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Abstract: Gauge fields control the dynamics of fermions, and, in addition, a back reaction of fermions
on the gauge field is expected. This back reaction is investigated within the vortex picture of the
QCD vacuum. We show that the center vortex model reproduces the string tension of the full theory
also in the presence of fermionic fields.
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1. Introduction

The QCD vacuum is highly nontrivial and has magnetic properties, as we have
known since Savvidy’s article [1]. The QCD vacuum should explain the non-perturbative
properties of QCD, including confinement [2] and chiral symmetry breaking [3]. Lattice
QCD puts the means at our disposal to answer the question about the important degrees
of freedom of this non-perturbative vacuum. In the center vortex picture [4–6], the QCD
vacuum is seen as a condensate of closed quantized magnetic flux tubes. These flux tubes
have random shapes and evolve in time and therefore form closed surfaces in the dual
space. They may expand and shrink, fuse and split and percolate in the confinement
phase in all space-time directions and pierce Wilson loops randomly. Thus, Wilson loops
asymptotically follow an exponential decay with the area. This is the area law of Wilson
loops, which allows attributing the string tension to center vortices. The finite temperature
phase transition is characterized by a loss of center symmetry and correspondingly by a
loss of percolation in time direction. Therefore, vortices get static and only spatial Wilson
loops keep showing the area law behavior.

Color electric charges are sources of electric flux according to Gauss’s law. The electric
flux between opposite color charges does not like to penetrate this magnetic “medium” of
center vortices and shrinks to the well-known electric flux tube. On the other hand, the
magnetic flux does not like to enter the electric string. Since fermions carry color charges,
their dynamics is controlled by the gauge field. The presence of a fermion condensate
is expected to suppress the quantized magnetic flux lines, and as a result the gluon con-
densate and therefore the string tension are reduced. Since, as usual, the lattice spacing
is determined via the string tension, taking into account dynamical fermions leads to a
decrease of the lattice spacing. In this article, we show a careful investigation of the string
tension within the vortex picture of the QCD vacuum.

SU(2) and SU(3) QCD have equivalent non-perturbative properties. In a first study,
we restrict our analysis to the simpler case of SU(2)-QCD. The most important difference
between SU(2) and SU(3) QCD is the order of the finite temperature phase transition for
a pure gluonic Lagrangian. There is a natural explanation for this difference from the
structure of SU(2) and SU(3) vortices. There is only one non-trivial center element in the
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group SU(2) and therefore one type of center vortices, whereas there are two non-trivial
center elements for SU(3) and two types of vortices, allowing two vortices of the same type
to fuse to the other type. This leads to a more stable structure of the net of vortices for SU(3)
and to a first order phase transition, whereas in SU(2) the transition is of second order.

We investigate the fermionic back reaction on the gluonic degrees of freedom in SU(2)
QCD. Visualizing the distribution of center vortices, this back reaction can be easily ob-
served (see Figure 1). One can clearly see that dynamical fermions decrease the percolation
of vortices. It is difficult to draw a closed surface in four dimensions. Therefore, we restrict
ourselves to the three dimensional diagram of a time-slice and indicate the continuation to
other slices by line stubs.

With fermions Without fermions

Figure 1. The closed vortex surface is visualized by showing the dual P-plaquettes of three-
dimensional lattice slices. Stubs of red lines indicate plaquettes that are not fully part of the lattice slice
shown. We clearly see that with fermions (left) an overall smaller amount of P-plaquettes is observed
compared with the pure gluonic case (right). In both cases, one big vortex cluster dominates.

We want to quantify the effect in more detail. We are especially interested in the center
vortex model [4–6] and its sensitivity to the fermionic back reaction. We also analyze the
influence of fermionic fields on the geometric structure of the center vortex surface. This
work compares four different estimates of the string tension, with and without fermions, in
the full theory and in the vortex picture:

• via the potential calculated from the center degrees of freedom only, in pure gluonic
ensembles;

• via the potential calculated from the center degrees of freedom only, in the presence
of fermionic fields;

• via the potential in the full theory, in pure gluonic ensembles; and
• via the potential in the full theory, in the presence of fermionic fields.

