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Abstract: It is conjectured that in cosmological applications the particle current is not modified
but finite heat or energy flow. Therefore, comoving Eckart frame is a suitable choice, as it merely
ceases the charge and particle diffusion and conserves charges and particles. The cosmic evolution of
viscous hadron and parton epochs in casual and non-casual Eckart frame is analyzed. By proposing
equations of state deduced from recent lattice QCD simulations including pressure p, energy density
ρ, and temperature T, the Friedmann equations are solved. We introduce expressions for the temporal
evolution of the Hubble parameter Ḣ, the cosmic energy density ρ̇, and the share η̇ and the bulk
viscous coefficient ζ̇. We also suggest how the bulk viscous pressure Π could be related to H. We
conclude that the relativistic theory of fluids, the Eckart frame, and the finite viscous coefficients play
essential roles in the cosmic evolution, especially in the hadron and parton epochs.

Keywords: observational cosmology; mathematical and relativistic aspects of cosmology; quark-
gluon plasma

PACS: 98.80.Es; 98.80.Jk; 12.38.Mh

1. Introduction

Giving a reliable description for matter and/or radiation filling in the cosmological
background geometry, the space, is an essential ingredient to determine the temporal
evolution of the Universe. A realistic picture of the cosmic evolution can only be drawn,
if reliable equations of state could be proposed. Since no observational evidence of the
cosmic evolution, especially during the very early epochs of the Universe, was made so
far, we first have to do the best of all in order to best describe the cosmic matter and/or
radiation [1].

Recent perturbative and non-perturbative lattice simulations with almost all quark
flavors and thermal contributions from charged leptons, electroweak particles, scalar Higgs
bosons, and photons have calculated various thermodynamic quantities like pressure, energy
density, bulk viscosity, relaxation time, and temperature up to the TeV-scale [2]. Therefore,
an access to the relativistic dissipative cosmic fluid covering hadron, QGP, and electroweak
(EW) epochs is likely gained. On the other hand, the shear viscosity could be originated to
curvature effects through Ricci tensor or Ricci scalar of a given spacetime, for example, some
radiation processes from an accretion disk may attribute to shear viscosity and heat flow.
The exponential expansion of the Universe significantly contributes to the curvature effects
in the bulk viscosity.

An approach for relativistic hydrodynamics has found applications in various dis-
ciplines, especially in physics of the early Universe [3–5]. For ideal fluids, the theory of
hydrodynamics was first formulated by Euler [6]. This was much later extended to non-
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ideal fluids by Navier [7] and Stokes [8] and utilized in determining dissipative quantities
like viscosity and heat flow.

About eight decades ago, the relativistic theory of fluids was introduced by Eckart [9]
and Landau–Lifshitz [10], in which the relativistic version of Euler ideal and Navier-Stokes
non-ideal fluids was developed. The latter is characterized by first-order gradients of the
hydrodynamical variable, i.e., the dissipative quantities are constructed from the first-order
gradients of the fluid’s four-velocity, temperature, and chemical potential. But it was
ascertained that the dissipative perturbation has infinite speed [11–14]. A linear relation
between the bulk viscous pressure and the expansion in the early Universe was also
suggested [5].

Hiscock and Lindblom pointed out that under linear perturbations the relativistic
theory for non-ideal fluids suffers from instabilities and allows a non-casual signal prop-
agation [15]. It was also found that the dissipative quantities seem to instantaneously
response to the first-order changes in Eckart and Landau–Lifshitz theory. When repairing
this in light of the theory of general relativity, Mueller [16] and Israel–Stewart [17,18] came
up with a causal theory which is stable under linear perturbations and the dissipative
perturbation has finite speed [15]. Here, the second-order gradients are dominant [11–13].

To address phenomenology of relativistic heavy-ion collisions assuming vanishing
conserved charges in Landau frame, a systematic expansion of the hydrodynamical gradients
has been done in context of conformal and non-conformal theories and relativistic viscous
fluids could be investigated [19,20]. Under the assumption of conserved charges and finite
heat flux, Lahiri started with the second-order gradients expansion in the Eckart frame
and developed a causal theory of relativistic non-ideal fluids for various astrophysical
applications [14]. In other words, general relativistic causal hydrodynamical equations in
the Eckart frame like of bulk viscosity, shear viscosity tensor, and heat flow are obtained up
to second-order gradients.

