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Abstract: We present results on the determination of the differential Casimir force between an Au-
coated sapphire sphere and the top and bottom of Au-coated deep silicon trenches performed by
means of the micromechanical torsional oscillator in the range of separations from 0.2 to 8 µm. The
random and systematic errors in the measured force signal are determined at the 95% confidence
level and combined into the total experimental error. The role of surface roughness and edge effects
is investigated and shown to be negligibly small. The distribution of patch potentials is characterized
by Kelvin probe microscopy, yielding an estimate of the typical size of patches, the respective r.m.s.
voltage and their impact on the measured force. A comparison between the experimental results and
theory is performed with no fitting parameters. For this purpose, the Casimir force in the sphere-plate
geometry is computed independently on the basis of first principles of quantum electrodynamics
using the scattering theory and the gradient expansion. In doing so, the frequency-dependent
dielectric permittivity of Au is found from the optical data extrapolated to zero frequency by means
of the plasma and Drude models. It is shown that the measurement results exclude the Drude model
extrapolation over the region of separations from 0.2 to 4.8 µm, whereas the alternative extrapolation
by means of the plasma model is experimentally consistent over the entire measurement range. A
discussion of the obtained results is provided.

Keywords: Casimir force; micromechanical torsional oscillator; precise measurements; Drude model;
plasma model; scattering theory; gradient expansion; comparison between experiment and theory

1. Introduction

The Casimir attraction [1] between two uncharged closely spaced bodies is a macro-
scopic quantum effect which is caused by the zero-point and thermal fluctuations of the
electromagnetic field. Over a long period of time, it was measured only up to an order
of magnitude. The modern period in experimental investigation of this phenomenon
started from measuring the Casimir force between the Au-coated surfaces of a large lens
and a plate by means of the torsion pendulum [2]. Precise measurements of the Casimir
force have been made possible only during the last 20 years thanks to microtechnology
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achievements. These measurements gave the possibility of quantitatively checking the
theoretical predictions of the Lifshitz theory [3,4] which generalizes the original Casimir
prediction (made for two parallel ideal metal planes at zero temperature) for the case of
thick plates described by their frequency-dependent dielectric permittivities in thermal
equilibrium with the environment.

The first experiment of this kind used an atomic force microscope where the sharp tip
was replaced with the sphere of about 100 µm radius [5]. This experiment made it possible
to demonstrate corrections to the famous Casimir expression due to the finite conductivity
of the boundary metal. Another novel facility of nanotechnology, a micromechanical
torsional oscillator, was used to demonstrate the actuation of micromechanical devices by
the Casimir force [6,7]. After experimental improvements [8], micromechanical torsional
oscillators were used in the most precise measurements of the Casimir interaction between
an Au-coated sapphire sphere of 150 µm radius and an Au-coated polysilicon plate [9–12].

It turned out that the theoretical predictions of the Lifshitz theory are excluded by the
measurement data [9–12] if the dielectric permittivity is obtained from the measured optical
data of Au [13] extrapolated down to zero frequency by means of the dissipative Drude
model which takes the proper account of the relaxation properties of conduction electrons.
The Lifshitz theory using the Drude model was excluded over the separation region from
160 to 750 nm. What is even more surprising, an agreement between experiment and theory
was restored [9–12] if, except of the Drude model, an extrapolation was made using the
dissipationless plasma model which disregards the relaxation properties of conduction
electrons and should be applicable only at sufficiently high frequencies of infrared optics.
Similar results were obtained later in experiments using an atomic force microscope for
both Au surfaces [14] and for the surfaces of a sphere and a plate coated with layers of
magnetic metal Ni [15,16].

In 2016, following the proposal of [17], the isoelectronic experiment was performed [18]
on measuring the differential Casimir force between a Ni-coated sphere and Ni and Au
sectors of a rotating disc coated with an Au overlayer. This configuration vastly enhances
the role of the zero-frequency term in the Lifshitz formula whose value mostly depends
on whether the Drude or the plasma model is used for an extrapolation of the optical
data. In so doing the theoretical predictions using these models differ by up to a factor of
1000. As a result, the Lifshitz theory using the Drude model was conclusively excluded by
the measurement data over the separation region from 200 to 700 nm. The same theory
using the plasma model was found to be in good agreement with the data over the entire
measurement range. In later experiments using an atomic force microscope and the UV-
and Ar-ion cleaned Au surfaces of a sphere and a plate, an exclusion of the Drude model
was confirmed up to the separation distance of 1.1 µm [19–21].

In view of the fact that at separations z . 1 µm the experimental results for metallic
surfaces are already completely settled, special attention is now attracted to the separation
region from 1 µm to a few micrometers. An upgraded version of the experiment [2],
which measures the force between an Au-coated sphere of centimeter-size curvature radius
spaced above an Au-coated plate in this separation range, was performed using a torsion
pendulum [22]. The immediately measured quantity was not the Casimir force, but up
to an order of magnitude larger force presumably determined by the surface patches
on the Au surfaces. The distribution of patch potential, and hence the corresponding
electrostatic force contribution to the measured force, was not determined. The Casimir
force was extracted from the data by fitting with two fitting parameters (the r.m.s. voltage
fluctuations over the surfaces and the force offset due to the voltage offset in the setup
electronics). The obtained results were found to be in better agreement with the Drude
model [22]. In [23] it was argued that this conclusion is unjustified due to the role of
unavoidable imperfections (bubbles, pits, and scratches) which are present on the surfaces
of macroscopic lenses. Moreover, according to the results of [24], at separations exceeding
3 µm the measurement data of [22] subjected to the same fitting procedure are in better
agreement not with the Drude but with the plasma model.



Universe 2021, 7, 93 3 of 33

In this article, we report measurements of the differential Casimir force between an
Au-coated sapphire sphere and the top and bottom of Au-coated deep Si trenches in the
separation region from 0.2 to 8 µm. The measurements are performed in vacuum by means
of the micromechanical torsional oscillator using a similar approach to those described
in [18,25]. Taking into account the deepness of the trenches and the thicknesses of Au
coatings on both test bodies, the measured quantity is the Casimir force acting between an
all-gold sphere and an all-gold plate.

The profiles of interacting surfaces were investigated by means of an atomic force
microscope with a sharp tip and the r.m.s. roughness was determined. An impact of
roughness on the Casimir force turned out to be negligible. The random and systematic
errors in the measured Casimir force are found at the 95% confidence level and combined
into the total experimental errors. The edge effects, that is, possible deviations of the
form of measured force signal from a Heaviside step function are analyzed and found
to be negligible.

Special attention is paid to the effect of patch potentials. For this purpose, the interact-
ing surface was characterized by Kelvin probe microscopy and the typical sizes of patches
and respective r.m.s. voltage were determined. Using the theoretical approach of [26], this
allowed an estimation of the attractive force originating from the surface patches which
was included in the balance of errors and uncertainties.

The experimental data were compared with no fitting parameters with theoretical
predictions for the Casimir force in the sphere-plate geometry calculated numerically using
the scattering approach in the plane-wave basis [27–29] and the gradient expansion [30–32].
In doing so, the dielectric permittivity of Au was obtained from the tabulated optical data
extrapolated to zero frequency by means of the Drude or the plasma model. It is shown
that the theoretical predictions using the Drude model for extrapolation of the optical data
are excluded by the measurement results within the range of separations from 0.2 to 4.8 µm.
The same theory using an extrapolation by means of the plasma model is found to be in
agreement with the data over the entire measurement range.

The article is organized as follows—in Section 2, the details of the experimental
setup and the measurement procedures are presented. In Section 3, we determine the
sources of systematic errors and evaluate the role of electrostatic patches and edge effects.
Sections 4 and 5 contain calculation of the Casimir force between a sphere and a plate using
the scattering approach and the gradient expansion, respectively. The random errors are
determined in Section 6, combined with the systematic ones and used in the comparison
between experiment and theory. Section 7 contains a discussion of the obtained results. In
Section 8, the reader will find our conclusions.

2. Materials, Methods and Results

The apparatus schematic is shown in Figure 1. The approach and technique used are
a modification of those described in [18,25]. A metal-coated sapphire sphere is glued to a
high mechanical quality factor Q polysilicon microelectromechanical torsional oscillator
(MTO), which serves as a sensitive force transducer. The oscillator has a 500 µm2, 3.5 µm
thick plate anchored to the substrate by two soft, serpentine-like polysilicon springs [33].
Underneath the plate two electrodes located to each side of the axis of rotation allow to
determine the relative motion of the plate with respect to the substrate by means of the
capacitive signal between them and the MTO’s plate.

