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Abstract: The goal of this contribution is to present the properties of a class of quantum bounc-
ing models in which the quantum bounce originates from the Dirac canonical quantization of a
midi-superspace model composed of a homogeneous and isotropic background, together with small
inhomogeneous perturbations. The resulting Wheeler-DeWitt equation is interpreted in the frame-
work of the de Broglie-Bohm quantum theory, enormously simplifying the calculations, conceptually
and technically. It is shown that the resulting models are stable and they never get to close to the
Planck energy, where another more involved quantization scheme would have to be evoked, and they
are compatible with present observations. Some physical effects around the bounce are discussed, like
baryogenesis and magnetogenesis, and the crucial role of dark matter and dark energy is also studied.
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1. Introduction

Cosmological observations (the cosmic microwave background radiation [1], Big Bang
nucleosynthesis [2], large scale structure [3] and cosmological red-shift [4]) strongly indicate
that the Universe is expanding from a very hot era, when the geometry of space was highly
homogeneous and isotropic (maximally symmetric space-like hyper-surfaces), with tiny
deviations from this special symmetric state.

Cosmology is a very peculiar part of Physics, because the physical system under
investigation is the Universe as a whole, and one cannot control its initial conditions, as in
other physical situations. Hence, finding physical justifications for the Universe’s initial
conditions becomes an important part of its physical understanding, along with setting
the dynamical equations that the degrees of freedom describing it must obey, which are
generally assumed to be given by General Relativity (GR).

Without a consensus theory of quantum gravity, it is difficult to construct a measure
on the configuration space of GR. However, generically, field theories contain d degrees
of freedom per space point (d ×∞3 degrees of freedom), hence initial homogeneity re-
quires that ∞3 degrees of freedom have very close initial values, see References [5–7] for
discussions about this issue. Consequently, as GR is a field theory, solutions of GR with
maximally symmetric space-like hyper-surfaces are very special, even when the matter
content distribution is homogeneous and isotropic. This is because the matter energy–
momentum tensor determines only the Ricci tensor, through Einstein’s equations, while
the Weyl tensor (the conformal curvature tensor) remains completely undetermined. For
instance, a null energy–momentum tensor is trivially homogeneous and isotropic, and it
is widely known that there are many inhomogeneous solutions of Einstein’s equation in
vacuum, the first and iconic one being the Schwarzschild solution. Hence, only through
very special initial conditions for the dynamical degrees of freedom, which, of course,
must also contain the spatial geometry and its time derivative (the extrinsic curvature),
a space-time geometry with maximally symmetric space-like hyper-surfaces can emerge.
Another possibility is that such special space-time solutions are attractors of the dynamical
equations once some general physical conditions are assumed. Both attempts have not
succeeded up to now. The first one relies essentially in constructing a theory of initial
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conditions, presumably coming from quantum gravity and quantum cosmology. However,
there is no consensus on an accepted theory of quantum gravity and quantum cosmology,
which are under construction by many independent groups [8–13]. The second one relies
on numerical computations assuming some physical frameworks (like inflation [14], or
ekpyrotic contraction [15]), but they run into difficulties due to the high complexity of
Einstein’s equations, forcing them, in the end, to strongly restrain the initial conditions
anyway, although in a less severe manner. It seems to me that this second approach suffers
from a serious conceptually flaw: given all fields and particles of the standard model of
particle physics, GR allows infinitely many inhomogeneous cosmological solutions which,
of course, cannot be framed back to the past highly hot and maximally symmetric space
indicated by cosmological observations. I suppose that only anthropic arguments [16] can
retrieve this alternative.

Besides initial condition issues, the standard cosmological model suffers from a major
flaw—extrapolating GR back to the past, one necessarily encounters a singularity, where
physical quantities, like the curvature of space-time, the matter energy density, among
others, diverge. Hence, the model is incomplete. Attempts to eliminate the initial cos-
mological singularity rely on classical corrections of General Relativity, or on quantum
effects. There are two possibilities: either this new physics connects the expanding Universe
to a physically sensible preceding era through its very hot and dense phase, or there is
some sort of non-singular beginning, like the quantum tunneling from nothing [17], or the
no-boundary proposal [18]).

If one assumes that the Universe had a beginning immediately followed by the hot
expanding phase discussed above, then some new important puzzles concerning initial
conditions in cosmology arise. It is usually assumed that this hot expanding phase is
dominated by radiation, and then by pressureless matter. In this case, GR asserts that the
expansion must be decelerated, implying that the distance scale of regions with causal
contact in the Universe, given by the Hubble radius, RH ≡ 1/H ≡ a/ȧ, where a is the scale
factor and the dot represents derivative with respect to cosmic time, grows faster than all
distance scales in the Universe, which are proportional to the scale factor itself:

dRH

da
= 1− äa

ȧ3 > 1, (1)

if ä < 0 and ȧ > 0. This means that most of the scales we are able to see today were out of
the Hubble radius in the past. In particular, the cosmic microwave background radiation
(CMBR) we see in the sky today, with almost the same temperature in all directions, would
have contained hundreds of causally disconnected regions when it was formed, precluding
any causal physical understanding of its observed temperature isotropy (this is the so called
horizon problem). Furthermore, it is not possible to get any viable physical explanation for
the power spectrum of primordial cosmological perturbations, which evolved to form the
structures we observe today, as long as the large scales of inhomogeneities of cosmological
interest we see today were already bigger than the Hubble radius in the near past. Finally,
it is observed that the curvature of the space-like hyper-surfaces today is almost null, or,
equivalently, that the matter energy density of the Universe today, ρ0, is very near the
critical energy density ρc, which is the total matter energy the Universe would have if their
space-like hyper-surfaces were flat: Ω0 ≡ ρ0/ρc ≈ 1. However, the ratio Ω(t) ≡ ρ(t)/ρc
evolves as

d | Ω(t)− 1 |
dt

= −2
ä
ȧ3 . (2)

Once again, the ratio ä/ȧ3 appears, and if ä < 0 and ȧ > 0, then Ω(t) was astonishingly
near unity near the beginning of the Universe, implying an spectacular fine tuning of initial
conditions. This is the so called flatness problem. Hence, there is no possible causal
physical explanation for the peculiar properties of the universe we observe, apart some
yet unknown theory of initial conditions, if it had a beginning succeeded by a decelerated
expanding phase.
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In order to get rid of these new puzzles, and keeping the hypothesis that the Universe
had a beginning followed by an expanding phase, one possible way out is to assume
that there was a field, called inflation, which dominated the dynamics of the Universe
expansion before the radiation era. When the inflaton field does not satisfy the strong
energy condition (ρ + 3p ≥ 0, ρ + p ≥ 0, where p is the pressure), which is a commonplace
feature of field theories, the expansion is accelerated, ä/a > 0, and the problems arising
from Equations (1) and (2) are overcome. During this phase, called inflation [19–21], it is
possible that a increases faster than RH , see Equation (1), and, looking backwards in time,
scales of cosmological interest were smaller than the Hubble radius in this era, allowing
causal contact, and avoiding the horizon problem and the structure formation issue. In the
case of the flatness problem, Equation (2) shows that, during inflation, Ω(t) approaches
unit from whatever value it would have in the beginning, eliminating the fine tuning. In
intuitive terms, the picture is of a spherical surface that expands so much, that the part of it
we can see is a tiny piece of the spherical surface, making it almost flat. Also, concerning the
horizon problem, this inflationary expansion turns a very small part of the early Universe
which had causal contact in the far past as big as the Universe we see today. Concluding,
under these assumptions (the Universe had a beginning followed by an expanding phase),
inflation is a necessary ingredient in order to yield the possibility of a causal physical
explanation of some features of our Universe. Indeed, it gave a sound description of
the origin of cosmological perturbations, the properties of their power spectra, and a
confirmed prediction for the spectral index of scalar cosmological perturbations at large
scales, ns ≈ 0.97 [22,23]. It also leads to the isotropization of homogeneous hyper-surfaces
(the so called Bianchi models, under certain special conditions in the case of positive
curvature space-like hyper-surfaces). Concerning the homogeneity issue, however, it is
important to emphasize that inflation indeed turns viable a dynamical explanation of it,
but it does not yield the explanation itself, at least up to now, for the reasons I pointed
out above.

Looking at Equations (1) and (2), instead of assuming that ä > 0 ( keeping ä < 0),
one could get the same consequences supposing that ȧ < 0, , implying a contracting
decelerating phase. The flatness and horizon problems are naturally solved in the same
way. The intuitive picture is of a spherical surface which is shrinking, but the glasses we
use to see the surface (the Hubble radius) yield images which are shrinking much faster,
leading to the impression that the surface is becoming flat. Running backwards in time
in this contracting decelerating phase, when the Universe was immensely large in the
past, turn all cosmological scales of physical interest much smaller than the Hubble radius,
solving the horizon and structure formation issues as well. It is a different mechanism that
leads to the same results. However, a model with a contracting phase must be connected
to the expanding phase we observe, performing a bounce. The occurrence of a bounce
needs more stringent conditions to happen than inflation. Within GR, a realistic bounce
can only happen if the field violates the null energy condition (ρ + p ≥ 0), which may be
plagued by quantum instabilities. Hence, most of the bouncing models are obtained outside
GR [24–33], or in the context of quantum cosmology [34–39], see also References [40,41] for
some reviews. An important remark is that, once one finds a physical mechanism yielding
a bounce, the overall cosmological model is generally not singular. Hence, the singularity
problem is automatically solved.

As we have seen above, in bouncing models the horizon, flatness, and structure formation
issues do not arise. Hence, they do not need an inflationary era, although they are not
incompatible with it. In fact, if the investigation and construction of sensible bouncing models
were realized long ago, putting aside the picture of a universe with a beginning followed
by expansion, I doubt whether the idea of inflation would even be formulated. However,
the history of cosmology is not like this. Bouncing models were indeed investigated in the
past [42], but the theoretical difficulties to realize them at that time (unlimited entropy growth,
new physics to realize the bounce, instabilities) induced physicists to think that it was simpler
to think that the Universe had a beginning, postponing the discussion on how this beginning



Universe 2021, 7, 110 4 of 46

was realized. In this context, as we have seen above, inflation is very important, and an almost
logical consequence of this assumption. Furthermore, inflation made predictions which were
confirmed afterwards by observations in the CMBR (the spectral index, the acoustic peaks,
small non-gaussianities [23]), supporting this hypothesis. Because of that, many cosmologists
put inflation as a part of the standard cosmological model, and it has been investigated in
many details since it was proposed. Meanwhile, investigations concerning bouncing models
have been deepened progressively. The objections against them were refuted, many physical
realizations of a bounce were formulated, and it has been shown that this models could also
describe the features of our Universe, specially the ones associated with the CMBR. Note,
however, that bouncing models have been able to be compatible with observations already
made but, up to now, they did not make predictions which have been observed, like inflation.

The aim of this paper is to describe features and properties of bouncing models
in more detail, and whether they can really be an alternative to inflation, or at least a
complementation of it, as it solves, by construction, the singularity problem. I will focus in
bouncing models where the singularity is solved through quantum effects coming from
quantum cosmology. Other approaches will be discussed elsewhere in this volume. I
will present some possible backgrounds, study the evolution of perturbations in such
backgrounds, and other physical aspects of it, like baryogenesis. In Section 2, I will describe
in some detail such backgrounds and the physical context in which they are obtained. In
Section 3, I will present the evolution of cosmological perturbations in such backgrounds,
and I will investigate the consequences of the contracting phase and the bounce to the
features of the CMBR. I will focus on the so called matter bounce, which leads to an almost
scale invariant power spectrum of scalar perturbations. I will also discuss primordial
gravitational waves in this context. In Section 4, I will show that these models are stable
under scalar, vector, and tensor perturbations. In Section 5, I will discuss the role of dark
energy in bouncing models, a very important aspect of these models which has not been
investigated with the the care it deserves. In Section 6, I will discuss, particle creation,
magnetogenesis and bariogenesis in bouncing models. I will end up in Section 7, with
conclusions and discussions.

2. Bouncing Models from Quantum Cosmology

The Copenhagen interpretation of quantum mechanics [43–45], which is the one
taught in undergraduate courses and used by the majority of physicists in all areas, does
not fit with a quantum theory of cosmology. This is because it imposes the existence of a
classical domain beyond the quantum one, or of an external agent outside the physical
system, by assuming that there is a fundamental process in a measurement which brings
quantum potentialities to experimental facts through the collapse of the wave function.
This process does not satisfy the unitary quantum evolution, and it must occur outside
the quantum world, by an external agent in a classical domain. Of course, if we want to
quantize the whole Universe, there is no place for a classical domain or any external agent
outside it, and the Copenhagen interpretation cannot be applied.

This conceptual problem is solved by the de Broglie-Bohm (dBB) quantum theory
(there are other alternatives, as the spontaneous collapse approach [46,47], the Many-
Worlds Interpretation (MW) [48], which will not be discussed here). In dBB theory, a
system is not only described by the wave function, but also by extra variables [49–51]. In
the context of non-relativistic dBB mechanics, there are actual particles whose motion is
determined by the wave function, and these extra variables are their particle positions.
Usually, in a measurement process, the total wave function splits into many branches, each
one associated with one possible result of measurement. The point particle in configuration
space describing the whole system will enter into one of the branches (depending on the
initial position of the point particle before the measurement, which is unknown), and
the other branches will be empty. It can be shown [50] that the empty waves can neither
interact with other particles, nor with the point particle containing the apparatus. Hence,
no observer can be aware of the other branches which are empty. One gets an effective
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but not real collapse (the empty waves continue to exist), and quantum unitary evolution
is universally valid. The probabilistic character of Quantum Mechanics is due to the
ignorance about the initial position of the point particle, arising statistically, not being
intrinsic to the theory. The dBB quantum theory can also be extended to quantum field
theory [52], where the extra variables may be particles or fields, and to canonical quantum
gravity [53–55]. In the context of quantum gravity, the extra variables are the space metric,
and whatever suitable variable for the matter fields. Therefore, an external observer is no
longer needed, and we achieve the conceptual coherence necessary to apply this approach
to cosmology.