In astrophysical and cosmological applications, where the particle current is not mod-
ified but the heat or energy flow is non-negligible, comoving Eckart frame is a suitable
choice. As it merely ceases the charge and particle diffusion (conserved charges and parti-
cles of the system n are given from Nµ = nuµ, where Nµ is the conserved charge/particle
flux and uµ is the four-velocity), while in the Landau frame there is no energy or heat flow
(Tµνuν = ρuµ, where ρ is the energy density and no dissipation of energy appears), where
uµ stands for four-velocity of particle motion and/or energy transport [21]. To summarize,
in comoving frame of reference, the Eckart frame conserves Ni = o, while the Landau
frame conserves Ti0 = 0.

The present work aims at parameterizing various thermodynamical and transport
quantities for the general relativistic causal hydrodynamical equations in the Eckart frame.
For the first time, a cosmological implication of causal Eckart frame is presented. We focus
on recent lattice QCD simulations [22]. The temporal evolution of cosmological parameters
like the scale factor, the Hubble parameter, etc. is presented.

The paper is organized as follows. The Friedmann equations are reviewed in Section 2.
The equations of state of viscous QCD epoch and the parameterizations for different
thermodynamic properties are presented in Section 3. The resulting cosmic evolution is
elaborated in Section 5. Section 6 is devoted to the conclusions.

2. Friedmann Equations in Eckart Frame

We assume that the bulk viscous fluid shapes the background geometry, the space, of
the early Universe and limit to discussion to the QCD epoch. For spatially flat background
geometry, the Friedmann–Lemaiture–Robertson–Walker (FLRW) line element reads [5]

ds2 = dt2 − a2(t)dr2 + a2(t)
[
r2dθ2 + r2 sin2 θdφ2

]
, (1)

where a(t) is the scale factor. The temporal evolution becomes accessible when integrating
this in the theory of general relativity. Then, the Hubble parameter H = ȧ(t)/a(t), where
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ȧ(t) is the time evolution of the scale factor, can be estimated from the Einstein field
Equations [5]

H2 =
1

3m2
Pl

ρ, (2)

Ḣ + H2 = − 1
6m2

Pl

(
3pe f f + ρ

)
, (3)

where mPl is known as the reduced Planck mass 1/m2
Pl = 1.687× 10−43 MeV−2 [5], pe f f

is the effective thermodynamic pressure pe f f = p + Π and ρ is the energy density. Here,
we use natural units with c = h̄ = kB = 1, so that 8πG = 1/m2

Pl = 1.687× 10−43 MeV−2.
The reduced Planck time is given as tPl = 1/mPl = 4.0× 1152× 10−22 MeV−1. Therefore,
the Hubble parameter reads

H =

(
1

3m2
Pl

ρ

)1/2

, (4)

and its time evolution can be deduced from Equations (2) and (3)

Ḣ = − 1
2m2

Pl

(
pe f f + ρ

)
. (5)

The temporal evolution of the energy density can be related to H [5]

ρ̇ = −3(pe f f + ρ)H, (6)

To solve the field equations, various baratropic EoS including the bulk viscous pressure
Π have to be substituted. Relating Π to ρ or indirectly to H depends the features of causality
and stability on the corresponding relativistic fluid theory. As discussed in introduction,
the Eckart theory, which is a non-casual and unstable theory, is the relativistic version of
non-viscous and viscous fluid theories introduced by Euler and Navier–Stokes, respectively.

In astrophysics and cosmology, the particle current-in contrary to heat or energy
flow-likely remains unmodified. This makes the Eckart frame the suitable choice. With a
second-order gradients expansion in the Eckart frame, non-causal theory of relativistic
non-ideal fluids was developed for astrophysical applications [14]. This is similar to the
causal stable Mueller–Israel–Stewart theory but explicitly in the Eckart frame. Various
general relativistic causal hydrodynamical equations like bulk viscosity, shear viscosity
tensor, and heat flow up to second-order gradients have been derived. The four-velocity
normalization conditions reads uνuν = −1 and uν∆νµ = 0, where the projection tensor
in curved spacetime is given as ∆νµ = gνµ + uνuµ [14]. To summarize, the proposed
Eckart and Mueller–Israel–Stewart theories are causal. While the latter considers up to the
second-order derivations of the thermodynamic quantities, the earlier is limited to first
order, only.