The sample is made of a 1-inch diameter Si wafer where trenches with depth dT ≈ 50 µm
have been made using a deep reactive ion etching approach (DRIE), based on the Bosch
process (a patented process developed by Robert Bosch GmbH [34]). This process was
developed for vertical and deep silicon etching. Both the sample and the sapphire sphere
are subsequently coated with Cr with dCr ≈ 10 nm and a thick enough layer of Au dAu
such that from the point of view of vacuum fluctuations the Au covered bodies can be
considered as if made from solid Au. When the sample is rotated in close proximity to the
metal coated sapphire sphere, such that the sphere is alternatively on top of the Au-coated
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Si wafer or the deep trench, the sphere experiences a periodic force due to the difference
in the separation-dependent interaction between the sphere and the two heights of the
Au-layer (top of the wafer and bottom of the trench). As the sphere is placed at a position
over ntr alternating Au trenches, the sample’s rotational motion (achieved by means of an
air-bearing spindle) is set to the angular frequency

ω = 2π
fr

ntr
, (1)

where fr is the operating resonant frequency of the MTO/sphere assembly. The first
harmonic of the force associated with the angular distribution of the sample will be then
naturally selected by the MTO. All other harmonics of the periodic force and all forces
with different angular dependence are outside of the resonance peak of the MTO and
consequently “filtered” by the sharp δ f ' 40 mHz resonance peak of the oscillator.

r ϑ

yz o

x cl

Figure 1. Schematic of the experimental setup. Three regions with ntr = 5, 8, 11 deep trenches are
shown. The actual sample has ntr = 50, 75, · · · , 300 trenches situated at different radii. The region
with ntr = 50 has inner and outer radii of 50ri = 4.00 mm and 50ro = 4.15 mm. A gap of 200 µm
follows. All gaps have the same radial extent and all trenches have nro −n ri = 150 µm. The {x, y}
plane defines the plane of rotation of the spindle, selected to be parallel to the MTO’s substrate. cl is
the line where all regions with different ntr have a common trench interface. ϑ is the change in the
instantaneous axis of rotation, φ = ωt is the angle of rotation. The distance z is determined from
the vertex of the metal-covered sphere to the top of the rotating sample. r is the distance from the
sphere’s vertex to the center o of the rotating sample. Displacements ∆r between o and the axis of
rotation and the Au film covering the rotating sample are not shown.

The sphere-MTO system is mounted onto a piezo-driven 3-axis computer controlled
flex system (MadCity Labs). The position stability is better than 0.1 nm over 10 hrs.
on all three axes. The piezo driven stage is mounted on a stepper-motor driven 5-axis
stage (Newport). This stepper-motor stage is used to achieve the initial positioning of
the sphere relative to the rotating sample. Each step on the motor has an amplitude of
approximately 9 nm, translating into a minimal angular deviation of about 0.25 µrad.
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After the initial alignment is achieved with the 5-axis stage, the final linear displacements
and positioning are achieved with the piezo-driven stage. All non-metallic parts close
to the MTO are covered with Au-coated mylar or Au-coated Al-foil. Similarly, all Al
surfaces (which were observed to produce a drift of electrostatic nature), are also covered
with Au-coated mylar. The mechanical arm between the rotating sample and the MTO
is about 10 cm. The temperature in the chamber is kept at T = (295.25 ± 0.01) K, a
few degrees above room temperature by means of a standard combination of heaters
and temperature controller (LakeShore). Variations in the controlled temperature yields
observed position drifts of approximately 0.8 nm/hr. The relative drift between the MTO
and the rotating sample is monitored by continuously measuring the capacitance between
an L-shaped piece attached to the MTO holder and two orthogonal plates attached to
the base of the vacuum chamber [35]. A two-color interferometer is used to monitor
the z axis separation. Minimum detectable changes ∼0.1 nm along all three axes are
corrected by supplying the appropriate signal to the piezo stage. The whole vacuum
chamber is mounted into an actively controlled air-damping table (TMC Corporation).
The table and all connections, both electrical and mechanical, are isolated from vibration
sources by sand boxes. The combination of vibration isolation systems yields peak-to-peak
vibrations with zpp < 0.02 nm (the detection limit in the accelerometer) for frequencies
above 10 Hz. Furthermore, the active sensing apparatus being a torsional pendulum, it does
not effectively couple to center-of-mass motion associated with vibrations. The high quality
factor in the oscillator is achieved by pumping the system to P 6 10−6 Torr (maintained
during each run) by a combination of mechanical, turbomolecular and chemical pumps.

In the air-bearing spindle (KLA-Tencor), the thin air-layer between the rotor and its
encasing makes the system very compliant. On the other hand, the large air flow needed to
operate the spindle required the design and construction of a special seal [18].

2.1. Sample Preparation and Characterization

The radius of the sapphire sphere covered with Cr and Au (dsphere
Au ≈ 250 nm) is

determined by scanning electron microscopy to be R =(149.7 ± 0.2) µm. The deposited
Au on the sapphire sphere is characterized by atomic force microscopy (AFM) images,
and the rms roughness is found to be trms = 0.27 nm. This was obtained by doing 6
non-overlapping 5× 5 µm2 (1024 × 1024 pixels2) scans over the coated sphere near the
position of the sphere closest to the sample.

As aforementioned, trenches in the rotating sample are fabricated by DRIE followed
by the deposition of dCr ≈ 10 nm thick layer of Cr followed by dsample

Au ≈ 150 nm on
a 1 inch diameter 100 µm thick [100] oriented Si wafer. To make the trenches ≈ 3 µm
thick photoresist is spun-coated on the Si wafer, and using conventional photolithographic
approach the photoresist is removed from the pattern with the concentric sectors (where
the trenches would be defined). Afterwards, C4F8 deposition provides the fluorocarbon
coating of all surfaces, and SF6 provides the fluorine for isotropic etching. The fluorine
does not etch the fluorocarbon coating, and sputters it by mechanical etching at the bottom,
consequently etching the exposed Si. The cycle forms nanoscallops on the lateral surface,
and it is repeated until the desired depth of the trenches is obtained. During the process
each cycle was tuned to remove about 150 nm of Si. When the desired depth is achieved
a final plasma etching step is used to remove the residual C4F8. The average position
of the formed wall is found to be nearly vertical (the measured angle as determined by
SEM inspection in similar structures is observed to be larger than 89.5o). Exposed Au
surfaces are characterized by white light interferometry (WLI) and atomic force microscopy
(AFM). Both techniques show an optical quality Au film deposited on top of the Si wafer.
The 1024 × 1024 pixel2 AFM images obtained over different 10× 10 µm2 regions show
position-independent ≈ 10 nm peak-to-peak roughness with the rms deviations from the
mean level of less than 0.4 nm. It was not possible, however, to determine the quality
and overall thickness of the Cr/Au layers deposited on the sidewalls and bottom of the
trenches. The disk is mounted on the air bearing spindle. It is optically verified that the
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center of the disk and the axis of rotation of the spindle coincided to better than ∆r ≈ 5 µm
by measuring the gap between the edge of the disk and the edge of the indentation where
the disk sits. The flatness and alignment of the sample are checked in-situ using a fiber
interferometer (response time 10 ms). The surface of the sample is perpendicular to the
axis of rotation to better than zo = 20 nm at 300r when rotating the disk at ω = 2π rad/s.

2.2. Oscillators

The MTOs are similar to the ones used in previous experiments [9–12,18,25,33]. Differ-
ently from some of the previous measurements and as schematically shown in Figure 1
the metal coated spheres are glued close to the edge of the plate of the oscillator. Gluing
the Au-coated spheres at a distance b = (239± 4) µm from the axis of rotation reduced the
MTO’s natural frequency of oscillation from fo ' 700 Hz to fr = (306.45± 0.02) Hz. The
quality factor was reduced from ≈ 9000 to Q = 4850.

The power spectral density S2
α( f ) of the oscillator is shown in Figure 2. For a torsional

simple harmonic damped oscillator driven by thermal fluctuations the angular response in
the torsional angle α is [36]

S2
α( f ) =

2kBT
πκQ fr

f 4
r

( f 2
r − f 2)2 + f 2 f 2

r /Q2 + S2
elec , (2)

where an independently determined flat detection noise term S2
elec associated with the

electronic measurement setup [18] has been added. In (2), kB is Boltzmann’s constant, T the
temperature at which the experiment is performed, κMTO is the MTO’s torsional constant.
Doing the measurement at resonance, where the 1/ f term and the detection noise are
negligible, it is found that the minimum detectable force (per Hz1/2) is

1
b

√
2κMTOkBT

πQ fr
∼ 6

fN√
Hz

. (3)

With the achieved temperature control, the drift in the resonant fr is less than 0.3 mHz/hr
under operating conditions.
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Figure 2. Free-standing frequency response of the oscillator with the Au-coated sphere glued to it.
The high frequency response shows the limits of the detection circuit. The inset shows an expanded
view of the resonance with an average of 100 different spectra. The red solid line is a fit using (2)
with a detection flat spectral density noise of 1.2× 10−9 rad/

√
Hz. Points below 0.025 Hz where

1/ f -noise is measurable have been excluded from the fit.
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2.3. Electrostatic Calibration and Separation Determination

The system’s calibration is performed similarly to what was done in [37]. An optical
fiber was rigidly attached to the MTO-sphere assembly, and a two-color interferometer
was used to measure the distance between the end of the fiber and a stationary platform.
Simultaneously fr and the angular deviation of the MTO were recorded as the sphere
is moved closer to the sample. From the change in fr(z) the gradient of the interaction
between the sphere and the plate can be obtained when a potential difference is applied
between them. Comparing the separation dependence of the gradient of the interaction
with that of the known sphere-plate electrostatic interaction

Fe(z, V) = −2πε0(V −Vo)
2

∞

∑
n=0

coth(u)− n coth(nu)
sinh(nu)

= −2πε0(V −Vo)
2

7

∑
m=0

Amqm−1, (4)

the parameters of the system are obtained. In (4), ε0 is the permittivity of free space (in
SI units), V is a potential applied to the sample (the sphere-oscillator assembly is always
kept grounded) and Vo is a residual potential difference between the plate and the sphere,
u = 1 + z/R, Am are fitting coefficients, and q = z/R. While the full expression is exact,
the series is slowly convergent, and it is easier to use the shown approximation developed
in [38]. Using this approach, κMTO = (1.07± 0.01)× 10−9 Nm/rad is obtained, with Vo
of the order of a few mV. For all configurations used, Vo was checked to be position and
time independent. As customary in these experiments, the differential measurements are
performed with V = Vo to minimize the electrostatic contribution.

