τ+

m
∥∥0+i

〉
,

MGT(n) =
〈

0+f
∥∥∥∑

m
τ+

m σm
∥∥1+n

〉〈
1+n
∥∥∑

m
τ+

m σm
∥∥0+i

〉
.

(10)

Here, |0+i 〉, |0
+
f 〉 are the 0+ ground states of the initial and final even–even nuclei, respec-

tively, and |1+n 〉 (|0+n 〉) are all possible states of the intermediate nucleus with angular
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momentum and parity Jπ = 1+ (Jπ = 0+) and energy En(1+) (En(0+)). The lepton
energies enter in the factors

εK = (Ee2 + Eν2 − Ee1 − Eν1)/2,

εL = (Ee1 + Eν2 − Ee2 − Eν1)/2. (11)

The maximal value of |εK| and |εL| is the half of Q value of the process (εK,L ∈ (−Q/2, Q/2)).
For 2νββ decay with energetically forbidden transition to intermediate nucleus (En − Ei >
−me) the quantity En − (Ei + E f )/2 = Q/2 + me + (En − Ei) is always larger than half of
the Q value.

The Fermi (Gamow-Teller) operator governing the matrix elements MF(n) (MGT(n))
given in Equation (10) is a generator of an isospin SU(2) (spin-isospin SU(4)) multiplet
symmetry. In the case both isospin and spin-isospin symmetries would be exact in nuclei
the 2νββ-decay would be forbidden as ground states of initial and final nuclei would
belong to different multiplets. Usually, it is assumed that the contribution from Fermi
matrix elements to the 2νββ-decay amplitude is negligibly small as the isospin is known
to be a reasonable approximation in nuclei. The main contribution is due to Gamow-Teller
matrix elements. This fact is partially confirmed by the nuclear structure studies, which are,
however, model dependent. There is a question whether it is possible to prove experimentally
the dominance of the Gamow-Teller over Fermi contribution in the 2νββ-decay.

2.1. The Standard Approximation and the HSD Hypothesis

Commonly, the calculation of the 2νββ-decay distributions and decay rate is simplified
by neglecting εK,L in energy denominators of NME’s by which a separation of phase-space
factors and NMEs is achieved. We get

A2ν = B2ν =

∣∣∣∣∣∣
(

gV

geff
A

)2

MF −MGT

∣∣∣∣∣∣
2

, (12)

where Fermi and Gamow-Teller matrix elements are given by

MF = me ∑
n

〈
0+f
∥∥∥∑m τ+

m ‖0+n 〉〈0+n ‖∑m τ+
m
∥∥0+i

〉
En − (Ei + E f )/2

MGT = me ∑
n

〈
0+f
∥∥∥∑m τ+

m σm‖1+n 〉〈1+n ‖∑m τ+
m σm

∥∥0+i
〉

En − (Ei + E f )/2
.

(13)

As a consequence of Equation (12) the angular correlation factor K2ν (see Equations (4) and
(5)) is not affected by the nuclear structure as the dependence on A2ν and B2ν is eliminated.

We note that this approximation scheme is justified when the contribution from higher
lying states (0+n , 1+n ) of the intermediate nucleus to the 2νββ-decay rate dominates over the
low lying states. Such theoretical assumption is denoted as the higher state dominance
(HSD) hypothesis. The experimental observation shows that Fermi strength distribution
from the initial to the intermediate nucleus is concentrated to the Isobaric Analogue State
region with excitation energy above 10 MeV, that is, the isospin symmetry prevents any
significant fragmentation of the Fermi transition. Contrary, the Gamow-Teller strength
distribution is fragmented over many daughter states covering a region of Gamow-Teller
resonance and a region of low-lying states of the intermediate nucleus. Thus, the HSD
assumption is justified for Fermi matrix elements MK,L

F and it is an open question whether
transitions through low-lying or higher-lying (region of the GT resonance) 1+ states of the
intermediate nucleus give the main contribution to MK,L

GT , or whether there is a mutual
cancellation of these contributions.



Universe 2021, 7, 147 5 of 20

2.2. The Angular Distribution within the SSD Hypothesis

A long time ago, it was proposed by Abad et al. [25] that the 2νββ-decay is governed
by the Gamow-Teller transitions connecting the 0+ ground states of initial (A,Z) and final
(A,Z+2) even–even nuclei with the first 1+1 state of the intermediate nucleus (A,Z+1). This
assumption is known as the SSD hypothesis. Then, we have

MK,L
GT = me

MGT(n = 1)
(

En=1(1+1 )− (Ei − E f )/2
)

[
En=1(1+1 )− (Ei − E f )/2

]2
− ε2

K,L

, (14)

and MK,L
F = 0. In this case the normalized to the full width single and summed electron

differential decay rates and the angular correlation factor K2ν are free of MGT(n = 1),
but they are affected by the lepton energies incorporated in εK,L and the energy difference
En=1(1+1 )− (Ei − E f )/2 [21,22]. The experimental study of energy distributions performed
for 2νββ-decay of 82Se [26] and 100Mo [19] showed a clear preference for the SSD scenario
over the HSD scenario. However, a better interpretation of experimental data requires an
improved theoretical description the 2νββ-decay process.

3. The Dependence of Angular Distribution on Lepton Energies via Taylor Expansion

The improved formulas for the 2νββ differential decay rates can be obtained by taking
advantage of the Taylor expansion over the parameters εK,L containing the lepton energies
in the NMEs denominators. This procedure allows the factorization of NMEs and phase-
space factors. In [6] it was manifested that additional terms due to Taylor expansion in the
decay rate are significant. It indicates that the effect of nuclear structure on the angular
distribution of emitted electrons in the 2νββ-decay might be important as well.