With this comparison, we study the sensitivity of the center vortex model to the
fermionic back reaction.

Our work is based on the QCD path integral which defines the vacuum to vacuum
transition amplitude. In lattice QCD, we usually evaluate this amplitude on a lattice
periodic in Euclidean time. Inserting a complete set of eigenstates of QCD with the
quantum numbers of the vacuum in this amplitude results in an exponential decay of the
eigenstates with the physical time extent aNt of the lattice, where a is the lattice spacing and
Nt is the number of lattice sites in time direction. The inverse of this time extent therefore
acts as a temperature of the ensemble. In a Monte-Carlo simulation, the states are occupied
with the corresponding Boltzmann factor. The higher is the excitation, the smaller is the
Boltzmann factor and the more difficult is the measurement of its properties. Finally, the
excited states are vanishing in the noise.
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The potential, as well as the string tension, can be calculated using Wilson loops

W(R, T) = TrPei g
∫

R×T Aa
µ(x)tadxµ

. (1)

A loop of size R × T in space-time represents the world-line of a quark-antiquark
system at distance R propagating in the QCD vacuum for a time T. On a Euclidean
lattice in SU(2)-QCD, a path ordered loop is determined by the product of link variables
Uµ(x) ∈ SU(2) along the loop. Inserting a complete set of eigenstates of the quark-antiquark
system into the expectation value 〈W(R, T)〉, the contributions of the eigenstates decay
exponentially with Euclidean time T. The expectation values of Wilson loops can therefore
be expanded in a series of eigenstates of the quark-antiquark system

〈W(R, T)〉 =
∞

∑
i=0

cie−εi(R)T , (2)

For large times, 〈W(R, T)〉 is dominated by the ground state energy ε0(R). The more
precise we determine limT→∞〈W(R, T)〉, the better is the precision of the quark-antiquark
potential V(R) := ε0(R). Since the energy of the quark-antiquark system increases with
the distance R, it follows from the above discussion that for increasing R the signal for
V(R) is vanishing soon in the noise. How we handle this noise and how center vortices
are detected is explained in Section 2. We assume that the potential is dominated by a
Coulombic part at small R but rises linearly for large R,

ε0(R) = V(R) = V0 + σR− α

R
. (3)

We use 〈W(R, T)〉 to approximate ε0(R), denoted as 1-exp fit. V0 parameterizes the scale
dependent self-energy of the quark-antiquark sources. Wilson loops extracted from the
center degrees of freedom are dominated by the long-range fluctuations of the QCD
vacuum, hence we describe the potential within these degrees of freedom by

VCP(R) = v0 + σCPR. (4)

The aim of this article is to investigate whether we can understand the string tension
and its modification in the presence of fermions in the vortex model of confinement. Further,
we present and discuss conceptual improvements to the gauge fixing procedure, required
for the center vortex detection.

For systems with dynamical fermions one would expect string breaking when the
energy of the system rises above twice the pion mass, but string breaking has been detected
only using mesonic channels (see [7]). The center vortex model explains the asymptotic
behavior of Wilson loops. There are indications that center vortices are sensitive to string
breaking [8,9], but a direct measurement is not possible. From the vortex structure, we do
not find any indication for string breaking which could show up as disintegration of the
percolating vortex.