In order to simplify the data acquisition and control of the system, during the exper-
iment the two-color interferometer is used such that it controls the separation between
the sphere-MTO assembly and a fixed platform, yielding a measurement of the distance
zmeas between the end of the fiber and the fixed platform. In order to find the separation z
between the sphere and the top of the rotating disc

z = zmeas − D1 − D2 − bα, (5)

the quantity D1 + D2 is obtained from the electrostatic calibration. In (5), D1 is the fixed
distance between the end of the fiber and the vertex of the sphere when the system is relaxed,
and D2 is the distance between the fixed platform and the top of the rotating sample. At
each measurement position the torsional angle α is measured with the sphere on top of
the Au region, away from the regions with trenches (i.e., no signal is expected at f in this
situation) and the value of α (which is always smaller than 10−5 rad) is determined from
the difference in capacitance between the MTO’s plate and the two underlying electrodes.
Hence, from the measured value zmeas, the fitted D1 + D2, the optically determined b and
the capacitively determined α, the separation z is found.

2.4. Results

Extraction of the data is done assuming the interaction between the sphere and the
trenches follows a Heaviside function as the sample rotates under the sphere. Under this
condition, the force values reported are π/4 times the measured value at the corresponding
harmonic. At each point the force value was determined from the first harmonic. The force
measurements were repeated 30 times in the separation region from 200 nm to 8 µm with a
step of 100 nm. Each repetition was measured with an integration time of 100 s. In Figure 3
the obtained results (30 force magnitudes at each separation) are shown in logarithmic
scale over the region from 0.2 to 5.8 µm. In the inset, the measured forces over the region
from 5.8 to 8 µm are presented in linear scale. The form of the distribution law and the
random errors of the measurement results are considered in Section 6.1.
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Figure 3. All measured magnitudes of the Casimir force between an Au-coated sphere and an
Au-coated plate obtained from the first harmonic of the interaction as the plate rotates under the
sphere are shown as a function of separation (in a logarithmic scale). The inset shows the force values
over the region of large separations (in a linear scale).

3. Systematic Errors and Edge Effects

In this section, we consider different contributions to the total systematic error in
measuring the Casimir force by means of a micromechanical torsional oscillator. Taking
into account that in our case the disc in Figure 1 is not flat but contains deep, concentrically
situated trenches, we also investigate the size of possible errors in the measured force
which could arise from edge effects.

3.1. Contributions to the Systematic Error

The success of the experiment resides in having a controlled metrological environment
for the interaction and separation (as described in Section 2.3) but since also a lock-in
amplifier technique is used, it is imperative to preserve a tight time and frequency syn-
chronization. Time synchronization is achieved by focusing a diffraction limited laser on
the rotating sample at a distance r ≈ 9 mm from its rotational axis. The sample itself has
a region where no Au is deposited located in r ∈ [8.5, 9.5] mm subtending an angle of
2× 10−4 rad. The leading edge of this sector is along the cl-line. As the sample rotates,
the change in reflection of the focused laser is used as a trigger for all timed events. It has
been verified that this trigger lags by τlag = 10−6/ f . The rotation frequency is obtained by
finding the maximum of the thermally induced peak shown in Figure 2 with an accumu-
lation time of 100 s. The required multiple of this signal is synthesized and fed to the air
bearing spindle.

In general, with the sphere placed at 300ri + 75 µm, the air bearing spindle was rotated
at ω = 2π fr/300. In this manner, a force arising from the difference in the Casimir force
between the metal coated sphere and the layered structure manifests itself at fr even though
there are no parts moving at fr. Using lock-in detection at fr signals which are small but
could show in conventional experiments are removed by the averaging provided by the
rotating sample and the high-Q of the MTO. While this approach is employed to obtain
the interaction, the large range of separations used and the consequent large change in
the strength of the interaction presents a drawback: at the short end of the range in z the
relatively large force difference between the situations when the sphere is on top of the
ridges or trenches would cause the oscillator to behave non-linearly or break. To prevent
this, the measurements at small z are detuned from fr. Since now the system is at a steep
part of the resonance curve, the errors in frequency stability are amplified when compared
to the corresponding errors at large z when the measurements can be done at resonance.
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It is known from previous studies [18,25] that the air bearing spindle has a revolution
impulsive kick on the order of ϑ ∼ 10−7 rad. Fortunately in the measurements performed
in this study this does not affect the measurement. The system was positioned such that
when the impulsive kick happens, the sphere is located over a trench and there is no
effect on the measurement. In all measurements it is observed that when z > 20 µm the
expression shown in (3) is verified: As the integration time τ increases, the detectable force
decreases as 5.8 fN/

√
Hz τ.

Contributions to the systematic errors of measurements are summarized in Table 1.

Table 1. Systematic errors in the separation and determination of the measured force. The errors
in b (4 µm) and α (0.8 nrad) do not contribute to the overall error of separation. The listed error in
D1 + D2 is obtained from the electrostatic calibration. The error reported in zmeas is larger than the
local measured error of 0.2 nm due to the fact that the rotating sample has measured height difference
of ≈1.2 nm. This is not adjusted during rotation. The force measurement error varies from 85 fN at
the shortest separation to 0.5 fN at z > 1µm. All errors are at the 95% confidence level.

D1 + D2 [nm] zmeas [nm] Flatness of wafer [nm]

Separation 0.6 0.2 1.2

Detection [fN] Calibration [fN] Measurement [fN]

Force 0.6 0.2 [85, 0.5]

There is one more uncertainty in an interpretation of the measured force signal as the
Casimir force. It is connected with the contribution of patch potentials. The sample was
characterized by Kelvin probe microscopy, and the potential distribution was found to be
similar to the one in [39] with Vrms ≈ 12 mV and average size of patches l̄ ≈ 250 nm. At
the smallest separation z1 = 200 nm, the attractive force due to the presence of patches can
be estimated as |Fpatch| ≈ 0.7 pN (see Figure 4 of [40]), that is, of about 2% of the measured
Casimir force. Using the asymptotic expression [40]

Fpatch(z) = −πζ(3)R
ε0V2

rms l̄2

2z3 , (6)

which is well applicable at z > 7 µm, the estimated magnitude of the force originating
from the surface patches is shown in Figure 4 over the entire measurement range.

1 2 3 4 5 6 7 8

0.1

1

10

100

z (µm)

|F
p
at

ch
|(

fN
)

Figure 4. An estimated magnitude of the force originating from surface patches as a function of
separation (in a logarithmic scale).
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3.2. Investigation of Edge Effects

In what follows, we analyze the edge effects, that is, possible deviations of a signal
shape from the Heaviside function during rotation. In order to do this analysis, 21 har-
monics of the measured signal were determined at four separations z = 200, 500, 1000, and
5000 nm. At these separations all measured force values are negative (see Figure 3). Below
we consider the force magnitudes. To measure the m-th harmonic of the signal, the sample
was rotated at an angular frequency ωm = 2π fr/(mntr) (recall that ntr is the number of
alternating Au trenches). Furthermore, the even and odd contributions to the signal are
selected by setting the phase of the lock-in detection to 0 when the sphere crosses the line
cl (see Figure 1).

The general properties of the Fourier series of the signal are what follows next. Let φ̂
be an angle variable, defined such that φ̂ changes by 2π as one traverses a Au sector and
a trench. Up to random patch effects and other sources of noise, the signal F(φ̂) is then
2π periodic:

F(φ̂ + 2π) = F(φ̂) . (7)

If the origin of the angles is taken to be in the center of a Au sector, the force signal is also
expected to be symmetric with respect to an inversion of φ̂:

F(−φ̂) = F(φ̂) . (8)

It follows from (7) and (8) that the Fourier expansion of the signal contains only cosines
and, thus, is of the form:

F(φ̂) =
a0

2
+

∞

∑
m=1

am cos(mφ̂) . (9)

To proceed, we make the assumption that the signal can be represented as a sum of
the step function F χ(φ̂) plus an edge correction f (φ̂):

F(φ̂) = |F| χ(φ̂) + f (φ̂) , (10)

where F is the force between an Au sphere and a homogeneous Au plate, and χ(φ̂) is the
2π periodically continued step function of the interval [−π, π], which is equal to unity
for −π/2 6 φ̂ 6 π/2 and zero elsewhere. The correction f (φ̂) represents the effect
of the edges, which includes both edge-corrections to the Casimir force as well as stray
electrostatic forces arising from charges localized along the edges. We assume that f (φ̂) is
localized in a narrow region of angular width ε across the edges of the Au sectors. According
to (10) we decompose the Fourier coefficients am as:

am = a(step)
m + δam , (11)

where a(step)
m is the contribution of the step function and δam is the edge correction. By

a straightforward computation one finds that the coefficients a(step)
m are zero for even m,

while for odd m one finds:

a(step)
2p−1 = −(−1)p 2|F|

π(2p− 1)
, p = 1, 2, . . . (12)

On the other hand, for the corrections δam one finds:

δam =
2
π

∫ π/2+ε

π/2−ε
dφ̂ f (φ̂) cos(mφ̂) =

2
π

∫ ε

−ε
dx f

(π

2
+ x
)

cos
[
m
(π

2
+ x
)]

. (13)

Since the width ε of the edge region is small, for m not too large it is possible to take the
Taylor expansion of the cosines in power of x. By Taylor expanding the cosines around
φ̂ = π/2 up to order x2 included, for even m = 2p, p = 1, 2, . . . one finds:
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δa2p =
2
π
(−1)p

[
f (0) − 2p2 f (2)

]
, (14)

while for odd m = 2p− 1, p = 1, 2, . . . one finds:

δa2p−1 =
2
π
(−1)p(2p− 1) f (1) , (15)

where f (q) is the q-th moment of the edge correction:

f (q) =
∫ ε

−ε
dx xq f

(π

2
+ x
)

. (16)

Combining (12)–(15), we find that the leading Fourier coefficients in (9) are those with odd
m = 2p− 1:

a2p−1 = − 2
π
(−1)p

[ |F|
2p− 1

− (2p− 1) f (1)
]

, (17)

while for even m = 2p the Fourier coefficients coincide with the edge correction:

a2p =
2
π
(−1)p

[
f (0) − 2p2 f (2)

]
. (18)

In the experiment, angles are measured starting from the edge of a Au sector. Thus
we define the shifted angle variable φ̄ such that φ̂ = φ̄− π/2. When re-expressed in terms
of φ̄, the Fourier expansion in (9) takes the form:

F(φ̄) =
a0

2
+

∞

∑
p=1

(−1)p{a2p cos(2 p φ̄)− a2p−1 sin[(2p− 1)φ̄]
}

. (19)

In reality, the origin of the angles cannot exactly coincide with the edge of Au sector,
and we should allow for a possible small phase δ. From the sample design and the time
synchronization procedure, δ is expected to be of order:

|δ| ∼ 10−4 rad . (20)

We define the final angle variable φ such that φ̄ = φ − δ. When the series in (19)
is re-expressed in terms of φ, and only leading terms in the small phase δ are retained,
one obtains:

F(φ) =
a0

2
+

2
π

∞

∑
p=1

{[
f (0) − 2p2 f (2)

]
cos(2 p φ)− |F| δ cos[(2p− 1) φ]

+

[ |F|
2p− 1

− (2p− 1) f (1)
]

sin[(2p− 1)φ] + f (0)2 p δ sin(2 p φ)

}
. (21)

We remind that the expressions of the Fourier coefficients in the above equation are valid
for harmonics such that p ε� 1 and p δ� 1. We assume that both conditions are satisfied
for the measured harmonics. The final Fourier expansion (21) is of the form:

F(φ) =
a0

2
+

∞

∑
m=1

[bm sin(mφ) + cm cos(mφ)] . (22)

Its general features are as follows:
(1) The dominant terms are sines with odd m and the coefficients:

b2p−1 =
2
π

[ |F|
2p− 1

− (2p− 1) f (1)
]

. (23)
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(2) The coefficients b2p of sines with even m are proportional to the phase shift δ and
to the first moment f (0) of the edge correction. Moreover, they are linear in the Fourier
index m = 2p:

b2p =
2
π

f (0) 2 p δ . (24)

(3) The coefficients c2p of the cosines with even m depend on the moments f (0) and
f (2) of the edge correction, and have a quadratic dependence on the index m = 2p:

c2p =
2
π

[
f (0) − 2p2 f (2)

]
. (25)

Finally, the coefficients of the cosines with odd m are proportional to the phase shift δ
and are independent of the order m = 2p− 1:

c2p−1 = − 2
π
|F| δ . (26)

Based on the above equations, one can predict that the Fourier coefficients satisfy the
following hierarchy:

b2p−1 � c2p � b2p ∼ c2p−1 , (27)

which was verified to be true.
We used (21) to analyze the 21 measured harmonics for the nominal sphere-plate

separations z = 200, 500, 1000, 5000 nm. As an example, below we present the results
obtained at z = 200 nm. In Figure 5 we show the data for the sines with odd m for
z = 200 nm, and the fit by a curve of the form bm = u1/m + u2 m. The agreement is
excellent as it can be seen from Figure 6 where we show the differences between the data
and the fitting curve. Since for each measured harmonic only one measurement was made,
it was in principle impossible to determine their error. To circumvent this problem, we
assumed that the error for the 21 harmonics is the same, and thus we estimated the common
standard deviation σ of the odd coefficients b2p−1 by the formula:

σ2
200nm =

1
9

11

∑
p=1

[
b2p−1 −

ū1

2p− 1
− ū2 (2p− 1)

]2
, (28)

where ū1 and ū2 are best fit values. The sum over p is divided by 9 because there are
11 Fourier coefficients and two free parameters (u1 and u2). We obtained:

σ200nm = 0.6 fN . (29)

5 10 15 20

5.×10-12

1.×10-11

1.5×10-11

2.×10-11

Figure 5. Fourier coefficients bm (in N) for sines with odd m = 1, 3, 5, . . . at z = 200 nm. The solid
line is a best fit of the data by the curve bm = u1/m + u2 m.
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5 10 15 20

-1.×10-15

-5.×10-16

5.×10-16

1.×10-15

Figure 6. Differences (in N) between the measured Fourier coefficients bm from Figure 5 and the best
fit curve bm.

The values of σ that were obtained for the other Fourier coefficients b2p, c2p−1 and c2p
have a similar magnitude, for all the four considered separations. For example, from b2p−1
we find:

σ500nm = 0.5 fN , σ1000nm = 0.4 fN , σ5000nm = 0.6 fN . (30)

Using the estimates (29) and (30) of the standard deviations, we were able to determine the
forces and edge corrections at the desirable confidence level.

The best fit of the Fourier coefficients bm, with odd m provides the following estimate
of the force at z = 200 nm:

Fexpt = (−3.5675± 0.0003)× 10−11 N (31)

and of the edge correction

f (1) = (6.01± 0.06)× 10−15 N , (32)

where both errors correspond to the 99% confidence level.
Next we consider the data for cosines with even m. These are shown in Figure 7. The

solid line is a fit with a quadratic curve cm = v0 + v2m2, as per (25). The agreement is
excellent as it can be seen from Figure 8 where we show the differences between the data
and the fitting curve.

From the fit we obtain:

f (0) = (6.013± 0.010)× 10−13 N, f (2) = (1.03± 0.10)× 10−16 N, (33)

where both errors correspond to the 99% confidence level. Equations (32) and (33) show
that there indeed is an edge effect, but fortunately it is negligibly small.

Now we turn our attention to the data for cosines with odd m, which, according
to (26), should be independent of the Fourier index m = 2p− 1. The respective data are
shown in Figure 9 (left). As is seen in this figure, the data are really almost independent of
the Fourier index. The observed deviations have the character of statistical fluctuations.
The fit gives:

δ = −2× 10−4 rad, (34)

in accordance with the expected magnitude of δ in (20).
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5 10 15 20

1.×10-13

2.×10-13

3.×10-13

4.×10-13

Figure 7. Fourier coefficients cm (in N) for cosines with even m = 2, 4, 6, . . . at z = 200 nm. The solid
line is a best fit of the data by the curve cm = v0 + v2 m2.

5 10 15 20

-2.×10-16

2.×10-16

4.×10-16

6.×10-16

8.×10-16

Figure 8. Differences (in N) between the measured Fourier coefficients cm from Figure 7 and the best
fit curve cm.

5 10 15 20

1.×10-15

2.×10-15

3.×10-15

4.×10-15

5.×10-15
5 10 15 20

-1.5×10-15

-1.×10-15

-5.×10-16

Figure 9. Fourier coefficients in N at z = 200 nm (left) cm for cosines with odd m = 1, 3, 5, . . . , where the line is the best
constant fit, and (right) bm for sines with even m = 2, 4, 6, . . . , where the solid line is obtained using (24) with previously
determined δ and f (0) values.

We finally consider the Fourier coefficients for sines with even m. The data are shown
in Figure 9 (right), together with a plot of the linear dependence (24). The line drawn
in Figure 9 (right) uses the values of δ and f (0) determined previously. The fairly good
agreement between (24) and the data provides a further validation of the theoretical model
of the signal (21).



Universe 2021, 7, 93 15 of 33

The overall analysis of the signal rules out any important influence of edge ef-
fects and justifies modelling the interaction between the sphere and the sample by a
Heaviside function.

4. Exact Evaluation of the Casimir Force in Sphere-Plate Geometry Using the
Scattering Formula

In this section, we calculate the Casimir force between an Au sphere and an Au plate
on the basis of first principles of quantum electrodynamics. This is especially important for
subsequent comparison between experiment and theory at separations of a few microme-
ters where the approximate methods like the proximity force approximation (PFA) become
less exact. Below we review the theoretical basis for the numerical determination of the
Casimir force using electromagnetic plane waves which has been employed to determine
the exact results presented in this paper. We aim at a coherent presentation of results
presented in different places in the literature [27–29].

Within the scattering formalism, the Casimir free energy F between a sphere and a
plane at a surface-to-surface distance z can be expressed through [41–45]

F = kBT
∞

∑
l=0

′ log det[1−M(iξl)], (35)

where the primed sum indicates that the l = 0 term is weighted by a factor of 1/2,
the Matsubara frequencies are given by ξl = 2πkBTl/h̄ and the round-trip operator is
defined as

M = TPSRSTSPRP . (36)

Here,RP andRS denote the reflection operator at the plane and sphere, respectively, while
TPS stands for the translation operator from the sphere center to the surface of the plane
and vice versa for TSP.

The scattering formula for the Casimir force F can be found from (35) by taking the
negative derivative with respect to the surface-to-surface separation z. Application of
Jacobi’s formula then yields

F = −∂F
∂z

= kBT
∞

∑
l=0

′tr
(

∂zM
1−M

)
. (37)

The round-trip operator (36) and its constituents act on electromagnetic modes which
are solutions of the Helmholtz equations. Through the determinant in (35) and the trace
in (37) it is evident that one is free to choose a basis in which those electromagnetic
modes are expanded. Usually, spherical multipoles are employed [46–49]. Recently, it
was shown that a basis consisting of plane waves shows far better convergence rates [29].
Here, we thus employ the approach based on plane waves. In the following, we review
the plane-wave numerical approach from [29] and give the relevant ingredients for the
sphere-plate problem.