Comments of features of non-casual and causal Eckart Frame are now in order.

• Non-casual Eckart frame: The entropy current can be given as Sν = snuν but it isn’t
conserved all the time, where s is the entropy density and n is the number density. It
was found that Eckart theory violates the second law of thermodynamics as a result
of the divergence of the entropy current TSν = −3HΠ [5]. There is a linear relation
between the Hubble parameter H and the bulk viscous pressure Π which results form
the first-order derivations of the equilibrium states [5]

Π = −3ζH, (7)

where ζ is the bulk viscosity coefficient.
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• Causal Eckart frame: To avoid violating the causality principle, higher-order devia-
tions from the equilibrium states are taken into consideration, mostly the second-order
derivations of the thermodynamic quantities [14]. Using gradient expansion scheme
of fluid hydrodynamical variables, the causality preserving property of the theory
could be defined. The Mueller–Israel–Stewart theory, which is second-order theory
in gradients of fluid hydrodynamical variables gives rise to causal and stable theory
of viscous hydrodynamics. By using gradient expansion scheme up to second order
and keeping the spirit of Mueller–Israel–Stewart theory, non-causal stable theory of
relativistic non-ideal fluids in the Eckart frame was developed [14]. By solving the
continuity equation, the modified Friedmann equation and the evolution equation
of the bulk viscosity, the effects of chemical potential can be studied. Accordingly,
the structure of bulk viscosity up to second-order gradients is given as

τΠ̇ + Π = −ξ1(∇.u) + ξ2(Dα
⊥ ln T)D⊥α ln T

+ ξ3(∇.u)2 + ξ4R + ξ5uαuβRαβ + ξ6σαβσαβ + ξ7ΩαβΩαβ (8)

+ ξ8(Dα
⊥µ)D⊥α µ + ξ9(D⊥α µ)Dα

⊥µ + ξ10(Dα
⊥µ)D⊥α ln T,

The first line in rhs gives the first-order gradient terms. The other lines list out the
possible second-order gradient terms for scalars, vectors and tensors constructing the
dissipative flux quantities. T is temperature, µ is chemical potential, −∇.u = ∂t ln s,
and Dα

⊥ = ∂i.

3. Equations of State of Viscous QCD Matter

The lattice QCD simulations are based on non-perturbative solution of the quan-
tum chromodynamics (QCD) theory of the strong interactions. In high energy physics,
the colored parton phase, the quark-gluon plasma, which is likely created in the relativistic
collisions [23,24], is conjectured to expand with a fixed number of both baryon number
and entropy, so the ratio entropy/baryon number remains constant, S/NB = 51. For each
ratio, the phase diagram, T-µB, is obtained and also an EoS can be deduced. For the lattice
simulations 4-stout improved staggered fermions with temporal lattice sizes 10, 12, and 16
with physical quark masses. are used. An isospin symmetry is assumed. Describing
the state of the system of interest relies on EoS proposed; thermodynamic properties like
pressure p, density ρ, and temperature T.

From recent lattice QCD calculations, at non-vanishing baryon chemical potential [22],
different EoS could be derived. As presented in Figure 1, we parameterize the results
as follows.

• For pressure p vs. temperature T

p(T) = a1 + a2T + a3T2 + a4T3, (9)

where a1 = −0.851± 0.1672, a2 = 21.094± 2.675, a3 = −176.893± 14.01, and a4 =
506.068± 24.04, Figure 1.

• For T vs. energy density ρ

T = b1ρb2 + b3ρ, (10)

where b1 = 0.174± 0.001, b2 = 0.131± 0.002, and b3 = 0.006± 0.003, Figure 2.
• For ρ vs. T

ρ = c1Tc2 + c3T, (11)

where c1 = 2470.27± 7.597, c2 = 4.316± 0.046, and c3 = −2.59± 0.021, as represented
in Figure 2.
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• Then, the baratropic EoS can be given as

p(ρ) = d1ρd2 , (12)

where d1 = 0.162± 0.001 and d2 = 1.202± 0.004, Figure 3.
• For speed of sound squared c2

s vs. T

c2
s = f1T f2 + f3, (13)

where f1 = 1.97± 0.234, f2 = 0.171± 0.029, and f3 = −1.25± 0.26. The speed of
sound squared can be derived as c2

s = ∂p
∂ρ = 0.196ρ0.208.

