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Abstract: General nonrelativistic theory has been developed and the expressions obtained for the
tangential (dissipative) and radial (conservative) image forces and van der Waals forces (vdW) acting
on charged and neutral particles when they move parallel to the axis of a cylinder with circular
cross-section, or in the space between coaxial cylinders. Numerical calculations of vdW forces have
been performed for metal (Au) and dielectric (Si) materials of cylinders (filaments) and Cs atoms
at velocities ∼ 107m/s. A remarkable result is that in the case of metal cylinders (atomic filaments
and chains) the dynamic vdW potential can be repulsive for certain values of the velocity–distance
parameter and the characteristic atomic frequency. In the case of a Si material, the dynamic vdW
potential increases relative to the static one (by modulus) when the velocity–distance parameter
Vω0/R changes from zero to ∼ 1.3 and then tends to zero.

Keywords: atom–wall interactions in cylindrical configurations; dynamic image forces; van der
Waals forces

1. Introduction

Atom–surface interaction is a long-explored research problem of physics and adjacent
areas. A particular case is the van der Waals interaction (vdW) caused by the zero-point
and thermal fluctuations of the electromagnetic field and its material sources. The surface
curvature is known to affect the spectrum of surface excitations (plasmons) and, accord-
ingly, vdW forces of interaction of particles with the surfaces at distances of 1 to 10 nm [1–4].
Calculations of the vdW and Casimir–Polder potentials in cylindrical configurations (even
in static case) invoke great interest [5,6] due to advances in nanotechnology, since it be-
came possible to measure the Casimir and Casimir–Polder forces with increased precision
(see Ref. [7] for a review). However, currently there are practically no relevant studies of
nonequilibrium vdW interactions in cylindrical geometry. Dynamic corrections to conser-
vative vdW forces in this case were first considered in [8]. More general calculations of the
conservative and dissipative vdW forces acting on particles moving parallel to the genera-
trix of a cylindrical surface were carried out in [9,10]. In addition to the general theoretical
importance associated with nonequilibrium vdW forces in the systems with cylindrical
symmetry, studying the electromagnetic and fluctuation-electromagnetic interactions of
moving charged and neutral atomic particles with cylindrical surfaces has been given a
great impetus since the discovery of carbon nanotubes in 1991 [11], when a lot of theoretical
teams started to work on the theoretical modelling and computer simulation of ion chan-
neling through carbon nanotubes and capillary structures [12–27]. However, the role of the
image forces for charged particles and vdW forces for neutral ones is underestimated due
to an insufficient knowledge of the role of surface curvature at distances exceeding atomic
dimensions. An interesting, but still not fully explored, feature of the image forces [16]
and vdW forces [28–31] of moving particles is their velocity dependence. In particular, a
particle moving near a surface, along with an attractive velocity-dependent force (an image
force or vdW force in the case of charged and neutral particles, respectively), experiences a
tangential dissipative (stopping) force (friction force). Both of these forces affect the particle
dynamics. In contrast to the case of plane geometry [28–31], in systems with cylindrical
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symmetry, the velocity and curvature effects are much more complex [8–10,13]. Meanwhile,
in the standard description of the dynamics (channeling) of charged and neutral particles
in nanotubes and the capillary systems, only pairwise short-range interaction potentials
between the particles and the atoms of walls are used, or continuous potentials obtained
by averaging the pair potentials [13–21]. At channel diameters of the order of several
nanometers and more, the contribution of short-range pair interactions in the main part of
the cross section of the channels is close to zero, and the main role will be played by the
image forces for charged particles and vdW forces (for neutral ones) with the walls of the
channels. Due to this, the development of an adequate theoretical basis required in future
profound studies of the channeling of charged (neutral) particles through nanotube and
capillary structures is an urgent problem.

In this article, the particles are assumed to move nonrelativistically parallel to the gen-
eratrix of a concave/convex cylindrical surface, or in the space between coaxial cylindrical
shells. The properties of surface materials are described by a local dielectric permittivity.
Within the framework of electromagnetic fluctuation theory, we calculate the tangential
(dissipative) and radial (conservative) image and vdW forces acting on particles, and the
rate of their heating (for nanoparticles) when (in the general case) the particles and the
cylinder walls have different local temperatures. In the limit of an infinitely large radius of
cylinders, the results are reduced to those in the case of a flat surface or a plane-parallel
gap. Numerical calculations of the radial and tangential vdW forces are carried out in the
case of the metal (Au) and dielectric (Si) materials of the cylinders (atomic filaments and
chains) and neutral Cs atoms at velocities of ~107 m/s. The role of pair interactions and
nonlocal effects is briefly touched upon. An intriguing result following from numerical
calculations in Section 6 is that dynamic vdW potentials can be repulsive at high velocities,
for certain combinations of resonance wavelengths and distances.

2. General Theory

Following [9,31], we recall the main details of the calculation of the vdW force (both
its conservative and dissipative parts) and the heating rate for a neutral particle moving
parallel to the generatrix of a cylindrical surface (convex and concave).

The case of a charged particle is also treated as a constituent point of the theory.
Though the velocity is nonrelativistic (V � c) and the retardation effects can be neglected,
it can reach the values of order ∼ 10 VB (with VB being the Bohr velocity). Figure 1 shows
the cylindrical coordinate systems used and different configurations to be analyzed: convex
cylindrical surface (a), cylindrical channel (b), and the case of particle motion between two
coaxial cylindrical shells (c). The wall surface material is characterized by a local dielectric
constant ε(ω), and the particle is characterized by the dipole polarizability α(ω). We use
a cylindrical coordinate system with coordinates (r, ϕ, z), where the z axis is parallel to
the symmetry axis of the cylinders (cylindrical shells) and their generators. The radial
distance r is counted off the axes of the cylinders. We further assume that an external
charged or neutral particle with density ρ(r, ϕ, z, t) moves along a classical trajectory with
constant velocity V localized in the vacuum region outside (Figure 1a), inside (Figure 1b) or
between the cylinders (Figure 1c). The instantaneous particle coordinates are (R, 0, z = Vt).
Within the framework of the nonrelativistic approximation V << c, the main task is to find
the electric field E on a moving particle at the point of its instantaneous location. Since
= −∇φ, with φ being the electric potential, the initial problem reduces to solving the
Poisson equation ∆Φ = −4πρ .
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Figure 1. Cylindrical configurations and coordinate systems: a particle outside a cylinder (a); inside cylindrical channel 

(b); between two coaxial cylinders (c). R is the position of the particle in the cross-section of the cylinder and V its velocity, 

always parallel to the cylinder axis. 