2. Materials and Methods

This section starts with a description of the parameters of the lattice configurations,
used for our analysis. Then, our method of detecting center vortices with some novel
improvements is discussed. We explain how the information about the geometric structure
of the vortex surface can be acquired by smoothing procedures and we end with a detailed
explanation of our method to extract the potential from Wilson loops. In each subsection,
we list the intermediate results.
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2.1. Simulation Specifications

We study the configurations described in [10] for chemical potential µ = 0 with SG
defined by a tree level improved Symanzik gauge action [11,12]

SG = β

(
c0 ∑

�
(1− 1

2
Tr �) + c1 ∑

��
(1− 1

2
Tr ��)

)
, (5)

with coefficients c0 = 5/3 and c1 = −1/12. The first sum corresponds to the Wilson action
with � indicating single unoriented plaquettes, while the second sum uses rectangular
Wilson loops built of 6 links, symbolized by ��. The inverse coupling is defined as β = 4

g2

for SU(2).
For the fermionic degrees of freedom, staggered fermions are used with an action of

the form
SF = ∑

x,y
ψ̄x M(m)x,yψy +

λ

2 ∑
x

(
ψT

x τ2ψx + ψ̄xτ2ψ̄T
x

)
, (6)

with τi being the Pauli matrices and

M(m)xy = mδxy +
1
2

4

∑
ν=1

ην(x)
[
Ux,νδx+hν ,y −U†

x−hν ,νδx−hν ,y

]
, (7)

where ψ̄, ψ are staggered fermion fields, a is the lattice spacing, m is the bare quark mass,
Ux,ν is a SU(2) element corresponding to a link at position x is in direction and µ and ην(x)
are the standard staggered phase factors: η1(x) = 1, ην(x) = (−1)x1+...+xν−1 , ν = 2, 3, 4.
The total action is given by S = SG + SF. Integrating out the fermionic degrees of freedom,
the partition function with N f = 2 is given by

Z =
∫

DU e−SG (det(M† M) + λ2)
1
4 . (8)

The properties of 1000 configurations of size 324 with β = 1.8, quark mass parameter
m = 0.0075 (corresponding to mπ = 740(40) MeV with lattice spacing a = 0.044 fm),
and λ = 0.00075 are compared to 1000 pure gluonic configurations at the same inverse
coupling β. For both sets of 1000 configurations, we extract the potentials from all available
Wilson loop data and compare them with the string tensions resulting from the two sets
of 40× 100 center projected configurations. In this way, we try to answer the question, if
in the presence of dynamical fermions the center degrees of freedom determine the string
tension of the gluonic flux tube in quark–antiquark systems.

2.2. Center Vortex Detection

Assuming that center excitations are the relevant degrees of freedom for confinement,
we detect these center vortices within the lattice configurations. We first identify gauge
matrices Ω(x) ∈ SU(2) at each site xµ maximizing the functional

RF = ∑
x

∑
µ

| Tr[Úµ(x)] |2 with Úµ(x) = Ω(x + eµ)Uµ(x)Ω†(x). (9)

After fixing the gauge, the link variables Úµ(x) are projected on the center degrees
of freedom, that is ±1 for SU(2), to neglect short range properties and keep only long-
range effects

Uµ(x)→ Zµ(x) ≡ signTr[Uµ(x)]. (10)

After performing the center projection, the center projected plaquettes resulting from
the vortex detection are the products of four center elements. The projected plaquettes
are non-trivial, known as P-plaquettes, U� = −1, if one or three links are non-trivial. In
the four-dimensional lattice, a given link belongs to six plaquettes. On the dual lattice,
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the corresponding six plaquettes build the surface of a cube. Therefore, the duals of P-
plaquettes form closed surfaces, dual P-vortices which correspond to the closed flux line
evolving in time.