4.1. Plane-Wave Representation

Within the angular spectrum decomposition, we define the plane-wave basis by
the set {|k, Υ, $〉} with the component of the wave vector transverse to the z-axis k, the
propagation direction with respect to the z-axis Υ = ± and $ = TE, TM denoting transverse
electric and transverse magnetic polarizations, respectively. Even though the plane-wave
basis elements also depend on the imaginary frequency ξ, we suppress it as ξ is conserved
throughout a round-trip.

When expanding in the plane-wave basis, each operator O appearing in (36) becomes
an integral operator defined through its corresponding scalar kernel function fO . These
kernel functions correspond to the plane-wave matrix elements of the respective operators.
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For instance, the action of the round-trip operator on a plane-wave basis element can be
written as

M|k,−, $〉 = ∑
$′

∫ d2k′

(2π)2 fM(k′, $′; k, $) |k′,−, $′〉 (38)

in terms of the kernel function of the round-trip operator fM.
The translation operators and the reflection operator on the plane are diagonal in the

plane-wave basis. Their corresponding kernel functions read

fTPS(k
′, $′; k, $) = fTSP(k

′, $′; k, $) = (2π)2e−κ(z+R)δ$,$′δ(k− k′),

fRP(k
′, $′; k, $) = (2π)2r$δ$,$′δ(k− k′) (39)

with
κ =

√
K2 + k2 , (40)

where the imaginary vacuum wave number K = ξ/c and the Fresnel reflection coeffi-
cients are

rTE =
κ −

√
(ε− 1)K2 + κ2

κ +
√
(ε− 1)K2 + κ2

,

rTM =
εκ −

√
(ε− 1)K2 + κ2

εκ +
√
(ε− 1)K2 + κ2

.

(41)

The Fresnel reflection coefficients (41) depend explicitly on the dielectric permittivity
ε = ε(iξ).

The reflection on the sphere is only diagonal in the polarization basis defined with
respect to the scattering plane. In the TE-TM polarization basis taken with respect to the
plate surface, the reflection operator is, however, not diagonal. Within the sphere-plate
geometry, the kernel function of the round-trip operator is thus proportional to the kernel
function of the reflection operator on the sphere:

fM(k′, $′; k, $) = r$e−(κ+κ′)(z+R) fRS(k
′, $′; k, $), (42)

where [27,28]

fRS(k
′, TM; k, TM) =

2π

Kκ′
(AS2 + BS1),

fRS(k
′, TE; k, TE) =

2π

Kκ′
(AS1 + BS2),

fRS(k
′, TM; k, TE) = − 2π

Kκ′
(CS1 + DS2),

fRS(k
′, TE; k, TM) =

2π

Kκ′
(CS2 + DS1),

(43)

with κ′ defined as in (40) and the plane-wave scattering amplitudes [50]

S1 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(iKR)π`(cos Θ) + b`(iKR)τ`(cos Θ)],

S2 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(iKR)τ`(cos Θ) + b`(iKR)π`(cos Θ)] .
(44)
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These plane-wave scattering amplitudes depend on the material properties of the
sphere through the Mie coefficients [50]

a`(ix) = (−1)`
π

2
n2s(a)

` − s(b)`

n2s(c)` + s(d)`

,

b`(ix) = (−1)`+1 π

2
s(b)` − s(a)

`

s(c)` + s(d)`

(45)

for electric and magnetic polarizations, respectively, where

s(a)
` = I`+ 1

2
(nx)

[
xI`− 1

2
(x)− `I`+ 1

2
(x)
]

,

s(b)` = I`+ 1
2
(x)
[
nxI`− 1

2
(nx)− `I`+ 1

2
(nx)

]
,

s(c)` = I`+ 1
2
(nx)

[
xK`− 1

2
(x) + `K`+ 1

2
(x)
]

,

s(d)` = K`+ 1
2
(x)
[
nxI`− 1

2
(nx)− `I`+ 1

2
(nx)

]

(46)

with I` and K` being the modified Bessel functions of first and second kind [51] and
n = n(iξ) =

√
ε(iξ) the refractive index of the sphere. The angular functions π` and τ`

appearing in (44) are defined as [50]

π`(z) = P′`(z),

τ`(z) = −(1− z2)P′′` (z) + xP′`(z),
(47)

where P`(z) denotes the Legendre polynomial [51]. The angular functions only depend on
the scattering angle Θ which is expressed as

cos Θ = −k · k′ + κκ′

K2 . (48)

The functions A, B, C and D in (43) describe a rotation from the polarization basis
defined through the scattering plane to the TE-TM polarization basis. They are functions of
the incident and scattered wave vectors and can be expressed as [27]

A =
K4 cos(∆ϕ)− [kk′ cos(∆ϕ)− κκ′][kk′ − κκ′ cos(∆ϕ)]

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

B = − K2kk′ sin2(∆ϕ)

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

C = K sin(∆ϕ)
kk′κ cos(∆ϕ) + k2κ′

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

D = −K sin(∆ϕ)
kk′κ′ cos(∆ϕ) + k′2κ

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

(49)

where we have employed polar coordinates k = (k, ϕ) and k′ = (k′, ϕ′), and ∆ϕ = ϕ′ − ϕ.
Note that the fact that the sphere center is located along the positive z-direction above the
plane is encoded in the sign of the coefficients C and D. An opposite orientation of the
z-axis would flip their signs.

4.2. Zero-Frequency Limit

The scattering formulas (35) and (37) require an evaluation of the matrix elements at
ξ0 = 0. The zero-frequency limit ξ → 0 or equivalently K → 0 of the reflection operators
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depends on the modeling of the dielectric functions. In the following, we will specifically
consider the Drude and the plasma models which are given by

εD = εD(iξl) = 1 +
ω2

p

ξl(ξl + γ)
, εp = εp(iξl) = 1 +

ω2
p

ξ2
l

, (50)

where ωp is the plasma frequency and γ is the relaxation parameter.
The zero-frequency limit of the Fresnel reflection coefficients is straightforward. For

the Drude model, we find from (41)

rD
TM = 1 , rD

TE = 0, (51)

while for the plasma model, we obtain

rp
TM = 1 , rp

TE =
|k| −

√
K2

p + k2

|k|+
√

K2
p + k2

(52)

with the plasma wave number Kp = ωp/c.
The zero-frequency limit for the kernel functions of the reflection operator on the

sphere requires more work. It is easy to see that the polarization transformation coeffi-
cients (49) become

A = 1 , B = C = D = 0 , (53)

and we are left with the task of finding the zero-frequency limit of the scattering ampli-
tudes (44). Note that while the scattering amplitudes (44) vanish in the limit K → 0, this is
not the case for the kernel functions (43). Therefore, we need to keep terms linear in K in
the low-frequency expression for the scattering amplitudes.

We start by expanding the angular functions π` and τ`. According to (48), cos Θ
diverges like 1/K2 at low frequencies. Thus, we can employ the asymptotical expressions
of Legendre functions for large arguments [51] (see §14.8) to find

π`

(
cos Θ

)
∼ (2`)!

2`(`− 1)!`!
cos`−1 Θ ∝

1
K2`−2 ,

τ`
(

cos Θ
)
∼ (2`)!

2`[(`− 1)!]2
cos` Θ ∝

1
K2` .

(54)

As a consequence, among the four combinations of these two functions and the two Mie
coefficients a` and b`, only those involving τ` can potentially lead to contributions linear in
K. Terms involving π` yield an additional factor K2 and can thus be disregarded.

At low frequencies, the Mie coefficient are of the form (see §7 of [52] for a de-
tailed discussion)

a`(iKR) = (−1)`
(`+ 1)(`!)2

2`(2`+ 1)[(2`)!]2
(2KR)2`+1 +O

(
(KR)2`+2

)
,

b`(iKR) = (−1)`
(`+ 1)(`!)2

2`(2`+ 1)[(2`)!]2
Bmodel
` (2KR)2`+1 +O

(
(KR)2`+2

)
,

(55)

where the coefficient Bmodel
` depends on the model used for the material under considera-

tion. For the Drude model, we have
BD
` = 0 (56)

and, for the plasma model, we have

Bp
` = − `

`+ 1

[
1− 2`+ 1

KpR
I`+1/2(KpR)
I`−1/2(KpR)

]
. (57)
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With the low-frequency asymptotic expressions (54) and (55), the scattering ampli-
tudes in the low-frequency limit read

S1 = KR
∞

∑
`=1
Bmodel
`

[2R2(k · k′ + |k||k′|)]`
(2`)!

,

S2 = KR
∞

∑
`=1

[2R2(k · k′ + |k||k′|)]`
(2`)!

.

(58)

Inserting (53) and (58) in (43), the low-frequency limit of the kernel functions can
finally be expressed as

fRS(k
′, TM; k, TM) =

2πR
k′

∞

∑
`=1

[2R2(k · k′ + |k||k′|)]`
(2`)!

,

fRS(k
′, TE; k, TE) =

2πR
k′

∞

∑
`=1
Bmodel
`

[2R2(k · k′ + |k||k′|)]`
(2`)!

,

fRS(k
′, TM; k, TE) = 0, fRS(k

′, TE; k, TM) = 0 .