Canonical quantum gravity is the most conservative approach to quantum gravity. It
is obtained by applying the usual quantization techniques, which were so successful in
high energy physics, to GR. The quantization starts with passing from the Lagrangian to
the Hamiltonian picture, and then mapping Poisson brackets to commutation relations of
operators. As GR is invariant under time and space reparametrizations, its Hamiltonian
is a combination of constraints which, according to the Dirac quantization procedure,
should annihilate the quantum state. Unfortunately, the final equation arising from this
procedure, the Wheeler-DeWitt equation [56], is just a formal equation plagued with many
mathematical problems. One alternative is to move to loop quantum gravity [10]. However,
as the hot and dense universe was very homogeneous and isotropic in the past, as we
have seen, it may be possible to restrict the allowed spatial geometries in the quantization
scheme to be homogeneous with small inhomogeneous perturbations around it. Under
this restriction, one can perform calculations with simplified equations, either within
the framework of canonical quantum gravity, or in loop quantum gravity. This limited
framework is called quantum cosmology [13,38,39], and loop quantum cosmology [12],
respectively. The complete connection of these simplifications with the full theories they
come from is yet unknown. Nevertheless, one expects that at energy scales which are not
so close to the Planck energy, these approaches can be applied as good approximations
to the hot and dense universe, yielding sensible results. We will restrict ourselves here to
quantum cosmology itself, viewed in the framework of the dBB quantum theory, the loop
quantum cosmology approach being treated elsewhere.

The non-relativistic dBB theory is about point-particles in physical space moving under
the influence of the wave function [49–51]. The equations of motion for the configuration
X = (X1, . . . , Xn) of the particles, called the guidance equation, is given by (Throughout the
paper we assume units in which h̄ = c = 1.)

Ẋ(t) = vψ(X(t), t) , (3)

where vψ = (vψ
1 , . . . , vψ

n ), with

vψ
k =

1
mk

Im
(
∇kψ

ψ

)
=

1
mk

∇kS (4)

and ψ = |ψ|eiS. Solutions of Equation (3) are called Bohmian trajectories. The wave
function ψ(x, t) = ψ(x1, . . . , xn) itself satisfies the non-relativistic Schrödinger equation

i∂tψ(x, t) =

(
−

n

∑
k=1

1
2mk
∇2

k + V(x)

)
ψ(x, t) . (5)

For an ensemble of systems with the same wave function ψ, a particle distribution
given by |ψ(x, t0)|2 at some time t0 will be given by |ψ(x, t)|2 at all times t. This is because
any distribution ρ transported by the particle motion satisfies the continuity equation

∂tρ +
n

∑
k=1

∇k · (vψ
k ρ) = 0, (6)
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while |ψ|2 satisfies the same equation, that is,

∂t|ψ|2 +
n

∑
k=1

∇k · (vψ
k |ψ|2) = 0 , (7)

which is a consequence of the Schrödinger equation.
These are called equilibrium distributions [51]. Non-equilibrium distributions would

lead to a deviation of the Born rule. However, they generally tends to equilibrium distribu-
tions in a coarse grained level, see References [57,58]. Therefore, except for these interesting
possibilities, the dBB theory reproduces the standard quantum predictions.

The dBB mechanics allows for an unambiguous characterization of the classical limit.
Taking the time derivative of (3), we find that

mkẌk(t) = −∇k(V(x) + Qψ(x, t))
∣∣
x=X(t) , (8)

where

Qψ = −
n

∑
k=1

1
2mk

∇2
k |ψ|
|ψ| (9)

is the quantum potential. Hence, if the quantum force −∇kQψ is negligible compared
to the classical force −∇kV, then the k-th particle approximately moves along a classical
trajectory.

Another aspect of the theory is that it allows for a simple and natural definition for
the wave function of a subsystem [59]. Consider a system with wave function ψ(x, y)
where x is the configuration variable of the subsystem and y is the configuration variable
of its environment. The actual configuration is (X, Y), where X is the configuration of
the subsystem and Y is the configuration of the other particles. The wave function of the
subsystem χ(x, t), called the conditional wave function, is then defined as

χ(x, t) = ψ(x, Y(t), t). (10)

This is a natural definition since the trajectory X(t) of the subsystem satisfies

Ẋ(t) = vψ(X(t), Y(t), t) = vχ(X(t), t) . (11)

Hence, for the evolution of the subsystem’s configuration, we can either use the condi-
tional wave function or the total wave function (keeping the initial positions fixed). The
time evolution of the conditional wave function does not necessarily satisfy a Schrödinger
equation, although in many cases it does. The conditional wave function collapses during
measurement situations, which constitutes an explanation for the success of the collapse
postulate in standard quantum mechanics. In the context of quantum cosmology, the
conditional wave function will be used to derive an effective Schrödinger equation for a
subsystem of the universe, the one associated with inhomogeneous cosmological pertur-
bations around a homogeneous background, which is derived from a time-independent
universal wave function.

The dBB quantum theory can be extended to quantum field theory. In this case, field
configurations are usually attributed with objective reality, and their time evolutions are
given by guidance equations in the same way as in non-relativistic quantum mechanics.
The probabilistic predictions are identical as in quantum field theory, hence they are Lorentz
invariant. However, the Bohmian evolution of the fields is not generally Lorentz invariant,
their inner symmetries depend on the particular wave functional solution, and they can
be calculated, see Reference [55]. Nevertheless, such Bohmian evolutions are hidden from
experimental scrutiny in any quantum equilibrium situation, as discussed above.

Note that there are other approaches to investigate quantum gravity effects, where
part of the whole system can be treated classically, either by integrating out the quantum
variables to calculate their mean effects in the classical variables, see Reference [60], or
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to use the classical background degrees of freedom to perform a Born-Oppenheimer
approximation, and transform the Wheeler-DeWitt equation into a Schrödinger equation
for the quantum variables [61]. Both of them rely on the existence of “classical” variables,
hence they cannot treat the case where all degrees of freedom are quantum. Also, even
in the presence of classical variables, when the system is the Universe, one will have to
ultimately face the problem of the interpretation of quantum theory, or how a single reality
emerges from the different possibilities allowed by the wave functional without a collapse
postulate. One good example of this acute problem is the quantum-to-classical transition
of quantum cosmological perturbations in classical backgrounds, which demands a much
deeper understanding that is not contemplated by these approaches, see References [62–65].
In the de Broglie-Bohm quantum theory, the assumption of objective reality of the Bohmian
trajectories allow to perform calculations even when all degrees of freedom are quantum,
and yields an explanation for the emergence of a single classical reality, as explained
above [51], and in References [66,67] for the case of the quantum-to-classical transition of
quantum cosmological perturbations in classical backgrounds. Of course, it is expected
that when the Bohmian trajectories for some degrees of freedom become classical, the two
approaches above can be applied and coincide [66,67].

One of the important results of the application of the dBB quantum theory to quantum
cosmology is the elimination of cosmological singularities, which generically appears in
classical GR [68], as we will now see.

2.1. The Canonical Scalar Field

In this subsection, I will assume that the matter content of the Universe can be de-
scribed by a canonical scalar field ϕ. As discussed above, from all possible space ge-
ometries and scalar field configurations (called superspace), we will restrict ourselves to
homogeneous and isotropic configurations (called mini-superspace). The inhomogeneous
perturbations will be treated in the next sections. Hence, the model is given by the homo-
geneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) metric coupled to a
homogeneous scalar field. The metric reads

ds2 = N(t)2dt2 − a(t)2dΩ2
k , (12)

where N is the lapse function, a is the scale factor, and dΩ2
k is the spatial line-element on

three-space with constant curvature. We are using natural units h̄ = c = 1.
The GR equations are obtained from the Einstein-Hilbert Lagrangian which, for

geometries of type (12) and a homogeneous scalar field ϕ, reduces to

L = Na3κ

[
− ȧ2

2a2N2 −VG + κ2
(

ϕ̇2

2N2 −VM

)]
, (13)

where κ =
√

4πG/3 ≡ lP/
√

6, with G being the gravitational constant, lP is our definition
of the Planck length, VM is the potential for the scalar field, VG = −k/(2l2a2) + Λ/6,
k = 0,±1 for flat, positively or negatively curved space-like hyper-surfaces with constant
curvature scale l, respectively, and Λ is the cosmological constant. Note that we have
redefined the scale factor as ã = aV1/3/κ. The quantity V is the volume of the co-moving
space-like hyper-surface, which appears due to the integration of the original Einstein-
Hilbert action in space. (As the co-moving space-like hyper-surface is homogeneous, its
volume is a fixed constant, which was absorbed in the redefinition of a. In the case of
compact hyper-surfaces, they are finite constants. For non-compact hyper-surfaces, one can
integrate in a fixed box). Note that Lagrangian (13) has physical dimensions of length−1,
compatible with our choice of natural units (remember that the scalar field ϕ also has
physical dimension length−1).
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Moving to the variable α = ln a, and performing Legendre transformations, one gets
the Hamiltonian

H ≡ NH =
N

e3ακ

[
−Π2

α

2
+

Π2
ϕ

2κ2 + e6ακ2
(

VG + κ2VM

)]
, (14)

where Πα and Πϕ are the momenta canonically conjugate to α and ϕ, respectively, and N
plays the role of a Lagrangian multiplier. Note that in the full Hamiltonian formalism of GR
one gets the Hamiltonian and super-momentum density first class constraints, arising due
to its invariance under time and space reparametrizations [56]. When one is restricted to
homogeneous spatial hypersurfaces, the super-momentum density constraint is identically
null, and the Hamiltonian density contains only the Hamiltonian constraintH.

From the canonical relations

ϕ̇ =
N

κ3e3α
Πϕ, α̇ = − N

κe3α
Πα, (15)

one gets the classical equations of motion

d
dt

(
e3α ϕ̇

N

)
+ Ne3α∂ϕVM = 0, (16)

α̇2

N2 = 2κ2
(

ϕ̇2

2N2 + VM

)
+ 2VG. (17)

The first equation is the usual dynamical equation for a scalar field in a Friedmann
geometry, and the second one is the Friedmann equation. The acceleration equation, which
corresponds to the second-order equation for α, follows from (16) and (17).

The Dirac quantization procedure imposes that the operator version ofH must anni-
hilate the quantum state ψ, Ĥψ = 0, leading to the Wheeler-DeWitt equation[

−∂2
α

2
+

∂2
ϕ

2κ2 − e6ακ2
(

VG + κ2VM

)]
ψ(ϕ, α) = 0, (18)

where, as usual, Π̂α = −i∂α, and Π̂ϕ = −i∂ϕ .
In the dBB theory, there is an actual scalar field ϕ, and an actual FLRW metric of the

form (12), whose time evolutions are determined by

ϕ̇ =
N

κ3e3α
∂ϕS, α̇ = − N

κe3α
∂αS. (19)

It follows from these equations that

d
dt

(
e3α ϕ̇

N

)
+ Ne3α∂ϕ(VM + QM + QG) = 0, (20)

α̇2

N2 = 2κ2
(

ϕ̇2

2N2 + VM + QM

)
+ 2(VG + κ2QG), (21)

where

QM = − 1
2κ6e6α

∂2
ϕ|ψ|
|ψ| , QG =

1
2κ4e6α

∂2
α|ψ|
|ψ| (22)

are, respectively, the matter and the gravitational quantum potentials. These equations
differ from the classical ones by the quantum potentials.

In order to simplify the discussion about the singularities, let us consider the case
of a free massless scalar field in flat space geometries (k = 0), without a cosmological
constant. (Note that such a choice has a physical motivation. It can be a suitable model for
the matter content in a very hot and dense universe, as it represents stiff matter, which is so
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dense that the speed of sound and light become equal: p = ρ). In this case, VM = VG = 0.
Working with the new dimensionless scalar field ϕ̃ = κϕ, and omitting the tilde, the
classical equations read

ϕ̇ =
N

κe3α
c, α̇ = ± N

κe3α
c, (23)

where c is an integration constant. Considering c 6= 0 (the case c = 0 is the trivial flat
Minkowski space-time) , we have

α = ±ϕ + c̄, (24)

with c̄ another integration constant. In the plane (α, ϕ), these are straight lines with angular
coefficient ±1 representing either universes expending indefinitely from the singularity
α→ −∞ (a = 0), or contracting from infinity to a singularity.

In the standard quantum mechanical approach to the Wheeler-DeWitt equation, the
complete description is given by the wave function and, as mentioned in the Introduction,
the notion of a singularity becomes ambiguous. This is not the case in the dBB theory,
which describes the evolution of actual metric and matter fields. In this framework, the
characterization of singularities is as simple and direct as in the classical case—they appear
whenever the curvature of space-time, and/or the energy–momentum of the matter fields
diverge. In the homogeneous and isotropic case, it happens when a = 0.

The question of singularities in the free scalar field case was considered in Ref. [69]. In
this case, the Wheeler-DeWitt equation reads

∂2
ϕψ− ∂2

αψ = 0. (25)

The solutions are

ψ = ψR(α− ϕ) + ψL(α + ϕ) ≡ ψR(u) + ψL(v), (26)

where we have defined the light-cone coordinates u, v.
The actual metric may be non-singular; it depends on the wave function and on the

initial conditions. For example, for a real wave function, S = 0, the universe is static, so
that there is no singularity. On the other hand, for complex wave functions ψ = ψR,L the
solutions are always classical. This is because one necessarily gets a total phase of the form
S = S(α± ϕ), which are the general solutions of the classical Hamilton-Jacobi equation of
the model, yielding the usual classical trajectories. Interesting wave function solutions are
those leading to non-singular dynamical solutions which approach the classical limit for
α >> 1: universes with classical contracting and expanding phases, connected by a regular
bounce. Note that any wave function with ψR = −ψL ≡ F satisfies ψ(ϕ, α) = −ψ(ϕ,−α),
hence ψ(ϕ, α = 0) = 0. As no Bohmian trajectory can cross a nodal point of the wave
function, then there is no trajectory crossing the plane α = 0 in (α, ϕ)-space. Hence,
trajectories starting with α(0) > 0 will not have singularities. In this way, bouncing
solutions can be obtained. Furthermore, if F is square integrable, then, for α >> 1, either
F(u) or F(v) will dominate in ψ = F(u)− F(v) (F(u) for ϕ >> 1, and F(v) for ϕ << −1),
leading to classical trajectories in these regions. Hence, in this case, the Bohmian trajectories
represent universes contracting classically from the infinity past, experiencing a quantum
bounce when it reaches its minimum volume, and then launched to a classical expanding
phase. In Reference [69], a detailed picture of the Bohmian trajectories is displayed for the
case that F is a Gaussian.