2.1. Green’s Functions of Poisson’s Equation 
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It is worth noting that Equation (4) is valid both inside and outside the cylinder, since the 
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Figure 1. Cylindrical configurations and coordinate systems: a particle outside a cylinder (a); inside cylindrical channel
(b); between two coaxial cylinders (c). R is the position of the particle in the cross-section of the cylinder and V its velocity,
always parallel to the cylinder axis.

2.1. Green’s Functions of Poisson’s Equation

Written in cylindrical coordinates , ϕ, z, the Poisson equation takes the form(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂ϕ2 +
∂2

∂z2

)
Φ(r, ϕ, z, t) = −4πρ(r, ϕ, z, t) (1)

According to the symmetry of the problem, we expand both parts of (1) into the Fourier
integral over the frequency ω and the wave vector k (the direction of k is parallel to the z
axis) and into a Fourier series over the angle ϕ :

Φ(r, ϕ, z, t) =
1

2π

n=+∞

∑
n=−∞

+∞∫
−∞

dω

2π

+∞∫
−∞

dk
2π

un(ωk; r) exp(i(kz−ωt + nϕ)) (2)

ρ(r, ϕ, z, t) =
1

2π

n=+∞

∑
n=−∞

+∞∫
−∞

dω

2π

+∞∫
−∞

dk
2π

ρn(ωk; r) exp(i(kz−ωt + nϕ)) (3)

Substituting (2), (3) into (1) yields(
d2

dr2 +
1
r

d
dr
− n2

r2 − k2
)

un(ωk, r) = −4πρn(ωk; r) (4)

Without the loss of generality, let us consider the case shown in Figure 1a. Then, the
solution to (4) should meet the boundary conditions at the surface r = a of the cylinder:

un(ωk; r = a + 0) = un(ωk; r = a− 0),
dun

dr r=a+0
= ε(ω)

dun

dr r=a−0
. (5)

It is worth noting that Equation (4) is valid both inside and outside the cylinder, since the
problem is electrostatic.
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To proceed further, we first find the Green’s function Gn(r, r′) of Poisson’s Equation (4)(
d2

dr2 +
1
r

d
dr
− n2

r2 − k2
)

Gn
(
r, r′
)
= δ

(
r− r′

)
(6)

with additional conditions

Gn
(
r = r′ + 0, r′

)
= Gn

(
r = r′ − 0, r′

)
,

dGn

dr r=r′+0
− dGn

dr r=r′−0
= 1, (7)

and Equation (5). Then, the general solution to inhomogeneous Equation (4) that meets
boundary conditions (5) and (7) reads

un(ωk; r) = −4π
∫

dr′Gn
(
r, r′
)
ρn
(
ωk; r′

)
. (8)

For r 6= r′, Equation (6) is a modified Bessel equation with two linearly independent
solutions In(kr) and Kn(kr). We find Gn(r, r′) in Appendix A. Equations (A2), (A4), (A6)
and (A7) correspond to cases (a), (b), (c) shown in Figure 1.

2.2. Image Forces on a Moving Charged Particle

The charge density ρ of a moving particle with a charge Ze has the form [32]

ρ(r, ϕ, z, t) =
Ze
r

δ(r− R)δ(ϕ)δ(z−Vt). (9)

Using (9), the Fourier-transformed density ρn(ωk; r) is given by

ρn(ωk; r) =
2πZe

r
δ(r− R)δ(ω− kV). (10)

Next, substituting (10) along with (A2), (A4) and (A6) into (8), and leaving only the terms

corresponding to the induced potentials of walls, proportional to ∆n and
∼
∆n, yields

uin
n (ωk; r) = −8π2Zeδ(ω− kV)·


∆nKn(kr)Kn(kR),
∼
∆n In(kr)In(kR),

1
D

[
∆n,1Kn(kr)Kn(kR) +

∼
∆n,2 In(kr)In(kR)

] (11)

Here, and in the similar expressions below (namely, (14), (16), (30)) the upper, middle
and lower expressions after the curly brace correspond to cases (a), (b), (c) in Figure 1,
namely external configuration (r > a), internal configuration (0 < r < a), and configuration

between coaxial cylinders, (a1 < r < a2). The functions ∆n,
∼
∆n and ∆n,1, ∆n,2 are defined

in (A3), (A5) and after Equation (A7), D = 1− ∆n,1
∼
∆n,2.

The induced Fourier-components Ein
r,n(ωk; r) of the electric field E(r, ϕ, z, t) are ob-

tained using Equation (2) and identity E = −∇φ

Ein
r,n(ωk; r) = − d

dr un(ωk; r), Ein
ϕ,n(ωk; r) = − in

r un(ωk; r)
Ein

z,n(ωk; r) = −ikun(ωk; r) .
(12)

The force on a charged particle is then F = ZeEin with the electric field Ein obtained by
the direct Fourier-transform using (12) and (11). Substituting Fourier-components (12)
into the integral expression for Ein taken with instantaneous coordinates (R, 0, Vt) of the
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particle, integrating by frequency ω and using the analytical properties of ∆n,
∼
∆n (even real

components and odd imaginary ones) one obtains

FR = 2
(Ze)2

π

∞

∑
n=−∞

∫ ∞

0
dkk f (R)

n (kR, kV), (13)

f (R)
n (x, y) =


Kn(x)K′n(x)Re ∆n(y)

In(x)I′n(x)Re
∼
∆n(y)

Kn(x)K′n(x)Re
(

∆n,1(y)
D

)
+ In(x)I′n(x)Re

( ∼
∆n,2(y)

D

) (14)

Fz = −2
(Ze)2

π

∞

∑
n=−∞

∫ ∞

0
dkk f (z)n (kR, kV), (15)

f (z)n (x, y) =


K2

n(x)Im ∆n(y)

I2
n(x)Im

∼
∆n(y)

K2
n(x)Im

(
∆n,1(y)

D

)
+ I2

n(x)Im
( ∼

∆n,2(y)
D

) . (16)

In (14), the Bessel functions with a prime denote their derivatives with respect to the
total argument x = kR. The force component Fϕ turns out to be zero, as expected from the
symmetry. Equations (13)–(16) completely coincide with [16], where the authors considered
the case of a charged particle moving inside a cylindrical channel.

2.3. VdW Forces on a Moving Neutral Particle

In the case of a neutral particle (an atom) with a fluctuating dipole moment d(t),
the charge density is ρ = −divP with P(r, ϕ, z, t) = 1

r δ(r− R)δ(ϕ)δ(z−Vt)d(t) being the
polarization vector. Then, the Fourier-transform ρn(ωk; r) has the form

ρn(ωk; r) =
[

δ′(r− R)
r

dr
(
ω−
)
+

in
r2 δ(r− R)dϕ

(
ω−
)
+

ik
r

δ(r− R)dz
(
ω−
)]

, (17)

where ω− = ω− kV. The induced Fourier-component uin
n (ωk; r) in this case is calculated

by subsituting (27) and the induced components of Gn(r, r′) from (A2), (A4), (A6), (A7)
into (8). The resulting expressions are as follows.