Our assumptions are as follows: (i) The Fermi matrix element MK,L
F is governed by

the transitions through isobaric analogue state with energy above 10 MeV and the effect of
lepton energies in the energy denominators can be neglected, that is, MK,L

F ' MF; (ii) The
dependence of Gamow-Teller matrix element MK,L

GT on lepton energies cannot be neglected
and will be taken into account by Taylor expansion of energy denominators over the ratio
εK,L/(En − (Ei + E f )/2).

By limiting our consideration to the fourth power in εK,L, we get

Γ2ν = Γ2ν
0 + Γ2ν

2 + Γ2ν
22 + Γ2ν

4 ,

Λ2ν = Λ2ν
0 + Λ2ν

2 + Λ2ν
22 + Λ2ν

4 . (15)

Here, the leading Γ2ν
0 (Λ2ν

0 ), next to leading Γ2ν
2 (Λ2ν

2 ) and next-to-next to leading Γ2ν
22 and

Γ2ν
4 (Λ2ν

22 and Λ2ν
4 ) orders in Taylor expansion are given by

Γ2ν
0

ln (2)
=

(
geff

A

)4
M0G2ν

0 ,
Γ2ν

2
ln (2)

=
(

geff
A

)4
M2G2ν

2 ,

Γ2ν
22

ln (2)
=

(
geff

A

)4
M22G2ν

22 ,
Γ2ν

4
ln (2)

=
(

geff
A

)4
M4G2ν

4 , (16)

and

Λ2ν
0

ln (2)
=

(
geff

A

)4
N0H2ν

0 ,
Λ2ν

2
ln (2)

=
(

geff
A

)4
N2H2ν

2 ,

Λ2ν
22

ln (2)
=

(
geff

A

)4
N22H2ν

22 ,
Λ2ν

4
ln (2)

=
(

geff
A

)4
N4H2ν

4 . (17)

The phase-space factors are defined as
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{
G2ν

N
H2ν

N

}
=

me(Gβm2
e )

4

8π7 ln 2
1

m11
e

∫ Ei−E f−me

me
pe1 Ee1

∫ Ei−E f−Ee1

me
pe2 Ee2

×
∫ Ei−E f−Ee1−Ee2

0
E2

ν1
E2

ν2
A2ν

N

{
Fss(Ee1)Fss(Ee2)
Ess(Ee1)Ess(Ee2)

}
dEν1 dEe2 dEe1 ,

(18)

with N = {0, 2, 22, 4}. In the phase-space expressions,

A2ν
0 = 1, A2ν

2 =
ε2

K + ε2
L

(2me)2 , (19)

A2ν
22 =

ε2
Kε2

L
(2me)4 , A2ν

4 =
ε4

K + ε4
L

(2me)4 .

The products of nuclear matrix elements are given by

M0 =

( gV

geff
A

)2

M2ν
F−1 −M2ν

GT−1

2

M2 =−

( gV

geff
A

)2

M2ν
F−1 −M2ν

GT−1

M2ν
GT−3

M22 =
1
3

(
M2ν

GT−3

)2

M4 =
1
3

(
M2ν

GT−3

)2
−

( gV

geff
A

)2

M2ν
F−1 −M2ν

GT−1

M2ν
GT−5

(20)

and

N0 =

( gV

geff
A

)2

M2ν
F−1 −M2ν

GT−1

2

N2 =−

( gV

geff
A

)2

M2ν
F−1 −M2ν

GT−1

M2ν
GT−3

N22 =
5
9

(
M2ν

GT−3

)2

N4 =
2
9

(
M2ν

GT−3

)2
−

( gV

geff
A

)2

M2ν
F−1 −M2ν

GT−1

M2ν
GT−5,

(21)

where nuclear matrix elements take the forms

M2ν
GT−1 ≡ M2ν

GT

M2ν
F−1 ≡ M2ν

F (22)

M2ν
GT−3 = ∑

n
Mn

4 m3
e(

En(1+)− (Ei + E f )/2
)3 ,

M2ν
GT−5 = ∑

n
Mn

16 m5
e(

En(1+)− (Ei + E f )/2
)5 .



Universe 2021, 7, 147 7 of 20

By introducing ratios of NMEs,

ξ2ν
31 =

M2ν
GT−3

MGT −
(

gV
geff

A

)2
MF

,

ξ2ν
51 =

M2ν
GT−5

MGT −
(

gV
geff

A

)2
MF

(23)

for the angular distribution we get

dΓ2ν

d(cos θ)
=

1
2

Γ2ν(ξ2ν
31 , ξ2ν

51)
(

1 + K2ν(ξ2ν
31 , ξ2ν

51) cos θ
)

, (24)

where

Γ2ν(ξ2ν
31 , ξ2ν

51) = ln (2) G2ν
0

(
geff

A

)4

∣∣∣∣∣∣
(

gV

geff
A

)2

MF −MGT

∣∣∣∣∣∣
2

(25)

×
{

1 + ξ31
G2ν

2
G2ν

0
+

1
3

ξ2
31

G2ν
22

G2ν
0

+

(
1
3

ξ2
31 + ξ51

)
G2ν

4
G2ν

0

}
,

and

K2ν(ξ2ν
31 , ξ2ν

51) = −
H2ν

0 + ξ31H2ν
2 + 5

9 ξ2
31H2ν

22 +
( 2

9 ξ2
31 + ξ51

)
H2ν

4

G2ν
0 + ξ31G2ν

2 + 1
3 ξ2

31G2ν
22 +

(
1
3 ξ2

31 + ξ51

)
G2ν

4

. (26)

The factor ξ2ν
31 is a free parameter which can be determined from the measured single

electron, summed electron energy distributions or the angular correlation factor K2ν. The
corresponding analysis can be performed by exploiting the SSD relation for the factor ξ2ν

51 :

ξ2ν
51 =

(
2me

E1(1+)− (Ei + E f )/2

)4

. (27)

Here, E1(1+) is the energy of the lowest 1+ state of the intermediate nucleus. This ap-
proximation reflects the higher power of energy denominators in matrix elements M2ν

GT−3
and M2ν

GT−5, which suppresses strongly the contributions from higher lying states of the
intermediate nucleus.