In summary, this kind of model yields plenty of interesting bounce solutions, although
singular models are also allowed, depending on the wave function and the initial conditions
for the actual fields.

2.2. Perfect Fluids

Another example of a mini-superspace model is that of a FLRW space-time with a
perfect fluid, where the pressure and the energy density satisfy the state equation p = wρ,
with w constant. This kind of fluid may well describe the Universe at high temperatures,
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because fields and particles become highly relativistic, satisfying a radiation equation of
state p ≈ ρ/3. I will now show that the Bohmian trajectories arising from the canonical
quantization of this mini-superspace model also describe non-singular bouncing models.

A perfect fluid can be modelled by a scalar field as follows. Consider the matter
Lagrangian

LM =
√
−gXn, (27)

where (In this section it is used dimensionless space-time coordinates xµ → xµ/κ, a
dimensionless scalar field ϕ→ κϕ, and a harmless redefinition of the scale factor, a→ 21/3a.
Hence, the Lagrangian (27) is dimensionless because a dimensionless time parameter is
now being used).

X =
1
2

gµν∂µ ϕ∂ν ϕ. (28)

I will assume that X ≥ 0, and I will interpret ϕ as the potential yielding the normalized
4−velocity of the fluid

Vµ =
∂µ ϕ

(2X)1/2 . (29)

The energy–momentum tensor is given by

Tµν =
2√−g

∂LM
∂gµν = 2nXnVµVν − gµνXn. (30)

Comparing with the usual expansion of the energy–momentum tensor in terms of
energy density and pressure,

Tµν = (ρ + p)VµVν − pgµν, (31)

We get

p = Xn, p =
1

2n− 1
ρ, (32)

implying that w = 1/(2n− 1).
Assuming homogeneity, the scalar field depends only on time. The construction of

the Hamiltonian is straightforward. The matter part reads

HM = cN
p1+w

ϕ

a3w , (33)

where pϕ is the momentum conjugate to ϕ and c = 1/(w
√

2
1+3w

n1+w) is a constant.
Before implementing the canonical quantization procedure, I will perform the follow-

ing canonical transformation:

T =
1

c(1 + w)

ϕ

pw
ϕ

, PT = cp1+w
ϕ , (34)

so that
HM = N

PT

a3w . (35)

An important property is that the momentum now appears linearly. Combining this
perfect fluid Hamiltonian with the gravitational Hamiltonian for a FLRW geometry with
flat space-like hyper-surfaces, the total mini-superspace Hamiltonian is obtained:

H = N
(
−P2

a
4a

+
PT

a3w

)
. (36)
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It implies that Ṫ = N/a3w or, in terms of cosmic proper time τ, dT/dτ = 1/a3w.
Hence, T increases monotonically, so that it can be used as a clock variable. In terms of T,
the scale factor evolves like a ∝ T2/3(1−w), which is singular at T = 0.

In the quantum case, because one momentum appears linearly in the Hamiltonian,
the Wheeler-DeWitt equation assumes the Schrödinger form [38]

i
∂

∂T
Ψ(a, T) =

1
4

{
a(3ω−1)/2 ∂

∂a

[
a(3ω−1)/2 ∂

∂a

]}
Ψ(a, T). (37)

We adopted a factor ordering which makes Equation (37) covariant under redefinitions
of a. The guidance equations are

Ṫ =
N

a3w , ȧ = − N
2a

∂S
∂a

. (38)

The dynamics can be simplified using the transformation

χ =
2
3
(1−ω)−1a3(1−ω)/2, (39)

to obtain

i
∂Ψ(a, T)

∂T
=

1
4

∂2Ψ(a, T)
∂χ2 . (40)

This is just the time reversed Schrödinger equation for a one-dimensional free particle
with mass 2 constrained to the positive axis.

In the context of standard quantum theory, the form of the Wheeler-DeWitt equation
suggests to interpret T as time and to find a suitable Hilbert space. Since χ > 0, the Hilbert
space requires a boundary condition

Ψ
∣∣
χ=0= c

∂Ψ
∂χ

∣∣∣∣∣
χ=0

, (41)

with c a real constant. |Ψ2|dχ is then the probability measure for the scale factor. The
boundary condition makes that the total probability is preserved in time. In the dBB ap-
proach, the condition (41) implies that there are no singularities [70], because the condition
means that the probability flux Jχ ∼ Im

(
Ψ∗ ∂Ψ

∂χ

)
is null at χ = 0, so no trajectories can

cross a = 0). For wave functions not satisfying the boundary condition (41), however,
singularities may be obtained, at least for some trajectories. For example, for a plane wave,
the trajectories are the classical ones, hence a singularity is always obtained. From the dBB
point of view this can motivate the consideration of a Hilbert space based on (41). It is then
also natural to use |Ψ2|dχ as the normalizable equilibrium distribution for the scale factor.

The dynamics of the scale factor can be expressed in terms of T by solving the guiding
Equation (38), which read,

da
dT

= − a3w−1

2
∂S
∂a

(42)

or
dχ

dT
= −1

2
∂S
∂χ

. (43)

As an example of a wave function that satisfies condition (41), consider the initial
Gaussian

Ψ(init)(χ) =

(
8

Tbπ

)1/4

exp
(
−χ2

Tb

)
, (44)
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where Tb is the constant variance of the Gaussian. The wave solution for all times in terms
of a is [? ]:

Ψ(a, T) =

[
8Tb

π
(
T2 + T2

b
)]1/4

exp
[ −4Tba3(1−ω)

9(T2 + T2
b )(1−ω)2

]

× exp

{
−i

[
4Ta3(1−ω)

9(T2 + T2
b )(1−ω)2

+
1
2

arctan
(

Tb
T

)
− π

4

]}
.

The corresponding Bohmian trajectories are

a(T) = ab

[
1 +

(
T
Tb

)2
] 1

3(1−ω)

. (45)

Note that this solution has no singularities for whatever initial value of ab 6= 0, and
tends to the classical solution when T → ±∞. The constant Tb gives the time scale of the
bounce. The solution (45) can be obtained for other initial wave functions [39].

For w = 1/3 (radiation fluid), and adjusting the free parameters, the solution (45) can
reach the classical evolution before the nucleosynthesis era, where the standard cosmologi-
cal model starts to be compared with observations. Hence, it can be a good candidate to
describe a sensible cosmological model at the radiation dominated era, which is free of
singularities.

One can also include in this model a pressureless component, describing dark matter
and baryons. This was done in Reference [70], yielding

a(ηs) = a0

(
Ωm0

4
η2

s +

√
1
x2

b
+ Ωr0 η2

s

)
. (46)

In this expression, xb = a0/ab is the ratio between the scale factor today and the scale
at the bounce, a0 and ab, respectively, Ωm0 and Ωr0 are the usual dimensionless densities
(Ω = ρ/ρc) of dust and radiation, respectively. I have also defined the dimensionless
conformal time, ηs = (a0/RH0)η, where RH0 = 1/H0 is the Hubble radius today. The
scale factor in Equation (46) describes a universe dominated by dust in the far past. As
the universe contracts, radiation eventually dominates over dust, and near the bounce
quantum effects become relevant. The quantum bounce happens, and it is followed by
another radiation and dust phases. As we will see, the presence of dust is important not
only for completeness, but also because it is necessary to yield a scale invariant spectrum
of scalar perturbations.

Note that the Wheeler-DeWitt quantization we are using must be understood as an
approximation of some complete theory of quantum gravity at scales not so close to the
Planck length. The curvature scale at the bounce reads

Lb ≡
1√
R

∣∣∣∣
ηs=0

=

√
a3

6a′′

∣∣∣∣∣∣
ηs=0

, (47)

where R is the Ricci scalar. Using the values H0 = 70 km s−1 Mpc−1 and Ωr0 ≈ 8 ×
10−5, the imposition that Lb should be a few orders of magnitude bigger than the Planck
length implies that xb < 1031. Also, the bounce should occur before the beginning of
nucleosynthesis, yielding xb � 1011. To summarize, one gets

1011 � xb < 1031. (48)
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3. Cosmological Perturbations in Quantum Bouncing Backgrounds

In inflationary models, all wavelengths of cosmological interest were much smaller
than the Hubble radius during the inflationary era, and any small perturbation around
the homogeneous background would rapidly fade away. Hence, it is assumed that only
quantum vacuum fluctuations would survive. This justifies the choice of an adiabatic
vacuum state (close to the Bunch-Davies de Sitter vacuum state) as the initial quantum
state of quantum cosmological perturbations, which is then evolved to the present era, with
great observational success. In this scenario, the quantum perturbations evolve from the
inflationary era up to now in a classical background, it is quantum field theory in curved
spaces. However, the background classical cosmological models of inflation, when evolved
back in time, generally contain an initial singularity, a point where no physics is possible,
rendering them incomplete.

In the previous section, I have obtained quantum cosmological background models
which are free of singularities. Furthermore, as explained in the Introduction, they contain a
long-standing decelerating contracting phase, implying that they are also naturally free of the
particle horizon and flatness issues. Finally, it was shown that the contracting phase can be
smoothly connected through a quantum bounce to the usual radiation dominated expanding
phase of the standard cosmological model. Hence, it is natural to extend the usual approach
to cosmological perturbations to these models, in which one will have to consider quantum
corrections to the background evolution itself. Note that, as in inflation, in bouncing models
with decelerated contraction all wavelengths of cosmological interest are also much smaller
than the Hubble radius in the far past of the contracting phase, which contains an immensely
large space volume and very a small matter energy density, being very close to the flat
Minkowski space-time. Hence, any small classical perturbation around such homogeneous
background would rapidly dissipate away, and one can assume that only quantum vacuum
fluctuations would survive (for details, see Reference [71]). Again, this justifies the choice of
an adiabatic vacuum state as the initial quantum state of quantum cosmological perturbations,
now close to the Minkowski vacuum quantum state, which should then be evolved to the
present era. However, these quantum perturbations should be dynamically evolved through
the bounce, which is not a trivial task, as long as the bounce usually involves new physics.
This is an issue for many bouncing models. The situation is more complicate for quantum
bounces, where the problem of interpretation of quantum cosmology becomes acute. Early
attempts resulted in very complicate equations [72].

Nevertheless, if one applies the dBB quantum theory to quantum cosmology, then
many of these issues can be naturally solved. As the background degrees of freedom and the
perturbation fields are assumed to have physical reality with their own equations of motion
(contrary to other approaches), the actual calculations are conceptually much simpler,
because they are conceptually similar to the classical case. This point will become clear to
the reader as we move on in this section, with concrete calculations (see References [73,74]
for further details).

3.1. Perfect Fluids

Firstly, I will present the main features for the quantization of perturbations and
background in the case of perfect hydrodynamical fluids (p = wρ).

The action we shall begin with is that of general relativity with a perfect fluid, the
latter being described using the formalism of Section 2.2, yielding

S = SGR + Sfluid = − 1
2l2

P

∫ √
−gRd4x−

∫ √
−gpd4x, (49)

remembering that lP = (8πGN)
1/2 =

√
6κ is the Planck length in natural units, ρ is the

perfect fluid energy density satisfying the equation of state p = ωρ, where p is the pressure
and ω is a non-vanishing constant.
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Besides the usual homogeneous and isotropic cosmological background metric, re-
stricted here to flat space-like hyper-surfaces,

ds2 = ḡµν(t)dxµdxν = N2(t)dt2 − a2(t)δijdxidxj. (50)

I will also consider linear scalar perturbations around it, hµν(t, x), which can be
decomposed into

h00(t, x) = 2N2(t)φ(t, x)

h0i(t, x) = −N(t)a(t)B,i(t, x) (51)

hij(t, x) = 2a2(t)ψ(t, x)γij − E,ij(t, x)),

where , i represents ∂/∂xi. Hence, the total metric is

gµν(t, x) = ḡµν(t) + hµν(t, x). (52)

The matter Lagrangian p is expressed in terms of the fluid velocity field, see Section 2,
which can be expanded in the same way,

ϕ(t, x) = ϕ̄(t) + δϕ(t, x), (53)

where ϕ̄(t) is the background field and δϕ(t, x) its first order perturbation.
One should also consider vector and tensor perturbations. The vector perturbations

will be discussed in the next section. The tensor perturbations, or primordial gravitational
waves, are represented by transverse-traceless spatial tensor hTT

ij (t, x), whose treatment is
very similar and much easier. For details, see References [73,75].

After substituting Equations (50), (51) and (53) into the Einstein-Hilbert action (49), one
can construct the Hamiltonian of the system. The invariance of GR under diffeomorphisms
induces the appearance of first class constraints, implying that there is only one degree
of freedom describing the perturbations (see Reference [74] for details). After performing
suitable canonical transformations, and without ever using the background equations of
motion, the Hamiltonian up to second order can be reduced to

H = N
[

H(0)
0 + H(2)

0

]
, (54)

where

H(0)
0 ≡ − P2

a
4aV

+
PT

a3ω
, (55)

and
H(2)

0 ≡ 1
2a3

∫
d3xπ2(x) +

aω

2

∫
d3xv,i(x)v,i(x). (56)

Looking at (54), one can see that the final Hamiltonian contains a single first class
constraint H(0)

0 + H(2)
0 , with Lagrange multiplier N, connected with the invariance of the

theory under time reparametrizations. One recognizes H(0)
0 as the Hamiltonian describing

the background FLRW model with perfect fluids, presented in Section 2. The second
order piece, H(2)

0 , describes the dynamics of the perturbation field, in which v(x), with its
conjugate momentum π(x), emerges as the single perturbation degree of freedom left. It is
the usual gauge invariant Mukhanov-Sasaki variable

v(x) =
a

1
2 (3w−1)
√

6

(
δϕ(x) +

2
√

6
√
(w + 1)PT

Pa
√

w
a2−3wψ(x)

)
, (57)
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written in terms of the background variables, and the perturbation fields ψ(x), δϕ(x). The
v(x) field is connected to the gauge invariant Bardeen potential Φ(x) (see Reference [76])
through

Φ,i
,i(x) = −

3
√
(ω + 1)ρ̄
2
√

ω
a
(

v(x)
a

)′
, (58)

where ρ̄ is the background energy density, and a prime means derivative with respect to
conformal time.

