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Abstract: Considering the scale-dependent effective spacetimes implied by the functional renor-
malization group in d-dimensional quantum Einstein gravity, we discuss the representation of
entire evolution histories by means of a single, (d + 1)-dimensional manifold furnished with a fixed
(pseudo-) Riemannian structure. This “scale-spacetime” carries a natural foliation whose leaves
are the ordinary spacetimes seen at a given resolution. We propose a universal form of the higher
dimensional metric and discuss its properties. We show that, under precise conditions, this metric
is always Ricci flat and admits a homothetic Killing vector field; if the evolving spacetimes are
maximally symmetric, their (d + 1)-dimensional representative has a vanishing Riemann tensor even.
The non-degeneracy of the higher dimensional metric that “geometrizes” a given RG trajectory is
linked to a monotonicity requirement for the running of the cosmological constant, which we test in
the case of asymptotic safety.

Keywords: quantum gravity; functional renormalization group; geometric flows; scale-spacetime;
asymptotic safety

1. Introduction

The familiar renormalization group (RG) equations of quantum field theory are for-
mulated in a mathematical setting that is rather simple and, in a way, structureless from the
geometric point of view. The only ingredients involved are a manifold T , often referred to
as the theory space, and a vector field β thereon. The data (T , β) suffice to describe what
is called the RG flow and to define the integral curves of β on T . Since the components
of β are given by the ordinary beta functions, the first-order differential equations that
govern these integral curves, also known as RG trajectories, are nothing but the standard
renormalization group equations. Even for the more general functional RG equations, the
situation is essentially the same, except for the infinite dimensionality of the manifold T
whose points represent full-fledged effective action functionals.

There is, however, a longstanding conjecture that beyond β, further natural geometric
objects might be “living” on the manifold T . For example, after the advent of Zamolod-
chikov’s c-theorem [1,2], related investigations in more than two dimensions focused on
searching for a scalar “c-function” and a metric on T by means of which the RG flow could
be promoted to a gradient flow. Even though this program was not fully successful in the
generality originally hoped for, it ultimately led to important developments such as the
proof of the a-theorem [3].

Furthermore, various authors, guided by different motivations, have tried to furnish
the manifold T with a connection [4–6]. Recently, significant progress has been made along
these lines after, in [7], a powerful functional RG framework for the analysis of composite
operators had been introduced. In this setting, the connection that was proposed [8] is
related to the operator product expansion coefficients.

The conjectured AdS/CFT correspondence “geometrizes” RG flows by a different
approach that identifies the scale variable of the RG equations with a specific coordinate on
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a higher dimensional (bulk) spacetime [9–11]. In this way the “RG time” acquires a status
similar to the ordinary spacetime coordinates.

Along a different line of research, the fundamental idea of dimensionally extend-
ing spacetime by scale variables was developed in considerable generality in the work
of L. Nottale [12]. In his approach, the RG time is on a par with the usual spacetime
coordinates, both conceptually and geometrically.
(1) The present paper is devoted to a different notion of geometrized RG flows. While it
does have certain traits in common with the various theoretical settings mentioned above,
it is more conservative, however, in that its starting point does not involve any unproven
assumptions. This starting point consists of nothing but the standard RG trajectories
supplied by a functional renormalization group equation (FRGE). We proposed to exploit
those RG-derived data, and only those, to initiate a systematic search for natural geometric
structures, which can help in efficiently structuring those data and/or facilitate their
physical interpretation or application.1

(2) Specifically, we dealt in this paper with the nonperturbative functional RG flows of
quantum Einstein gravity (QEG), i.e., quantum gravity in a metric-based formulation. We
assumed that it is described by an effective action functional Γk[·] that depends both on
a 4D spacetime metric, gµν, and on some kind of RG scale, k ∈ R+, implemented as an
infrared cutoff, for example. Furthermore, we supposed that we managed to solve the
corresponding FRGE for (partial) trajectories in theory space, i.e., maps k 7→ Γk[·], whereby
the curve parameter k does not necessarily cover all scales k ∈ R+.

For every given value of k, the running effective action Γk implies an effective field
equation for the expectation value of the metric, typically a generalization of Einstein’s
equation. Solutions to those effective Einstein equations inherit a k-dependence from
Γk[·], and we shall denote them gk

µν(xρ) in the following. More precisely, in this paper,
we analyzed a situation where the solutions at differing scales are selected such that
gk

µν depends on k smoothly. Therefore, we may regard the map k 7→ gk
µν(xρ) as a smooth

trajectory in the space of all metrics that are compatible with a given differentiable manifold,
M4. Thus, technically speaking, the output of the functional RG—and effective Einstein
equations—amounts to a family of Riemannian structures on one and the same spacetime
manifold: {(

M4, gk
µν

) ∣∣ k ∈ R+
}

(1)

(3) In this paper, we proposed a new way of thinking about the infinitely many metrics
gk

µν that furnish the same 4D spacetime manifold M. Namely, we shall interpret the

family
(
M4, gk

µν

)
as different 4D slices through a single five-dimensional Riemannian or

pseudo-Riemannian manifold: (
M5, (5)gI J

)
(2)

Hereby, all gk
µν’s arise from only one 5D metric (5)gI J by isometrically embedding the

slices into M5.
If k has the interpretation of an (inverse) coarse graining scale on M4, then M5

naturally comes close to a “scale-spacetime” manifold [12]. In addition to the usual event
coordinates xµ, its points involve a certain value of the scale or coarse graining parameter:
(k, xµ).
(4) Actually, M5, equipped with some metric (5)gI J , can encode more information than

is contained in the underlying family
(
M4, gk

µν

)
. This is most obvious if we use local

coordinates that are adapted to the foliation by the surfaces of equal scale. The scale
parameter (or an appropriate function thereof) plays the role of a fifth coordinate then, and
the basic trajectory of 4D metrics gk

µν(xρ) ≡ gµν(k, xρ) is reinterpreted as 10 out of the 15
independent components that (5)gI J(k, xρ) possesses.

1 A first analysis along these lines can be found in [13] where contact was made with the Randall–Sundrum model.
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Our main interest was in its additional components, (5)gµk(k, xρ) and (5)gkk(k, xρ),
respectively. The question we addressed is whether those functions can be determined in
a mathematically or physically interesting way such that a single 5D geometry not only
encapsulates or “visualizes” a trajectory of 4D geometries, but also enriches it by additional
information. Schematically,

trajectory of 4D geometries + ? = unique 5D geometry (3)

Loosely speaking, what we proposed here is a bottom-up approach that starts out
from the safe harbor of a well-understood and fully general RG framework and only in a
second step tries to assess whether, and under what conditions, there exist natural options
for geometrizing the RG flows.

This approach must be contrasted with top-down approaches like the one based
on the AdS/CFT conjecture, for instance. They would rather begin by postulating the
geometrization and ask about its relation to standard RG flows in the second stage only.