(i) external configuration, r > a (Figure 1a)

uin
n (ωk; r) = 4π∆nKn(kr)

[
−K′n(kR)|k|dr

(
ω−
)
+

in
R

Kn(kR)dϕ

(
ω−
)
+ ikKn(kR)dz

(
ω−
)]

(18)

(ii) internal configuration, 0 < r < a (Figure 1b)

uin
n (ωk; r) = 4π

∼
∆n In(kr)

[
−I′n(kR)|k|dr

(
ω−
)
+

in
R

In(kR)dϕ

(
ω−
)
+ ikIn(kR)dz

(
ω−
)]

(19)

(iii) configuration between coaxial cylinders, a1 < r < a2 (Figure 1c)

uin
n (ωk; r) = 4π∆n,1

D Kn(kr)
[
−K′n(kR)|k|dr(ω−) +

in
R Kn(kR)dϕ(ω−) + ikKn(kR)dz(ω−)

]
+

4π
∼
∆n,2
D In(kr)

[
−I′n(kR)|k|dr(ω−) +

in
R In(kR)dϕ(ω−) + ikIn(kR)dz(ω−)

] (20)

One can see that Equation (20) is a sum of (18) and (19) taken with the factor D−1 =(
1− ∆n,1

∼
∆n,2

)−1
. To find vdW forces acting on a particle, we use the expressions [31,33]

Fr =
〈
∇r

(
dspEin

)〉
+
〈
∇r

(
dinEsp

)〉
, (21)
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Fz =
〈
∇z

(
dspEin

)〉
+
〈
∇z

(
dinEsp

)〉
, (22)

with standard definitions of the induced and spontaneous components of the dipole mo-
ment and the electric field. Instead of using (21), when calculating the radial (conservative)
force component Fr, it is simpler to find first the conservative potential (vdW energy)

U = −1
2

〈(
dspEin

)〉
− 1

2

〈(
dinEsp

)〉
(23)

Having determined U, the radial force Fr is then calculated by Fr = −∂U/∂r.
Consider the first terms in (21) and (23), performing the Fourier-expansions for d(t)

and Ein(r, ϕ, z, t):

dsp(t) =
∫ dω

2π
dsp(ω) exp(−iωt) (24)

Ein(r, ϕ, z, t) =
1

2π

∞

∑
n=−∞

∞∫
−∞

dω

2π

dk
2π

Ein
n (ωk; r) exp(i(kz−ωt + nϕ)) (25)

Substituting (24), (25) into (22), (23) yields

F(1)
z =

1

(2π)4 ∑
∫

dω′dωdk(ik)
〈

dsp(ω′)Ein
n (ωk; R)

〉
exp

(
−i
(
ω + ω′ − kV

)
t
)

(26)

U(1) = − 1

2(2π)4 ∑
∫

dω′dωdk
〈

dsp(ω′)Ein
n (ωk; R)

〉
exp

(
−i
(
ω + ω′ − kV

)
t
)

(27)

If not specified, the summation by n in (25)–(27) and in what follows is carried out from
−∞ to +∞.

The induced components of the electric field are calculated by inserting (18)–(20)
into (19). The appeared correlators of the dipole moment are found using the fluctuation-
dissipation relation [34]〈

dsp
i
(
ω′
)
dsp

k (ω− kV)
〉
= 2π}δikδ

(
ω′ + ω− kV

)
α′′ (ω− kV)coth

}(ω− kV)

2T1
. (28)

For all configurations shown in Figure 1, the correlators in (26), (27) can be written in
the form〈

dsp(ω′)Ein
n (ωk; R)

〉
= 8π2}δ

(
ω′ + ω− kV

)
α′′ (ω− kV)coth

}(ω− kV)

2T1
k2Zn(kR, ω),

(29)
where Zn(kR, ω) is given by

Zn(kR, ω) =


Sn(kR)∆n(ω)
∼
Sn(kR)

∼
∆n(ω)

Sn(kR) ∆n,1(ω)

1−∆n,1(ω)
∼
∆n,2(ω)

+
∼
Sn(kR)

∼
∆n,2(ω)

1−∆n,1(ω)
∼
∆n,2(ω)

(30)

Sn(x) = K2
n(x)

(
n2

x2 + 1
)
+
(
K′n(x

)2, (31)

∼
Sn(x) = I2

n(x)
(

n2

x2 + 1
)
+
(

I′n(x)
)2. (32)
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Note that in (31), (32) we assume that x = kR. Substituting (29) into (26), (27), integrating
by frequency ω′ and making use of the transformation of integrals with allowance for the
analytical properties of the functions under the integral yields

F(1)
z =

}
π2

∫ ∞

0
dω

+∞∫
−∞

dkk3α′′
(
ω+
)
coth

(
}ω+

2T1

) ∞

∑
n=−∞

ImZn(kR, ω) (33)

U(1) = − }
2π2

∫ ∞

0
dω

+∞∫
−∞

dkk2α′′
(
ω+
)
coth

(
}ω

2T1

) ∞

∑
n=−∞

ReZn(kR, ω) (34)

where ω+ = ω+ kV; α′′ (ω+) and α′(ω+) in what follows are the imaginary and real
parts of polarizability α(ω+).

To find the contribution from spontaneous field Esp to (21)–(23), we expand Esp

into the Fourier integral in frequency and wave vector at the particle location point
r0(t) = (R, 0, Vt) :

Esp(r0(t)) =
∫ dω

2π

dk
2π

Esp
ωk(R) exp(−i(ωt− kV)) (35)

and express the induced dipole moment din(t) through Esp(r0(t)):

din(t) =
∫ dω

2π

dk
2π

α(ω− kV)Esp
ωk(R) exp(−i(ω− kV)t) (36)

Substituting (35), (37) into (22), (23) yields

F(2)
z =

1

(2π)4

∫
dωdω′dkdk′

(
ik′
)
α(ω− kV)

〈
Esp

ωk(R)Esp
ω′k′(R)

〉
exp

(
−i
(
ω + ω′ − kV

)
t
)

(37)

U(2) = − 1

2(2π)4

∫
dωdω′dkdk′α(ω− kV)

〈
Esp

ωk(R)Esp
ω′k′(R)

〉
exp

(
−i
(
ω + ω′ − kV

)
t
)

(38)

Based on the theory of stationary electromagnetic fluctuations [34–36], the correlators in
(37), (38) are worked out using the fluctuation-dissipation relation (see Appendix B):