In the Dirac quantization procedure, the first class constraints must annihilate the
wave functional Ψ[T, a, v(x)],

(Ĥ(0)
0 + Ĥ(2)

0 )Ψ = 0. (59)

As PT appears linearly in H, and making the gauge choice N = a3w, one can interpret
the T variable as a time parameter. Hence, Equation (59) assumes the Schrödinger form

i
∂

∂T
Ψ =

1
4

{
a(3w−1)/2 ∂

∂a

[
a(3w−1)/2 ∂

∂a

]}
Ψ

−
[

a3w−1

2

∫
d3x

δ2

δv2(x)
− a3w+1w

2

∫
d3xv,i(x)v,i(x)

]
Ψ, (60)

where we have chosen the same factor ordering in a as in the previous section.
If one makes the ansatz

Ψ[a, T, v(x)] = Ψ(0)(a, T)Ψ(2)[T, v(x)], (61)

which is based on an assumption that the background is not entangled with the perturba-
tions, then at zeroth order one finds that Ψ(0)(a, T) satisfies the equation,

i
∂

∂T
Ψ(0)(a, T) =

1
4

{
a(3w−1)/2 ∂

∂a

[
a(3w−1)/2 ∂

∂a

]}
Ψ(0)(a, T), (62)

while Ψ(2)[v(x), T] satisfies the equation

i
∂

∂T
Ψ(2)[T, v(x)] = − a(3w−1)

2

∫
d3x

δ2

δv2(x)
Ψ(2)[T, v(x)] +

wa(3w+1)

2

∫
d3xv,i(x)v,i(x)Ψ(2)[T, v(x)]. (63)

At this point, one can see an advantage in using the dBB theory. Solutions of the zeroth
order equation yield, in the dBB theory, a Bohmian trajectory a(T) which, when inserted in
Equation (63), yields a time-dependent Schrödinger equation for Ψ(2), because a(T) can
be viewed as a given function of time. Then, going to conformal time dη = a3w−1dT, and
performing the time-dependent unitary transformation

U = exp

{
i
∫

d3x

[
˙a(T)v(x)
2a(T)

− (v(x)π(x) + π(x)v(x))
2

ln(a(T))

]}
, (64)

where a(T) is the Bohmian trajectory, the functional Schrödinger equation for the perturba-
tions transforms to

i
∂Ψ(2)[v(x), η]

∂η
=
∫

d3x
(
−1

2
δ2

δv2(x)
+

w
2

v,i(x)v,i(x)− a′′

2a
v2(x)

)
Ψ(2)[v(x), η], (65)
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where we have gone to the new quantum variable v̄(x) = av(x), the Mukhanov-Sasaki
variable defined in Reference [76] (we have omitted the bars). Equation (65) is the usual
functional Schrödinger equation for quantum linear perturbations in cosmological models
with a single perfect fluid. The difference with the conventional approach is that now the
scale factor appearing in Equation (65) is not the classical one, but the Bohmian solution
a(η), which may be free of singularities, with a bounce. This interpretation of Equation (65)
is only possible within the dBB theory, in which a Bohmian trajectory a(η) can be defined.
In other frameworks, where a is a background quantum degree of freedom, hence a
quantum operator, the physical understanding of the Wheeler-DeWitt equation (60) using
the ansatz (61) implying Equation (65) becomes conceptually much more intricate, if
possible. Solutions Equation (62) are known, and were presented in the previous section.

In the Heisenberg picture the operator v̂(x) evolves as

v̂′′(x)−ωv̂,i
,i(x)−

a′′

a
v̂(x) = 0. (66)

In terms of the normal modes vk, the above equation reads

v′′k +

(
ωk2 − a′′

a

)
vk = 0. (67)

These equations have the same form as the equations for scalar perturbations obtained
in Reference [76]. However, as the function a(η) is no longer a classical solution of the
background equations, but a quantum Bohmian trajectory of the quantized background,
different power spectra of quantum perturbations may arise.

Far from the bounce, when |T| � |Tb|, Equation (67) reads,

v′′k +

[
ωk2 +

2(3ω− 1)
(1 + 3ω)2η2

]
vk = 0. (68)

The solution is

vk =
√
|η|
[
c1(k)H(1)

ν (k̄|η|) + c2(k)H(2)
ν (k̄|η|)

]
, (69)

with

ν =
3(1−ω)

2(3ω + 1)
,

where H(1,2) are Hankel functions, k̄ ≡ √ωk, and we are considering the far past of the
contracting phase, η � −1.

Perturbation information propagates with the speed of sound cs =
√

w, hence the
scale of causal contact is the sound horizon csRH =

√
wa2/a′. This must be compared with

the perturbation scale, λa = a/k. The bounce solution (45) for |η| � ηb is a power low
in η, hence these scales become comparable when csRH ≈ λa⇒ k̄|η| ≈ 1. Consequently,
in the far past of the contracting phase, η � −1, one has k̄|η| � 1 ⇒ csRH � λa,
and all inhomogeneous perturbations of cosmological interest were far inside the sound
Hubble radius, as anticipated in the Introduction, allowing a causal explanation for their
origin, like in inflation. Furthermore, the Universe was almost empty and flat in this era
(the space-time curvature behaves as 1/η2 → 0), hence, small classical inhomogeneities
would rapidly dissipate away [71], and only quantum vacuum fluctuations around the
background homogeneity should be present. As a consequence, we will set as the initial
quantum state of cosmological perturbations at this era the (almost) Minkowski vacuum
state, with modes given by,

v(ini)
k =

exp ik̄η√
k̄

. (70)
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This implies that

c1 = 0 and c2 = lP

√
3π

2
exp−i π

2 (ν+ 1
2 ) .

In order to propagate the solution through the bounce up to the expanding phase,
one can expand the solutions of Equation (68) in powers of k2 according to the formal
solution [76]

vk
a

= A1(k)
[

1−ωk2
∫ t dη̄

a2(η̄)

∫ η̄
a2( ¯̄η)d ¯̄η

]
+ A2(k)

[∫ η dη̄

a2 −ωk2
∫ η dη̄

a2

∫ η̄
a2d ¯̄η

∫ ¯̄η d ¯̄̄η
a2

]
+ ... ,

(71)

where I have omitted the terms of order O(kj≥4). In Equation (71), the coefficients A1 and
A2 are two constants depending only on the wavenumber k through the initial conditions.
Although Equation (71) should formally apply for all times, this presentation of the solu-
tions can be very useful in the regions were k̄η � 1, where terms of higher order k become
negligible. In order to find the k dependence of A1 and A2, one can match solution (71)
with Equation (69), where c1 and c2 are already known, yielding

A1 ∝
(

k̄
k0

) 3(1−ω)
2(3ω+1)

, (72)

A2 ∝
(

k̄
k0

) 3(ω−1)
2(3ω+1)

, (73)

where k−1
0 = T0a3ω−1

0 = Lb, and Lb is the curvature scale at the bounce. One can then
propagate solution (71) up to the expanding phase, and then find the power spectrum of
primordial cosmological perturbations.

The Bardeen potential Φ(x) can be obtained from v(x) through the formula

Φ,i
,i(x) = −

3l2
P

√
(ω + 1)ρ̄

2
√

ω
a
(

v(x)
a

)′
. (74)

In the expanding phase, when the quantum effects allowing the bounce become
negligible again, T � Tb, the constant mode of Φ, like v, mixes A1 with A2. In this region,
taking into account that A2 dominates over A1 (see the next section for details), one obtains,
for the modes,

Φk ∝ k
3(ω−1)
2(3ω+1)

[
const. +

1
η(5+3ω)/(1+3ω)

]
. (75)

The power spectrum of the Bardeen potential

PΦ ≡
2k3

π2 |Φk|2, (76)

reads
PΦ ∝ knS−1, (77)

where
nS = 1 +

12ω

1 + 3ω
. (78)
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For gravitational waves (see Reference [75] for details), the equation for the modes
µk = ahk (hk is the amplitude of the waves) reads

µ′′k +

(
k2 − a′′

a

)
µk = 0. (79)

The power spectrum is

Ph ≡
2k3

π2

∣∣∣µk
a

∣∣∣2 ∝ knT . (80)

In Reference [75], we have obtained, as for the scalar modes,

nT =
12ω

1 + 3ω
. (81)

In the limit ω → 0 (dust), we obtain a scale invariant spectrum for both tensor and
scalar perturbations. This result was confirmed through numerical calculations, which also
gave the amplitudes [74]. In fact, it is a general result: in a smooth bounce, any contracting
dust-dominated phase at large scales leads to an almost scale invariant spectrum for large
wave-lengths scalar perturbations [77]. Note that it is not necessary that the fluid that
dominates during the bounce be dust. The k-dependence of A1 and A2 is obtained far
from the bounce, when the modes cross the sound Hubble radius, k̄η ≈ 1, and they do
not change in a possible transition from matter to radiation domination in the contracting
phase, or during the bounce. The effect of the bounce is essentially to mix these two
coefficients, when the constant mode acquires the scale invariant piece. Hence, the bounce
itself may be dominated by another fluid, like radiation.

Note that the model considered here, with one single perfect fluid, is still too simple,
but it reveals that a dominance of a dust fluid in the far past of the contracting phase
is essential, in the same way that the inflation should behave almost as a cosmological
constant during the inflationary era. Of course the model must be more elaborated, as
with a single perfect fluid one usually has w = c2

s > 0, and it will be hard to accommodate
result (78) with a red-tilted spectrum, as observed. And indeed, just by including radiation
in the model, a red-tilted spectral index can emerge. In fact, the more complex bounce solu-
tion (46) yields an almost scale invariant spectrum of adiabatic cosmological perturbations,
with amplitude given by [78,79],

AS ≈ 10−2 l2
p

R2
H0

x2
b

Ωr0c5
s

, (82)

where cs is the value of the sound velocity of the adiabatic perturbation when it crosses the
sound Hubble radius. As the perturbation modes grow faster after they cross the sound
Hubble radius, and as they cross earlier this scale for smaller cs, csk|ηc| ≈ 1, where ηc is
the conformal time at crossing (which is negative, as we are in the contracting phase), then
the amplitude of scalar perturbations must increase inversely with cs, as it is the case of
Equation (82). As AS ≈ 2.09× 10−9, see Reference [23], and using Equation (48), one gets

10−16 ≤ cs < 10−10 (83)

for the sound velocity. Note, however, that there are two fluids, hence the sound velocity
for the adiabatic perturbations reads:

c2
s =

w(ρd + pd) + (ρr + pr)/3
ρT + pT

, (84)

where w is the equation of state parameter of the dust fluid, and the indices d, r, T refers
to dust, radiation, and total energy densities and pressures, respectively. Hence, c2

s ≈
|w| � 1 only when the dust-matter fluid dominates, which is the case of the larger scales
of cosmological interest. Smaller scales, or larger k perturbation modes, cross the sound
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Hubble radius later, when radiation begins to be important, hence the power spectrum
amplitude gets suppressed because cs increases up to the limit 1/

√
3 when radiation

dominates, see Equation (84). Accordingly, the spectrum must be slightly red-tilted due to
the presence of radiation, and the parameters may be fitted with CMBR observations.

Note that tensor perturbations have cs = 1, and as they evolve similarly to scalar
perturbations, see Equation (79), their amplitudes must be very small in comparison with
scalar perturbations in the case of bouncing models with fluids, being unobservable at
large scales, or very small frequencies. I will return to this subject by the end of this section,
discussing the large frequency regime.

In the next sections I will discuss other quantum bouncing models in which one
can have 0.96 < ns < 0.97, either by considering dark energy, or by modeling the dust
component by a canonical scalar field, in which the effective w is not constrained to be
positive, as it has no relation with the sound speed of adiabatic perturbations (which is 1 in
this case).

3.2. The Scalar Field

As we have seen in the previous section, in the case of scalar fields there is no momentum
which appears linearly in the Hamiltonian constraint, and the Wheeler-DeWitt equation has
rather a Klein-Gordon form than a Schrödinger-like structure. Hence, the route to obtain a
functional Schrödinger equation for the perturbations is more subtle than in the perfect fluid
case. The aim of this subsection is to present the steps leading to a functional Schrödinger
equation for the perturbations in the scalar field case. We will see that the dBB theory turns
out to be a very useful tool to achieve this goal. In order to emphasize the concepts rather
than technicalities, I will consider a massless free scalar field. The generalization to arbitrary
potentials (like inflationary ones see Reference [80]) is straightforward.

The free massless scalar field is ϕ(t, x) = ϕ(t) + δϕ(t, x), where ϕ(t) is the background
homogeneous scalar field and δϕ(t, x) is its linear perturbation. The FLRW metric together
with their scalar perturbations are given by Equations (52), (50) and (51).

Starting from the classical action for this system, the Hamiltonian up to second-
order can be brought into the following simple form, without ever using the background
equations of motion [80] (κ2 = 1):

H =
N

2e3α

[
−P2

α + P2
ϕ +

∫
d3x
(

π2(x) + e4αv,i(x)v,i(x)
)]

, (85)

where again a = eα and v(x) is the usual Mukhanov-Sasaki variable [76], defined as

v(x) = a
(

δϕ(x) +
ϕ′φ(x)
H

)
, (86)

with primes denoting derivatives with respect to conformal time η, andH = a′/a = α′.
The Dirac quantization procedure yields the Wheeler-DeWitt equation

(Ĥ0 + Ĥ2)Ψ = 0, (87)

where

Ĥ0 = − P̂2
α

2
+

P̂2
ϕ

2
, (88)

Ĥ2 =
1
2

∫
d3x
(

π̂2(x) + e4α̂v̂,i(x)v̂,i(x)
)

. (89)

As in the perfect fluid case, I will suppose that the background evolution is not affected
by the quantum perturbations through some quantum entanglement, yielding

Ψ[α, ϕ, v(x)] = Ψ0(α, ϕ)Ψ2[α, ϕ, v(x)]. (90)



Universe 2021, 7, 110 20 of 46

Here, I am letting Ψ2 depend on both α, ϕ, as there is no explicit background variable
playing the role of time. As before, the zeroth order part Equation (87) reads

Ĥ0Ψ0 = 0 (91)

and, in the dBB framework, the corresponding background guidance equations. This is
the mini-superspace model described in Section 2. As we have seen, quantum effects can
eliminate the background singularity, leading to bouncing models.