(5) The discussions in this paper are largely independent of the precise details concerning
the underlying RG technique and the concrete trajectories gk

µν. An exception is Section 6
below, which makes essential use of the gravitational effective average action [14,15]. Im-
plementing a background-independent [16] coarse graining procedure in the presence
of dynamical gravity, it is ideally suited for the description of self-gravitating quantum
systems like the ones we shall consider [17–19]. While not restricted to this applica-
tion [20–24], the effective average action has been used extensively in the asymptotic safety
program2 [15,26–31]. There, its background independence is likely to be the essential
ingredient responsible for the formation of a nontrivial RG fixed point [32].
(6) The rest of this paper is organized as follows. In Section 2, we set up a convenient
framework, based on a generalization of the ADM construction, for the embedding of a
given family gk

µν in a higher dimensional geometry. In Section 3, we then provide a simple,
yet fully explicit and sufficiently general class of such families gk

µν. They correspond to
running Einstein metrics, and all subsequent demonstrations refer to this class of solutions.
A priori, our goal of searching for “interesting” 5D geometries is an extremely broad one; to

be able to make practical progress, we therefore narrowed its scope to a particular class of
ADM metrics, which we introduce and discuss in Section 4. Then, in Section 5, we derive
our main results. We show that, under precise conditions, the running 4D Einstein spaces
can always be embedded in a 5D geometry that admits a homothetic Killing vector field
and is Ricci flat; should the Einstein spaces be maximally symmetric, it is even strictly, i.e.,
Riemann flat.

The important point about these options for a geometrization of RG flows is that they
neither follow from pure geometry alone, nor are they “for free” as concerns the properties
of the RG trajectory. Rather, they are a global geometric manifestation of a specific general
feature of the RG trajectory. In the present example, this sine qua non is that the running
cosmological constant Λ(k) is a strictly increasing function of the scale. In Section 6, we
show that for the asymptotically safe trajectories of QEG, this is indeed the case. Finally,
Section 7 contains a summary and the conclusions.

2. From Trajectories of Metrics to Higher Dimensions

Let us suppose that we employed some sort of functional renormalization group
(FRG) framework, whose specifics do not matter here, in order to derive a scale-dependent
effective field equation, i.e., a generalization of Einstein’s equation. We assumed that we
furthermore managed to solve this one-parameter family of differential equations, thus
obtaining families of metrics gk

µν labeled by the RG scale k.
According to the standard interpretation outlined in [33,34], the set {gk

µν}k≥0 gives
rise to a family of different Riemannian structures, all of which furnish one and the same

2 A fairly comprehensive and up-to-date list of publications on this subject can be found in [25].
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d-dimensional manifold Md. Correspondingly, one formally regards k 7→ (Md, gk
µν) for

k ∈ R+ as a “trajectory” in the space of d-dimensional (Euclidean) spacetimes. In local
coordinates, we write their line elements as:

ds2
d = gk

µν(xρ)dxµ dxν, µ, ν, · · · = 1, 2, · · · , d. (4)

For generality, we switched here from four to d spacetime dimensions.

(1) The key idea of the present work was to re-interpret the RG parameter k, possibly
after a convenient reparametrization τ = τ(k), as an additional coordinate that, together
with xµ, coordinatizes a (d + 1)-dimensional manifold Md+1. The original manifold Md is
isometrically embedded in Md+1 in a k-dependent way, and so, Md+1 comes into being
equipped with a natural foliation.

According to this re-interpretation, the entire RG trajectory of ordinary spacetimes
is described by a single Riemannian structure on the higher dimensional manifold. We
denote it

(
Md+1, (d+1)gI J

)
and write the corresponding line element as:

ds2
d+1 = (d+1)gI J(yK)dyI dyJ (5)

where yI ≡ (y0, yµ) are generic local coordinates on Md+1.
Here and in the following, indices I, J, K, · · · always assume values in {0, 1, 2, · · · , d},

while Greek indices run from one to d only.
(2) Since Md+1 is endowed with a natural foliation, it is convenient to employ a variant
of the ADM formalism [15]. To prepare the stage, let us assume we are given an arbitrary
manifold

(
Md+1, (d+1)gI J

)
. We start by defining a scalar function y 7→ τ(y) that assigns

a specific scale to each of its points. Then, we construct the level sets of this “RG time
function”, Στ ≡

{
y ∈ Md+1|τ(y) = τ

}
, and interpret them as a stack of standard, d-

dimensional spacetimes that differ with respect to their resolution scale τ ≡ τ(k).
The gradient nI ≡ N∂Iτ defines a vector nI that is everywhere normal to the slices Στ .

By choosing the lapse function N(y) appropriately, we normalize it such that:

(d+1)gI J nInJ = ε (6)

where ε = ±1 depends on whether the normal vector is space- or time-like.3

Next, we transform from the generic coordinates yI = yI(x J) to new ones, xI ≡ (x0, xµ)
≡ (τ, xµ), which are adapted to the foliation: τ labels different “RG time slices”, and the
xµ’s are coordinates on a given Στ . Defining a vector field tI by the condition tI∂Iτ = 1, we
relate the coordinate systems on neighboring slices by requiring that the coordinates xµ are
constant along the integral curves of tI .

The tangent space at any point of Md+1 can be decomposed into a subspace spanned
by vectors tangent to Στ and its complement. The corresponding basis vectors are given by
derivatives of the functions yI = yI(x J) = yI(τ, xµ) that describe the embedding of Στ into
Md+1:

eµ
I =

∂

∂xµ yI(τ, xα), tI =
∂

∂τ
yI(τ, xα) (7)

As a result, the eµ’s are orthogonal to n:

(d+1)gI J nIeµ
J = 0 (8)

Furthermore, on the slices Στ , the embedding induces the following metric from the
ambient metric (d+1)gI J :

3 We allow (d+1)gI J to be a Lorentzian metric of any signature. However, gk
µν is assumed to have a Euclidean signature, unless stated otherwise.
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(d)gI J = eµ
Ieν

J (d+1)gI J (9)

In general, the vector tI has nonvanishing components in the directions of both nI and
eµ

I . Its expansion:

tI = NnI + Nµeµ
I (10)

involves the lapse function N(τ, xµ) and the shift vector Nµ(τ, xµ). The definitions (7) also
entail that the coordinate one-forms in the two coordinate systems are related by:

dyI = tI dτ + eµ
I dxµ = NnI dτ + eµ

I(dxµ + Nµ dτ) (11)

Upon inserting (11) into ds2
d+1 = (d+1)gI J dyI dyJ , we obtain the line element recast in

terms of the ADM variables {N, Nµ, (d)gµν}:

ds2
d+1 = εN(xI)2 dτ2 + (d)gµν(xI)

[
dxµ + Nµ(xI)dτ

][
dxν + Nν(xI)dτ

]
(12)