• For c2
s vs. ratio of bulk to shear viscosity

ζ

η
= 15

(
1
3
− c2

s

)2
, (14)

which is based on kinetic model [25], Figure 4. Then, the temperature dependence of
the ratio of shear to bulk viscosity ζ/η can be parameterized as

ζ

η
= g1Tg2 + g3, (15)

where g1 = −4.653± 0.103, g2 = 0.9885± 0.034 and g3 = 2.154± 0.031.
• For entropy density s vs. T

s(T) =
∂p
∂T

= a2 + 2a3T + 3a4T2. (16)

At vanishing chemical potential, s/T3 = p/T4 + ρ/T4 [5]. Also, s(T) can be obtained
from differentiation of Equation (9) wrt T. Figure 5 plots s(T) as a function of T.
From the lattice QCD calculations and Equation (16), a simple parameterization can
be deduced

s(T) = h1Th2 + h3, (17)

where h1 = 358.89± 663.4, h2 = 3.451± 0.143, and h3 = −2.85± 0.542, Figure 5.
• For bulk viscosity normalized to entropy ζ/s vs. T

ζ

s
= 15σ0

(
1
3
− c2

s

)2
, (18)

where σ0 = 0.01 [25]. The results are depicted in Figure 6. The results can be best
fitted as

ζ

s
= j1T j2 + j3, (19)

where j1 = −0.046± 0.001, j2 = 0.99± 0.034, and j3 = 0.022± 0.003.
• Then, for ζ vs. T

ζ =
[

a2 + 2a3T + 3a4T2
]
×
[

15σ0

(
1
3
− c2

s

)2
]

, (20)
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where the entropy density is substituted from Equation (16) into Equation (18). Figure 7
shows our calculations, Equation (20), as a solid curve. The results can be fitted,

ζ = I1 + I2T + I3T2 + I4T3, (21)

where I1 = 0.445 ± 0.008, I2 = −8.451 ± 0.125, I3 = 48.415 ± 0.655, and I4 =
−69.804± 1.124.

• For η vs. T

η =
I1 + I2T + I3T2 + I4T3

15
(

1
3 − c2

s

)2 , (22)

where Equations (14) and (21) are substantiated. The results from Equation (22) are
depicted as a solid curve in Figure 7 right. A generic expression for the dependence of
the shear viscosity η on T could be obtained

η = k1 + k2T + k3T2 + k4T3, (23)

where k1 = 0.211± 2.832× 10−5, k2 = −3.538± 0.001, k3 = 15.186± 0.002, and k4 =
−0.008± 0.004.

It it worth highlighting that the analytical fits as given by Equations (9)–(23) agree
well with the relevant results reported in ref. [22].
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Figure 1. Pressure p is given in dependence on the temperature T. The symbols refer to lattice QCD
simulations [22] and the solid curve stands for the proposed expression, Equation (9).
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Equations (10) and (11), respectively.
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4. Evolution of the Cosmic Parameters

At Bag pressure B1/4 = 200 MeV, we plot in Figure 8 data taken from ref. [5] for the
time evolution of the temperature. This can be parameterized as

T = l1

(
t

t−1
Pl

)l2

+ l3, (24)

where l1 = −0.062± 0.002, l2 = 0.423± 0.009, and l3 = 0.274± 0.002. An expression for t
vs. T is suggested as

t =
1

tPl

(
T − l3

l1

)1/l2
, (25)

where tPl is the reduced Planck time tPl = 4.608× 10−16 GeV−1.