〈Eωk(R)〉Eω′k′(R) = −2}(2π)2δ
(
ω + ω′

)
δ
(
k + k′

)
cot h

}ω

2T

∞

∑
n=−∞

Im Zn(kR, ω) (39)

Substituting (39) into (37), (38), integrating by ω′, k′ and simplifying yields

F(2)
z = − }

π2

∫ ∞

0
dω

+∞∫
−∞

dkk3α′′
(
ω+
)
coth

(
}ω

2T2

) ∞

∑
n=−∞

Im Zn(kR, ω) (40)

U(2) = − }
2π2

∫ ∞

0
dω

+∞∫
−∞

dkk2α′
(
ω+
)
coth

(
}ω

2T2

) ∞

∑
n=−∞

Im Zn(kR, ω) (41)

Summing (33) with (40) and (34) with (41) results in

Fz = −
}

π2

∫ ∞

0
dω

+∞∫
−∞

dkk3α′′
(
ω+
)[

coth
(
}ω

2T2

)
− coth

(
}ω+

2T1

)] ∞

∑
n=−∞

Im Zn(kR, ω) (42)
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U = − }
2π2

∫ ∞

0
dω

+∞∫
−∞

dkk2

[
α′
(
ω+
)
coth

(
}ω

2T2

) ∞

∑
n=−∞

ImZn(kR, ω) + α′′
(
ω+
)
coth

(
}ω+

2T1

) ∞

∑
n=−∞

Re Zn(kR, ω)

]
(43)

Using (43), the radial force FR = −∂U/∂R is then given by

FR = − }
2π2

∫ ∞
0 dω

+∞∫
−∞

dkk3
[

α′(ω+)coth
(

}ω
2T2

) ∞
∑

n=−∞
Im Z′n(kR, ω)

+α′′ (ω+)coth
(
}ω+

2T1

) ∞
∑

n=−∞
Re Zn(kR, ω)

] (44)

where Z′n(kR, ω) denotes the derivative of Zn(kR, ω) with respect to its first argument.
Expressions (42)–(44) describe all configurations in Figure 1, when relating (a), (b), (c)

to the first, second and third lines in the definition of Zn(kR, ω) in (30). Moreover, using
(42)–(44), one can also retrieve all known results [31] for friction forces, dynamic vdW
forces and interaction potentials in planar configurations. This is shown in Section 3.

2.4. Heating Rate of a Neutral Particle

The heating rate dQ/dt of a nanoparticle is calculated quite similar to vdW forces.
The starting equation has the form [31,33]

dQ/dt =
〈( .

d
sp

Ein
)〉

+

〈(
.
d

in
Esp
)〉

, (45)

where the overdots for the dipole moments stand for time derivatives. Further calculations
are very similar to those performed in Section 2.3. The resulting expression is simply
obtained when substituting (−ω+) for k under the integrand in (42):

dQ/dt =
}

π2

∫ ∞

0
dω

+∞∫
−∞

dkk2ω+α′′
(
ω+
)[

coth
(
}ω

2T2

)
− coth

(
}ω+

2T1

)] ∞

∑
n=−∞

ImZn(kR, ω)

(46)

3. Transition from Cylindrical to Plane-Geometry Surfaces

Using (42)–(44), one can retrieve all known results for planar configurations. We
consider, as an example, the friction force Fz. In the coordinates chosen in [31], the relevant
plane-geometry result is

Fx = − }
π2

∫ ∞

0
dω

+∞∫
−∞

dkxkx

+∞∫
−∞

dky exp(−2kz)α′′
(
ω+
)[

coth
(
}ω

2T2

)
− coth

(
}ω

2T1

)]
∆′′ (ω) (47)

In (47), in contrast to (42), the particle moves along the x-direction, ω+ = ω + kxV,

k =
√

k2
x + k2

y , z is the distance to surface, and ∆(ω) = ε(ω)−1
ε(ω)+1 is the p-wave reflection

factor in the electrostatic limit. Performing the integration over ky in Equation (47) yields

Fz = −
}

π2

∫ ∞

0
dω

+∞∫
−∞

dkk3α′′
(
ω+
)[

2K0(2kz) +
K1(2kz)

kz

][
coth

(
}ω

2T2

)
− coth

(
}ω+

2T1

)]
∆′′ (ω) (48)

Equation (48) now has a form very similar to (42). Using (30), (31) and (A3), it is easy to
check that

∞

∑
n=−∞

ImZn(kR, ω) =
∞

∑
n=−∞

[
K2

n(x)
(

n2

x2 + 1
)
+

(
dKn(x)

dx

)2
]

In(y)
Kn(y)

Im
(

ε− 1
ε− [In(y)Kn(y)/I′n(y)K′n(y)]

)
(49)
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where x = kR, y = ka. Taking the limit a→ ∞, R→ ∞, R− a = z = const , and making
use of the asymptotic relations Kn(x) ∼

√
π/2x exp(−x), K′n(x) ≈ −Kn(x) , In(x) ≈ I′n(x) ∼√

1/2πx exp(x) , we see that the factor Im (. . .) in (49) reduces to Im ∆(ω) = ∆′′ (ω). Fi-
nally, making use of the relations [4] (for x → ∞, y→ ∞, x− y = z )

∞

∑
n=−∞

K2
n(x)In(y)
Kn(y)

= K0(2(x− y)),
∞

∑
n=−∞

n2

x2
K2

n(x)In(y)
Kn(y)

=
K1(2(x− y))

2(x− y)
(50)

∞

∑
n=−∞

(K′n(x))2 In(y)
Kn(y)

= K0(2(x− y)) +
K1(2(x− y))

2(x− y)
, (51)

we find
∞

∑
n=−∞

ImZn(kR, ω) =

[
2K0(2kz) +

K1(2kz)
kz

]
Im
(

ε− 1
ε + 1

)
(52)

Therefore, Equation (42) reduces to plane-geometry result (47). The identities (50) also hold
valid for concave cylindrical surfaces when replacing Kn(x)↔ In(x) and x− y→ y− x = z .
In this case, Zn(kR, ω) is defined by the second-line in (30). Using (30), we can also check
the result [31] for a particle moving in a plane-parallel gap. In the same way, one can verify
the transformation properties of Equations (43) and (44).