The sign ε = ±1 that determines the signature of the higher dimensional metric is left
open at this point. Later on, we shall encounter criteria that determine whether the RG
time τ really turns into a time coordinate (ε = −1) and describes a Lorentzian metric on
Md+1, or whether it amounts to a further spatial dimension (ε = +1).
(3) To make contact with the RG approach, we assumed that the higher dimensional metric
has the ADM form (12), and we then identified (d)gµν with the output of the computations
based on the FRGE and the effective field equations:

(d)gµν(τ, xρ) = gk
µν(xρ)

∣∣∣
k=k(τ)

(13)

The (invertible) function k(τ) amounts to an optional and physically irrelevant re-
definition of the original scale parameter in terms of a convenient RG time τ. A typical
example is τ = ln(k/κ), or even simpler, τ = k/κ.4 In the following, we shall assume that
both gk

µν(xρ) and k(τ) are known, externally prescribed functions.
Thus, knowing (d)gµν(xI), what is still lacking in order to fully specify the higher

dimensional line element (12) are the lapse and shift functions N and Nµ, respectively, as
well as the sign ε. These are properties of the metric on Md+1 that do not follow from the
flow equations.
(4) This leads us back to our main question: Is it conceivable that there exist general reasons
or principles, over and above those inherent in the RG framework, that determine those
missing ingredients in a meaningful and physically relevant way?

Inspired by the familiar applications of the ADM formalism in general relativity,
one might be tempted to argue that there can be little physics in N and Nµ, since, by
a D i f f (Md+1) transformation, we can change them in an almost arbitrary way. It is
important though to emphasize that this argument does not apply in the present context.

The reason is that here, the possibility of performing coordinate transformations has
been exhausted already in solving the k-dependent effective field equations. The ADM
framework in d + 1 dimensions imports concrete functions gk

µν(xρ) from the RG side, and
they refer to a specific set of coordinates. Since we do not want those functions to be
changed by a D i f f (Md+1) transformation and we insist (for the time being) that they
occupy the µ-ν sub-matrix of (d+1)gI J , we have to allow functions N and Nµ of any form in
this gauge picked by gk

µν.

4 Unless stated otherwise, all coordinates are dimensionless in our conventions, while all metric coefficients have mass dimension −2. Since [k] = +1,
the constant κ must have [κ] = +1.
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As a consequence, we first must arrive at a certain triple {N, Nµ, ε} that completes the
specification of ds2

d+1, and only then, we are free to perform general coordinate transforma-
tions, if we desire to do so.

3. Solutions of the Rescaling Type: Running Einstein Spaces

To make the later discussion as explicit as possible, let us pause here for a moment
and introduce a technically particularly convenient class of running metrics whose k-
dependence resides entirely in their conformal factor:

gk
µν = f (k) gk=k0

µν (14)

(1) To this end, we assume that we are dealing with pure quantum gravity (no matter
fields) and that the Einstein–Hilbert truncation is employed, meaning that the effective
field equations are5 Gµν[gk

αβ] = −Λ(k)gk
µν, or equivalently, with Rµ

ν[gk
αβ] = (gk)νρRµρ[gk],

Rµ
ν[gk

αβ] =
2

d− 2
Λ(k) δµ

ν (15)

(2) In this setting, the only input from the RG equations is the k-dependence of the running
cosmological constant, Λ(k). The latter can be of either sign, and it also might vanish at
isolated scales. It will turn out to be convenient to express it in the form:

Λ(k) = σ |Λ(k)|

with the piecewise constant sign function σ = ±1, and to introduce the quantity

H(k) =
[

2|Λ(k)|
(d− 1)(d− 2)

]1/2

(16)

in order to write the absolute value of the cosmological constant as:

|Λ(k)| = 1
2
(d− 1)(d− 2) H(k)2. (17)

For every fixed value of k, the solutions to the effective field equation:

Rµ
ν[gk

αβ] = σ(d− 1) H(k)2 δµ
ν (18)

are arbitrary Einstein manifolds [35] with scalar curvature:

R[gk
αβ] = σ d(d− 1) H(k)2. (19)

Among them, there are the distinguished ones that possess a maximum number of
Killing vectors, namely the spheres Sd, pseudo-spheres Hd, and the flat space Rd. They
exist for σ = +1 and σ = −1 when H(k) 6= 0, and for H(k) = 0, respectively.

The motivation for the d-dependent factors in the definition (16) is as follows. Com-
paring (19) with the standard result for the curvature scalar of maximally symmetric spaces
reveals that, for the special case when gk

µν is maximally symmetric, 1/H(k) is nothing but
the radius of curvature of the corresponding sphere or pseudo-sphere. Thus, H(k) can be
identified with the conventionally defined Hubble parameter. Hence, the Riemann tensor
is normalized as follows in the case of maximal symmetry:

Rµνρσ[gk
αβ] = σ H(k)2 [gµρgνσ − gµσgνρ] (20)

5 In this paper, we denote higher dimensional geometric objects (e.g., the curvature scalar (d+1)R, etc.) by the prepended label (d + 1), while all those
without are the original ones referring to Md. In particular, Rµν denotes the Ricci tensor related to gµν in d dimensions, while (d+1)Rµν are the µ-ν
components of the tensor (d+1)RI J built from (d+1)gI J .
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We emphasize however that while we are going to employ the quantity H(k) defined
by (16) as a convenient way of representing the cosmological constant, we are not confining
our attention to maximal symmetry in what follows.
(3) Coming back to the problem of finding solutions to (15), let us fix some convenient
reference scale k0 at which:

Λ(k0) ≡ Λ0 ≡
1
2

σ (d− 1)(d− 2) H2
0 (21)

and let us pick an arbitrary solution g(0)µν (xρ) of the classical vacuum Einstein equation
involving this particular value of the cosmological constant:

Rµ
ν[g(0)αβ ] = σ(d− 1) H2

0 δµ
ν (22)

It then follows that the “running metric” given by:

gk
µν(xρ) = Y(k)−1 g(0)µν (xρ) (23)

with gk
µν|k=k0 = g(0)µν , and:

Y(k) ≡ |Λ(k)|
|Λ0|

≡ H(k)2

H2
0

(24)

solves the effective field Equation (15) on all scales k that are sufficiently close to k0. This is
to say that Λ must not have any zero between k and k0 so that σ = sign(Λ(k)) = sign(Λ0)
is a constant function. Equation (23) is easily proven by noting that the Ricci tensor, with
mixed indices, behaves as:

Rµ
ν[c−2gαβ] = c2Rµ

ν[gαβ] (25)

under global Weyl transformations with an arbitrary real c.
(4) We now have a simple, but, as we shall see, instructive example of a trajectory made
of generic, i.e., not necessarily maximal symmetric, Einstein spaces at our disposal. Upon
inserting (23) into (13), the spacetime part of the ADM metric reads:

(d)gµν(τ, xρ) = Y(k(τ))−1 g(0)µν (xρ) (26)

with the externally prescribed function τ 7→ Y(k(τ)) coming from the RG machinery. We
emphasize that all results in this paper refer specifically to the Einstein–Hilbert trunca-
tion and to solutions of the rescaling type. For the time being, nothing is known about
generalizations involving more general actions or solutions.