• In order to obtain an expression for the dependence of H on T, we substitute ρ taken
from the lattice QCD calculations [22] into Equation (4), Figure 9

H(T) = (m1Tm2 + m3)tPl , (26)

where m1 = 0.023± 0.001, m2 = 1.821± 0.0323, and m3 = −0.0004± 2.064× 10−5.
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• Then, the scale factor a can be calculated using Equation (4),

1
a

da =

(
1

3m2
Pl

ρ

)1/2

dt. (27)

When integrating over the comoving time t, we get

a(t) = exp

(
t

√
1

3m2
Pl

ρ

)
. (28)

The results are depicted as symbols in Figure 9. These results can then be fitted as
(solid curve in Figure 10)

a(t) = n1 + n2

(
t

tPl

)
+ n3

(
t

tPl

)2
+ n4

(
t

tPl

)3
, (29)

where n1 = 1.0± 1.129× 10−5, n2 = 0.0011± 1.861× 10−5, n3 = −0.0002± 7.077×
10−6, and n4 = 1.309× 10−5 ± 7.192× 10−7.

• The temperature dependence of the scale factor can be derived from Equations (25)
and (28)

a(T) = exp

(√
1

3m2
Pl

ρ

[
1

tPl

(
T − l3

l1

)1/l2
])

. (30)

The calculations from this expression are depicted as symbols in Figure 10. The solid
curve refers to the proposed expression

a(T) = q1 + q2T + q3T2 + q4T3, (31)

where q1 = 0.978± 0.001, q2 = 0.368± 0.012, q3 = −1.819± 0.064,and q4 = 2.803± 0.11.
• The time evolution of the Hubble parameter can be deduced as follows. First we

substitute T from Equation (24) into Equation (26)

H(t) = m1

l1

(
t

t−1
Pl

)l2

+ l3

m2

tPl + m3tPl . (32)

Second, we differentiate the previous expression wrt t

Ḣ =

m1m2

[
l1

(
t

t−1
Pl

)l2
+ l3

]m2−1[
l1l2

(
t

t−1
Pl

)l2−1
]t2

Pl

= 0.001 T0.821(t tPl)
−0.577t2

Pl .

(33)

The results are shown as solid curve in Figure 11.
• For the time evolution of the energy density, we first substitute T from Equation (24)

into Equation (11)

ρ = c1

l1

(
t

t−1
Pl

)l2

+ l3

c2

+ c3

l1

(
t

t−1
Pl

)l2

+ l3

. (34)
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Then, we differentiate this equation wrt t

ρ̇ = c1c2

[l1

(
t

t−1
Pl

)l2
+ l3

]c2−1

+ c3

{( l1 l2
t−l2
Pl

)
tl2−1

}
,

= −279.35

−2.58 +

[
l1

(
t

t−1
Pl

)l2
+ l3

]3.316
t−0.577 t0.423

Pl .

(35)

The resulting ρ̇ are depicted as a solid curve in Figure 11.
• For ζ̇, we first substitute T from Equation (24) into Equation (21) and then differentiate

the obtained expression wrt to t,

ζ̇ = 3l2 l3
1 I4t3l2

Pl t3l2−1 + 2l2
1 l2(I3 + 3l3 I4)t

2l2
Pl t2l2−1

+ l1l2
(

I2 + 2l3 I3 + 3I4 l2
3
)
tl2
Plt

l2−1,
(36)

which can be simplified as

ζ̇ = [p1t(3l2−1) + p2t(2l2−1) + p3t(l2−1)]tPl , (37)

where p1 = 7.286× 10−22, p2 = −3.126× 10−15, and p3 = −2.01× 10−8, Figure 11.
• For η̇, we first substitute T from Equation (24) into Equation (23) and then differentiate

the expression obtained wrt to t,

η̇ = 3l2 l3
1 jkt3l2

Pl t3l2−1 + 2l2
1 l2(jk + 3l3 k4)t

2l2
Pl t2l2−1

+ l1l2
(
k2 + 2l3 k3 + 3k4 l2

3
)
tl2
Plt

l2−1,
(38)

which can be simplified as

η̇ = [y1t(3l2−1) + y2t(2l2−1) + y3t(l2−1)]tPl , (39)

where y1 = 8.351× 10−26, y2 = 5.233× 10−15, and y3 = −4.096× 10−8, Figure 11.
• Finally, we propose an expression for Π in dependence on H by using Equation (6)

and pe f f = p + Π,
ρ̇ = −3(p + Π + ρ)H,
Π =

(
ρ̇
−3H

)
− ρ− p.