(59)

The kernel function fRS(k
′, TM; k, TM) is the same for both models. Moreover, the sum

over ` can be performed in this case [53], leading to

fRS(k
′, TM; k, TM) =

2πR
k′

[
cosh

(
R
√

2(k · k′ + |k||k′|)
)
− 1
]

. (60)

4.3. Numerical Application

To make the evaluation of the scattering formula within the plane-wave basis amenable
to numerical calculations, a discretization of the continuous wave vectors is required. In
order to exploit the cylindrical symmetry of the problem, we employ polar coordinates
k = (k, ϕ). The two integrals over radial and angular components of the in-plane wave
vector in (38) can then be discretized using one-dimensional quadrature rules. Denoting
the quadrature nodes and weights for the radial and angular components as (ki, wi) for
i = 1, . . . , N and (ϕj, vj) for j = 1, . . . , M, respectively, we can express (38) in discretized
form as

M|ki, ϕj,−, $〉 = ∑
$′=TE,TM

N

∑
i′=1

M

∑
j′=1

ki′wi′vj′

(2π)2 fM(ki′ , ϕj′ , $′; ki, ϕj, $) |ki′ , ϕj′ ,−, $′〉 (61)

for $ = TE, TM. Consequently, the discretized matrix elements of the round-trip operator
read [54]

〈ki′ , ϕj′ ,−, $′|M|ki, ϕj,−, $〉 =
ki′wi′vj′

(2π)2 fM(ki′ , ϕj′ , $′; ki, ϕj, $) . (62)

The finite matrix (62) is a threefold block matrix with respect to the indices of radial and
angular quadrature rule and the polarization component.

The scattering formulas for the Casimir free energy (35) and Casimir force (37) can now
be evaluated by replacing the round-trip operator with the corresponding finite matrix (62).
While in principle one is free to choose quadrature rules, we found those specified in the
following particularly suited for the problem at hand [29].

As the quadrature rule for the radial component we employ the Fourier-Chebyshev
quadrature rule introduced in [55]. With

ti =
πi

N + 1
, (63)
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the quadrature rule is specified by its nodes

ki = a cot2 ti
2

(64)

and weights

wi =
8a sin ti

[1− cos ti]2
1

N + 1

N

∑
j=1

j odd

sin(jti)

j
(65)

for i = 1, . . . , N. An optimal choice for the free parameter a can boost the convergence of
the computation. For dimensional reasons, the transverse wave vector and thus a should
scale like the inverse surface-to-surface distance 1/z. In fact, the choice a = 1/z already
yields a fast convergence rate as was demonstrated in [29].

For the angular component of the in-plane wave vectors we employ the trapezoidal
quadrature rule. Its nodes and weights are defined by ϕj = 2π j/M and vj = 2π/M,
respectively, for j = 1, . . . , M. While for arbitrary functions the trapezoidal rule is not
efficient, it is exponentially convergent for periodic functions appearing here.

Moreover, the trapezoidal rule allows us to further exploit the cylindrical symmetry
of the problem. Note that due to the cylindrical symmetry the kernel function of the round-
trip operator (38) depends only on the difference ∆ϕ = ϕ′ − ϕ of angular components.
Using the trapezoidal rule, the discretized matrix elements (62) then only depend on the
difference of indices j′ − j. A matrix of this form is known as circulant block matrix. It is
well-known that a circulant block matrix can be block diagonalized using a discrete Fourier
transform, thus reducing the complexity of the problem.

In fact, the indices labeling the diagonal blocks after the discrete Fourier transform
can then be identified with the angular indices m, known from the spherical multipole
representation, which denote the axial component of the electromagnetic field angular
momentum. Particularly at short distances, the plane-wave basis is advantageous with
respect to the spherical multipole basis because the required size of the block matrices
is considerably smaller as the following estimate demonstrates. The size of the matrices
is determined by the radial quadrature order N in the plane-wave representation. It
can be shown that in order to maintain a certain numerical error, it needs to scale as
N ∝
√

R/z [29]. On the other hand, within the spherical multipole representation the block
matrix size is determined by the highest multipole index `max included in the calculation
which scales linearly in R/z.

The obtained computational results are shown below in Section 6.2 (Figures 14 and 15).
Note that at all nonzero Matsubara frequencies the dielectric permittivities ε(iξl) deter-
mined from the optical data of Au extrapolated to zero frequency by means of either the
Drude or the plasma model [56] have been used in computations.

5. Computation of the Casimir Force in Sphere-Plate Geometry Based on the
Derivative Expansion

The Casimir force between a sphere and a plate has been also computed using a
different approach, based on the derivative expansion (DE) [30–32,57–60]. The starting
point is the following decomposition of the Casimir force:

F = Fl=0 + Fl>0 , (66)

where Fl=0 represents the contribution of the l = 0 Matsubara frequency (the so-called
classical contribution), while Fl>0 represents the contribution of the non-vanishing Matsub-
ara frequencies ξl with l=1, 2, . . . Within the Drude model Fl=0 receives a contribution only
from transverse magnetic (TM) polarization:

Fl=0|Drude = F(TM)
l=0 . (67)



Universe 2021, 7, 93 21 of 33

The Drude-model classical force F(TM)
l=0 for the sphere-plate geometry has been computed

analytically in [61]. Within the plasma model, the classical term receives a contribution
also from transverse electric (TE) polarization:

Fl=0|plasma = F(TM)
l=0 + F(TE)

l=0 |plasma , (68)

where the plasma-model TM contribution coincides with the corresponding term of the
Drude model. The TE classical term F(TE)

l=0 |plasma cannot be computed analytically, but it can
be computed numerically with high precision by using the scattering formula discussed in
the previous section.

For both the Drude model and the plasma model, the contribution Fl>0 of the non-
vanishing Matsubara modes can be computed very accurately by using a semi-analytical
approach based on the DE, as we now explain. Instead of a sphere in front of a plate,
consider a more general gently curved dielectric surface, described by a smooth height
profile z = H(x, y), where (x, y) are cartesian coordinates spanning the plate surface Σ,
and the z axis is drawn perpendicular to the plate towards the surface. The starting point
of the DE is the assumption that the Casimir force Fl>0 admits a local expansion in powers of
derivatives of the height profile H:

Fl>0 = F(PFA)
l>0 +

∫

Σ
d2x X(H)(∇H)2 + ρ(2) , (69)

where F(PFA)
l>0 is the familiar PFA expression (restricted to the contributions with l > 0), and

X(H) is a function to be determined.
The quantity ρ(2) represents corrections that become negligible as the local radius of

curvature of the surface R goes to infinity for fixed minimum surface-plate distance z. The
function X(H) is determined by matching the DE with the perturbative expansion of the
Casimir force, in the common domain of validity of the two expansions. The matching
procedure leads to an expression for X, having the form of an integral over the in-plane
momentum, that can be easily computed numerically (for details, see [30–32]). The validity
of the ansatz made in (69) hinges on the locality properties of the Casimir force. The key
point is that for imaginary frequencies ω = iξl with l > 0, photons acquire an effective
mass proportional to l, which renders the interaction more and more local as l increases.
This argument leads one to expect that (69) becomes more and more accurate, as l increases.
We recall that, prior to the discovery in [61] of the exact expression of the Drude-model
classical term, the DE was used in [30,31] to compute curvature corrections to the Drude-
model Casimir force between Au sphere and plate at room temperature. In this work, the
DE is restricted to the massive l > 0 terms. When the integral in (69) is evaluated for a
sphere with H(x, y) = z + (x2 + y2)/(2R) + . . . , and only terms of order z/R are retained,
one ends up with an expression that can be recast in the form:

Fl>0 = F(PFA)
l>0

(
1− θ

z
R

)
, (70)

where the dimensionless coefficient θ can be expressed in terms of the parameter X in (69)
(see [60]). The coefficient θ depends on the separation z, on the temperature T and of course
on the permittivities ε l = ε(iξl), but it is independent of the sphere radius R. The Drude
and plasma-model values of θ for gold can be found in [60]. Combining (69) with (70), we
obtain the following expression for F:

FDE = Fl=0 + F(PFA)
l>0

(
1− θ

z
R

)
. (71)

The reader may wonder at this point why the DE was not used to estimate as well
the TE classical term F(TE)

l=0 |plasma of the plasma model. The reason is that the DE is not
valid for this term, due to its nonlocal features. Detailed numerical and analytical inves-
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tigations [62,63] in the limit of perfectly conducting sphere and plate, indeed show that
the leading correction beyond PFA in the small distance expansion of F(TE)

l=0 |plasma is a
logarithmic term ∼ log(z/R), which cannot be described by the DE. As a result, the term
F(TE)

l=0 |plasma still needs to be computed numerically using the scattering formula.
In order to quantitatively assess the precision of the approximate formula (71), we

have compared the values of the Casimir force provided by (71) with those obtained by
the high-precision numerical computation of the scattering formula in Section 4. The
agreement between the respective values of the force is excellent, as it is demonstrated
by Figure 10 which shows a plot of the fractional difference η = |Fexact − FDE|/|Fexact|
between the two estimates of the Casimir force, in the separation range extending from
200 nm to 5.4 µm, for the sphere radius R = 149.7 µm and for T = 295.25 K. The solid
and dashed lines in Figure 10 are for the Drude and the plasma models, respectively. The
plot shows that for separations smaller than approximately 0.6 µm, η decreases as the
separation decreases. This is consistent with the fact that the DE is exact in the limit of
vanishing separation. The decrease displayed by η for larger values of the separation z
is explained by the fact that as the separation increases, the Casimir force is more and
more dominated by the classical term, and therefore the error in the contribution of the
non-vanishing Matsubara frequencies becomes less and less important. The plot shows that
for all displayed separations η < 3.5× 10−6 within the Drude model, while for the plasma
model η < 2.5× 10−6. The remarkable agreement between the values of the Casimir
force provided by (71) with those obtained by direct numerical evaluation of the scattering
formula demonstrates the high precision of the theoretical predictions of the Casimir force
provided by the two methods of computation.