This procedure is the original DMCG [13] in which a gradient climb with over relaxation
was used to maximize the gauge functional. From a few gauge copies only, produced in
this way, the one with the highest value of the functional is usually chosen for further
analysis. This method leads to promising results, but improvements at maximizing the
gauge functional using simulated annealing have brought a flaw to light—the many local
maxima of RF do not necessarily correspond to the same physics. Bornyakov et al. [14]
showed that there exist local maxima of the gauge functional that underestimate the string
tension. We have been able to resolve these problems for smaller lattices using improved
version of the gauge fixing routines based on non-trivial center regions [15–17], but our
implementation was not able to handle the big lattices used in this work. Taking a closer
look at the problem at hand, we can look for a different approach. We now consider Creutz
ratios to estimate the string tension

σ ≈ χ(R) = − ln
〈W(R + 1, R + 1)〉 〈W(R, R)〉
〈W(R, R + 1)〉 〈W(R + 1, R)〉 , (11)

with Wilson loops W(R, R) of size R = T. Some probability densities for the relation
between the values of the gauge functional RF and the Creutz ratio χ(R) for individual
configurations are shown in Figure 2. This determination is based on 40 configurations
with 100 gauge copies for configurations with (left) and without (right) dynamical fermions.
For Creutz ratios of small Wilson loops, we observe a nearly linear relation between the
two quantities reflecting the finding of Bornyakov et al. [14]: there exist gauge copies of the
configurations with maximal RF and very low σ. With increasing size of Wilson loops, this
correlation weakens. Nevertheless, the request to maximize the gauge functional (9) fails.

Another observation is of high interest: extremely small and large values of the gauge
functional are strongly suppressed in the probability densities. Instead of looking for
higher local maxima of the gauge functional, we propose a different approach: “ensemble
averaged maximal center gauge” (EaMCG). We produce many random gauge copies,
approach the next local maximum by the gradient method and take the average of the
ensemble. The idea is that not the best local maximum alone carries the physical meaning,
but the average over all local maxima does: maxima with a higher value of the gauge
functional result in a reduced string tension, but they are not dominating the ensemble.
The same holds for lower valued maxima, possibly overestimating the string tension.

Taking again a look at Figure 2, it can be seen that the average values and the most
probable values are in good agreement for small loops. This is shown in more detail in
Figure 3 for Creutz ratios of different loop-sizes. The fact that differences increase with
loop sizes can probably be explained by the lack of statistics for the Creutz ratios of single
configurations. Until the values start to deviate from one another, there is a variation
of 10% over the whole R-region. Despite the low statistics of a single configuration, the
intermediate loop sizes already reproduce the asymptotic behavior and let us expect the
possibility for a more precise determination. First averaging over Wilson loops and then
calculating Creutz ratios gives much more stable results (see χW(R) in Figure 3). The
final estimate of the string tensions in Sections 2.4 and 3 is based on the determination of
the potential.
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Figure 2. These probability densities specify the relation between the values of gauge functional and
Creutz ratio for individual configurations. This determination is based on 40 configurations with 100
gauge copies for the configurations with dynamical fermions (left) and without (right). For Creutz
ratios of small Wilson loops, we observe a nearly linear relation. With increasing size of the Wilson
loops this correlation weakens. We marked the average values (star) and the most probable values
(circle) of the distributions.
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Figure 3. The average and most probable values of χ(R) are compared for simulations with and without fermions. This
complements the probability densities of Figure 2. The increasing discrepancy between the two quantities with larger R can
probably be explained by the low precision of Creutz ratios of single configurations. Until the values start to deviate from
one another, the variations of χ(R) are of the order of 10%. For comparison, we show also the more precise Creutz ratios
χW(R) extracted from averages of Wilson loops.

Thus far, we have calculated the Creutz ratios for single configurations of the ensemble
and have taken the average afterwards. The EaMCG itself does not average over Creutz
ratios, but combines first the Wilson loops of all gauge copies and configurations. From
this fact, it is possible to extract the quark anti-quark potential, which allows a more precise
determination of the string tension from the center vortex model.

In the respective single configurations, we observe one percolating large cluster that is
surrounded and traversed by small fluctuations. These result in an increased number of
P-plaquettes that do not contribute to the string tension. Analyzing these distortions, we
gain insight on the influence of fermions on the geometric structure of the vortex surface.