(40)

We calculate Π by substituting ρ̇, H, ρ, and p into Equation (40). The results are plotted
as squares in Figure 12. Π in the non-casual Eckart frame, Equation (7), is presented
as circles. From statistical fit, we propose

Π = z1

(
H
tPl

)2
+ z2

(
H
tPl

)
+ z3, (41)

which is presented as a solid curve in Figure 10, where z1 = (−5.977± 0.125)× 1011,
z2 = (8.726± 0.149)× 108, and z3 = (−51.186± 1.75)× 104.
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5. Results

Figure 1 shows the dependence of the pressure p on the temperature T. The symbols
refer to the lattice QCD calculations [22] and the solid curve gives to the proposed expression,
Equation (9). There is an excellent agreement. We find that increasing T leads to a rapid
increase in p. This characterizes a phase transition from confined hadron to deconfined
parton phase [23,24]. The condition for the transition from hadron to parton epoch is the
temperature, where the density is conjectured to remain small.

The left-hand panel of Figure 2 depicts the temperature T as a function of the energy
density ρ. The right-hand panel presents the dependence of the energy density ρ on the
temperature T. The symbols refer to lattice QCD calculations [22] and the solid curve stand
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for the proposed expressions, Equations (10) and (11), respectively. We find that T largely
increases with ρ, and ρ also increases with T. As concluded for p, ρ can be taken as an
order parameter. It should be noted that the hadron-parton transition is not discontinuous.
It is known as a rapid crossover.

Figure 3 presents the dependence of the pressure p on the energy density ρ. The sym-
bols with errorbars are the lattice QCD calculations along trajectories of constant ratio of
entropy to particle number, S/N = 51 [22]. The solid curve refer to the proposed EoS,
Equation (12). We find that p increases as ρ increases. Such a dependence slightly varies
when moving from hadron to parton phase. The results on the speed of sound squared,
which also expresses the EoS obtained, are depicted in Figure 13.
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Figure 13. Speed of sound squared c2
s is given in dependence on the temperature T. The symbols are

the lattice QCD calculations [22]. The solid curve represents Equation (20).

Figure 4 presents the ratio of bulk to shear viscosity ζ/η as a function of T. The sym-
bols refer to calculations from Equation (14) [25], while the solid curve shows the fitting
according to Equation (15). We find that ζ/η is inversely linearly proportional to T.

To determine the ratio ζ/s in dependence on T, we first determine the dependence of
the entropy density s on T. Figure 5 depicts s as a function of T. The symbols depict the
lattice QCD calculations evaluated from Equation (16). The solid curve refers to the proposed
expression, Equation (17). We notice that s increases with the increase in T. Similar to p and
ρ, s acts as an order parameter differentiating between confined (hadron) and deconfined
(parton) phases. Accordingly, we conclude that the local law of thermodynamics is not
violated, as s is always positive. This apparently refers to casual Eckart theory [5].

Figure 6 shows the ratio ζ/s as a function of T. The symbols stand for the calcula-
tions from Equation (18) which are based on Ref. [25], while the solid curve represents
Equation (19). We notice that ζ/s is inversely linearly proportional to T.

Figure 7 depicts the dependence of the both types of viscosity on the temperature. The left-
hand panel shows the bulk viscosity ζ as a function of T. Our calculations is depicted as a
solid curve using Equation (20), while the dashed curve gives the statistical fit, Equation (21).
The right-hand panel presents the shear viscosity η as a function of T. Our calculations is
depicted as the solid curve using Equation (22), while the dashed curve shows the statistical
fit, Equation (23). We find that both viscosity coefficients rapidly increase with the increase in
T, Equations (21) and (23). From the dependence of time t on temperature T, Figure 8, we can
conclude that ζ and η are inversely proportional to t. This agrees well with the conclusion
drawn in Ref. [5].