The subject of interest might be also dependence of the angular distribution on energies
of the emitted electrons,

dΓ2ν

dEe1 dEe2 d(cos θ)
=

1
2

dΓ2ν

dEe1 dEe2

(
1 + κ2ν(Ee1 , Ee2 , ξ2ν

31) cos θ
)

. (28)

4. Electron Wave Function

An important ingredient for the evaluation of the phase space factors, both in single
β and double β decay, is the distortion of the outgoing particle wave function in the elec-
trostatic potential of the daughter nucleus, V(r). If the potential is spherically symmetric
V(r) ≡ V(r), the time-independent Dirac equation is satisfied by [27]

Ψ(Ee, r) = ∑
κµ

(
gκ(Ee, r)χµ

κ

i fκ(Ee, r)χµ
−κ

)
, (29)



Universe 2021, 7, 147 8 of 20

where gκ(Ee, r) and fκ(Ee, r) are radial functions, indexed by the relativistic quantum
number κ, eigenvalue of the operator K = β(σ · L + 1) which takes negative or positive
integer values (|κ| = k, k = 1, 2, 3, . . . ). Here, 1 is the 4× 4 unit matrix, L is the orbital
angular momentum operator, σ stands for the Pauli matrices in four dimensions, and β is
equal to the γ0 Dirac matrix. Ee and r are the energy and the position vector of the electron,
respectively. χ

µ
κ are the usual spin-angular momentum wave functions

χ
µ
κ = ∑

m
C(`, 1/2, j; µ−m, m, µ)Yµ−m

` (r̂)χm, (30)

with C(j1, j2, j3; m1, m2, m3) the Clebsch-Gordan coefficient, Yµ−m
` the spherical harmonic

and χm the traditional spinor. The total angular momentum of the electron is jκ = |κ| − 1/2
and the orbital angular momentum can be defined by

lκ =

{
κ if κ > 0,
|κ| − 1 if κ < 0.

(31)

The radial wave functions gκ(Ee, r) and fκ(Ee, r) satisfy the Dirac radial equation(
d
dr

+
κ + 1

r

)
gκ(Ee, r)− (Ee −V(r) + me) fκ(Ee, r) = 0(

d
dr
− κ − 1

r

)
fκ(Ee, r) + (Ee −V(r)−me)gκ(Ee, r) = 0,

(32)

and must be normalized so that they have for large values of pr the asymptotic behavior

(
gκ(Ee, r)
fκ(Ee, r)

)
≈ e−iδκ

pr

√ Ee+me
2Ee

sin(pr− l π
2 + δκ − η ln(2pr))√

Ee−me
2Ee

cos(pr− l π
2 + δκ − η ln(2pr))

, (33)

where
η = αZ f

Ee

p
(34)

is the Sommerfeld parameter and δκ is the phase shift. Here Z f is the charge of the final
nucleus which generates the potential V(r).

The wave function of the outgoing electron, can be expanded in spherical waves as

Ψ(Ee, r) = Ψ(s1/2)(Ee, r) + Ψ(p1/2)(Ee, r) + . . . , (35)

where the spherical waves index is displayed in the spectroscopic notation. For the case of
2νββ decay, 0+ → 0+ transitions, we are interested to study

Ψ(s1/2)(Ee, r) =
(

g−1(Ee, r)χm

f+1(Ee, r)(σ · p̂)χm

)
, (36)

where p̂ = p/p, p is the electron momentum vector and σ stands for the Pauli matrices in
two dimensions.

4.1. The Approximation Scheme A

We adopt the relativistic electron wave function in a uniform charge distribution in
the final nucleus, generating the potential

V(r) =

−
αZ f

r for r ≥ R,

− αZ f
2R

[
3−

( r
R
)2
]

for r < R
, (37)
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where R is the radius of the daughter nucleus, R = r0 A1/3 with r0 = 1.2 fm. By keeping
the lowest power of the expansion of r, the radial wave functions for the s1/2 wave are
given by [28] (

g−1(Ee, r)
f+1(Ee, r)

)
=

(
A−1
A+1

)
. (38)

The normalization constant can be expressed in a good approximation as

A±k '
√

Fk−1

√
Ee ∓me

2Ee
, (39)

where

Fk−1 =

[
Γ(2k + 1)

Γ(k)Γ(2γk + 1)

]2

(2pR)2(γk−k)|Γ(γk + iη)|2eπη , (40)

and
γk =

√
k2 − (αZ f )2. (41)

For this scheme, the functions Fss(Ee) and Ess(Ee), entering in the decay rate, can be
safely approximated with

Fss(Ee) ' F0(Z f , Ee)

Ess(Ee) '
p
Ee

F0(Z f , Ee). (42)

4.2. The Approximation Scheme B

We consider the analytical solution of the Dirac equation for the Coulomb potential of
the pointlike daughter nucleus with charge Z f , V(r) = −αZ f /r. The radial wave functions
are expressed as [29]

gκ(Ee, r) =
κ

k
1
pr

√
Ee + me

2Ee

|Γ(1 + γk + iη)|
Γ(1 + 2γk)

(2pr)γk eπη/2

× Im{ei(pr+ζ)
1F1(γk − iη, 1 + 2γk,−2ipr)},

fκ(Ee, r) =
κ

k
1
pr

√
Ee −me

2Ee

|Γ(1 + γk + iη)|
Γ(1 + 2γk)

(2pr)γk eπη/2

×Re{ei(pr+ζ)
1F1(γk − iη, 1 + 2γk,−2ipr)},

(43)

with

eiζ =

√
κ − iηme/Ee

γk − iη
. (44)

Here, Γ(z) is the Gamma function and 1F1(a, b, z) is the confluent hypergeometric function.