4. VdW Energy and Stopping (Friction) Force

For a more detailed study of dynamic effects, we represent (43) in the form

U = U(0) + U(1), (53)

U(0) = − }
π2

∫ ∞

0
dω

+∞∫
−∞

dkk2cot h
(
}ω

2T2

)
Im

[
α
(
ω+
) ∞

∑
n=0

εnZn(kR, ω)

]
(54)

U(1) = − }
π2

∫ ∞
0 dω

+∞∫
−∞

dkk2α′′ (ω+)
[
coth

(
}ω
2T1

)
− coth

(
}ω
2T2

)] ∞
∑

n=0
εnRe Zn(kR, ω) (55)

where εn = 1 for n 6= 0, and εn =1/2 for n = 0, and the property Zn(x, y) = Z−n(x, y) is
taken into account. Here, U(0) is the part of the vdW energy that remains nonzero at V = 0
regardless of temperature T2. The behavior of U(1) is more complicated. At T1 = T2 = 0,
taking into account the analytic properties of functions in (53) and making use of the
identity lim

T→0
coth(x/T) = sign(x), one obtains

U(0) = − }
π2

∫ ∞

0
dξ

+∞∫
−∞

dkk2Im

[
iα(iξ + kV)

∞

∑
n=0

εnZn(kR, iξ)

]
(56)

U(1) =
2}
π2

∫ ∞

0
dkk2

kV∫
0

dωα′′
(
ω−
) ∞

∑
n=0

εnRe Zn(kR, ω) (57)

where ω− = ω− kV. In the case V = 0, Equation (55) coincides with the well-known static
results [1–5], whereas one obtains U(1) 6= 0 only for V 6= 0. To proceed further, we consider
the oscillator model of atomic polarizability

α(ω) =
α(0)ω2

0
ω2

0 −ω2 + i0sign(ω)
= P

α(0)ω2
0

ω2
0 −ω2

+ i
πα(0)ω0

2
[δ(ω−ω0)− δ(ω + ω0)] (58)
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with α(0) and ω0 being the static polarizability and resonance frequency. Substituting (58)
into (56), (57) and simplifying, yields

U(0) = −
2}α(0)ω2

0
π2

∫ ∞

0
dω

+∞∫
0

dkk2
(
ω2

0 + ω2 − k2V2)[(
ω2

0 + ω2 − k2V2
)2

+ 4ω2k2V2
] ∞

∑
n=0

εnZn(kR, iω)

(59)

U(1) = −}ω0α(0)
π

∫ ∞

ω0/V
dkk2

∞

∑
n=0

εnRe Zn(kR, kV −ω0) (60)

In the case of a flat surface at V 6= 0, Equations (56) and (59) reduce to [28–30]. The
plane-geometry equivalent of (60) was first obtained in Ref. [30]. The analysis performed
in [30] showed that U(0) has a V2−poportional (attractive) correction to the energy at small
V. At larger velocities, U(0) reaches a maximum and then tends to zero. An intriguing fact
(in the case of a flat surface) is that U(1) can be positive at a certain choice of the atomic
frequency ω0 and the plasma frequency of the metal, but the resulting potential remains
attractive. However, for metallized cylindrical filaments, channels and atomic chains, as
we will see in Section 5, the total potential can be repulsive. In contrast to this, for dielectric
(nonconducting) surfaces the resulting vdW potential proves to be attractive (as usual).

For V = 0 and T2 6= 0, using the standard transformation of the integration contour to
the complex plane for U(0), Equation (53) takes the known form (Equation (22) in [3])

U(0) = −4T2

π

∞

∑
m=0

εmα(iξm)

+∞∫
0

dkk2
∞

∑
n=0

εnZn(kR, iξm) (61)

with ξm = 2πmT2
} .

As for the stopping force (42) at T1 = T2 = 0, we obtain

Fz =
2}
π2

∫ ∞

0
dkk3

kV∫
0

dωα′′ (ω− kV)
∞

∑
n=0

εnIm Zn(kR, ω) (62)

Inserting (58) into (62) yields

Fz = −
}ω0α(0)

π

∫ ∞

ω0/V
dkk3

∞

∑
n=0

εnIm Zn(kR, kV −ω0) (63)

It is worthwhile noting that function Zn(kR, ω) has an exponentially decaying asymptotics
at large kR. Then, according to (63), the force Fz becomes negligibly small at V � ω0R. If
ω0 ∼ 1015 s−1 (for atoms) and R ∼ 10 nm, this implies V � 107 m/s. The corresponding
quantum friction limit [37] for atoms is retrieved when using Equation (61) with a more
precise definition of the dressed atomic polarizability [38]. We neglect here corrections with
respect to the local equilibrium case and spatial dispersion [39–42].

The case of the friction force Fz acting on nanoparticles with a linear velocity depen-
dence (at nonzero temperature and V � ω0R) follows from (42) when expanding α′′ (ω+)

and cot h
(
}ω+

2T1

)
in powers of (kV), retaining the first-order expansion terms:

Fz = − 4}V
π2

∫ ∞
0 dω

{
∂α′′ (ω)

∂ω

[
coth

(
}ω
2T2

)
− coth

(
}ω
2T1

)]
+ α′′ (ω)

(
− ∂

∂ω

)
coth

(
}ω
2T1

)} ∞∫
0

dkk4
∞
∑

n=0
εnImZn(kR, ω) (64)

For T1 = T2 = T, Equation (64) reduces to

Fz = −
4}V
π2

∫ ∞

0
dωα′′ (ω)sin h−2(}ω/2T)

∞∫
0

dkk4
∞

∑
n=0

εnImZn(kR, ω) (65)
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The validity of (64), (65) is restricted by the velocities V � 3.9·106m/s for R = 10 nm,
T = 300 K, since the characteristic frequency here is ω0 ∼ kBT/}. At higher velocities and
(or) R, T values, the nonretarded relativistic consideration is required.

5. Interactions with Cylindrical Filaments and Atomic Chains

In the case of configuration shown in Figure 1a, as follows from the general formulas
the main contribution to the k –integrals comes from the wave vectors k ≤ 1/R. Therefore,
for an atom at large distance R compared to the radius a of the cylinder, we have a � R
and ka� 1. Therefore, we can expand ∆n in powers of ka. Then, taking into account the
asymptotics of cylindrical functions for small values of the argument (z� 1) [43]

I0(z) ∼= 1 +
z2

4
, In(z) ∼=

1
Γ(n + 1)

( z
2

)n
, n = 1, 2 . . . , (66)

K0(z) ∼= − ln
(γz

2

)
,Kn(z) ∼=

Γ(n)
2

(
2
z

)n
, n = 1, 2 . . . (67)

where γ = e0.577 (with 0.577 being the Euler–Mascheroni constant), it is sufficient to retain
only the first two terms in the sums by n, including ∆0(ω) and ∆1(ω). Using (11) and (66),
(67) yields

∆0(ω) =
(ka)2

4
ε− 1

1 + ε
(ka)2

2 ln(2/γka)
(68)

∆1(ω) =
(ka)2

2
ε− 1
ε + 1

(69)

For n ≥ 2 , other functions ∆n(ω) and Zn(kR, ω) in (49) can be neglected since they contain
higher powers of ka.