4. Focusing on the Lapse Function

Let us recall that it is our aim to explore the theoretical possibilities of fixing the missing
ingredients of the higher dimensional metric, {N, Nµ, ε}, in a way that is physically or
mathematically distinguished, for one reason or another.
(1) As it stands, the scope of this investigation was extremely broad. In a first attempt, it
can help therefore to narrow down the setting in order to make the problem technically
more clear-cut and its physics interpretation more transparent.

For this reason, we focused in the sequel on a vanishing shift vector and on lapse func-
tions that depend on τ only: Nµ(xI) = 0, N(xI) = N(τ). As a consequence, Equation (12)
boils down to:

ds2
d+1 = ε N(τ)2 dτ2 + (d)gµν(τ, xρ)dxµ dxν (27)

As we shall see, this truncated form of the ADM metric is still sufficiently rich, and
yet simple enough to allow for practical progress.
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(2) Regarding the RG input, we now insert the explicit trajectory of Einstein metrics found
in the previous section:

ds2
d+1 = ε N(τ)2 dτ2 + Y(k(τ))−1 g(0)µν (xρ)dxµ dxν (28)

Thus, should there exist a yet-to-be-discovered general principle that endows the
metric on Md+1 with information that goes beyond the input data provided by the RG
equations, this information must reside in the lapse function N(τ).

It is important at this point to remember that the g(0)µν ’s are externally prescribed
coefficient functions, which we do not want to be changed by coordinate transformations.
Hence, if some principle when applied to (28) demands that the lapse must have a particular
functional form τ 7→ N(τ), this lapse function refers to an already fully gauge-fixed
metric, the corresponding gauge being selected in the process of solving the effective field
equations.
(3) What is a single Riemannian or pseudo-Riemannian manifold

(
Md+1, (d+1)gI J

)
capable

of doing for us that would not already be possible using the original stack of unrelated

manifolds
{(

Md, gk
µν

)∣∣k ∈ R+
}

?
One answer is that it can ascribe proper lengths to curves in Md+1 that are not confined

to a single slice of the foliation. Such curves explore not only different points of spacetime,
but also different scales.

As an example, let us consider a curve C(P1, P2) connecting two points P1,2 ∈Md+1.
In the coordinate system of (28), they are assumed to possess the same xµ-, but different
τ-coordinates, namely τ1 and τ2, respectively. The curve begins on the RG time slice
having k(τ1) = k1 and ends on the one with k(τ2) = k2. Furthermore, we assumed that
xµ = const ≡ cµ is constant along C(P1, P2), so that the curve projects onto a single point
of Md.

Then, for ε = +1, say, the metric in Equation (28) tells us that this curve has the
proper length:

∆sd+1 ≡
∫
C(P1,P2)

√
ds2

d+1 =
∫ τ2

τ1

dτN(τ) (29)

Loosely speaking, this integral allows us now to answer questions like: “What is the
distance between a high-scale object and a low-scale object at one and the same spacetime
event (xµ)?”

In more realistic examples, P1 and P2 may have different xµ-coordinates so that C
visits more than one point of Md. Hence, the two “objects” need not to lie on top of one
another. The resulting proper length ∆sd+1 is a mixture then of the familiar distance in
spacetime and the separation of the two objects in the scale direction.

If ∆sd+1 is to have any physical meaning, it must be possible to experimentally
connect coordinates (τ, xµ) to the results of certain measurements. A well-known model
for achieving this on ordinary spacetimes equips Md with a set of scalar fields φµ whose
observable values represent xµ then [36]. In the case at hand, we must invoke an additional
field that allows a determination of the scale k(τ). In cosmology, say, one might think of a
local temperature field, for instance.
(4) As we mentioned earlier, the function k(τ) can be chosen freely. It is gratifying to
see therefore that the proper time ∆sd+1 in (29) is indeed independent of this choice.
Assume that two such functions belong to the same foliation, i.e., k(τ) = k = k̄(τ̄), and
the respective RG times are related by the coordinate transformation τ = τ(τ̄). The
latter belongs to the foliation-preserving subgroup of D i f f (Md+1), and it acts on the lapse
function according to [15]:

N̄(τ̄) = N(τ)

(
dτ

dτ̄

)
(30)
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As a consequence, N̄(τ̄)dτ̄ = N(τ)dτ, and (29) is seen to be invariant.

5. Distinguished Higher Dimensional Geometries

The crucial question is what kind of physical or mathematical principle could possibly
determine the higher dimensional metric and what are the universal geometric features of
the manifold

(
Md+1, (d+1)gI J

)
that result from it. The information coming from the RG

trajectory determines (d+1)gI J only incompletely. Using the prescribed coordinate system
of Equation (28), what are left to be determined by this principle are N(τ) and ε.

In this paper, we postulated that the RG trajectories under consideration possess the
following monotonicity property:

(P) The cosmological constant Λ(k) is a strictly increasing function of k. (31)

Taking (P) for granted, we demonstrated that it is always possible to complete the
specification of the (d + 1)-dimensional (pseudo-) Riemannian geometry in such a way
that it enjoys the following features:

(G) The higher dimensional metric (d+1)gI J is Ricci flat: (d+1)RI J = 0. (32)

This property is universal in the sense that it pertains to arbitrary k-dependent Einstein
metrics gk

µν(xρ).
Furthermore, if the d-dimensional Einstein metrics gk

µν(xρ) happen to be maximally
symmetric, but still curved in general, then (G) can be replaced by the stronger statement:

(G') The higher dimensional metric (d+1)gI J is Riemann flat: (d+1)RI
JKL = 0. (33)

In this section, we show that (G) and (G'), respectively, are indeed made possible by
(P) since it allows us to postulate a highly distinguished and universal form of (d+1)gI J .
Thereafter, we shall investigate whether the postulated property (P) is actually realized in
asymptotic safety.

5.1. The Hubble Length as a Coordinate

We considered k-intervals with different signs of Λ(k) separately, should they occur. If
Λ(k) > 0, (P) entails that Y(k) and H(k) are monotonically increasing with the scale, while
the Hubble length:

LH(k) ≡
1

H(k)
=

[
(d− 1)(d− 2)

2|Λ(k)|

]1/2

(34)

is a decreasing function of k. If instead, Λ(k) < 0, the postulate (P) requires Y(k) and H(k)
to decrease and LH(k) to increase with k. In either case, the postulated strict monotonicity
implies that the function LH(k) is invertible, i.e., the relationship between k and LH is
one-to-one. A a consequence, we may regard the map k 7→ LH(k) given by (34) as a
reparametrization of the “scale manifold” R+ or a subset thereof and LH as a concrete
example of an RG time τ = τ(k). Up to now, the τ-k relationship has been an arbitrary
convention. Here, now, we made a specific choice for this coordinate, not by hand, but by
invoking the RG trajectory itself.