4.3. The Approximation Scheme C

In this scheme, we consider the numerical solutions of the radial Dirac equation for
a uniform charged distribution of the final nucleus. Using the numerical wave functions
as solutions of the radial Dirac equation for the potential described by Equation (37), we
consider the finite size effect of the final nucleus. Moreover, the screening effect of atomic
electrons is considered by the Thomas-Fermi approximation. The universal screening
function used φ(r) is the solution of the Thomas-Fermi equation

d2φ

dx2 =
φ3/2
√

x
, (45)
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with the boundary conditions φ(0) = 1 and φ(∞) = 0. In Equation (45) x = r/b, with
b ≈ 0.8853a0Z−1/3

f and a0 is the Bohr radius. For solving the Thomas-Fermi equation we
implied the numerical Majorana method described in [30]. The Majorana method was also
used in the 2νββ phase-space factors calculation in Refs. [31–33].

To describe the physical context of 2νβ−β− decay, the boundary condition on infinity
should describe the final nucleus as a positive ion with electrical charge +2. Thus, the input
potential for the radial Dirac equation is

rVβ−β−(r) = (rV(r) + 2)× φ(r)− 2. (46)

The radial wave functions are evaluated with the subroutine package RADIAL [34,35].
Following the subroutine procedure, the truncation errors can be avoided entirely, and the
radial wave functions can be obtained with the desired accuracy. Thus, the numerical
solutions can be considered as exact for the potential described by Equation (46).

The approximation schemes presented above differ by the treatment of the Coulomb
potential of the final nucleus and the precision of the electronic wave functions. Although in
approximation scheme A, the finite nuclear size correction is taken into account, the radial
wave functions for the s1/2 wave are approximate by keeping the lowest power of the
expansion of r. In scheme B, the radial wave functions are exact, but the final nucleus is
considered a point-like nucleus. The most precise treatment presented in the paper is the
approximation scheme C. Besides the fact that the radial wave functions are exact, we also
consider the finite nuclear size correction. Moreover, in this scheme, the screening effect
of atomic electrons is considered. At this point, it is important to mention that further
improvements were made in the treatment of the Coulomb potential for double beta decay
in Refs. [32,33], by taking into account the diffuse nuclear surface correction. This correction
is a small one compared to the finite nuclear size correction, and it can be safely neglected
for the purpose of our paper.

In Figure 1, we present the radial wave functions of an electron in s1/2 spherical wave
state from the double-β emitter 136Xe, as functions of kinetic energy Ee −me and evaluated
on the surface of the daughter nucleus. We observe that the approximation scheme A,
corresponding to leading finite-size Coulomb, is in good agreement with the other two
approaches for g−1(Ee, R) but fails badly for f+1(Ee, R), especially at low energies of the
electron. We note that approximation schemes B and C are in good agreement in the
representation intervals as a final remark.

A

B

C

136Xe
5

10

15

20

g
-
1
(E
e
,R
)

10-4 10-3 10-2 10-1 100

Ee-m e [MeV]

0

1

2

3

4

f
+
1
(E
e
,R
)

10-4 10-3 10-2 10-1 100

Ee-m e [MeV]

Figure 1. Electron radial wave functions in s1/2 spherical wave state for an electron emitted in the
double-β decay of 136Xe, as functions of the kinetic energy Ee −me evaluated on the surface of the
final nucleus R = 6.17 fm.



Universe 2021, 7, 147 11 of 20

5. Results and Discussion

The integration over all leptons energies in the decay rate is essential when predicting
the 2νββ half-life and the angular correlation coefficient of the emitted electrons. We
performed the integration over the energies of the electrons numerically, with a 15-points
Gauss-Kronrod quadrature. The integration over neutrino energy is performed analytically
in the Appendix A.

In Table 1, we present the phase-space factors entering in the decay rate, that is, Equa-
tion (18), calculated within approximation schemes A, B, and C, for 2νββ decay of 100Mo,
136Xe and 150Nd. As was already pointed out in [6], the GN phase-space factors calculated
with exact relativistic electron wave functions (scheme C) are smaller than those provided
by approximation scheme A. We can see that the results for GN obtained with scheme B are
between the results obtained with schemes A and C. In the angular phase-space factors HN ,
we observe a good agreement between schemes A and B, and again smaller results from
scheme C. The different behavior of GN and HN , for the same approximations schemes
for the electronic wave functions, indicates that the angular correlation is sensitive to the
treatment of the Coulomb interaction for the emitted electrons.

In Table 2, we update the values of the phase-space factors with the approximation
scheme C for 11 nuclei of experimental interest. We took the Q-value for each nucleus
from the experiment with the smallest uncertainty when available or from tables of recom-
mended values [36], as it is the case of 2νββ-decay of 124Sn. In what follows, we used just
those values for the maximum sum of the electrons’ kinetic energies.