In the case of a dielectric filament (except strongly polar ones with large ε), one can
neglect the term with ε in (68). Then, the sums in Equations (54)–(65) take the form

∑ εnZn = 0.5Z0 + Z1 =
(ka)2

2
(ε− 1)

[
1
2

R1(x) +
1

(ε + 1)
R2(x)

]
, (70)

R1(x) = K2
0(x) + K2

1(x), (71)

R2(x) = K2
1(x) +

K2
1(x)
x2 + (dK1(x)/dx)2 = R1(x) + 2

(
K2

1(x)
x2 +

K0(x)K1(x)
x

)
. (72)

Note that in (70)–(72) we use x = kR. For V = 0, making use of the integral table [43]
∞∫

0

dxxa−1Km(x)Kn(x) =
2a−3

Γ(a)
Γ
(

a + m + n
2

)
Γ
(

a + m− n
2

)
Γ
(

a−m + n
2

)
Γ
(

a−m− n
2

)
(73)

we obtain from (56) or (61) (in the limit T2 → 0) the known result [3,44]

U(R) = − 9}
128R3

( a
R

)2
∞∫

0

dωα(iω)
(ε(iω)− 1)(ε(iω) + 7)

(ε(iω) + 1)
(74)

The dynamic potentials (59), (60) can be worked out using a single-oscillator model

ε(ω) = a +
bω2

1
ω2

1 −ω2 − iγω
(75)

with parameters a, b, ω1, γ chosen to fit the UV range of the spectrum when calculating
potentials (59), (60), and the IR range when calculating friction forces (64) and (65).
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When computing the interaction of an atom with a cylindrical metal filament, the
contributions from (68) and (69) are essentially different since we should retain the whole
denominator in (68).

In the static case (V = 0), using the plasma limit of the Drude permittivity ε(iω) = 1+
ω2

p/ω2 with allowance for the condition (a/R)2 ln(1.123R/a)� 1 (here 1.123 = 2/e0.577)
taking into account only the term n = 0 in (59), and changing the order of integration (with
the ω integration being the first), one obtains

U(R) = − }α(0)a
2
√

2πR4

∞∫
0

dxx3R1(x) ln−
1
2

(
1.123xR

a

)
∼= −

}ωpα(0)a

2
√

2πR4 ln1/2(1.123R/a)
(76)

This is exactly the well-known result (Equation (43) in [44]) obtained in the electrostatic
approximation, using another method. The distance dependence in (76) is a surprising
feature of the vdW interaction caused by the nonadditivity and plasmon spectra of a
conducting filament. In the limit of high temperatures, retaining in (61) the term with
m = n = 0, we retrieve another result of [44]

U(R) = − πα(0)T
8R3 ln(1.123R/a)

(77)

For a metal filament, dynamic potentials (59), (60) can be simplified further. The
resulting expression U = U(0) + U(1) we cast in the form

U(R, V) = −}ω0α(0)
8πR3

( a
R

)2
(

ωp

ω0

)2

(U1 + U2 + 2U3 + 2U4) (78)

The contributions U1−4 are defined by Equations (A16)–(A19) in Appendix C. The terms
U1, U2 correspond to terms n = 0, 1 in (59), and U3, U4–to the similar ones in (60). The
static result (76) follows from (A16).

When calculating stopping force Fz by means of (63), we use the Drude model ε(ω) =
1−ω2

p/
(
ω2 + iγω

)
. As shown in in Appendix C, Equation (63) takes the form

Fz = −
}γα(0)
4πR4

( a
R

)2
(

ωp

ω0

)2

(F1 + 2F2) (79)

with F1 and F2 defined in (A21) and (A22).
We now pass to the interactions of an atom with atomic chains. For dielectric chains

with atomic spacing d, the transition is very simple, using the limit of rarified medium
ε(ω)− 1 = 4πnα2(ω), where n→ 0 , α2(ω) is the polarizability of an atom of the string
and n = 1/πa2d. Substituting these relations into (68), (69) yields

∑ εnZn =
2k2

d
α2(ω)

[
K2

0(x) + K2
1(x) +

K2
1(x)
x2 +

K0(x)K1(x)
x

]
(80)

Using (79) and (57) with parameters α2(0) and ω02 of the atomic chain, and ω01 and
α1(0) of the projectile atom, Equations (60), (61) and (63) take the form

U(0) = −}ω01α1(0)α2(0)
2πdR5

(
ω02

ω01

)2 ∞∫
0

dxx4[R1(x) + R2(x)] f1(p1, b1x) (81)

U(1) =
}ω01α1(0)α2(0)

πdR5

(
ω02

ω01

)2
P

∞∫
1/b1

dx
x4[

(b1x− 1)2 − p2
1

] [R1(x) + R2(x)] (82)
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Fz = −
}ω01α1(0)α2(0)

2dR5

(
ω02R

V

)
ϕ1((ω01 + ω02)R/V) (83)

where f1(x, y) is defined by (A15), ϕ1(x) = x5(R1(x) + R2(x)), b1 = V/ω01R,
p1 = ω02/ω01, and one should take the principal value of the integral in (82).

For a metal string, the rarefied-gas approximation is not valid due to remaining
cooperative effects, giving rise to certain effective parameters of a one-dimensional plasma.
Therefore, to describe the interactions between a projectile atom and a metallized atomic
chain, a more adequate way is to use (78) and (79) with a ≈ d/2 and the appropriate
plasma parameters of the atomic chain. In the case of undamped plasmons (γ→ 0+), the
expressions (A21) and (A22) can be simplified further and (79) reduced to (using a = d/2) :

Fz ∼= −
}ω0α(0)

4
√

2R4 ln
1
2

(
2.246R

a

)( a
R

)(ωp

ω0

)
ϕ1

(∼
b
)

R1

(∼
b
)
− }ω0α(0)

4R4

( a
R

)2
(

ωp

ω0

)2
ϕ1((1 + p)/b)R2((1 + p)/b) (84)

where
∼
b
−1

= b− pϕ
1
2 (2R/d), b = V/ω0R (see Appendix C). The second term in (84) is

nearly d/R
√

2 times (or more) less than the first one, since (usually) (1 + p)/b >
∼
b (note

that ϕ1(x) decays exponentially fast at x � 1). The more gentle dependence on R of the
first term in (84), is a result of one-dimensional plasmon dispersion, similar to (76) [44].

6. Numerical Analysis

Due to the plethora of new analytical results obtained above, we will restrict ourselves
by demonstrating only a few numerical examples (Figures 2–6) of the dynamic vdW
potentials and stopping forces, namely the interactions of neutral atoms (in particular, Cs)
with metal and dielectric filaments and atomic chains of Au, Si, and interactions with the
walls of a capillary metallized with gold.