One can now proceed to the second order equation substituting the ansatz (90) into
Equation (87) and using (91). Taking a Bohmian solution (α(t), ϕ(t)) for the background,
guided by Ψ0, one can now use the Section 2 concept of conditional wave equation for the
perturbations defining

χ[v(x), t] = Ψ2[α(t), ϕ(t), v(x)]. (92)

As the dBB background quantization yields the guidance Equation (19) (remember
that we are in the time gauge N = e3α and using κ = 1)

ϕ̇ = ∂ϕS, α̇ = −∂αS, (93)

then one can state that

−
(

∂S0

∂α

)(
∂Ψ2

∂α

)
+

(
∂S0

∂ϕ

)(
∂Ψ2

∂ϕ

)
= α̇

(
∂Ψ2

∂α

)
+ ϕ̇

(
∂Ψ2

∂ϕ

)
=

∂χ

∂t
. (94)

Using Equation (94) in (87), together with two other assumptions which I will discuss
shortly, one gets the Schrödinger equation

i
∂χ

∂t
= Ĥ2χ , (95)

where, as before, the dependence of Ĥ2 on the background variables are understood as a
dependence on t.

In order to go to conformal time, one can implement a time-dependent canonical trans-
formation, similar to what was done in the perfect fluid case, yielding (see Reference [81]
for details)

i
∂χ

∂η
=

1
2

∫
d3x
[

π̂2(x) + v̂,i(x)v̂,i(x)−
a′′

a
√

γ v̂2(x)
]

χ , (96)

implying the mode equation

v′′k +

(
k2 − a′′

a

)
vk = 0 . (97)

Remember that we have not used the background equations of motion. Thus we have
shown that Equation (97) is well defined, independently of the background dynamics,
and it is correct even if we consider quantum background trajectories. Note that the
time dependent potential a′′/a in Equation (97) can be rather different from the usual
semi-classical calculations, because it is calculated from Bohmian trajectories, not from the
classical ones. This can give rise to different effects in the region where the quantum effects
on the background are important, which can propagate to the classical region.

Equation (96) was obtained under two conditions. The first is that, when the back-
ground gets near the classical limit one should obtain the usual semi-classical Schrödinger
equation for the perturbations, without any further corrections. Indeed, there could be
corrections originated from some quantum entanglement between the background and the
perturbations affecting the quantum perturbations, even when the background is already
classical, which would spoil the usual semi-classical approximation. This could be a viable
possibility driven by a different type of wave functional than the one considered here, but
it seems that our Universe is not so complicate. In fact, the observation that the simple
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semi-classical model without this sort of entanglement works well in the real Universe
indicates something about the wave functional of the Universe. In other words, the validity
of the usual semiclassical approximation imposes this first condition. One could also have
some quantum entanglement effect on the perturbations from the background degrees
of freedom when the background is fully quantum, and the final quantum Equation (96)
for the perturbations we have obtained would not be valid around the quantum bounce.
In this case, there is no observation that could guide us in the choice of the class of wave
functionals that should be used. Hence, this choice resides only on assumptions of simplic-
ity. This is our second condition. The mathematical expression for them can be found in
Reference [81].

One can state the two conditions in a single form: there is no quantum entanglement
effect of the background on the perturbations in the whole history of the Universe. This is the
physical reason for choosing the specific class of wave functionals satisfying Equation (96).
Taking other classes of wave functionals, which would not satisfy this physical hypothesis,
can lead to new effects. This could also be an alternative interesting line of investigation.

I would like to emphasize that the original Wheeler-DeWitt equation has no time in it,
but I was able to construct a Schrödinger equation for the perturbations. The assumption
of the existence of a Bohmian background quantum trajectory was essential to achieve this
goal, see Equation (94). This is very important, because a notion of probability emerges
naturally in quantum equations for the wave functional with a Shrödinger form, but not
with a Klein-Gordon form, which is the case of the original Wheeler-DeWitt equation.
However, in the dBB approach no probability measure is required a priory, but this does
not forbid us to obtain the Bohmian trajectories for the background through the guidance
relations. These trajectories, which are assumed to be actual trajectories, can then be used
in the equations for the perturbations, yielding a Schrödinger equation for them. In this
case, there is a typical probability distribution, the Born distribution, which can be the
attractor, called quantum equilibrium distribution (see Reference [58]), of any reasonable
probability distribution. Hence, we are back to standard quantum theory of cosmological
perturbations, now evolving in a background which does not always evolve classically
and, thanks to that, is free of singularities.

When a scalar field potential is present, one just has to substitute a′′/a by z′′/z in this
Hamiltonian, where z = aϕ′/H, remembering that z must be calculated using the Bohmian
trajectories [80]. I will let to Section 5 the calculation of the power spectrum of a scalar field
model with an exponential potential, because it will address some new issues that I will
raise in the following sections.

3.3. Gravitational Waves

All models for the origin of primordial cosmological perturbations must be compared
among themselves, and with observations, with the search for tests allowing to discriminate
the models. One possible observational test can be through the detection of primordial
gravitational waves (tensor perturbations). With this in mind, we have also calculated their
amplitudes in the quantum bouncing models with perfect fluid discussed in Section 3 [82].
We have shown that the strain spectrum of the stochastic background of relic gravitons in
such models is indeed quite different from the cyclic (ekpyrotic) and inflationary scenarios,
see Figure 1. However, we have shown that the resulting amplitude is too small to be
detected by any gravitational wave detector, unless in the frequency range 10–100 Hz, as
it can be seen from Figure 1. Nevertheless, it is a hard technical challenge to construct
detectors of stochastic gravitational waves able to make significant observations in this
range of frequencies. If it is possible, then one could use these observations to discriminate
these primordial universe models, see Reference [82] for details.
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Figure 1. The figure shows a comparison of our results, labeled by η̄b (the smaller this parameter the
bigger is the energy scale of the bounce, and the value 10−30 is just two orders of magnitude away
from the Planck scale) with experimental sensitivities of LIGO’s 5th run, Advanced LIGO, and the
forthcoming LISA and Einstein Telescope and a prediction of the upper limits on the spectrum of
primordial gravitational waves generated in inflationary models.

In the scalar field case, the situation is different. In classical bounces, canonical scalar
fields usually implies an amount of primordial gravitational waves comparable with scalar
perturbations [83,84], which is ruled out by observations. In Section 5 I will show how this
problem is overcome in quantum bounces.

4. Bounce Stability

One objection against bouncing models concerns the non-linear growth of inhomo-
geneities during the contracting phase, implying that, after the bounce, in the beginning of
the expanding phase, the Universe would be very far from the homogeneous configuration
inferred by cosmological observations. Furthermore, a very inhomogeneous bounce would
be very hard to describe, either through GR, or any of its extensions.

We argued in the Introduction that, up to now, there is no physical explanation for
the initial homogeneity and isotropy of the Universe, either in a bouncing scenario or in a
universe with a beginning followed by inflation. Hence, our approach to this issue was to
assume from the beginning that the Universe was initially very homogeneous and isotropic,
as observations impose to us. However, initial small inhomogeneous perturbations must
be present in this homogeneous background, if not, there would be no structure in the
Universe. The issue then is to evaluate whether these small perturbations would remain
linear, at least up to the CMBR last scattering surface.

In a Universe with a beginning followed by inflationary expansion, one argues that
only quantum vacuum fluctuations of these inhomogeneous perturbations survive. Then,
it can easily be shown that they remain linear up to the necessary era when they cluster
non-linearly to create structures in the Universe.

In bouncing models the situation can be more involved, as the Universe experiences
a long era of contraction before the bounce, contrary to the accelerated expansion of the
inflationary scenario. Intuitively, one might guess that such long contracting phase would
favor a huge growth of these tiny inhomogeneous perturbations. In fact, this has always
been a repeated claim against bouncing models.

In this section, I will show that the bouncing models discussed in this paper are stable,
and their inhomogeneous perturbations remain linear up to the expanding phase when
they should start to clump to form structures. As argued above, our point of departure will
be an immensely large universe, with a tiny background homogeneous and isotropic matter
energy density, hence being an almost flat space-time, where inhomogeneous perturbations
arise from quantum vacuum fluctuations, as we explained in Section 3. I will investigate
the evolution of scalar and vector perturbations, as the models we are considering already
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have tensor perturbations smaller then scalar perturbations in order to satisfy present
observations [1].

4.1. Scalar Perturbations

It was shown in [85] that the curvature perturbation ζ = v/z is amplified in the
contracting phase, and remains constant and scale invariant in the expanding phase.
Nevertheless, the Bardeen potential Φ develops a large growing mode in the contracting
phase, which is converted entirely into a decaying mode in the expanding phase, differently
from inflation, where the decaying mode is always decreasing and small.

Even though the growing mode of Φ couples only with the decaying mode of the
curvature perturbation in the expanding phase, the large value of the Bardeen potential at
the bounce raises a problem concerning the violation of linear perturbation theory around
this time, as long as in certain gauges it is directly connected to metric perturbations. In
Reference [77] it was shown, using a specific model, that indeed the Bardeen potential
grows larger than 1 at the bounce, but it can be made harmless with a suitable gauge
choice. However, it remains the question about whether this problem is a general feature
of bouncing models, breaking the homogeneity of space-time before the expanding phase,
and, in case this is true, whether there exists efficient gauge choices which can solve this
problem in a larger class of models. In order to address these questions, it was shown in
Reference [79] that the ratio between the Bardeen potential at the bounce and its constant
value after the bounce is a very large number in general. As this constant value is given
by the CMBR observations, then the Bardeen potential is indeed very large at the bounce,
putting into question the validity of perturbation theory around a homogeneous geometry
around the bounce. In order to tackle this problem, it was found a set of necessary
conditions that must be satisfied in a valid linear perturbation theory for the metric and
matter perturbations. The first part of this set is defined by imposing that the metric
perturbations remain small when compared to their background values. The second one
comes through the imposition that the perturbed Einstein equations remain small when
compared with the background dynamics. When these conditions are applied to the
perturbations, it is necessary and sufficient that they should be satisfied at least in one
specific gauge. In other words, one should have to find at least one way of embedding the
reference gravitational and matter field configurations in the exact field configurations in
such a way that the difference between both satisfies all established smallness conditions.

The calculation of the ratio between the Bardeen potential at the bounce, Φb, with it
expanding phase value when the decaying mode becomes negligible, Φ0, reads, for long
wavelengths, √

P b
Φ√
P0

Φ

=

∣∣∣Φb
k

∣∣∣∣∣Φ0
k

∣∣ = Ω0w3(1− wq)(5 + 3wq)

4π(
√wqk)2 x

1+3wq
b , (98)

where Ω0w = ρ0w/ρc, ρc is the critical density, ρ0w is the energy density today of the fluid
which dominates the contracting phase when the perturbation scale crosses the sound
Hubble radius, which should satisfy |w| = |pw/ρw| � 1 in order to yield an almost
scale invariant spectrum of scalar perturbations, wq is the equation of state parameter of
the fluid which dominates the quantum bounce, x = a0/a, and xb = a0/ab. As CMBR

observations [1] require
√
P0

Φ ≈ 10−5 and xb � 1011 (remember that the bounce must

occur before nucleosynthesis, satisfying xn ≈ 1011), then
√
P b

Φ � 1. In the Newtonian
gauge (B = 0 = E , and consequently the shear δσ = −a(E ′ −B) = 0), Φ = φ, which is the
g00 metric perturbation. Therefore linear perturbation theory breaks down in this gauge.

Note, however, that a valid gauge transformation relating different gauge fixations
in some period of the cosmological history may not be valid in another era, because the
gauge transformation parameter may become non-linear. Hence, one of the gauge fixations
is not adequate in this period, and it does not mean that the perturbation theory breaks
down, it only means that this particular gauge is not appropriate to describe the model
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evolution in this epoch. The correct approach is to verify that there exists at least one
gauge choice in which the equations for the perturbations makes sense at linear order
at each particular phase of the model history, before, of course, the usual epoch where
non-linearities become important. This was done in Reference [79]. For the problem raised
above, one can choose the constant curvature gauge (δR = − 4

a2 D2ψ = 0, where D2 is the
spatial covariant Laplacian), in order to avoid the problem with φ described above. In this
gauge one has ψ = B = 0, but one must impose E(η1) = 0 at some convenient conformal
time η1 in order to fix the gauge completely. This gauge fixation yields

δσ = − aΦ
H , φ = x2c2

s z2ζ, E =
∫ η

η1

dη̄Φ̄
H̄ , (99)

where I used that Φ = Ψ (no anisotropic pressure is present, see Reference [79] for details).
One can note that, in this gauge, the metric perturbation φ has a different behavior

with respect to ζ. Indeed, when just a single fluid dominates, one gets

φ =
3(1 + w)

2
ζ.

In this gauge, φ is proportional to ζ. As ζ grows in the contracting phase up to the
bounce, when it acquires its maximum value and remains constant in the the expanding
phase, and as it was proven for many bouncing models that this constant can be easily
fitted with its observed value (which is small), then φ is always small as well. Hence, φ� 1
is satisfied in this gauge.

There are other requirements which scalar perturbations should satisfy in order to
keep linearity. They were analyzed in great detail in References [79,86], and they were
shown to be satisfied all over the contracting phase and through the bounce itself. The
conclusion was that, for a variety of models studied (not only the quantum bounce), the
evolution of scalar perturbations near such bouncing models is well-behaved in what
concerns the perturbative series.

4.2. Vector Perturbations

Another old question surrounding bouncing models concerns their stability under
vector perturbations. Vector perturbations evolve kinematically as a−2, when the matter
content is described by perfect fluids or scalar fields. Consequently, a definite answer con-
cerning the bounce stability depends on an arbitrary constant, hence, there is no definitive
answer. In order to tackle this issue, it was considered a more general situation, where the
primeval material medium is a non-ideal fluid, and its shear viscosity is capable of pro-
ducing torque oscillations, which can create and dynamically sustain vector perturbations
along cosmic evolution.

The total energy–momentum tensor considered was,

Tµν = (ρ + p)uµuν − pgµν + TS
µν, (100)

where ρ is the fluid energy density, p its pressure, uµ is the four velocity, and Tµν
S is the

shear viscosity component of the fluid, given by

TS
µν = 2λσµν, (101)

where the shear reads

σµν ≡ u(µ;ν) − u(µuρuν);ρ −
uρ

;ρ

3
(

gµν − uµuν

)
. (102)
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In this expression, λ is the shear viscosity coefficient, ‘;’ the covariant derivative com-
patible with the metric, and uµ is the normal vector orthogonal to the spatial hypersurfaces.
Round brackets in the indices indicate symmetrization.