Considering ξ2ν
31=−0.2, 0, 0.2, 0.4 and 0.6, we present in Table 3 the values of the

angular correlation coefficient K2ν, defined in Equation (26), for multiple nuclei of interest.
For each nucleus, we display the ξ2ν

51 fixed by the SSD relation and the energy difference
between the lowest 1+ state of the intermediate nucleus and the ground state of the initial
nucleus (see Equation (27)). Columns 5 and 6 in Table 3 represent the angular correlation
coefficient results using the electronic wave function in approximation schemes A and C,
respectively. Besides the fact that we obtain smaller results with scheme C compared with
scheme A, we can also observe that the dependence of K2ν on ξ2ν

31 is not linear.
To emphasize the dependence on the ratio of the nuclear matrix elements we depict,

in Figure 2, the angular correlation coefficient K2ν as a function of ξ2ν
31 . The representation is

done from ξ2ν
31 = −0.8 to ξ2ν

31 = 0.8 for all nuclei. We can see that K2ν is a quadratic function
of ξ2ν

31 for all nuclei, at least in the representation interval. If we assume the SSD in the 2νββ
process, then the unknown parameter ξ2ν

31 is fixed to the
(
ξ2ν

31
)

SSD value. We present with
filled blue circles, in Figure 2, the values of the angular correlation coefficient evaluated
at
(
ξ2ν

31
)

SSD.
The integration over all leptons energies is crucial in calculating the global observables.

Still, the integrand itself provides valuable information about the energy and angular
distributions of the emitted electrons. The analytical approach for the integration over the
neutrino energy (see Appendix A) ensures that we can evaluate the obtained distributions
at any energetical point, not only in the points fixed by the numerical method of integration.

From the analytical expressions of the partial double distributions in Equation (A8),
we can see that they exhibit a completely different behavior as functions of the electron
energies, Ee1 and Ee2 . This fact is highlighted in Figure 3, where we present, for 2νββ-decay
of 100Mo, the contour plots of the partial double electron distribution normalized to the
corresponding partial decay rate. The normalization procedure ensures that the normalized
partial distributions do not depend on the ratios of nuclear matrix elements ξ2ν

31 and ξ2ν
51 .
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Table 1. Phase space factors G2ν
N and H2ν

N with N = {0, 2, 22, 4} for 2νββ decay of 100Mo, 136Xe and 150Nd. The results are
obtained using different approximations for the radial wave functions g−1(Ee) and f1(Ee) of the electron: (A) The standard
approximation of Doi et al. [28]. (B) The analytical solution of the Dirac equation for a point-like nucleus [29]. (C) The exact
solution of the Dirac equation for a uniform charge distribution of the nucleus screened by the atomic electronic cloud.
The results are presented in yr−1. For each nucleus and each phase space factor we present the percent deviation between
approximation schemes A and B, δAB = 100(XA − XB)/XB, and the percent deviation between approximation schemes A
and C, δAB = 100(XA − XC)/XC, with X = G2ν

N or X = H2ν
N .

Nucleus Elec. w. f. G2ν
0 G2ν

2 G2ν
22 G2ν

4
100Mo A 3.820× 10−18 1.748× 10−18 2.302× 10−19 1.001× 10−18

B 3.490× 10−18 1.597× 10−18 2.105× 10−19 9.145× 10−19

C 3.279× 10−18 1.498× 10−18 1.972× 10−19 8.576× 10−19

δAB 9.44% 9.49% 9.38% 9.52%
δAC 16.49% 16.67% 16.76% 16.80%

136Xe A 1.794× 10−18 5.519× 10−19 4.998× 10−20 2.112× 10−19

B 1.566× 10−18 4.815× 10−19 4.367× 10−20 1.842× 10−19

C 1.406× 10−18 4.318× 10−19 3.908× 10−20 1.651× 10−19

δAB 14.57% 14.63% 14.45% 14.67%
δAC 27.62% 27.81% 27.87% 27.95%

150Nd A 4.820× 10−17 2.733× 10−17 4.483× 10−18 1.938× 10−17

B 4.043× 10−17 2.291× 10−17 3.765× 10−18 1.624× 10−17

C 3.604× 10−17 2.038× 10−17 3.343× 10−18 1.443× 10−17

δAB 19.21% 19.29% 19.04% 19.36%
δAC 33.76% 34.08% 34.10% 34.30%

Nucleus Elec. w. f. H2ν
0 H2ν

2 H2ν
22 H2ν

4
100Mo A 2.466× 10−18 1.034× 10−18 1.239× 10−19 5.491× 10−19

B 2.406× 10−18 1.030× 10−18 1.260× 10−19 5.582× 10−19

C 2.244× 10−18 9.566× 10−19 1.165× 10−19 5.163× 10−19

δAB 2.49% 0.37% −1.71% −1.64%
δAC 9.86% 8.08% 6.34% 6.35%

136Xe A 1.025× 10−18 2.872× 10−19 2.329× 10−20 1.015× 10−19

B 1.026× 10−18 2.982× 10−19 2.512× 10−20 1.090× 10−19

C 9.103× 10−19 2.630× 10−19 2.201× 10−20 9.566× 10−20

δAB −0.12% −3.69% −7.28% −6.89%
δAC 12.63% 9.20% 5.78% 6.06%

150Nd A 3.201× 10−17 1.668× 10−17 2.497× 10−18 1.099× 10−17

B 3.005× 10−17 1.618× 10−17 2.507× 10−18 1.100× 10−17

C 2.658× 10−17 1.424× 10−17 2.194× 10−18 9.637× 10−18

δAB 6.50% 3.07% −0.42% −0.08%
δAC 20.43% 17.14% 13.81% 14.07%
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Table 2. Phase space factors G2ν
N and H2ν

N with N = {0, 2, 22, 4}, in yr−1, obtained using the screened exact finite-size
Coulomb wave functions for s1/2 electron state. The Q values are taken from the experiments with the smallest uncertainty
when available, or from tables of recommended value [36].