For clarity, we denote this special RG time coordinate by ξ. The corresponding
coordinate transformation k = k(ξ) is determined by the implicit condition:

ξ ≡ LH
(
k(ξ)

)
, (35)
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while its inverse is known explicitly:

ξ(k) =
[
(d− 1)(d− 2)

2|Λ(k)|

]1/2

(36)

When we reexpress ds2
d+1 in terms of ξ, we are led to the conformal factor:

Y(k(ξ))−1 = H2
0 H(k(ξ))−2 = H2

0 LH(k(ξ))2 = H2
0 ξ2 (37)

Hence, in the new system of coordinates, the second term on the RHS of Equation (28)
assumes a very simple dependence on the RG time, being proportional to ξ2.

The sought-for principle that decides about the (d + 1)-dimensional geometry, after
having installed the coordinates6 xI ≡ (x0, xµ) ≡ (ξ, xµ), must come up with a unique
function ξ 7→ N(ξ). This, then, will allow us to completely specify the line element
ds2

d+1 ≡
(d+1)gI J(xK)dxI dx J in Equation (28).

In order to prove in a constructive way that the postulate (P) indeed allows us to
achieve (G) or (G'), respectively, we enact the following rule for the completion of (d+1)gI J :

(R) In the (ξ, xµ) system, the lapse function must assume the simplest form possible,

namely N(ξ) = 1. (38)

In other words, the coordinates realizing the “proper RG time gauge” are required to
coincide with those that employ the Hubble length as the scale coordinate. The rule (R)
enforces that the higher dimensional metric is unambiguously given by:

ds2
d+1 = ε (dξ)2 + ξ2 H2

0 g(0)µν (xρ)dxµ dxν (39)

which is fully determined except for sign ε.
We emphasize that the property (P) is crucial for making the rule (R) meaningful.

Without the strict monotonicity of Λ(k), we could not have replaced k with ξ ∝ |Λ(k)|−1/2

in its role as a coordinate.7

Note that the metric (39) possesses a remarkable universality property: It has no
explicit dependence on the function Λ(k). In the (ξ, xµ) coordinate system, the proposed
metric “remembers” Λ(k) only via the implicit requirement that ξ ↔ |Λ(k)|−1/2 must be
one-to-one.

In the (ξ, xµ) system, the information about the actual RG evolution resides entirely
in the “time function” k = k(xI) ≡ k(ξ, xµ) that describes how the slices Στ ≡ Σξ are
embedded into Md+1. In the case at hand, the time function has no dependence on xµ

and boils down to k = k(ξ). It is this function that has been adjusted in (35) by imposing
ξ = LH(k(ξ)). Since the inverse function ξ = ξ(k) is given by (36), we recover the time
function belonging to the line element (39) by solving ξ ∝ |Λ(k)|−1/2 for k = k(ξ).

Equation (39) is our proposal for the single higher dimensional metric that “ge-
ometrizes” the entire RG history of the original metrics.8 In the following subsections, we
discuss its detailed properties, which, as a matter of fact, were the actual motivation for
this specific proposal.

5.2. Equivalent Forms of the Postulated Metric

The special status of the (ξ, xµ) system of coordinates resides solely in the fact that
in this system, the lapse function is defined to be particularly simple, namely N = 1.

6 The special RG time ξ and its “conformal” analogue η to be introduced below are the only exceptions to our rule that coordinates are dimensionless.
While [xµ] = 0 throughout, ξ and η have the dimension of a length: [ξ] = [η] = −1.

7 For a similar discussion of coordinate transformations on the g-λ theory space, see [30].
8 It is interesting to note that the metric (39) played a prominent role also in the 5D “spacetime-matter theory” in [37–39].
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After having set up the metric (d+1)gI J , we may transform it to any coordinate system
x̄I ≡ (x̄0, x̄µ) we like. Here, we mention two simple foliation-preserving transformations.

(1) The conformal RG time: In practical computations, it is often convenient to transfer
the scale dependence from the conformal factor of g(0)µν to the overall conformal factor of
(d+1)gI J . This is achieved by the (xµ-independent!) transformation trading ξ ∈ R+ for
η ∈ R via ξ = H−1

0 eH0η , or conversely,

η = H−1
0 ln(H0ξ) = L0

H ln
(

ξ/L0
H

)
, (40)

with L0
H ≡ H−1

0 ≡ LH(k0). The new coordinate η is positive (negative) if the length ξ
is of super- (sub-) Hubble size, according to the metric at the reference scale k0. In the
(x0 ≡ η, xµ) system, the line element (39) assumes the desired form:

ds2
d+1 = e2H0η

[
ε (dη)2 + g(0)µν (xρ)dxµ dxν

]
(41)

While, in its original form (39), ξ is reminiscent of the cosmological time in a Robertson–
Walker metric, the new variable η has the interpretation of the corresponding conformal
RG time.
(2) The IR cutoff as a coordinate: Both in the (ξ, xµ) and the (η, xµ) system of coordinates,
the metric is independent of Λ(k), while the time functions k = k(ξ) and k = k(η) know
about it. We can reverse the situation and make the time function trivial by introducing
directly the cutoff k (or the dimensionless L0

H k) as the new coordinate. The change of
coordinates ξ → k defined by (36) brings the metric (39) to the form:

ds2
d+1 =

∣∣∣∣ Λ0

Λ(k)

∣∣∣∣
{

ε

(
1
2

∂k ln |Λ(k)|
)2 (

L0
H dk

)2
+ g(0)µν (xρ)dxµ dxν

}
(42)

which is manifestly Λ(k)-dependent. We see that the metric (42) degenerates at points
where ∂kΛ(k) = 0, hinting at the importance of (P) again. Note also that the proposed
metric ascribes a nonzero distance to high- and low-scale objects at the same xµ only when
there is a non-trivial RG running, ∂kΛ(k) 6= 0, so that the effective spacetimes acquire
fractal properties [40,41].