The background metric together with their vector perturbations is

ds2 = a(η)2
[
dη2 −

(
δij − ∂jFi(x)− ∂iFj(x)

)
dxidxj

]
. (103)

The linear perturbation Fi(x) can be decomposed in terms of eigenfunctions of the
three dimensional Laplace’s operator, Qi(x), satisfying the equations,

∇2Qi(x) = −k2Qi(x) , ∂iQi(x) = 0 : (104)

F(k)
i = Fk(η)Qi. (105)

The final mode equation for the perturbation hk(η) = −kFk(η) reads (see Refer-
ence [87] for details)

h′′k +
2a′

a
h′k + k2b2hk = 0 , (106)

where b2 = v2
t /c2, with vt being the torsional velocity of sound.

In this framework, one can set that vector perturbations have a quantum mechanical
origin, coming from quantum vacuum fluctuations in the far past of the bouncing model,
as it is done with scalar and tensor perturbations (Equation (106) has the same structure as
the equation for the tensor perturbation hT

k = µk/a in Section 3). Under this prescription,
one can calculate their evolution during the whole history of the bouncing model, and
precisely infer the conditions under which they remain linear before the expanding phase.

The bouncing model I will consider is the solution (46) presented in Section 2

Y(ηs) ≡
a(ηs)

a0
=

Ωm0

4
η2

s +

√
1
x2

b
+ Ωr0 η2

s , (107)

recalling that a0 is scale factor today, Ωm0 and Ωr0 are the usual dimensionless densities of
pressureless matter and radiation, respectively, xb = a0/ab, ab being the value of the scale
factor at the bounce, and ηs = (a0/RH0)η.

In terms of the dimensionless variables,

ks =
kRH0

a0
, |hks | =

√
a3

0
16πl2

pRH0

|hk|, (108)

the conditions of linearity read (see Reference [87] for details)

〈h2〉 = 8
π

l2
p

R2
H0

∫ ks,max

ks,min

dksk2
s |hks |2 � 1, (109)

and

4πY2 l2
p

Ωr0R2
H0

∫ ks,max

ks,min

dksksPv(ks)� 1. (110)

We have numerically checked the validity of these conditions. In the parameter space
(b, xb) the allowed region of parameters in which conditions (109) and (110) are satisfied is
shown in Figure 2:
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Figure 2. Region of stability under vector perturbations in parameter space for the bouncing models
considered. The colored area represents the values of b and xb which satisfies the consistency
conditions (109) and (110).

Hence, there is a large range of parameters in which this model is stable under
vector perturbations. Note that the minimum value allowed for b is b ≈ 10−26. Such
conditions impose that vector perturbations are also not observationally relevant in the
expanding phase. The conclusion is that bouncing models are generally stable under vector
perturbations. As they are also stable under scalar and tensor perturbations, we conclude
that bouncing models are generally stable under perturbations originated from quantum
vacuum perturbations in the far past of their contracting phase.

5. The Presence of Dark Energy

It has been observed that the present expansion of the Universe is accelerated [3,4],
indicating the existence of a new energy component with negative pressure p/ρ < −1/3,
probably a cosmological constant, called dark energy (DE). It is then natural to ask what
is the role of DE in bouncing models. As we have seen, in bouncing models without DE,
vacuum initial conditions for quantum cosmological perturbations are set in the far past
of the contracting phase, when the Universe was very big and almost flat, justifying the
choice of an adiabatic Minkowski vacuum in that phase. However, if DE exists and it
dominates the Universe dynamics at large scales, it will also dominate the asymptotic
past of bouncing models, modifying its geometric structure. As an important example,
in the case of the standard ΛCDM model, where DE is a cosmological constant, the
asymptotic past of such models approaches de Sitter rather than Minkowski geometry.
Furthermore, the large wavelengths today become comparable with the Hubble radius
in the contracting phase when the Universe was slightly influenced by the cosmological
constant. Hence, the existence of a cosmological constant, or other types of DE, can modify
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the spectrum and amplitude of cosmological perturbations. Note that this is not a question
for inflation, because initial conditions for quantum perturbations and the moment of
Hubble radius crossing in such models take place at very small scales, when any DE
causing the acceleration of the Universe today would be completely irrelevant. In fact, the
presence of dark energy in the contracting phase of bouncing models may turn problematic
the imposition of vacuum initial conditions for cosmological perturbations in the far past
of such models.

In the case of a simple cosmological constant, all modes will eventually become
larger than the curvature scale in the far past, and an adiabatic vacuum prescription
becomes quite contrived, see Reference [88]. When a cosmological constant is present, a
Minkowski adiabatic vacuum can only be defined in a definite period of time, from the
end of cosmological constant domination, but when the Universe is still very big. Note,
however, that the long wavelengths of physical interest today are not much smaller than
the length scale associated with the value of cosmological constant given in the ΛCDM
standard cosmological model, hence the spectrum of cosmological perturbations at these
scales can be influenced by the presence of the cosmological constant. We have shown
in Reference [88], analytically and numerically, that in a bouncing model containing a
dust fluid, w ≈ 0, an almost scale invariant spectrum of long wavelength perturbations is
also obtained, but it is now affected by presence of the cosmological constant. It induces
small oscillations, and a small running towards a red-tilted spectrum in these scales, see
Figure 3. Hence, small oscillations in the spectrum of temperature fluctuations may arise
in the cosmic background radiation at large scales, superimposed to the usual acoustic
oscillations.

Figure 3. Numerical results for nS(k) in the presence of a cosmological constant. The solid line
shows the result obtained using ΩΛ = 0.7, the dashed line for ΩΛ = 10−3 and the dotted line for
ΩΛ = 10−6. The oscillations become smaller for smaller ΩΛ, indicating that they arise because of the
presence of the cosmological constant.

The case where DE is described by a scalar field was also investigated, see Ref. [89].
Consider VG = 0 and the exponential matter potential

VM(ϕ) = V0e−λκ̄ϕ, (111)

where V0 and λ are constant. κ̄2 = 6κ2 = 8πG, so that λ is dimensionless. Exponential
potentials have been widely explored in cosmology in order to describe primordial inflation,
the present acceleration of the universe, and matter bounces. This is because they contain
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attractor solutions, where the ratio between the pressure and the energy density is constant:
w = p/ρ, where w = (λ2 − 3)/3. In order to describe matter bounces, w ≈ 0, one sets
λ ≈
√

3. I will now discuss in detail this case.
The classical dynamics of canonical scalar fields with exponential potential is very

rich and simple to understand. Assuming the gauge N = 1 (so that the time is cosmic
proper time), one can define the variables

x =
κ̄√
6H

ϕ̇, y =
κ̄
√

VM√
3H

, (112)

where
H =

ȧ
a
= α̇ (113)

is the Hubble parameter. This choice reduces the cosmological equations to the simple
form

dx
dα

= −3
(

x− λ√
6

)
(1− x)(1 + x) (114)

and the Friedmann equation to
x2 + y2 = 1. (115)

The ratio w = p/ρ is given by

w = 2x2 − 1. (116)

As I am interested in studying matter bounces, I will set λ =
√

3.
The critical points are very easy to be identified from (114), and they are listed in

Table 1, see Reference [90]. The critical points at x = ±1 with w = 1 (p = ρ, region the
scalar field behaves as stiff matter) correspond to the space-time singularity a = 0. Around
this region, the potential is negligible with respect to the kinetic term. The critical points
x = 1/

√
2 with w = 0 (p = 0, the scalar field behaves as dust matter) are attractors

(repellers) in the expanding (contracting) phase. Asymptotically in the infinite future (past),
they correspond to very large slowly expanding (contracting) universes, and the space-time
is asymptotically flat. Note that at x = 0 the scalar field behaves like dark energy, w = −1,
p = −ρ.

Table 1. Critical points of the planar system defined by (114) and (115).

x y w

−1 0 1
1 0 1
λ√
6 −

√
1− λ2

6
1
3
(
λ2 − 3

)
λ√
6

√
1− λ2

6
1
3
(
λ2 − 3

)
Consequently, we have four possible classical pictures:

(a) A classical dust contraction from very large scales, the initial repeller of the model,
ending in a big crunch classical singularity around stiff matter domination with x ≈ 1.
The scalar field evolves smoothly from w = 0 to w = 1 behavior, without ever passing
through a dark energy phase.

(b) A classical dust contraction from very large scales, the initial repeller of the model,
ending in a big crunch classical singularity around stiff matter domination with x ≈ 1.
Now the scalar field passes through a dark energy phase, evolving smoothly from
w = 0 to w = −1 behavior, and then from w = −1 to w = 1.

(c) The universe emerges from a classical Big Bang singularity around stiff matter domi-
nation with x ≈ 1, w = 1, and expands to an asymptotically dust matter domination
phase, the attractor of the model. The scalar field evolves smoothly from w = 1
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to w = 0 behavior, without ever passing through a dark energy phase. This is the
time-reversed of case a.

(d) The universe emerges from a classical Big Bang singularity around stiff matter domi-
nation with x ≈ 1, w = 1, and expands to an asymptotically dust matter domination
phase, the attractor of the model. Now the scalar field passes through a dark energy
phase, evolving smoothly from w = 1 to w = −1 behavior, and then from w = −1 to
w = 0. This is the time-reversed of case b.

These classical possibilities are shown in Figure 4. The trajectories take place on a
circle. The points M± are respectively the dust attractor and repeller, while S± are the
singularities: the upper semi-circle is disconnected from the down semi-circle, and they
respectively describe the expanding and contracting solutions.

−1 0 1
√
2/2

x

−1

0

1

y

M+

M−

S− S+

Figure 4. Phase space for the planar system defined by (114) and (115). The critical points are
indicated by M± for a dust-type effective equation of state, and S± for a stiff-matter equation of
state. Note that the region y < 0 shows the contracting solutions, while the y > 0 region presents the
expanding solutions. Lower and upper quadrants are not physically connected, because there is a
singularity in between.

In the quantum case, Bohmian bounce solutions were found. Exact solutions were
given in Reference [91], and through matching conditions in Reference [89], yielding the
same qualitative picture. In these solutions, the quantum effects are relevant near the
singularity. In this region, the potential is negligible and the quantum bounce is similar
to the ones described in the preceding section or as in [69], whose trajectories around the
bounce are shown in Figure 5. For large scale factors, α >> 1, the classical stiff matter
behavior is recovered, x ≈ ±1, and from there on the Bohmian trajectory become classical,
as described above.
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−1.0 −0.5 0.0 0.5 1.0

φ

2

3

4

5

α

Figure 5. Phase space for the quantum bounce [89]. There are bounce and cyclic solutions. The
bounces in the figure correspond to case B, where ϕ̇ < 0. They connect regions around S+ in the
contracting phase with regions around S− in the expanding phase.

One very important observation is that, looking at Figure 5, the bounce can only
connect x ≈ ±1 classical stiff matter domination regions with x ≈ ∓1 classical stiff matter
regions, respectively. In fact, a phase space analysis in terms of the dBB theory shows that
this is the only way to connect the contracting solution to the expanding ones [89,91]. This
fact implies that there are only two possible bouncing scenarios, see Figures 6 and 7:

(A) A classical dust contraction from very large scales, which passes through a dark
energy phase up to a classical stiff matter contracting phase with x ≈ −1. In this
region, quantum effects become important, and a bounce takes place, launching the
universe to a classical stiff matter expanding phase with x ≈ 1, which then evolves
to an asymptotically dust matter expanding phase, without passing through a dark
energy phase.

(B) A classical dust contraction from very large scales directly to a classical stiff matter
contracting phase with x ≈ 1, without ever passing through a dark energy phase. In
this region, quantum effects become relevant, and a bounce takes place, launching the
universe to a classical stiff matter expanding phase with x ≈ −1, and passing through
a dark energy phase before reaching the asymptotically dust matter expanding phase.

−1 0 1
√
2/2

x

−1

0

1

y

M+

M−

S− S+

Figure 6. Case A: the scalar field has a dark energy phase during contraction. This model cannot
describe the dark energy in the future, since the matter attractor is reached before.
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−1 0 1
√
2/2

x

−1

0

1

y

M+

M−

S− S+

Figure 7. Case B: asymptotically dust contraction close to the unstable point M+, where w evolves
smoothly from 0 to 1 without ever passing by a dark energy phase. After the quantum bounce, the
system emerges from S−, and follows a dark energy phase until reaches the future dust attractor M+.

Case B is the physically interesting solution. First because it can describe the present
observed acceleration of the Universe, as long as a dark energy era takes place in the
expanding phase. Second because there is no dark energy behavior of the scalar field in the
contracting phase, avoiding the problem concerning the quantum vacuum prescription for
the initial quantum state of cosmological perturbations when dark energy is present. There
are other proposals of bouncing models with dark energy phase [92–94], motivated by
different physical effects. The interesting aspect of the present model is that, with a single
canonical scalar field with a simple potential, it was possible to model dark energy at large
scales in the expanding phase of a bouncing model, and a dust fluid in the asymptotic past
of the contracting phase of the same model.

Figure 8 shows an example of an exact Bohmian trajectory. Note that they satisfy
almost everywhere the classical constraint x2 + y2 = 1, except near the singularity, where
the quantum bounce takes place, and the model goes from the region x ≈ 1 to the region
where x ≈ −1. Hence, the dBB quantum approach to this classical model opened a new
possibility for bouncing scenarios with dark energy: the dark energy behavior may be a
feature only of the expanding phase, where it can model the present observed accelerated
expansion, and it was absent in the contracting phase. In the far past of the contracting
phase, the scalar field behaves like dust (running back in time, the dust repeller becomes an
attractor), and vacuum initial conditions can be easily imposed in this era. Consequently,
we get a well-posed problem to calculate the observed spectrum and amplitude of scalar
cosmological perturbations in bouncing models with dark energy.



Universe 2021, 7, 110 32 of 46
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Figure 8. Bohmian trajectory for an exact solution [91]. It starts in the asymptotic past in the
neighborhood of the critical point (1/

√
2,−1/

√
2), and it ends in the asymptotic future in the

neighborhood of the critical point (1/
√

2, 1/
√

2). Classical dynamics is valid almost everywhere,
except near the singularity, where quantum effects become important and a bounce takes place. Note
that the classical constraint x2 + y2 = 1 ceases to be satisfied in the quantum region.