Nucleus Q [MeV] G2ν
0 G2ν

2 G2ν
22 G2ν

4
48Ca 4.268121 [37] 1.517× 10−17 1.290× 10−17 3.094× 10−18 1.392× 10−17

76Ge 2.039061 [38] 4.779× 10−20 1.007× 10−20 6.236× 10−22 2.644× 10−21

82Se 2.9979 [39] 1.596× 10−18 7.069× 10−19 8.986× 10−20 3.928× 10−19

96Zr 3.356097 [40] 6.837× 10−18 3.780× 10−18 5.979× 10−19 2.624× 10−18

100Mo 3.0344 [41] 3.279× 10−18 1.498× 10−18 1.972× 10−19 8.576× 10−19

110Pd 2.01785 [42] 1.357× 10−19 2.835× 10−20 1.760× 10−21 7.350× 10−21

116Cd 2.8135 [43] 2.728× 10−18 1.083× 10−18 1.250× 10−19 5.374× 10−19

124Sn 2.2927 [36] 5.609× 10−19 1.503× 10−19 1.190× 10−20 5.010× 10−20

130Te 2.527518 [44] 1.498× 10−18 4.851× 10−19 4.612× 10−20 1.957× 10−19

136Xe 2.45783 [45] 1.406× 10−18 4.318× 10−19 3.908× 10−20 1.651× 10−19

150Nd 3.37138 [46] 3.604× 10−17 2.038× 10−17 3.343× 10−18 1.443× 10−17

Nucleus Q [MeV] H2ν
0 H2ν

2 H2ν
22 H2ν

4
48Ca 4.268121 [37] 1.165× 10−17 9.277× 10−18 2.083× 10−18 9.428× 10−18

76Ge 2.039061 [38] 2.678× 10−20 5.197× 10−21 2.906× 10−22 1.274× 10−21

82Se 2.9979 [39] 1.076× 10−18 4.423× 10−19 5.181× 10−20 2.306× 10−19

96Zr 3.356097 [40] 4.852× 10−18 2.504× 10−18 3.679× 10−19 1.639× 10−18

100Mo 3.0344 [41] 2.244× 10−18 9.567× 10−19 1.165× 10−19 5.163× 10−19

110Pd 2.01785 [42] 7.845× 10−20 1.529× 10−20 8.659× 10−22 3.750× 10−21

116Cd 2.8135 [43] 1.833× 10−18 6.815× 10−19 7.277× 10−20 3.201× 10−19

124Sn 2.2927 [36] 3.482× 10−19 8.744× 10−20 6.362× 10−21 2.764× 10−20

130Te 2.527518 [44] 9.745× 10−19 2.963× 10−19 2.604× 10−20 1.135× 10−19

136Xe 2.45783 [45] 9.103× 10−19 2.630× 10−19 2.201× 10−20 9.566× 10−20

150Nd 3.37138 [46] 2.658× 10−17 1.424× 10−17 2.194× 10−18 9.637× 10−18

82
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100
Mo

116
Cd

150
Nd

( 31
2ν ) SSD

-0.76

-0.74

-0.72

-0.70

-0.68
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K
2
ν

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

31
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Figure 2. The angular correlation coefficient between the electrons emitted in 2νββ decay of 82Se,
96Zr, 100Mo, 116Cd, and 150Nd, as functions of ξ2ν

31 . The filled blue circles indicate the values of K2ν

for the ratio of the nuclear matrix elements fixed by the SSD assumption,
(
ξ2ν

31
)

SSD. In the case of
82Se and 116Cd, the right filled circle correspond to 82Se and the left one to 116Cd. We used the
approximation scheme C for the relativistic wave function of the emitted electrons.
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Table 3. The values of the angular correlation coefficient for different values of ξ2ν
31 . We assume

the approximation scheme A and C for the relativistic wave function of the emitted electrons.
For each nuclei, we display the energy difference E(1+)− Ei in MeV, necessary to calculate ξ2ν

51 via
Equation (27).

A C

Nucleus E(1+)− Ei ξ2ν
51 ξ2ν

31 K2ν K2ν

82Se −0.338 0.139 −0.2 −0.649 −0.675
0.0 −0.645 −0.671
0.2 −0.641 −0.667
0.4 −0.636 −0.662
0.6 −0.630 −0.657

96Zr 0.021 0.046 −0.2 −0.681 −0.713
0.0 −0.676 −0.708
0.2 −0.669 −0.703
0.4 −0.663 −0.697
0.6 −0.656 −0.690

100Mo −0.343 0.135 −0.2 −0.646 −0.685
0.0 −0.642 −0.682
0.2 −0.637 −0.677
0.4 −0.632 −0.673
0.6 −0.627 −0.668

116Cd −0.043 0.088 −0.2 −0.620 −0.674
0.0 −0.616 −0.671
0.2 −0.612 −0.667
0.4 −0.607 −0.663
0.6 −0.603 −0.659

150Nd −0.315 0.087 −0.2 −0.666 −0.738
0.0 −0.661 −0.735
0.2 −0.655 −0.731
0.4 −0.648 −0.725
0.6 −0.641 −0.719
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Figure 3. Normalized to unity partial double energy distributions (1/ΓN)(dΓN/(dEe1 dEe2 )), as func-
tions of the kinetic energies of the electrons, for N = 0 (top left), N = 2 (bottom left), N = 22 (top
right) and N = 4 (bottom right). All distributions are in units of MeV−2 for electrons emitted in
double β decay of 100Mo. The distributions are obtained using the screened exact finite-size Coulomb
wave functions for s1/2 electron state.