5.3. Homothetic Killing Vector and Self-Similarity

The (d + 1)-dimensional geometry described by Equation (39), or equivalently by (41),
is a very particular one in that it admits a homothetic Killing vector field X ≡ X I∂I . With
LX denoting the Lie derivative along X, this vector field satisfies the defining equation:

LX
(d+1)gI J = 2 C (d+1)gI J (43)

for C = H0. Note that (43) differs from the condition for a generic conformal Killing vector
field since C is a constant rather than an arbitrary function on Md+1 [42,43]. The homothetic
vector field is explicitly given by:

X =
∂

∂η
= H0 ξ

∂

∂ξ
(44)

It is easily checked therefore that it generates xµ-independent rescalings of the metric.
The existence of such a vector field is the hallmark of self-similarity in the general relativistic
context [44]. It is a coordinate-independent manifestation of the underlying foliation with
self-similar leaves, which may be hidden if inappropriate coordinates are used.
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5.4. Ricci Flatness

Finally, we turn to the curvature of the postulated higher dimensional geometry. In
order to better appreciate its rather unique character, we consider the following slightly
more general class of metrics:

(d+1)gI J(xK)dxI dx J = Ω2(η)
[
ε(dη)2 + g(0)µν (xρ)dxµ dxν

]
(45)

Here, we employ the same coordinates xK ≡ (x0 = η, xµ) as in Equation (41), but we
admit for a moment an arbitrary overall conformal factor Ω(η). Working out the Ricci
tensor of (45), one finds9:

(d+1)R0
0 = −ε d Ω−2

[
Ω̈
Ω
−
(

Ω̇
Ω

)2]
(46a)

(d+1)R0
µ = 0, (d+1)Rµ

0 = 0 (46b)

(d+1)Rµ
ν = Ω−2

{
Rµ

ν − ε δµ
ν

[
Ω̈
Ω

+ (d− 2)
(

Ω̇
Ω

)2]}
(46c)

Here, Rµ
ν denotes the Ricci tensor of g(0)µν (xρ), and the dot indicates derivatives with

respect to η.
Now let us ask under what circumstances (45) is Ricci flat:

(d+1)RI
J = 0 (47)

By (46a), the necessary and sufficient condition for (d+1)R0
0 = 0 is that Ω Ω̈ = (Ω̇)2.

The most general solution to this differential equation is given by:

Ω(η) = eB(η−η0) (48)

with arbitrary real constants B and η0. Using this form of Ω in (46c), the condition
(d+1)Rµ

ν = 0 is found to be equivalent to:

Rµ
ν − ε(d− 1) B2 δµ

ν = 0 (49)

Up to this point, g(0)µν (xρ), and so, the Ricci tensor Rµ
ν has been left unspecified.

When we now exploit that g(0)µν (xρ) actually describes an Einstein space complying with
Equation (22), the condition (49) boils down to σH2

0 − εB2 = 0. This latter equation has
the unique solution ε = σ, B = H0. Thus, the conclusion is that there does exist a Ricci
flat higher dimensional metric of the form (45) for every d-dimensional metric with g(0)µν

describing a (curved) Einstein space. Furthermore, this metric is essentially unique and is
obtained by letting:

ε = σ and Ω(η) = eH0(η−η0) (50)

in the family of line elements (45):

ds2
d+1 = e2H0(η−η0)

[
σ (dη)2 + g(0)µν (xρ)dxµ dxν

]
(51)

Choosing η0 = 0 brings us back to the metric (41) that we set out to investigate, with
an additional piece of information, however. Originally, we had admitted an arbitrary sign
ε = ±1. However, now, we see that Ricci flatness can be achieved only if we allow the
sign of the cosmological constant σ = Λ0/|Λ0| to determine the signature of (d+1)gI J . If

9 Our curvature conventions are Rσ
ρµν = +∂µΓσ

νρ − · · · and Rµν = Rρ
µρν.
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the cosmological constant is positive (negative), the scale parameter becomes a spacelike
(timelike) coordinate.

5.5. Strict Flatness

Let us go one step further and ask under what conditions metrics of the form (45) are
not only Ricci flat, but even strictly, i.e., Riemann flat:

(d+1)RI
JKL = 0. (52)

Modulo the usual symmetries, the Riemann tensor of (45) has only the following
nonzero components:

(d+1)R0µ
0ν = ε Ω−2

[(
Ω̇
Ω

)2

− Ω̈
Ω

]
δµ

ν (53a)

(d+1)Rµν
ρσ = Ω−2

{
Rµν

ρσ − ε

(
Ω̇
Ω

)2[
δµ

ρδν
σ − δµ

σδν
ρ

]}
(53b)

Herein, Rµν
ρσ is the Riemann tensor that belongs to g(0)µν (xρ).

Imposing (d+1)R0µ
0ν = 0, Equation (53a) reproduces the requirement Ω Ω̈ = (Ω̇)2

and (48) as its general solution. Inserting this solution into (53b), the vanishing of the
second set of components, (d+1)Rµν

ρσ = 0, implies the following condition on the curvature

tensor of g(0)µν (xρ):

Rµν
ρσ = εB2

[
δµ

ρδν
σ − δµ

σδν
ρ

]
(54)

The tensor structure on the RHS of (54) is the hallmark of a maximally symmetric
manifold; see Equation (20). We conclude therefore that the metric (45) is strictly flat if
and only if, first, Ω(η) and ε are fixed according to (50) and, second, the running Einstein
metric at k = k0, i.e., g(0)µν , corresponds to a maximally symmetric d-dimensional space.

This completes our demonstration that, under this symmetry constraint, the geometric
feature (G) of the higher dimensional manifold can be tightened to (G').

It is indeed quite remarkable that the inclusion of the scale variable has “flattened”
the curved spacetime. In the case at hand, the metric (39) specializes to:

ds2
d+1 = (dξ)2 + ξ2 dΩ2

d (Λ0 > 0) (55)

ds2
d+1 = −(dξ)2 + ξ2 dH2

d (Λ0 < 0) (56)

where dΩ2
d and dH2

d are the line elements for, respectively, Sd and Hd with the unit length
scale. Both of these metrics are well known to be flat: Equation (55) describes the (d + 1)-
dimensional Euclidean space in spherical coordinates. Hereby, ξ plays the role of the radial
variable, Md+1 ≡ Rd+1 being foliated by d-spheres of radius ξ.

Similarly, the metric (56) describes Minkowski space M1,d. The RG time has become
a genuine time coordinate in this case. Here, Minkowski space is foliated by hyperbolic
d-spaces whose radius of curvature is given by ξ. For d = 3, Equation (56) is nothing but
the metric of Milne’s universe.

6. Asymptotic Safety

In the previous section, we saw that the “principle” or “property” (P) is a necessary
condition for being able to define (d+1)gI J as a (Ricci) flat metric in the higher dimensional
sense. In the present section, we are going to discuss the actual situation concerning
the monotonicity of Λ(k) within the concrete setting of pure quantum gravity (QEG)
in d = 4 dimensions. We employ the prototypical Einstein–Hilbert truncation of the
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effective average action, the first one used to demonstrate asymptotic safety [14,27,45]. The
truncation is based on the ansatz:

Γk =
1

16π G(k)

∫
d4x
√

g
(
− R(g) + 2Λ(k)

)
+ · · · (57)

where the dots indicate the classical gauge fixing and ghost terms. The resulting RG
equations for the running couplings G(k) and Λ(k) were obtained in [14] and solved
numerically in [45]. In the following, we are particularly interested in the properties of the
function Λ(k) along typical RG trajectories.