2.3. Smoothing the Vortex Surface

There exist several procedures for smoothing the vortex surface by removing dis-
tortions. These procedures are discussed in detail in [18]. They do not modify the long
range effects of the configuration. To get information about the smoothness of the vortex
surface with and without fermions, we use the smoothing steps depicted in Figure 4. The
smoothing 0 is not depicted, which removes unit-cubes.

smoothing 1 smoothing 2 smoothing 3

Figure 4. The effect of the smoothing procedures on the vortex surface is depicted, taken from ([19]
Figure 5.8). We distinguish warts (left), bottlenecks (middle) and stumbling blocks (right). The unit
cubes are not depicted, which are simply deleted.

The smoothing steps 1–3 cut out parts of the vortex surface and closes the emerging
holes with a flat surface. In this way, short-range fluctuations of the vortex surface are
suppressed. We first count the P-plaquettes without any smoothing performed, and then
the loss of P-plaquettes for the respective smoothing steps is determined. The results are
given in Table 1.
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Table 1. Reduction of the total count of P-plaquettes for different smoothing procedures.

P-plaquette Reduction smoothing 0 smoothing 1 smoothing 2 smoothing 3

With fermions 12.5% 10.1% 24% 10.2%

Without fermions 7% 10.6% 27.8% 10.9%

This quantifies the percentage of the respective structures depicted in Figure 4. When
fermions are present, we clearly have a higher proportion of unit cubes and a lower
proportion of bottlenecks than without fermions.

By restricting this analysis to the single percolating vortex cluster, we gain information
about the long range excitations. The results are given in Table 2. The reduction in the
proportion of bottlenecks is also seen here. The presence of fermions leads to a smoother
surface of the percolating cluster.

Table 2. Reduction of P-plaquettes for the percolating vortex cluster for different smoothing procedures.

Reduction within Cluster smoothing 1 smoothing 2 smoothing 3

With fermions 8.6% 24.5% 8.8%

Without fermions 9.6% 28.1% 10%

2.4. Potential Fits and Noise Handling

When extracting the potential from Wilson loops, two effects have to be taken care of:

• for small areas, the loop averages are influenced by short range fluctuations; and
• with increasing area, the data suffer from statistical noise and soon the errors get

larger than the signal.

An example for a 1-exponential fit to Wilson loops 〈W(R, T)〉 for given R and T ≥ Ti
(see Equation (2)) is shown in the left diagram of Figure 5. The dependence of this example
on the initial T = Ti is depicted in the right diagram.
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Figure 5. (Left) Example of the optimal 1-exponential fit of Wilson loops for given R. (Right)
Dependence of ε0(R, Ti) on the fit region T ≥ Ti. The line marks the fit for the optimal value for Ti.

At lower Ti, an increase of Ti causes large changes of the fit parameters, but with
growing Ti these changes become smaller until a most stationary point is reached which
may be hidden behind a strong increase of error bars. With the naked eye, one sees data
that result in quite good fits, but finding analytic or numeric criteria for the choice of Ti
proves difficult. The smaller is the change of the values of the fit parameters, the smaller are
the error bars of Wilson loops, and a rapid increase of the p-value of the fits often coincide,
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but this is not a general rule. Our criteria to choose Ti is based on identifying the first local
minimum of an error quantifier

Err :=
2
3
〈∆δi〉+

1
3
〈∆err〉. (12)

Here, 〈∆δi〉 denotes the average change of the fit parameter ε(R, Ti±1) when decreasing
or increasing Ti; and 〈∆err〉 denotes the average over the error bars of ε(R, Ti−1), ε(R, Ti),
and ε(R, Ti+1). The weight factors are chosen to avoid the choice of occasionally nearly
stationary regions with large error bars. For R > 3, we prevent any further increase of
Ti, because with increasing R the error bars start to grow earlier. The example in Figure 5
tries to convince that the selection of Ti based on the error quantifier results in optimal fits
under the boundary conditions of systematic deviations for low Ti and increasing error
bars for high Ti. Using this procedure, we determine the potential for the whole range of
R-values, which allows extracting the slope of the potential at large values of R.