0 1 2 3 4 5
0

5.×10-7

1.×10-6

1.5×10-6

2.×10-6

2.5×10-6

3.×10-6

3.5×10-6

z(μm)

|F
ex
ac
t-
F
D
E
|/
|F
ex
ac
t|

Figure 10. Fractional difference η = |Fexact − FDE|/|Fexact| between the sphere-plate exact Casimir
force Fexact and the approximate formula (71), obtained from the DE for the nonzero Matsubara
frequencies and exact result for the zero-frequency contribution. Sphere radius R = 149.7 µm and
T = 295.25 K. The solid and dashed lines are for the Drude and the plasma models, respectively.

6. Total Errors and the Comparison between Experiment and Theory

In this section, we determine the random errors, total systematic errors, and consider
two methods for presentation of the measurement data with estimated role of patch
potentials. Then the experimental results are compared with the theoretical Casimir forces
computed in Sections 4 and 5 using the extrapolation of the optical data by means of the
Drude and plasma models.

6.1. Random and Total Experimental Errors

There are different methods for estimating the true value of measured physical quan-
tity and of the respective confidence interval at the desired confidence probability. In the
simplest cases the individual values of some random quantity obey either the normal or
the homogeneous distribution law. If, however, the factual distribution law deviates from
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both the normal and the homogeneous ones, the estimation of the true values using these
laws may lead to unrealistic results.

In our case, the Casimir force was independently measured for thirty times at the
separation distances zk where 1 6 k 6 79. This means that at each zk one should check the
character of the distribution law for n = 30 force values before estimating the true value
of the force at each specific separation. Close inspection of the measurement data shows
that at some separations zk their distribution law deviates from the normal one. As an
example, in Figure 11 (left) we present the histogram at the separation z5 = 0.6 µm. On
the x-axis we plot the force divided by the minimum force value at this separation. On the
y-axis we plot the normalized value of the probability. It is clearly seen that the distribution
law in this case is far from being normal. In so doing the exact form of the distribution
remains unknown.

There are also separation distances, where the distribution law is very close to
the normal one. The relevant histogram at the separation z21 = 2.2 µm is shown in
Figure 11 (right). Using the χ2 method of verification of hypotheses, we have found that
the hypothesis of a normal distribution does not contradict to our measurement data at
a 75% confidence level. This, however, does not allow to use the normal distribution in
the analysis of random errors and employ the mean value of the force F̄expt(zk) as an
estimation of its true value. If the hypothesis of a normal distribution were proven, one
could make a solid statement that at the confidence probability β the measured quantity
belongs to the confidence interval [F̄expt − ∆β, F̄expt + ∆β] where ∆β is determined by the
normal law. In our case, however, the normal distribution is not a solid fact, but only a
hypothesis, which does not contradict to the data at the confidence level of 75%. Then the
above statement would be unjustified.
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Figure 11. The histograms at z5 = 0.6 µm (left) and z21 = 2.2 µm (right).

Fortunately, mathematical statistics elaborated special (median) method on how to
deal with this problem [64]. The median method allows finding an estimation of the true
value of the measured quantity even if the distribution law is unknown. This estimation is
approximately equal to the standard mean value if the distribution is close to the normal
one. Otherwise, the median method provides an alternative estimation of the true value
which is robust relative to deviations from the normal law and to the presence of outlying
results [65]. This method also provides the confidence interval for the estimation of the true
value at the confidence probability β (below we consider β = 0.95). If the distribution is
close to normal, half of the confidence interval length is approximately equal to the error of
the mean found by using the normal distribution. As applied to our data sets, the median
method reduces to the following [64].
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Let us arrange the forces measured at the fixed separation zk in the order of increas-
ing values

Fexpt
1 (zk) 6 Fexpt

2 (zk) 6 . . . 6 Fexpt
n=30(zk). (72)

Then, according to the median method, an estimation for the true value of the force
magnitude at the separation zk is given by the expression

F̃expt(zk) =
1
2

[
Fexpt

n
2 =15(zk) + Fexpt

n
2 +1=16(zk)

]
, (73)

where we take into account that n = 30 is an even number. Recall also that most of
force values are negative which corresponds to an attraction (with exception of separation
distances exceeding 5.9 µm where some of the measued forces have positive values, see
the inset in Figure 3).

The confidence interval for an estimation of the true value (73) at the chosen confidence
probability β is given by (

Fexpt
i=i(n,β)(zk), F expt

j=j(n,β)(zk)
)

, (74)

where the forces F expt
i (zk) and F expt

j (zk) belong to the sequence (72). The specific expression
for i is given by

i = i(n, β) = int
n + 1− tβ

√
n

2
, (75)

where the symbol int stands for the integer part of the number and tβ is a tabulated
coefficient. In a similar way,

j = j(n, β) = 1 + int
n + 1 + tβ

√
n

2
. (76)

We calculate all errors at the 95% confidence level (β = 0.95) resulting in t0.95 = 1.96 [64].
Then from (75) and (76) one obtains i = 10 and j = 21. In the framework of the median method,
the random error ∆rand F̃expt(zk) is defined as one half of the length of confidence interval (74)
with the corresponding smoothing procedure [64]. It is shown by the gray line in Figure 12.
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Figure 12. Random , systematic and total experimental errors in the estimation of the true values
F̃expt(zk) are shown by the gray, black, and pink dots, respectively, as functions of separation. The
separation interval from 0.7 to 8 µm, where all errors vary relatively slowly, is shown in the inset.
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It is interesting to compare the estimation of the true force values using a hypothesis
of the normal distribution and the median method in different cases. We begin with the
separation z5 = 0.6 µm where the distribution of Figure 11 (left) is far from being normal.
If one, nevertheless, assumes that it is normal, the following estimation for the true force
value, the confidence interval and the random error are obtained:

F̄expt(z5) = −1662.86 fN, (−1665.0 fN,−1660.7 fN), ∆rand F̄expt(z5) = 2.1 fN. (77)

If the median method is used in this case, which makes the proper account of the deviations
from the normal law, one finds

F̃expt(z5) = −1666.5 fN, (−1666.5 fN,−1658.85 fN), ∆rand F̃expt(z5) = 3.8 fN. (78)

It is seen that the normal distribution underestimates both the true value of the force and
the random error.

Now we consider the separation z21 = 2.2 µm where the distribution is rather close to
the normal [see Figure 11 (right)]. The normal distribution gives the following estimation
for the true force value, the confidence interval and the random error:

F̄expt(z21) = −51.69 fN, (−52.52 fN,−50.84 fN), ∆rand F̄expt(z21) = 0.85 fN. (79)

The median method for the same data point results in

F̃expt(z21) = −51.67 fN, (−52.80 fN,−50.97 fN), ∆rand F̃expt(z21) = 0.92 fN. (80)

It is seen that differences between the results obtained using both methods are insignificant.
Below, for illustration of the estimation (73) of the true force values and their experi-

mental errors and uncertainties including the role of surface patches, we use crosses cen-
tered at the points

[
zk, F̃ expt(zk)

]
. The meaning of these crosses is illustrated in Figure 13.

Thus, the upper and lower vertical arms finish at the points

[zk, F expt
10 (zk) + ∆systF expt(zk) + |Fpatch(zk)|],

[zk, F expt
21 (zk)− ∆systF expt(zk)], (81)

where ∆systF expt(zk) is the total systematic error in measuring the Casimir force at the
separation zk and |Fpatch(zk)| is an estimated magnitude of the force due to the patch
potentials taken from Figure 4. It corresponds to an attraction and, thus, makes an impact
on only the upper vertical arms.

[
zk, F

expt
21 (zk) − ∆systF expt(zk)

]

[
zk, F

expt
10 (zk) + ∆systF expt(zk)

]

[
zk, F

expt
10 (zk) + ∆systF expt(zk) + |Fpatch(zk)|

]

[
zk − ∆z, F̃ expt(zk)

] [
zk + ∆z, F̃ expt(zk)

]

Figure 13. The experimental cross at separation zk taking into consideration the confidence interval,
systematic errors (both determined at the 95% confidence level), and the role of patch potentials.
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The total systematic error is a combination of the calibration error ∆cal = 0.2 fN, detection
error ∆det = 0.6 fN, and separation-dependent error of the measurement method ∆meas which
includes the role of thermal/vibration noise. The combination law is given by [56,64,66]

∆systF expt(zk) = min
(

∆cal + ∆det + ∆meas, kβ(N)
√

∆2
cal + ∆2

det + ∆2
meas

)
, (82)

where for N = 3 errors the tabulated coefficient k0.95(3) = 1.11. Note that the dominant
contribution to (82) is given by ∆meas. The quantity ∆systF expt(zk) is shown by the black
line in Figure 12.

Then the total experimental error is given by

∆F̃ expt(zk) = ∆rand F̃ expt(zk) + ∆systF expt(zk). (83)

It is shown by the pink line in Figure 12.
The horizontal arms of the crosses are equal to the systematic error in measuring

the separation distances since the random one arising due to an averaging over n = 30
measurements turns out to be negligibly small as compared to the systematic. The latter is
a combination of the error in D1 + D2, ∆D = 0.6 nm, the error associated with a flatness
of the wafer ∆flat = 1.2 nm and ∆meas = 0.2 nm (see Table 1 in Section 3). Using the
combination law (82), one arrives at ∆zk ≈ ∆systzk ≈ 1.5 nm.

6.2. Two Methods of Comparison between Experiment and Theory

We begin with the first method where the computed theoretical Casimir forces of
Sections 4 and 5 are directly compared with the experimental estimations of the true force
values giving due account to their errors and uncertainties.