(1) Mode counting functions: It is quite remarkable that considerations about 5D representa-
tions of the histories of 4D geometries have led us to scrutinize the monotonicity properties
of Λ(k). In fact, in [46], a closely related question, the monotonicity of the dimensionless
product G(k) Λ(k), was explored already, for an entirely different reason though. In [46], a
c-function-like quantity C (k) was proposed in 4D quantum gravity, which, when evaluated
exactly, should be monotonically decreasing along RG trajectories and be stationary at
fixed points. In simple truncations, C (k) is proportional to

[
G(k) Λ(k)

]−1. Not unlike
Zamolodchikov’s c-function, C (k) can be argued to count the number of the fluctuation
modes already integrated out, thus explaining its monotonicity when evaluated exactly. As
for approximate calculations, it was found however that the above Einstein–Hilbert trunca-
tion is not precise enough to render C (k) monotonic, while it does turn out monotone if
we use more general truncations [47] of the bi-metric type [48–50]. It is not unreasonable
to expect that Λ(k) might have similar, if not better, mode counting properties. After all,
at least in the most naive picture, every bosonic fluctuation mode that is not suppressed
by the cutoff contributes a positive zero-point energy to the cosmological constant and
therefore should contribute additively to Λ(k).
(2) The trajectories simplified: The classification of the RG trajectories implied by the
ansatz (57) on the g-λ-plane of the dimensionless Newton constant g and cosmological
constant λ is well known [45]. Here, we focus on the three main classes, i.e., trajectories of
Type Ia, Type IIa, and Type IIIa, respectively (see Figure 1).

Figure 1. Part of coupling constant space of the Einstein–Hilbert truncation with its RG flow. The
arrows point in the direction of decreasing values of k. The flow pattern is dominated by a non-
Gaussian fixed point in the first quadrant and a trivial one at the origin. Taken from [45].
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(i) All of these trajectories approach a non-Gaussian fixed point (g∗, λ∗) when k→ ∞. In
particular, the dimensionless cosmological constant behaves as λ(k) ≡ Λ(k)/k2 → λ∗ in
the asymptotic region. Hence:

Λ(k) = λ∗ k2 (k & k̂) (58)

is a reliable approximation to the exact trajectory in this regime. It extends from “k = ∞”
down to a scale k̂ that is of the order of the Planck mass mPl ≡ G−1/2

0 typically.
(ii) Below a relatively complicated, but short transition regime near k̂, all trajectories of the
above three types enter a semiclassical regime within which the behavior of Λ(k) is easy
to describe again. At least qualitatively, the following simple formula provides a reliable
approximation:

Λ(k) = Λ0 + ν G0 k4 (59)

Here, ν > 0 is a scheme-dependent constant, and the infrared values Λ0 ≡ Λ(k = 0)
and G0 ≡ G(k = 0) arise as constants of integration whose values select a specific RG
trajectory in the 2D theory space. The three types of trajectories differ with respect to the
value of Λ0. We have Λ0 < 0, Λ0 = 0, and Λ0 > 0 for trajectories of Type Ia, IIa, and IIIa,
respectively.

If Λ0 6= 0, it is convenient to introduce the two length scales:

` ≡
(

ν G0

|Λ0|

)1/4
, L ≡

(
λ∗
|Λ0|

)1/2
(60)

Hence, in the semiclassical regime,

Λ(k) = |Λ0|
(
`4 k4 ± 1

)
(61)

where the plus sign (minus sign) applies to Type IIIa (Type Ia).
(iii) When Λ0 6= 0, the following “caricature” of the function Λ(k) is useful:

Λ(k) = |Λ0| ·
{

`4 k4 ± 1 for 0 ≤ k . k̂
L2 k2 for k & k̂

(62)

It should be a reliable approximation, except possibly during a short interval of scales
near k̂ where the transition between the two regimes takes place. We shall investigate this
transition regime separately below.

In the case Λ0 = 0, the corresponding approximation reads instead:

Λ(k) = |Λ0| ·
{

ν m−2
Pl k4 for 0 ≤ k . k̂

λ∗ k2 for k & k̂
(63)

Equation (63) applies to the single trajectory of Type IIa, the separatrix [45].
(iv) Regarding the monotonicity, we observe that, whenever (62) and (63) are applicable,
the dimensionful cosmological constant Λ(k) is indeed a strictly monotonic function of k,
and all trajectories of Types Ia, IIa, and IIIa have the crucial property (P).
(3) The signature: A second important piece of information concerning Λ(k) is the piecewise
constant sign function σ(k) ≡ Λ(k)/|Λ(k)|. Equations (62) and (63) yield:

for Type Ia: ε(k) =
{
−1 for 0 ≤ k < `−1

+1 for k > `−1 (64)

for Type IIa: ε(k) = +1 for all k ≥ 0 (65)

for Type IIIa: ε(k) = +1 for all k ≥ 0 (66)

Thus, we conclude that everywhere along RG trajectories of Types IIa and IIIa, the
RG “time” amounts to a spatial coordinate actually. Starting from a Euclidean spacetime
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M4 with signature (+ + + +), the proposed geometrization of the RG flow leads us
unavoidably to a manifold M5 having (+ ++++).

For trajectories of Type Ia, the situation is more complicated. They display an inter-
mediate scale k = `−1 at which the cosmological constant vanishes, Λ(`−1) = 0. When k
passes this special scale, the solutions to the effective field equations undergo a change
of topology. Coming from above, the scalar curvature changes from R[gk

αβ] > 0, via

R[g1/`
αβ ] = 0, to R[gk

αβ] < 0. In the maximally symmetric case, for example, this topology

change corresponds to a sequence of spaces S4 → R4 → H4.
We note however that at the present stage of its development, asymptotic safety cannot

yet describe topology change processes in a dynamical fashion, neither in physical time,
nor in RG time. For this reason, we adopt a conservative attitude here and consider the
two branches of the Ia trajectories, having Λ(k) > 0 and Λ(k) < 0, respectively, as two
unrelated (incomplete) trajectories and, at this stage, study them separately.

The upper branch (k > `−1) of a Type Ia trajectory augments the Euclidean M4 to an,
again, Euclidean M5 having signature (+++++), while its lower branch (k < `−1) gives
rise to a Lorentzian 5D manifold with (−++++).