Figure 8 shows the time dependence of the temperature T, at the bag constant B1/4 =
200 MeV. The symbols refer to results taken from Ref. [5], while the solid curve presents
their statistical fit, Equation (24). This expression is crucial for further calculations. Figure 9
depicts the temperature dependence of the Hubble parameter H, Equation (4). The solid
curve represents the statistical fit to Equation (26).
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The left–hand panel of Figure 10 shows the time evolution of the scale factor a(t)
during the quark-hadron phase transition, at bag constant B1/4 = 200 MeV. The numerical
values of the scale factors raise with increasing B, Equation (28). The solid curve presents
Equation (29). We notice that a(t) rapidly increases with the increase in t. Then, a(t) begins
to decrease with increasing t. At small t, a(t) rapidly increases. This means that the viscous
Universe, during QCD epoch, was likely rapidly expanding. But, with the increase in t,
the bulk viscosity ζ increases. This shrinks a(t) [5]. The right-hand panel of Figure 10
depicts the scale factor as a function of the temperature T, Equation (30). The solid curve
presents our fit to Equation (31). We find that a[t(T)] increases with the increase in the
temperature. Then, at T ≈ 230 MeV, a[t(T)] begins to decrease with the increasing in T.
This results from the high increasing in ζ with the increase in T, which slows down the
Universe expansion. Therefore, the scale factor a(t) likely decreases, at high temperature.

Figure 11 depicts the time evolution of the cosmological parameters Ḣ, ρ̇, ζ̇, and η̇.
The solid curves refer to our calculations using Equations (6), (33), (36) and (38), respectively.
In top panels, we find that the time evolution of Ḣ and ρ̇ exponentially decrease with time
t. This is slowing down of the Universe expansion. In bottom panels, ζ̇ and η̇ increase with
the increasing t. This ranges from negative to positive values or is an increase in viscosity
of the Universe which slows down the expansion of the Universe.

Figure 12 shows the dependence of Π on H. The circle symbols refer to calculations
using non-casual Eckart theory [5], while squared symbols represent the calculations using
casual Eckart theory. The solid curve refers to Equation (41). We notice that in non-casual
Eckart theory [5] Π decreases with the increase in H, while in the casual Eckart theory the
increase in Π with H is then followed by a smooth decrease forming a parabolic shape.
The maximum Π is positioned at t ∼ 6× 10−4.

6. Conclusions

The present work aims at solving the field equations in the hadron and the parton
epochs and proposing barotropic equation for the bulk viscous pressure Π. We solve the
Friedmann equations by proposing various equations of state using recent lattice QCD
simulations in the Eckart frame. While the non-casual Eckart theory violates the second
law of thermodynamics so that Π = −3ζH which is defined as the covariant entropy
current stemming from Gibbs equation, the causal Eckart theory-similar the the causal
stable Mueller–Israel–Stewart theory-leads to general relativistic causal hydrodynamical
equations in the Eckart frame such as bulk viscosity, shear viscosity tensor, and heat flow
obtained up to second-order gradients.

Using recent lattice QCD simulations, we propose barotropic equations of state for
hadron and parton matter. By means of statistical fits, we propose expressions for various
thermodynamic quantities and cosmological parameters including Ḣ, ρ̇, ζ̇, and η̇. A relation
between Π and H was introduced. The validation of the causal theory could be guaranteed.
In non-casual Eckart theory, there is a linear dependence of the Hubble parameter H and the
bulk viscous pressure Π, which results form the first-order derivations of the equilibrium
state, while in causal Eckart theory, in which bulk viscosity, shear viscosity tensor, and heat
flow are obtained up to second-order gradients, the causality is guaranteed.

The scale factor starts with a rapid increase with the time. Then, it begins to decrease.
We conclude that the viscous Universe, during QCD epoch, was likely rapidly expanding.
But, with the time, the scale factor shrinks as the bulk viscosity increases.

We also conclude that Ḣ and ρ̇ exponentially decrease with time, i.e., slowing down of
the Universe expansion. Both ζ̇ and η̇ increase with the time. As this ranges from negative to
positive values, an increase in viscosity seems to slow down the expansion of the Universe.
The dependence of shear and bulk viscosity on the expansion rate shall be investigated in a
future work.

In the causal relativistic theory which conserves the charges and the particles and si-
multaneously allows finite heat and energy flow, the viscous pressure plays an essential role
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in drawing a reliable picture on the cosmic evolution of the early Universe Cosmological
implications of the proposed causal Eckart frame is presented, for the first time.
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