Let us now calculate the amplitudes of scalar perturbations and primordial gravi-
tational waves in this model. We mentioned in Section 3 that classical bounces with a
canonical scalar field normally presents excess of gravitational waves, the ratio r = T/S is
of order 1, contrary to observations, where T, S are the amplitudes of primordial gravita-
tional waves and scalar perturbations, respectively. We will see that in a quantum bounce
this is not the case [89].

The primordial gravitational waves are described by the variable µ, which satisfies
similar equations as the Mukhanov-Sasaki variable v, with the scale factor a playing the
role of z, see Section 3:

v′′k +

(
k2 − z′′

z

)
zk = 0, (117)

µ′′k +

(
k2 − a′′

a

)
µk = 0. (118)

The approach to the quantization of v can be used for µ, hence the initial condition of
an adiabatic vacuum state is also imposed for the tensor modes.

In order to understand qualitatively the final results, let us discuss what happens
near the quantum bounce. When we get closer to the bounce in the contracting phase, the
curvature of space-time increases a lot, and one is in the regime where z′′/z � k2 and
a′′/a� k2, the super-Hubble behavior. As we have seen in Section 3, the solutions for the
scalar and tensor perturbations at leading order in this regime are, respectively,

ζk ≡
vk
z
≈ A(1)

k + A(2)
k

1
RH

∫ dt
x2a3 , (119)

hk ≡
µk
a
≈ B(1)

k + B(2)
k

1
RH

∫ dt
a3 , (120)

where x was defined in Equation (112).
In the classical contracting branch of case B, x varies between 1/

√
2 and 1, while the

scale factor goes through a large contraction. The value of this integral will be dominated
by the values of a near the bounce phase, where a attains its smallest value. One can see
from Equation (119) that what differentiates the evolution of ζk and hk in this region is the
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presence of x in the expression for ζ. As x ≈ 1 classically, they will be very close during the
whole evolution if the bounce is classical as well. Hence one gets the ratio r = T/S ≈ 1,
contrary to the observation limit r < 0.1. This is the origin of the problem with classical
bounce with canonical scalar fields. However, in a quantum bounce, when the quantum
phase begins, the value of x is no longer restricted to (1/

√
2, 1), see Figure 8. In fact, it

can be very small, and increase the scalar perturbation amplitudes relative to the tensor
perturbation amplitudes. Indeed, this was calculated numerically, and the results can be
seen in Figure 9. The curve shows that the presence of 1/x2 in the aforementioned integral
will result in a sharp increase in the scalar perturbation amplitude around |α− αb| ≈ 10−1,
where αb is the value of the scale factor at the bounce. This effect takes place close to
the bounce.

−60 −40 −20 0

sign(τ)(α− αb)

−10−49
−10−62

0
10−62
10−49
10−36
10−23
10−10

103
1016
1029
1042
1055

set2

ζ̃a

ζ̃b

h̃a

h̃b

1049

1051

1053

Figure 9. Evolution of scalar and tensor perturbations in the background of case B. Scalar and tensor
perturbations grow almost at the same rate during classical contraction, but at the quantum bounce
the scalar perturbations are enormously enhanced over the tensor perturbations due to the quantum
effects (shown in the detail of the figure). After the bounce, the perturbations get frozen. The final
amplitudes of both perturbations are compatible with observations. The indices a and b refer to the
real and imaginary parts of the perturbation amplitudes.

This is a very important result. Firstly, it shows that quantum cosmological effects may
solve problems which plague classical bouncing models, namely, large ratios of tensor to
scalar perturbations amplitudes. More than this, it shows that features of quantum Bohmian
trajectories can lead to observational consequences, and explain involved cosmological issues.
Whether these conclusions can also be reached under other quantum or classical frameworks,
is something yet to be verified. Nevertheless, the present model is a concrete example on how
a quantum cosmological effect can be amplified to yield observable consequences.

The free parameters of the theory can be adjusted to yield the right amplitudes
and spectral indices of scalar and tensor perturbations. In order to obtain the spectral
index ns compatible with Planck observations, ns = 0.9652 ± 0.0042, one must have
λ2 = 2.9914± 0.0010. The curvature scale at the bounce must be of the order of 103lp
in order to yield the correct amplitude of scalar perturbations, As ≈ 2.1× 10−9, but the
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bounce itself must be steep in order to obtain sufficient amplification of scalar perturbations
over tensor perturbations, as presented in Figure 9. See Reference [89] for details. Hence,
with a single scalar field with a simple potential analyzed in the dBB framework, it was
possible to construct a sensible bouncing model with dark energy behavior and correct and
well defined perturbation amplitudes of quantum mechanical origin.

6. Baryogenesis and Magnetogenesis

As the curvature scale around the bounce is very high, some new physical effects may
occur, like quantum particle creation [95,96]. In this section, I will describe processes like
baryogenesis and magnetogenesis, which can be in accordance with present observations,
and/or lead to new observational effects.

6.1. Baryogenesis

The baryon−anti-baryon asymmetry (excess of matter over antimatter in the Universe)
is indicated by many observations, see References [23,97,98], yielding the baryon-to-entropy
ratio is nB/s = 9.2+0.6

−0.4 × 10−11. Its origin is still under debate, with no definite answer.
The approaches are usually based on the Sakharov conditions [99] for the origin of this
asymmetry. However, the investigations based on the Standard Model of Particle Physics
(SMPP) do not yield sufficient baryon asymmetry, see Refs [100–102]. Hence, there has
been investigations exploring physics beyond the SMPP, like in References [103–105].

In this subsection, I will present the results concerning baryogenesis in a bouncing
background, assuming the so called gravitational baryogenesis [106], which also goes
beyond SMPP by introducing a coupling between the derivative of the Ricci scalar and
the baryon number current, and violates CPT symmetry in a dynamical universe. This
interaction induces changes in the thermal equilibrium distributions, resulting in a nonzero
net baryon number. I would like to remark that a purely radiation dominated primor-
dial universe cannot produce sufficiently baryon asymmetry, even within gravitational
baryogenesis, but it can be effective in bouncing model, as it must necessarily goes beyond
classical radiation domination evolution in order for the very existence of the bounce, see
Reference [107] in the context of Loop Quantum Cosmology.

I will assume the coupling term to be a CP-violating interaction with the form, as
proposed in Reference [106],

1
M2∗

∫
d4x
√
−g(∂µR)Jµ, (121)

where M∗ is the cutoff energy scale of the effective theory. This term, in an expanding
universe, also dynamically breaks CPT and favors a net asymmetry towards the production
of baryons over anti-baryons. This happens because the J0(= nB) term has a different sign
for matter versus antimatter, and as it will be demonstrated here, it can be used to calculate
the net asymmetry of matter and antimatter once the universe reaches a decoupling
temperature for this effective theory. Then, if we also assume that the characteristic
timescale τ of the interaction runs faster than the expansion rate of the universe, that is,

τ << H−1, (122)

where H is the Hubble constant, we can use thermal equilibrium relations to calculate the
baryon-to-entropy ratio. Identifying the term multiplying the baryon density nB as its
chemical potential µB, namely

µB = ± Ṙ
M2∗

, (123)

where the plus (minus) sign stands for particles (anti-particles), the baryon-to-entropy ratio
at decoupling temperature reads
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nB
s

=
15gBµB

4π2g∗T
=

15gB

4π2g∗
Ṙ

M2∗T

∣∣∣
T=TD

, (124)

where s is the entropy, g∗ and and gB are the number of degrees of freedom of all species
and baryons in the hot Universe, respectively, and TD is the effective interaction decoupling
temperature. Once the temperature drops below TD, the effective baryon production
freezes, and the resulting asymmetry is then preserved. In order to look for physical
solutions, we must require this ratio to be the observed nB/s ≈ 9× 10−11, and then look to
the parameter space in order to obtain the region satisfying it.

I will work with g∗ ≈ 100, and gb ≈ 1. Equation (124) depends on the physical
variables xb, TD and M∗. The former lies in the range 1015 ≤ xb ≤ 1031, where the
lower limit restricts the calculation to well before the start of nucleosynthesis, whereas the
upper limit is due to the Planck scale. The decoupling temperature TD lies in the range
10 TeV ≤ TD ≤ 1019 GeV, where the lower limit avoids observable effects in LHC, and the
upper limit is the Planck scale. Finally, for the cutoff energy scale M∗ we set the range
10−16Mp ≤ M∗ ≤ Mp, for the same reasons as TD. Therefore, we have

1015 ≤ xb ≤ 1031, (125)

107 ≤ T̄D ≤ 1022, (126)

10−16 ≤ M̄∗ ≤ 1, (127)

where T̄D = TD/MeV and M̄∗ = M∗/Mp are dimensionless quantities.
I will consider the radiation dominated quantum bounce (ω = 1/3) which, in confor-

mal dimensionless time, reads:

a(η̄) = ab

√
1 + η̄2, (128)

where η̄ = η/ηb. Far from the bounce, we can relate the cosmic time t with η̄ as:

t(η̄) =
abηbη̄2

2
, (129)

where ηb can be related to the Hubble radius RH0 = 1/H0 and the radiation density today
Ωr0 as

ηb =
RH0

abx2
b
√

Ωr0
, (130)

see Reference [108] for details. Considering the values H0 = 1.22 × 10−61Mp, Mp =
1.22× 1022 MeV, from Equation (129) one obtains

η̄(T̄) =
1.0× 10−10 xb

T̄
. (131)

For the the symmetric scale factor given by Equation (128), using Equation (131) in
Equation (124), the result for nB/s far from the bounce (η̄ � 1) reads:

nB
s

= 6.2× 10−86 T̄7
D

x2
b M̄2∗

, (132)

where we used Ωr0 = 8× 10−5. Finally, nB/s is given in terms of the parameters xb, T̄D
and M̄∗.

One must notice that Equation (131) was obtained through an expansion assuming
that η̄ � 1, which imposes the condition (To apply the condition η̄ � 1, we assumed
η̄ > 10 as sufficient because we expand terms 1 + η̄2):

xb
T̄

& 1.0× 1011. (133)
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Hence, this inequality must be considered together with conditions (125)–(127) when
we look for the regions of interest in the parameter space.

In Figure 10, we present a region plot for T̄D × xb and lines for constant values of M̄∗.
The region of parameters that give nB/s ≈ 9 ∗ 10−11 are the values of the gray region that
are crossed by the constant M̄∗ lines.
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Figure 10. Parameter space of xB, TD, M∗ that that gives nB/s ≈ 9 ∗ 10−11. They are parameterized
by X = log(xb), D = log(T̄D) and M = log(M̄∗), respectively.

One can see that there is a large range of allowed values for the free parameters, with
a preference for high energy bounces and small cut-off scales. The details of this analysis
can be found in Reference [108], with extensions to other quantum bouncing models, and
other baryon couplings.

6.2. Magnetogenesis

One of the main issues concerning contemporary cosmology consists the origin of
magnetic fields, which are observed in a variety of scales in the Universe. In particular,
there are several observations consistent with weak∼ 10−16 Gauss fields in the intergalactic
medium, coherent on Mpc scales. Since such fields remained largely undisturbed during
the cosmological evolution (as opposed to those in the presence of structure), they offer a
window to their origin, which is generally assumed to be primordial. Primordial seed fields,
which may be amplified later by the dynamo mechanism, are generated before structure
formation. For reviews, see References [109–111]. However, since minimally-coupled
electromagnetism is conformally invariant, the expansion cannot affect its vacuum state.
Hence such invariance must be broken in order to generate seed magnetic fields.

In this subsection I will study magnetic field production when conformal invariance
is broken through a non-minimal coupling with gravity. This possibility has been widely
studied in the case of inflationary models (see References [112–114], among others). How-
ever, inflationary magnetogenesis is not free of problems. Among these, we can mention
an exponential sensitivity of the amplitude of the generated magnetic field with the pa-
rameters of the inflationary model [115], the strong coupling problem [116], and the limits
in the magnetic field strength coming from the gravitational backreaction of the electric
fields that are produced simultaneously with the magnetic fields [117]. Hence, instead
of an inflationary model, a bouncing universe in conjunction with a coupling of the type
RFµνFµν will be used here to study the production of seed magnetic fields. This coupling,
theoretically motivated by vacuum polarization in quantum electrodynamics (QED) in a
curved background [118], introduces a mass scale to be fixed by observations.
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As the bounce background, I will take the quantum bounce with a pressureless
perfect fluid (necessary to yield almost scale invariant spectrum of scalar perturbations),
without any radiation fluid, as long as the electromagnetic field will be generated along the
evolution of the model. It will be useful to express the scale factor as a(t) ≡ a0Y(t), with

Y(t) =
1
xb

(
1 +

t2

t2
b

)1/3

, (134)

where x ≡ a0/a, t is cosmic time, and tb ≡ 2Lb, with Lb the curvature scale at the bounce
(Lb ≡ 1/

√
|R(0)| where R is the four-dimensional Ricci scalar) satisfying 103 tPlanck < tb <

1040 tPlanck, the limits related, as usual, to the Planck and nucleosynthesis era.
For the subsequent calculations, it is convenient to define parameters that are directly

related to observations. Let us first write down the Friedmann equation as

H2 = H2
0 Ωmx3 , (135)

with Ωm the dimensionless dark matter density today. Then, from the expansion of a(t) for
large values of t, it follows that

H2 ≈ 4
9t2

b

(
x
xb

)3
. (136)

Now, using H0 = 70 km s−1 Mpc−1 and the lower bound on tb, it is straightforward
to derive an upper limit on xb by equating Equations (135) and (136),

Ωm =
4
9

1
t2
bx3

b H2
0

=⇒ xb <
1038

Ω1/3
m

. (137)

For later convenience, we define RH0 ≡ H−1
0 , ts ≡ t/RH0 , and α ≡ RH0 /tb, and

rewrite Y(t) as

Y(ts) =
1
xb

(
1 + α2t2

s

)1/3
, (138)

with

α =
3
2

√
Ωmx3

b . (139)

I will take the non-minimal coupling Lagrangian

L = − f FµνFµν , (140)

where

f ≡ 1
4
+

R
m2

?
, (141)

and m? is a mass scale to be determined by observations. The non-minimal coupling breaks
conformal invariance, and paves the way to the production of primordial electromagnetic
fields.