In Figure 14a,b and Figure 15a,b, the theoretical Casimir forces computed in the
experimental configuration at T = 295.25 K, as described in Sections 4 and 5 using the
Drude and plasma model extrapolations of the optical data, are shown by the solid red
and blue lines, respectively, within the separation regions from 200 nm to 1 µm and from
1 µm to 8 µm, respectively. In the same figures, the measured Casimir forces with their
experimental errors and uncertainties, including the role of surface patches, are presented
as crosses whose meaning is explained in Figure 13. An inset in Figure 14a shows the first
cross on an enlarged scale.

We recall that the experimental data shown in Figures 14 and 15 are obtained from
the first harmonic of the signal. We have checked that they are in good agreement with
the force data obtained from the analysis of 21 harmonics considered in Section 3.2 as the
best fit of the Fourier coefficients. As one example, the estimation of the true force value at
z1 = 200.6 nm shown on the inset to Figure 14a is given by F̃(z1) = (−35683± 120) fN.
This is in agreement with the value (31) found in Section 3.2. Note that the error indicated
in (31) is determined by inaccuracies of the fit and does not include the systematic error of
force measurements equal to 85.8 fN at this separation.

As is seen in Figures 14 and 15, an approach to calculation of the Casimir force using
the Drude model is excluded by the data at the 95% confidence level over the wide region
of separations from 200 nm to 4.8 µm (in previous measurements [9–12,14,15,18,20,21]
the Drude model approach was experimentally excluded over the separation region from
162 nm to 1.1 µm). The plasma model approach is consistent with the data over the entire
measurement range. Note that the width of theoretical lines is determined with account of
the 0.5% error in the force values due to errors in the optical data of Au and errors resulting
from the 0.2 µm error in the sphere radius.
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Figure 14. The theoretical Casimir forces computed using extrapolations of the optical data by
the Drude and the plasma models are shown as functions of separation by the red and blue lines,
respectively, over the region of separations (a) from 0.2 to 0.4 µm and (b) from 0.5 to 1.0 µm. The
experimental Casimir forces are indicated as crosses. (a) For better visualization the first cross at
z1 = 200.6 nm separation is shown on an enlarged scale.

In Figure 15, we also show theoretical predictions of the standard Lifshitz theory
in the plane parallel geometry and the proximity force approximation (see, e.g., [56,66])
used previously for the comparison between experiment and theory (red and blue dashed
lines obtained with extrapolations of the optical data by means of the Drude and plasma
models, respectively). It is seen that for the Drude extrapolation the exact results are
almost coincident with those obtained using the proximity force approximation. For the
plasma-model extrapolation, there are, however, some visible deviations between the two
sets of results which remain in the limits of experimental errors (see Figure 15b).

We continue with one more method for presentation of the measurement data and
their comparison with theory. Within this method [56,66], an estimation of the true value
of the Casimir force, F̃ expt(zk), measured at the separation zk, is compared with the the-
oretical value F th(zk). This is made by calculating and plotting in a figure as dots the
force differences

F th(zk)− F̃ expt(zk), (84)
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where F th(zk) are computed at the experimental separations zk by using either the Drude
or the plasma model extrapolations of the optical data and F̃ expt(zk) are defined in (73).
The error of the quantity (84) at the desired confidence level β is given by

∆
[

F th(zk)− F̃ expt(zk)
]
= ∆F th(zk) + ∆F̃ expt(zk). (85)
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Figure 15. The theoretical Casimir forces computed exactly using extrapolations of the optical data
by the Drude and the plasma models are shown as functions of separation by the red and blue solid
lines, respectively, over the region of separations (a) from 1.0 to 3.0 µm and (b) from 3.0 to 8.0 µm.
Similar results obtained using the proximity force approximation are shown by the red and blue
dashed lines. The experimental Casimir forces are indicated as crosses.

The total experimental error ∆F̃ expt(zk) at different separations was found in (83) and
shown by the pink dots in Figure 12. The total theoretical error ∆F th(zk) in (85) is the
combination of errors in the calculated force values due to the error in the sphere radius,
errors in the optical data of Au, already discussed above, and the error in separations
∆zk = 1.5 nm. The error in theoretical force values arising from the error in separations is
specific only for the second method of comparison between experiment and theory because
in this case the force values are calculated not over the separation interval from 200 nm to
8 µm, as in the first method, but only at the discrete experimental separations determined
with the error of 1.5 nm. These three theoretical errors are combined by the law (82) with
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k0.95(3) = 1.11. The obtained values of ∆F th(zk) are 900, 32, 2.9, and 0.8 fN at 0.2, 0.5,
1.0, and 1.5 µm, respectively. At zk > 2 µm we have ∆F th(zk) � ∆F̃ expt(zk), so that the
theoretical error does not influence the error of force difference (85).

In Figure 16, we plot the force differences (84) computed in the separation region from
800 nm to 8 µm using the Drude (red dots) and the plasma (blue dots) model extrapolations
of the optical data. In the inset to Figure 16, the same is done in the separation region from
200 nm to 700 nm. The two black lines indicate the borders of the 95% confidence band for
the force differences. These borders consist of the ends of segments

[
−∆
(

F th(zk)− F̃ expt(zk)
)

, ∆
(

F th(zk)− F̃ expt(zk)
)
+ |Fpatch(zk)|

]
(86)

computed using (85) and linked together by the straight lines. The right ends of the
confidence intervals (86) include a contribution originating from the electrostatic patches
(see Figure 4 in Section 3). For a clearer understanding of their role, we also plot by the gray
line the upper border of the confidence interval as it would be in the absence of patches.
As is seen in Figure 16, the theoretical approach using the Drude model is excluded by the
measurement data within the separation region from 200 nm to 4.8 µm, where all the red
dots are outside the confidence band. This conclusion is in line with that obtained using
the first method of comparison between experiment and theory.

In a similar way, as it is seen in Figure 16, the plasma model approach is consistent
with the measurement data over the entire measurement range. This is again in agreement
with the conclusion made above.
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Figure 16. The differences between theoretical, computed using the Drude and plasma model
extrapolations of the optical data, and experimental Casimir forces are shown by the red and blue
dots, respectively, as the functions of separation. The black solid lines indicate the borders of the
confidence band found at the 95% confidence level. The gray line shows the upper border of the
confidence band as it would be in the absence of patches. The region of separations below 0.8 µm is
shown on an inset.
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7. Discussion

In the foregoing, we have presented the results of an experiment measuring the differ-
ential Casimir force between an Au-coated sphere and top and bottom of deep Au-coated
trenches concentrically located on a rotating disc performed by means of micromechanical
torsional oscillator. Due to a sufficiently large deepness of these trenches, the measured
force signal follows the Heaviside function, that is, the trench bottoms do not contribute
to the force. Thus, this experiment measures directly the Casimir force between a sphere
and a plane plate simultaneously preserving all the advantages of differential force mea-
surements including the highest level of sensitivity. This allowed obtaining the meaningful
experimental results at separations up to a few micrometers and distinguish between
different theoretical predictions for the Casimir force.

To reach this goal, it was necessary to analyze the distribution laws of the measurement
data in order to find reliable estimations of the true force values and confidence intervals at
each separation and collect together all sources of the systematic errors. As a result, the
total experimental error was found at the 95% confidence level as a function of separation.
In order to reveal all factors which could make an impact on the comparison between
experiment and theory, the roles of surface roughness and edge effects have been carefully
investigated and found to be negligibly small. The interacting surface was characterized
by Kelvin probe microscopy which gave the possibility to estimate the typical size of
surface patches, the r.m.s. voltage and related uncertainties in the measured force. These
uncertainties were taken into account in the error analysis along with the random and
systematic errors.

The theoretical Casimir force between the Au-coated surfaces of a sphere and a
plate used in the experiment were calculated on the basis of first principles of quantum
electrodynamics at nonzero temperature by means of the scattering theory and the gradient
expansion without resort to any simplified approximations of additive character. The
results obtained within these two approaches were found to be in excellent agreement. The
computations were done using the optical data of Au extrapolated to zero frequency by
means of the Drude and plasma models.

Direct comparison between experiment and theory with no fitting parameters demon-
strates that an extrapolation by means of the Drude model is excluded by the measurement
data over the separation region from 0.2 to 4.8 µm, whereas the theoretical predictions
using the plasma model are experimentally consistent over the entire measurement range.
This significantly widens the range of separations where the theoretical approach using the
Drude model was excluded so far and again raises a question on the physical reasons of
this result.

In fact the relaxation properties of conduction electrons taken into account by the
Drude model and omitted by the plasma one do exist and are observed in numerous
physical phenomena other than the Casimir effect. Because of this, future theory of the
Casimir force must take them into account in one way or another. An attempt in this
direction is already undertaken [67]. The authors hope that the solution to this problem
will be found in a not too remote future.

8. Conclusions

To conclude, the performed experiment on measuring the Casimir force between
an Au-coated surfaces of a sphere and a plate by means of a micromechanical torsional
oscillator reached an unprecedented precision in the wide separation region from 0.2 to
8 µm. A comparison of the obtained measurement data with the exact theory based on both
the scattering approach and the gradient expansion with no fitting parameters allowed
clear discrimination between the theoretical predictions using the Drude and plasma model
extrapolations of the optical data up to an unusually large separation distance of 4.8 µm.
As a result, the Drude extrapolation was excluded by the measurement data, whereas the
extrapolation using the plasma model turned out to be consistent with the data. At the
moment the generally recognized physical explanation for these facts is lacking.
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