3. Summarized Results and Discussion

The fermionic back reaction on the string tension is clearly observed in the full theory
as well as for EaMCG (Ensemble averaged Maximal Center Gauge), where the link vari-
ables of the gauge field are projected to Z2. The potentials for the gluonic and fermionic
configurations are depicted in Figure 6 and compare the full SU(2) theory with the Z2
theory. The string tension was extracted by fitting the respective Equation (3) or (4) to the
data describing the potential. The resulting parameters of these fits are given in Table 3.
The relevant parameters to compare are σ and σCP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8  9

V
(R

)

R

full loops, β=1.8

gluonic
fermionic

 0

 0.2

 0.4

 0.6

 0.8
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 1.2

 1.4

 0  2  4  6  8  10  12  14  16

V
(R

)

R

center projection, β=1.8

gluonic
fermionic

Figure 6. (Left) Potential V(R) in lattice units between two sources in the fundamental representation.
There is a large difference between the string tensions for pure gluonic configurations (“gluonic”) and
in the presence of one species of dynamical fermions. (Right) Potentials extracted from Wilson loops
after ensemble averaged maximal center projection are depicted for pure gluonic configurations
and for configurations with dynamical fermions. Due to the removal of short range fluctuations the
potentials are in both cases almost linearly increasing with the lattice distance R. Data are fitted by
linear functions. For gluonic (fermionic) configurations, only data with R ≥ 6(2) are fitted.

Without fermions, both estimates for σ are compatible within errors to one another:
In the full SU(2), we observe σ = 0.0756(12) compared to σCP = 0.07691(13) in the
Z2 description. With fermions the full SU(2) theory results with σ = 0.0199(9) a lower
value than the Z2 theory with σCP = 0.02291(5). In all cases, we clearly observe that
the presence of fermions reduces the string tension in lattice units: The back reaction
is observed in the full SU(2) theory and also reproduced by the center vortices. The
determination of the lattice spacing via the usual formula (a =

√
χ/2.23 fm, corresponding
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to χ = (440 MeV)2) results in 0.123(1) fm for the gluonic configurations and 0.0633(15) fm
for the fermionic configurations.

Table 3. The parameters for the fits according Equations (3) and (4) in Figure 6 allow a direct
comparison of the respective string tensions. A strong suppression of the Coulomb part can be seen
in the Z2 theory.

Theory SU(2) Z2

Parameter V0 σ α v0 σCP

gluonic 0.5175(38) 0.0756(12) 0.2326(26) −0.0366(8) 0.07691(13)
fermionic 0.5464(27) 0.0199(9) 0.2414(19) 0.01027(13) 0.02291(5)

Concerning the geometric structure of the vortex surface, we observe that the presence
of fermions increases the number of isolated short range fluctuations (see Table 1): without
fermions, about 6.98% of the P-plaquettes are part of isolated unit cubes, whereas, with
fermions, this proportion increases to 12.45%. The proportion of P-plaquettes belonging to
bottlenecks is in total decreased from 27.81% to 24%. Fermions increase the amount of unit
cubes, but decrease the amount of bottlenecks.

Restricting the analysis to the long-ranged cluster we observe a decrease of fluctu-
ations, especially bottlenecks, when fermions are present (see Table 2): the proportion
of P-plaquettes belonging to bottlenecks is reduced from 28.12% to 24.45%. All other
fluctuations are only reduced by about 1%.

From this, we can conclude that the presence of fermions causes short range fluctua-
tions to detach from the vortex surface, resulting in a more smooth vortex surface that is
surrounded by an increased number of isolated short range fluctuations.

Author Contributions: Conceptualization, M.F. and R.H.; methodology, Z.D., M.F., R.H. and R.G.;
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