Figure 2 shows the ratio between the dynamic vdW potential Ud and the modulus
of the static potential Us shown as a function of the reduced velocity–distance parameter
V/ωoR for an atom in parallel motion to a metal filament, ωo is the characteristic atomic
frequency, ωp is the metal plasma frequency. The calculations were carried out using
Equation (78) with a/R = 0.1 and ωp/ω0 = 0.3, 1, 3 (red, blue and green lines). The static
potentials Us in Figure 2 and in Figures 4 and 5 were computed by the corresponding
formulas for Ud assuming V = 0. It should be noted that in this velocity range, the
calculations of Ud are nearly independent on the choice of γ. The nonzero value of γ
simplifies calculating the integral U4 in (78) by using (A19). For γ = 0, the result is the
same, but one should take the principal value of this integral.
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Figure 2. Comparison of the dynamic Ud and static Us vdW potentials (Equation (78)
with (A16)–(A19)) for an atom moving parallel to a metal filament at a/R = 0.1 and
γ/ω0 = 0.005. The red, blue and green lines correspond to ωp/ω0 = 0.3, 1, 3. The temperature
T = 0 is assumed. Figure (b) is an extension of (a) to greater values of V/ωoR.
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Figure 3. Dynamic vdW potential (Equation (78) with (A16)–(A19)) for the Cs atom moving parallel
to a metal chain of Au atoms as a function of separation R. Figure (b) is an extension of (a). The
red and blue lines correspond to velocities of 3·107 and 1.5·107m/s. The dotted lines show the
continuous velocity-independent string potential in the Moliere approximation for the Cs—Au
interaction potential [45]. The temperature T = 0 is assumed.
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Figure 4. Dynamic vdW potential (Equations (81) and (82) of a Cs atom with a chain of Si atoms,
normalized to its absolute value for an atom at rest, plotted as a function of parameter Vω0/R at
T = 0. We used the values ω01 = 3.89 eV and ω02 = 8.15 eV for Cs and Si atoms, respectively, and
interatomic spacing d = 0.44 nm for the chain of Si atoms.
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Figure 5. Comparison of the dynamic and static vdW potentials for the Cs atom moving inside a
capillary with Au metallized walls (T = 0). The red and blue lines correspond to Equations (58) and
(59), green line and inset show the resulting potential. A fixed value a/R = 1.2 was used.
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Figure 6. The stopping force of a Cs atom moving inside a capillary of 5 nm radius with Au metallized
walls, plotted as a function of the distance from the capillary axis. The red, blue and green lines
correspond to velocities of 3·107, 1.5·107 and 6·106 m/s. The temperature T = 0 is assumed.

The remarkable finding is that the dynamic vdW potential can be positive (repulsive)
(panel (b)), though the coupling constant is an order (or more) less than that of the static
potential Us. At moderate velocity–distance parameters V/ωoR ∼ 0.5, the dynamic
potential is attractive, and the coupling constant is 1.5 times higher than the static one.

Figure 3 plots the dynamic vdW potential Ud for a Cs atom as a function of distance
R to a metal chain of Au atoms (Equation (78) with parameters a = d/2 = 0.2 nm,
ωp = 9 eV, γ = 0.03 eV, corresponding to gold. For a comparison, shown is the
string continuous potential in the Moliere approximation for the Cs-Au interatomic po-
tential U(r) = Z1Z2e2r−1Φ(r/as) (dashed green), with Z1 and Z2 being the charges
of the nuclei (55 and 79 for Cs and Au). Here, Φ(r/as) is the screening function and
as = 0.04683

(√
Z1 +

√
Z2
)−2/3 nm–the screening length [45]. The red and blue lines corre-

spond to velocities of 3·107 and 1.5·107m/s. For the Cs atom, we used in (57) the values
α(0) = 0.057 nm3 and ω0 = 3.89 eV. Parameters ωp and γ are the same as in Figure 2.
The peak structure of the red and blue curves at R < 0.5 nm is likely due to the violation
of the used approximation a/R � 1. Figure 3 also demonstrates the repulsive dynamic
vdW potential. In the range 0 < V/ωoR < 0.6, the vdW interaction increases in absolute
value relative to the static one (Figure 2a). This is similar to the case of a flat surface [30],
but the repulsive effect was not found there. The observed feature is the pure result of the
cylindrical symmetry and conductive properties of the metal filaments and atomic chains.
Mathematically, the repulsion appears due to the negative contribution to the integral (A14)
from the term −y2 in the numerator, which is proportional to V2. This leads to a change in
sign in (59) and is enhanced by an increase (in absolute value) of the negative contribution
to the interaction resulting from (6).

It is worthwhile noting that repulsive Casimir and Casimir–Polder forces known in
so far were obtained only in static configurations of two parallel semi-infinite dielectric
plates if they are separated by a dielectric fluid that is intermediate between those of the
dielectric plates [46].

On the contrary, the interactions of the Cs atom with the dielectric filament and the
chain (the Si chain was chosen as an example) turn out to be attractive (as in the static
case). This can be seen from Figure 4 showing the ratio between the dynamic potential Ud

and the absolute values of the static potential |Us| for the Cs atom and the atomic chain
of Si. The red and blue lines and their sum (green) were calculated using Equations (81)
and (82). Both the U(0) and U(1) contributions have the negative sign, but the coupling
constant of the main distance dependence ∼ R−5 increases in the range 0 < V/ω01R < 3
(ω01 = 3.89 eV here means the atomic frequency of Cs).

The repulsive vdW interaction also manifests itself in the case of the motion of Cs
atoms inside a capillary with Au metallized walls. The results are plotted in Figure 5
with the same color convention as in Figure 4: the red and blue lines correspond to the
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contributions U(0) and U(1), calculated by Equations (58) and (59). The green line and
the inset show the resulting potential. All parameters for the Cs atom and gold are the
same as those used when plotting Figure 3. The change in the sign of the vdW potential in
this case occurs close to the value V/ωoR = 1.5. The toothlike structure results from the
contributions of multiple harmonics in the sums of (58) and (59).

Finally, we calculated the stopping force (Equation (63)) for the Cs atom in a capillary
with Au metallized walls (Figure 6).

The peak structure in Figure 6 is caused by the excitation of plasmons. This is similar
to the case of the excitation of plasmons by charged particles in cylindrical channels [16].

The numerical examples presented here are illustrative, and additional analysis is
required to clarify many of the subtle points of the vdW dynamic interactions that are
beyond the scope of this article. Among them are the presence of many multiple resonances
of the dielectric response, the transition region from the vdW to the short-range interactions
with atoms of walls, the nonlocality of the dielectric permittivity, which increases at small
separations, etc.