The angular correlation distribution κ as a function of the energies of the electrons
and the ratios of the nuclear matrix elements can be found in Equation (A10). In Figure 4,
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we show, for 100Mo, the contour plots of the angular distributions for different values
of ξ2ν

31 as functions of the electron energies. The left, middle and right panels are ob-
tained for ξ2ν

31 = −1, 0 and 1, respectively. The middle panel corresponds to the standard
approximation angular distribution.

We compared the improved formalism presented in this paper with the exact SSD
formalism of the 2νββ-decay [21,22]. If we assume the SSD, the ratios ξ2ν

31 and ξ2ν
51 are

fixed. We present the single electron differential decay rates normalized to the full width,
in Figure 5, for 82Se, 100Mo and 150Nd. With a solid black line, we present the normalized
single electron spectra within the exact SSD formalism [21,22], and with the blue dashed
line, the spectra presented in Equation (A11). The value of the ratio ξ2ν

31 fixed in SSD
assumption can be found in the plots’ legend. In the lower panels, the residuals between
exact and improved formalisms are plotted. We can conclude that the spectra are in a
good agreement. A small disagreement appears only for low electron energy, which is not
accessible by the double-beta experiments due to large background events.
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Figure 4. The angular correlation κ2ν as function of electron energies emitted in the 2νββ-decay of 100Mo. The distributions
are obtained using ξ2ν

31 = −1, 0 and 1. The distributions were calculated by using the screened exact finite-size Coulomb
wave functions for s1/2 electron state.
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Figure 5. Normalized single electron spectra for 82Se, 100Mo and 150Nd assuming the single state dominance. We compare
the exact SSD [21,22] with the Taylor expansion with ratio of the nuclear matrix elements fixed by SSD.
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To compare the angular correlation distribution between the exact SSD formalism and
the improved one, we display in Figure 6, the distribution reproduced within the exact SSD
formalism. It should be noted that there are no significant deviations of this distribution
from the one with positive ξ2ν

31 from Figure 4. Considering the comparison of the single
electron spectra and angular distributions, we can conclude that the improved formalism
presented in this paper, with ξ2ν

31 fixed by SSD assumption, is in excellent agreement with
the exact SSD formalism.
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Figure 6. The angular correlation κ2ν as function of energies of electrons emitted in 2νββ-decay
of 100Mo. The distribution is obtained using the exact SSD formalism presented in [21,22] and the
screened exact finite-size Coulomb wave functions for s1/2 electron state.

6. Towards to Detection of Effective Axial-Vector Coupling g eff
A

It was already pointed out in [6] that the calculation of M2ν
GT−3 can be more reliable

than that of M2ν
GT−1, because M2ν

GT−3 is saturated by contributions through the lightest
states of the intermediate nucleus. The 2νββ-decay half-life can be expressed with M2ν

GT−3,
ξ2ν

31 and ξ2ν
51 as follows:[
T2νββ

1/2

]−1
'

(
geff

A

)4∣∣∣M2ν
GT−3

∣∣∣2 1∣∣ξ2ν
31

∣∣2
×

[
G2ν

0 + ξ2ν
31G2ν

2 +
1
3

(
ξ2ν

31

)2
G2ν

22 +

(
1
3

(
ξ2ν

31

)2
+ ξ2ν

51

)
G2ν

4

]
, (47)

that is, without explicit dependence on nuclear structure factor (M2ν
GT − (gV/geff

A )2M2ν
F ).

The nuclear structure parameter ξ2ν
31 can be deduced from the energy distribution of the

emitted electrons or from the angular correlation factor K2ν as solution

ξ2ν
31 =

−B±
√

B2 − 4AC
2A

(48)



Universe 2021, 7, 147 17 of 20

of a quadratic equation with coefficients A, B and C, which are functions of the measured
angular correlation factor:

A =
1
9

(
5H2ν

22 + 2H2ν
4 + 3K2νG2ν

22 + 3K2νG2ν
4

)
B = H2ν

2 + K2νG2ν
2

C = H2ν
0 + ξ2ν

51 H2ν
4 + K2νG2ν

0 + ξ2ν
51K2νG2ν

4 . (49)

The fact that for a measured angular correlation coefficient there are two possible val-
ues of ξ2ν

31 , it can also be seen graphically from Figure 2. To determine the physical solution,
a cross-check with the determination of ξ2ν

31 from the energy distribution is necessary.
Suppose M2ν

GT−3 is reliably calculated, and ξ2ν
31 is precisely obtained from the angular

and energetic measurements. In that case, we can determine geff
A from the measured 2νββ-

decay half-life expression via Equation (47). A disagreement between ξ2ν
31 deduced from

the energy and angular distributions might indicate a new physics scenario observed in
the data analysis of the 2νββ-decay.

7. Summary and Conclusions

The 2νββ-decay has been a subject of theoretical and experimental research for more
than 85 years and remains an important topic in modern nuclear and particle physics.
In the presented paper, the theoretical description of the angular distribution of outgoing
electrons is achieved by considering the effect of lepton energies in energy denominators
of the nuclear matrix elements via the Taylor expansion. It is claimed that by a precise
measurement of angular correlation factor K2ν of the emitted electrons, the nuclear structure
parameter ξ31 can be fixed, which might allow determining the effective axial-vector
coupling constant geff

A from the measured 2νββ-decay half-life, once the nuclear matrix
element MGT−3 is calculated reliably. A non-zero ξ31 is a signature of the dominance of the
Gamow-Teller over Fermi transitions in the 2νββ-decay. A more accurate treatment of the
nuclear physics aspects of the 2νββ-decay will allow more reliability to address possible
new physics scenarios associated with neutrino properties and interactions.