It is quite intriguing to speculate that an RG trajectory of this kind could underlie a
mechanisms of chronogenesis: the emergence of time in an a priori purely Euclidean sys-
tem.
(4) The coordinate change: The dimensionless function Y(k) can be written as:

Y(k) =
|Λ(k)|
|Λ0|

=
H(k)2

H2
0

=

(
L0

H
LH(k)

)2

(67)

with Λ0 = 3H2
0 in d = 4 and L0

H ≡ 1/H0. Hence, Equation (62) yields the following
“running Hubble length” LH(k) = L0

HY(k)−1/2 along the trajectories of Type IIIa (plus sign)
and of Type Ia (minus sign), respectively:

LH(k) = L0
H ·


1√

|`4 k4 ± 1|
for 0 ≤ k . k̂

1
L k

for k & k̂
(68)

This function is sketched in Figure 2.

Figure 2. The scale-dependent Hubble length along trajectories of Type IIIa (left) and Type Ia (right), respectively.

For the Type IIIa trajectories, the Hubble length LH(k) is seen to be a strictly decreasing
function of the scale for all k ∈ (0, ∞). It is one-to-one therefore, and so, ξ = LH(k) defines
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a legitimate change of coordinates on the interval (0, ∞). The same is true in the limiting
case Λ0 ↘ 0, i.e., for the Type IIa case.

Type Ia trajectories on the other hand decompose into two branches with k ∈ (0, `−1)
and k ∈ (`−1, ∞), respectively. On each branch separately, setting ξ = LH(k) is an allowed
change of coordinates. On the upper (lower) branch, the RG time ξ becomes a strictly
decreasing (increasing) function of k then. However, employing ξ globally would create a
2-1 ambiguity where LH > L0

H .
(5) The transition region: Finally, let us investigate more carefully the monotonicity ques-
tion in the transition region near k̂ = O(mPl). The RG flow linearized about the fixed point
(g∗, λ∗) is useful for a first orientation here. The linearization is governed by a pair of com-
plex conjugate critical exponents θ1,2 = θ′ ± iθ′′, with θ′, θ′′ ∈ R+, which are responsible
for the spiral-shaped trajectories k 7→ (g(k), λ(k)) encircling the fixed point. The latter is
located in the first quadrant of the g-λ-plane: g∗ > 0, λ∗ > 0. In the linear regime, the
condition ∂kΛ(k) > 0, or equivalently k∂kλ(k) + 2λ(k) > 0, assumes the form:

λ∗ + ζ

(
k0

k

)θ′

cos
(

θ′′ ln(k/k0) + α
)
> 0 (69)

Here, α and ζ are dimensionless parameters that depend on the constants of inte-
gration, that is on the trajectory under consideration, as well as on the eigenvectors of
the stability matrix.10 Equation (69) shows that for k sufficiently large, the monotonicity
condition can never be violated since the potentially negative cosine is multiplied by too
small a coefficient to compete with the positive λ∗. On the other hand, once the scale is low
enough for ζ(k0/k)θ′ to be of order unity, there exist parameters α, ζ for which (69) could
be violated. However, at those low scales, the linear approximation is not necessarily valid
any longer. If by then, the trajectory is already in the semiclassical regime, the “caricature”
trajectory applies, and monotonicity is guaranteed; but if not, violations could occur.

A detailed numerical analysis revealed however that in reality, there are no such
violations of monotonicity in the transition region. For all three types of trajectories, one
finds that ∂kΛ(k) > 0 on all scales.

Figure 3 displays the numerical result for Λ(k) and compares it to the product
G(k) Λ(k) and the anomalous dimension of Newton’s constant, ηN(k) = k∂k ln G(k), along
the same trajectory. The example shown is of Type IIIa, but since the plot focuses on the
transition region, it would look basically the same for the other types. It is quite impressive
to see that Λ(k) is indeed perfectly monotonic even in the transition regime, while this is
by no means the case for G(k) Λ(k) and ηN(k). In particular, the anomalous dimension
displays significant oscillations in the transition regime.

This completes our demonstration that the asymptotically safe trajectories of QEG in
four dimensions do indeed comply with the general property (P) and are thus eligible for a
geometrization based on the proposed rule (R).

10 See Equation (5.30) of [27].
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Figure 3. Numerical results for Λ(k), the product G(k) Λ(k), and the anomalous dimension ηN(k)
along a typical Type IIIa trajectory.

7. Summary and Conclusions

In this paper, we advocated a bottom-up approach towards geometrizing, and thus
subsuming and visualizing the entire family of all effective spacetime metrics that occur
along a given RG trajectory supplied by the established apparatus of the functional renor-
malization group for gravity. Different members of this family correspond to coarse-grained
4D spacetimes at different resolutions.

The proposed geometrization was constituted by a single 5D Riemannian or pseudo-
Riemannian manifold, M5. It carries a natural foliation whose leaves are the 4D spacetimes
corresponding to a fixed RG scale. The RG trajectory that delivers the “input data” for this
construction determines the geometry of M5 only incompletely. A single metric on M5
can encode more information than the collection of all metrics on the slices. This raises
the question if there exist any distinguished ways of completing the specification of the
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5D geometry. Such completions might, for instance, be “natural” from the mathematical
perspective, or they could transport additional physics information that is not, or not easily,
accessible by the RG methods.

It was one of the motivations for this paper to initiate a survey of the logical possibili-
ties concerning such distinguished higher dimensional geometries that is unbiased with
regard to particular geometries or models (AdS, Randall–Sundrum, etc.). Nevertheless, a
long-term goal of this search program is to ultimately try making contact with “top-down”
formalisms like the AdS/CFT approach, which also invoke scale-spacetimes, but bear no
obvious relation to the effective average action and its functional RG flows.

As a proof of principle, we explicitly analyzed the simplified situation where the ADM
metric on M5 has a vanishing shift vector; we also assumed that the RG evolution of the 4D
metrics is purely multiplicative and that it is governed by the Einstein–Hilbert truncation of
the effective average action. Under these conditions, we proved that it is always possible to
complete the specification of the 5D geometry in such a way that it possesses the following
distinctive features: first, the metric on M5 admits a homothetic Killing vector field as an
intrinsic characterization of its self-similarity, and second, the metric on M5 is Ricci flat. In
the special case of maximally symmetric 4D spacetimes, it even can be chosen strictly flat.

These results are based on a specific proposal for the general structure of the full
5D metric, Equation (39). Surprisingly enough, in the literature, this class of metrics had
already been studied in considerable detail, for quite different reasons though, namely in
connection with the “spacetime-matter theory” advocated in [37–39].

From a more physics-oriented point of view, it is remarkable that in order to be well
defined, i.e., non-degenerate, the proposed metric requires the cosmological constant Λ(k)
to be a strictly increasing function of the cutoff k. In other words, the coefficient Λ(k) in
the effective average action must have properties similar to a c-function that “counts” the
number of fluctuation modes that get integrated out when k is changed.

It is intriguing therefore to speculate that, ultimately, the envisaged geometrization
encodes global information about the underlying flows that is not easily seen at the FRGE
level. Hence, future work will have to focus on drawing a more complete picture by
relaxing some, or perhaps all, of our assumptions.
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