The equations of motion for the electromagnetic field that follow from Equation (140) are

∂µ(
√
−g f Fµν) = 0 , (142)
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where the field Fµν is expressed in terms of the gauge potential Aµ as Fµν = ∂µ Aν − ∂ν Aµ.
To quantize the electromagnetic field, we expand the operator associated to the spatial part
of the vector potential as

Âi(t, x) = ∑
σ=1,2

∫ d3k
(2π)3/2

[
εi,σ(k)âk,σ Ak,σ(t)eik·x + H.C.

]
, (143)

where εi,σ(k) are two orthonormal and transverse vectors which are constant across spatial
sheets (they have zero Lie derivative with respect to the spatial foliation vector field) and
H.C. stands for the Hermitian conjugate. The operators âk,σ and â†

k,σ are respectively the
annihilation and creation operators. They satisfy [âk,σ, â†

k′ ,σ′ ] = δσσ′δ(k−k′), [âk,σ, âk′ ,σ′ ] =

0, and [â†
k,σ, â†

k′ ,σ′ ] = 0. Note that in the equations above we adopted the Coulomb gauge
with respect to the cosmic time foliation (A0 = 0 and ∂i Ai = 0). The time-dependent
coefficients Ak,σ(t) and their associated momenta Πk,σ ≡ 4a f A′k,σ(t) must satisfy

Ak,σ(t)Π∗k,σ(t)− A∗k,σ(t)Πk,σ(t) = i, (144)

for each k and σ. It should be emphasized that the quantization of the gauge-fixed electro-
magnetic field in the absence of charges is equivalent to that of two free real scalar fields.
Consequently, the choice of vacuum for each polarization σ corresponds to the choice of
vacuum of each scalar degree of freedom. However, using the fact that we are dealing
with an isotropic background, there is no reason to make different choices of vacuum for
different polarizations. For this reason, we choose a single time-dependent coefficient
to describe both polarizations, that is, Ak,1 = Ak,2 ≡ Ak. Therefore, the same vacuum is
chosen for both polarizations. Now, inserting this decomposition in Equation (142), we get
the equation governing the evolution of the modes Ak(t)

Äk +

(
ȧ
a
+

ḟ
f

)
Ȧk +

k2

a2 Ak = 0 . (145)

Defining

ks ≡ kRH , Ask(ts) ≡
Ak(ts)√

xbRH0

, (146)

where RH = RH0 /a0 is the co-moving Hubble radius today, the differential Equation (145)
can be written as

A′′sk +

(
Y′

Y
+

f ′

f

)
A′sk +

k2
s

Y2 Ask = 0 , (147)

where a prime denotes the derivative with respect to ts. The coupling (141) then takes
the form

f =
1
4

[
1 + C2 α2t2

s + 3
(α2t2

s + 1)2

]
; with C2 ≡ 4

3
`2∗
t2
b

, `∗ ≡
1

m∗
. (148)

An upper limit on C can be straightforwardly derived from Equation (148). Since any
contribution to the usual Maxwell’s equations at BBN must be negligible, we impose the
second term in Equation (148) to be smaller than 10−2 at BBN. Together with the fact that
α2t2

s � 1 at this time, we get

C < 10−19x3/2
b . (149)
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The energy densities of the electric and magnetic fields are respectively given by

ρE =
f

8π
gij A′i A

′
j , (150)

ρB =
f

16π
gijglm(∂j Am − ∂m Aj)(∂i Al − ∂l Ai) , (151)

where gij = δij/a2 are the spatial components of the inverse metric. To find the spectral
energy densities, we first insert expansion (143) into ρE and ρB. The resulting operators ρ̂E
and ρ̂B upon quantization are

ρ̂B =
f

2π2R4
H0

Y4

∫
dln k |Ask|2k5 , (152)

ρ̂E =
f

2π2R4
H0

Y2

∫
dln k |A′sk|2k3 . (153)

We now evaluate the expectation value of the two densities in vacuum, defined by
âk,σ|0 >= 0, and define the spectra as

Pi ≡
d < 0|ρ̂i|0 >

dln k
, i = E, B . (154)

This yields the magnetic and electric spectra, respectively

PB ≡ B2
λ =

f
2π2R4

H0

|Ask|2
Y4 k5 , (155)

PE ≡ E2
λ =

f
2π2R4

H0

|A′sk|2
Y2 k3 =

1
2π2R4

H0

|Πsk|2
f Y4 k3 . (156)

In the last line, we also expressed PE in terms of the momentum canonically conjugate
to the gauge field Πsk = Y f A′sk (see Reference [119]), which is nothing but the electric field
mode itself.

Finally, we can express the magnetic and electric fields, Bλ and Eλ, using H2
0 =

1.15× 10−64 G

Bλ =

√
f

2π2
|Ask|
Y2 k5/2 1.15× 10−64G , (157)

Eλ =

√
1

2π2 f
|Πsk|

Y2 k3/2 1.15× 10−64G. (158)

Nonsingular models are likely to ease both the problem of the exponential sensitivity
of the result and the strong coupling problem, since they expand slower than inflationary
models [120–122]. In order to verify all that, we numerically evolved the equations. The
main results are displayed in the figures below. For details, see Reference [119]. It was also
verified that backreaction is not an issue for the model chosen here.

At the beginning of the evolution, modes are not excited. Only vacuum fluctuations
are present, with the usual k4 spectrum, increasing as Y−4 due to contraction. When
the coupling f becomes relevant, the magnetic field power spectrum begins to increase
faster, since f is a growing function in the contracting phase, while the electric field power
spectrum presents a slower increment, up to the time when Πk also begins to increase.
After the bounce the situation is reversed, because f is a decaying function of time in the
expanding phase: the electric power spectrum decreases much slower than the magnetic
one. It can be seen that the decay is mild, going as t−2/3, when 1/α < t < C/α, opening a
window in time where the electric spectrum has a significantly higher contribution than the
magnetic one, see Figure 11. It was verified that for larger C’s, the decrease of the electric
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contribution at late times happens later, and the total electromagnetic power spectrum is
more important. Higher values of xb imply an overall stronger total electromagnetic power
spectrum, but with a stronger decrease rate at late times.
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Figure 11. Evolution of the magnetic (dashed lines) and electric (continuous line) power spectra for
C = 1019 and xb = 1030.

Another interesting aspect of the magnetic and electric power spectra is their de-
pendence in terms of k, shown in Figure 12. As predicted by analytical estimates, see
Reference [119], we obtain the spectral index nB = 6, see Figure 12. This is typical of
non-helicoidal and causally generated magnetic fields, as noted in Reference [123].
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PB0(1.2)k6

Figure 12. Behavior of the magnetic power spectrum today from (155) (blue) for C = 1023 and
xb = 1030. It is perfectly compatible with a power-law with spectral index nB = 6.

The theoretical and observational limits are used in Figure 13 in order to constrain the
region in parameter space for which consistent values of magnetic seed fields, evaluated
today, are obtained at 1 Mpc. The upper value xb . 1038 comes from Equation (137)
reflecting the earliest possible time for the bounce to occur. It is denoted “Planck Scale”
in the graph. There is another limit set to preserve nucleosynthesis denoted “BBN”. This
can be derived by plugging Equation (149) into Equation (159) presented below, giving
m? = 10−19me.
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In order to infer the allowed mass scales for the minimal coupling, one can use, for
instance, the relation between C and m? coming from Equation (148) to show that

m?

me
=

α

1038C
, (159)

where me is the electron mass. The maximum mass allowed in this model is then 0.1me.
Therefore, the value of the electron mass for m? is not allowed by our model, a feature
shared with power-law inflationary models [112,113].
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Figure 13. Parameter space with magnetic field amplitudes consistent with current limits at 1Mpc.
The blue region shows the allowed values to initiate the dynamo effect. The blue line is its theoretical
lower limit [115]. The orange region represents allowed values coming from observations at large
scales in voids, the orange line is the lower limit derived by blazars observations [124], and the
green line is the upper limit derived using Ultra-High-Energy Cosmic Rays, Ultra-Faint Dwarf
galaxies, 21-cm hydrogen lines, and so forth [125]. The orange and blue regions are overlapping. The
grey shaded region denotes excluded values of the magnetic field. Each oblique grey line gives an
amplitude for the magnetic field a hundred times higher than the lower line.

In order to avoid backreaction, new constraints on the parameters may arise. However,
this is not the case with this model. Choosing the galactic scale (tens of kiloparsecs), k ≈ 105,
as the cut-off scale k f where these calculations can be trusted, yields the constraints:

(1) Backreaction of the magnetic field: C2xb < 1098. The values given in Figure 13
respect this constraint.

(2) Backreaction of the electric field: C < 1026.3, which is allowed in Figure 13.
In conclusion, there is no electromagnetic backreaction at the bounce. Also, the

model is not exponentially dependent on the parameters, neither suffers from the strong
coupling problem.

7. Discussion and Conclusions

This paper presented results and properties of a class of quantum bouncing models.
They are obtained using a simple quantization procedure, with the compromise that
the resulting models never get to close to Planck energy, where other more involved
quantization schemes should have to be used: Dirac canonical quantization of a midi-
superspace model composed of a inhomogeneous and isotropic background, together with
small homogeneous perturbations. The results were obtained in the framework of the
de Broglie-Bohm quantum theory, turning out to enormously simplify the calculations,
conceptually and technically.
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Assuming a homogeneous and isotropic background with small inhomogeneous
perturbations, it has been shown that the bouncing models studied are stable. Of course, if
one relaxes isotropy, the Belinskii- Khalatnikov-Lifshitz (BKL) instability [126] may appear,
and an ekpyrotic phase would have to be evoked [15]. However, as mentioned in the
Introduction, any cosmological model has to face the issue concerning the large degree of
homogeneity of the hot universe, which is infinitely more serious than the BKL problem. In
fact, in order to get homogeneity, one has to turn identical the infinite possible functions of
time per space point characterizing a general inhomogeneous geometry and matter fields.
If there exists a physical mechanism or theory of initial conditions capable of justifying
such an extreme fine-tuning of infinitely many time functions, then it would be natural
to suppose that it could also justify the fine-tuning of the three remaining time functions
characterizing the three directions of space. All cosmological models assume, without
a really sound and established justification, as discussed in the Introduction, the initial
homogeneity of initial conditions. If one further assumes isotropy, then it can be shown,
for the models we are considering here, that the shear perturbation will never overcome
the background degrees of freedom, even growing as fast as a−6 in the contracting phase,
because it is multiplied by the factor (lp/RH0)

2, where lp is the Planck length and RH0 is
the Hubble radius today, which is a very small number. In Reference [86] it was shown
that for bounce scales not so close to the Planck length, which is the case of the models I
have presented in this paper, the shear will always remain sufficiently small. It seems to
me that adding an extra ekpyrotic scalar field, with suitable but ad hoc potential seems
excessive to solve an issue (isotropy) which is far from being the most serious one, unless
this extra field can also solve, or significantly ameliorate, the homogeneity problem, which
is now under investigation [15]. It may also happen that some quantum gravity argument
justifies the isotropy initial condition, without any new ad hoc ekpyrotic field.

Concerning observations, and comparing with inflation, besides solving the singu-
larity problem by construction, bouncing models do not have the horizon, flatness, and
structure formation problems. If the fluid that dominates the contracting phase when scales
of cosmological interest cross the sound Hubble radius is pressureless, then an almost
scale invariant spectrum of scalar cosmological perturbations emerges in the expanding
phase. As in inflation, they emerge from quantum vacuum fluctuations, justifying an
initial Gaussian distribution, and their amplitudes can be accommodated with CMBR
observations with bounces in which their maximum energy density do not get very close
to the Planck energy. This pressureless fluid can be dark matter, a component that we are
already observing, without the need of evoking any new yet unobserved field, like the
inflation (if one does not impose an ekpyrotic contracting phase). In this sense, bouncing
models are conceptually simpler than inflation. However, the red-tilted spectrum of scalar
perturbations was predicted as a natural result arising from any slow roll inflationary
model [22]. In bouncing models, this is not the case. If the pressureless field is described
by a scalar field with exponential potential, then one can adjust the exponential potential
to fit the data, but, contrary to inflation, it is an ad hoc fixation, just to accommodate with
observations. If it is a fluid, then the situation is yet more involved, as one would expect
a blue-tilted spectrum, because one usually has, in this case, w = p/ρ = c2

s > 0. This
could be overcome with some self-interaction of the fluid, or due to the presence of other
components, like radiation or a cosmological constant, as discussed in Sections 3 and 5.
Investigations about this issue must be deepened. A full comparison with all Planck an-
gular power spectrum observations [23] in the fluid case with two components must be
done, and it is work in progress. We have also seen that such quantum bouncing models
are suitable backgrounds for baryogenesis and magnetogenesis to happen, once some
proposed non-minimal coupling interactions are assumed.

Note that, in the fluid case, the quantum correction to the classical Friedmann equation
works like a classical stiff matter fluid with negative energy ρq ∝ −1/a6. This quantum
effect was also found in other completely different quantum frameworks [127], as well as
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in loop quantum cosmology, if the background is dust (as it should be at large scales if the
model leads to an almost scale invariant spectrum).

One very important line of research would be to find observables signing the existence
of a contracting phase and/or a bounce in the history of the Universe. It seems that
gravitational waves will not help, as bouncing models and inflation allow a variety of tensor
perturbation configurations, unless, as we have seen, one finds a possibility of measuring
primordial gravitational waves at frequencies above 1Hz, which is quite difficult, as they
are stochastic. Other possibilities are non-gaussianities [128,129], and the role of dark
energy in bouncing models. Concerning dark energy, we have seen that its presence in
the contracting phase can indeed modify the spectrum of scalar perturbations at large
scales, yielding oscillations, and, more important, it affects the very notion of an initial
quantum vacuum state for the quantum perturbations, which becomes much more subtle.
This can be a problem and/or an opportunity, as, in such a framework, dark energy is
not only affecting the present and future of our universe, but it may also have played a
fundamental role in the far past of our universe, as it can be deeply connected with the
origin of structures in the Universe. Hence, if this is the case, detailed investigations about
CMBR and its anisotropies can also give hints about the very nature of dark energy, which
is note the case for inflation. I think a deep investigation of dark energy in bouncing models
is one of the main promising lines of investigation in this area, not only conceptually, but
also observationally.
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