In the case of 100Mo and 150Nd, the NEMO-3 experiment already recorded a large num-
ber of 2νββ-events describing all kinds of differential characteristics of emitted electrons. It
would be difficult to reanalyze the recorded data within the improved formalism of this
paper. However, many running and planed double beta decay experiments, for example,
GERDA, CUORE, KamLAND-Zen, EXO, CUPID, LEGEND, and so forth, will achieve suffi-
ciently large statistics to fix nuclear structure parameter ξ31 from the energy distribution of
emitted electrons. The potential of the SuperNEMO experiment, in which the first module
Demonstrator is in a construction phase, will be able to measure this quantity even from the
angular distribution. The angular information might also be obtained with high-pressure
gaseous time-projection technology and pixelated detectors; however, the present methods
have significant limitations. It goes without saying that there is continuous progress in
double beta decay technologies, the ultimate goal of which is to register emitted electrons
with high energy and angular resolutions.
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Appendix A. Integration over Neutrino Energy

Motivated to obtain an analytical expression for the angular correlation distribution
κ(Ee1 , Ee2 , ξ31), we performed the integration over the neutrino energy analytically. In what
follows, we denote the integrals with,

IN =
∫ Ei−E f−Ee1−Ee2

0
E2

ν1
E2

ν2
A2ν

N dEν1 , (A1)

where N = 0, 2, 22, 4, A2ν
N functions are defined in Equation (19) and Eν2 = Ei − E f − Ee1 −

Ee2 − Eν1 .
We used the following standard integrals,

∫
x2(rx + s)ndx =

1
r2

(
(rx + s)n+3

n + 3
+ 2s

(rx + s)n+2

n + 2
+ s

(rx + s)n+1

n + 1

)
, n 6= −1,−2, (A2)

and∫
xm(rx + s)ndx =

1
r(m + n + 1)

(
xm(rx + s)n+1 −ms

∫
xm−1(rx + s)ndx

)
=

1
m + n + 1

(
xm+1(rx + s)n − ns

∫
xm(rx + s)n−1dx

)
with m > 0, m + n + 1 6= 0. (A3)

The results can be expressed in the following compact form

I0 =
1
30

a5

I2 =
1

420
a5 1
(2me)2 (a2 + 7b2)

I22 =
1

10080
a5 1
(2me)4 (a4 − 6a2b2 + 21b4)

I4 =
1

5040
a5 1
(2me)4 (a4 + 18a2b2 + 21b4) (A4)

where

a = Ei − E f − Ee1 − Ee2

b = Ee1 − Ee2 (A5)

We can write the normalized full double electron distribution as functions of the electron
energies, Ee1 and Ee2 , and of the nuclear matrix elements ratios, ξ31 and ξ51 as

1
Γ2ν

dΓ2ν

dEe1 dEe2

=
c2ν

G2ν
0 + ξ31G2ν

2 + 1
3 ξ2

31G2ν
22 +

(
1
3 ξ2

31 + ξ51

)
G2ν

4

× pe1 Ee1 pe2 Ee2 Fss(Ee1)Fss(Ee2)

(
I0 + ξ31I2 +

1
3

ξ2
31I22 +

(
1
3

ξ2
31 + ξ51

)
I4

)
(A6)

where

c2ν =
me(Gβm2

e )
4

8π7 ln 2
1

m11
e

(A7)
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We can also define the partial double distributions normalized to the corresponding partial
decay rate as

1
Γ2ν

N

dΓ2ν
N

dEe1 dEe2

=
c2ν

G2ν
N

pe1 Ee1 pe2 Ee2 Fss(Ee1)Fss(Ee2)IN (A8)

with N = {0, 2, 22, 4}.
To write the angular distribution in a compact form, we define also the

dimensionless quantities,

Ĩ2 =
1

14
1

(2me)2 (a2 + 7b2)

˜I22 =
1

336
1

(2me)4 (a4 − 6a2b2 + 21b4)

Ĩ4 =
1

168
1

(2me)4 (a4 + 18a2b2 + 21b4). (A9)

The angular correlation distribution can be written as

κ(Ee1 , Ee2 , ξ31) = −
Ess(Ee1)Ess(Ee2)

Fss(Ee1)Fss(Ee2)

(
1 + ξ31Ĩ2 +

5
9 ξ2

31
˜I22 +

( 2
9 ξ2

31 + ξ51
)
Ĩ4
)(

1 + ξ31Ĩ2 +
1
3 ξ2

31
˜I22 +

(
1
3 ξ2

31 + ξ51

)
Ĩ4

) . (A10)

The integration over one electron energy of the full double electron distribution, that
is, Equation (A6), leads us to the single electron differential rate

1
Γ2ν

dΓ2ν

dEe1

=
c2ν

G2ν
0 + ξ31G2ν

2 + 1
3 ξ2

31G2ν
22 +

(
1
3 ξ2

31 + ξ51

)
G2ν

4

pe1 Ee1 Fss(Ee1)

×
∫ Ei−E f−Ee1

me
pe2 Ee2 Fss(Ee2)

(
I0 + ξ31I2 +

1
3

ξ2
31I22 +

(
1
3

ξ2
31 + ξ51

)
I4

)
dEe2 (A11)
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