7. Conclusions

In this paper, we refined some points and developed further the nonrelativistic theory
of vdW interactions; namely, we calculated the attractive potential and stopping (friction)
forces between neutral ground-state atoms and cylindrical surfaces of different configura-
tions. As a constituent part of the theory, the electromagnetic image forces for the charged
particles in the systems under consideration were also calculated. The transition from the
case of a cylindrical surface to a flat surface is demonstrated and the obtained expressions
for image forces and vdW forces and potentials are shown to completely coincide with all
known results in plane and cylindrical geometries. The formulas describing the configura-
tions with convex, concave cylindrical surfaces and two coaxial cylinders with a particle
between them are represented in a universal form. A new remarkable result is that the
dynamic vdW potential can be positive (repulsive) in the case of metallized atomic chains,
filaments and capillaries, providing a steering effect for the channeled neutral atoms.
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Appendix A

In the case of a particle outside cylinder, we seek Gn(r, r′) in the form

Gn
(
r, r′
)
=


Dn In(kr), 0 ≤ r ≤ a

AnKn(kr) + Bn In(kr), a < r ≤ r′

CnKn(kr), r > r′
(A1)

with An, Bn, Cn, Dn being the constants. Having determined them using (A1), (5) and (7),
one obtains

Gn
(
r, r′
)
=


r′
[

∆nKn(kr′)In(kr)Kn(ka)
In(ka) − Kn(kr′)In(kr)

]
, 0 < r ≤ a

r′[∆nKn(kr′)Kn(kr)− Kn(kr′)In(kr)], a < r ≤ r′

r′[∆nKn(kr′)Kn(kr)− In(kr′)Kn(kr)], r > r′
(A2)
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∆n(ω, k) =
(ε− 1)I′n(ka)In(ka)

εKn(ka)I′n(ka)− In(ka)K′n(ka)
(A3)

Here, K′n(x) = dKn(x)/dx, I′n(x) = dIn(x)/dx, and arguments ω in ε and ω, k in ∆n,
∼
∆n

(see below and in the main text) are omitted for brevity, or ω is retained when writing ∆n,
∼
∆n. In the case when the particle is inside the cylindrical channel, the Green’s function is
calculated similar to (A1). The resulting expressions are

Gn
(
r, r′
)
=



r′
[∼

∆n In(kr′)Kn(kr)Kn(ka)/In(ka)− In(kr′)Kn(kr)
]

, r > a

r′
[∼

∆n In(kr′)In(kr)− Kn(kr′)In(kr)
]

, 0 < r ≤ r′

r′
[∼

∆n In(kr′)In(kr)− In(kr′)Kn(kr)
]

, r′ < r ≤ a

(A4)

∼
∆n(ω, k) =

(ε− 1)K′n(ka)Kn(ka)
εIn(ka)K′n(ka)− Kn(ka)I′n(ka)

(A5)

In (A2), (A4), the terms including ∆n and
∼
∆n correspond to the induced potential of the

cylinder walls, whereas the other terms–to the “bare” electric potential of a point charge
−1/4π.

In the case when the particle is between two coaxial cylinders with inner and outer
radii a1 and a2, the Green’s function is given by

(i) a1 < r ≤ r′:

Gn(r, r′) = −r′ In(kr)Kn(kr′) + r′
D

[
∆n,1Kn(kr)Kn(kr′) +

∼
∆n,2 In(kr)In(kr′)

]
− r′

D ∆n,1
∼
∆n,2[In(kr)Kn(kr′) + Kn(kr)In(kr′)]

(A6)

(ii) r′ < r ≤ a2

Gn(r, r′) = −r′Kn(kr)In(kr′) + r′
D

[
∆n,1Kn(kr)Kn(kr′) +

∼
∆n,2 In(kr)In(kr′)

]
− r′

D

[
∆n,1Kn(kr)Kn(kr′) +

∼
∆n,2 In(kr)In(kr′)

] (A7)

Here, D = 1− ∆n,1
∼
∆n,2, and ∆n,1,

∼
∆n,2 are defined in (A3) and (A5) taking ε = ε1, a = a1

and ε = ε2, a = a2 , respectively (see Figure 1c). Using (8), (A2), (A4), (A6) and (A7) it is
easy to consider particular cases.

Appendix B

Within the theory of stationary electromagnetic fluctuations [34–36], as applied to our
case, the correlator of spontaneous electric fields generated by a dielectric medium, is

〈
Eωk(r)Eω′k′E

(
r′
)〉

= −(2π)2δ
(
ω + ω′

)
δ
(
k + k′

)ω2

c2 cot h
}ω

2T
ImDii

(
ωk, r, r′

)
(A8)

where Dik(ωk, r, r′) is the retarded Green’s function of a photon (assuming that the medium
is homogeneous, isotropic and nonmagnetic), and the summation over i is implied in (A8)
(i = r, ϕ, z). At fixed values of m and r′ we have [35]

Dik
(
ωk, r, r′

)
= El(ωk, r) = −∇lφ

in
ωk(r) (A9)

where φin
ωk(r) is the Fourier-transform of the induced potential produced by the point

electric dipole dl(ω) = −
(
}c2/ω2)δlm located at point r′. To find this potential, one should
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replace the quantities dl(ω
−) (l = r, ϕ, z) in (18)–(20) by the above components. Using (20)

to obtain φin
ωk(r) and substituting the result into (A9) yields

Drr(ωk, r, R) =
(
− 2}c2

ω2

) ∞
∑

n=−∞
einϕ k

D
2
[∆n,1K′n(kr)K′n(kR)

+
∼
∆n,2 I′n(kr)I′n(kR)]

(A10)

Dϕϕ(ωk, r, R) =
(
− 2}c2

ω2

) ∞
∑

n=−∞
einϕ n2

DR2 [∆n,1Kn(kr)Kn(kR)

+
∼
∆n,2 In(kr)In(kR)]

(A11)

Dzz(ωk, r, R) =
(
− 2}c2

ω2

) ∞
∑

n=−∞
einϕ k

D
2
[∆n,1Kn(kr)Kn(kR)

+
∼
∆n,2 In(kr)In(kR)]

(A12)

where D = 1− ∆n,1
∼
∆n,2. For other configurations shown in Figure 1, one should take either

∆n,1 = 0., D = 1 (Figure 1a), or
∼
∆n,2 = 0, D = 1 (Figure 1b). Substituting (A10)–(A12) taken

at ϕ = 0, r = r′ = R into (A8), we find a unified fluctuation-dissipation relation, which is
valid for all considered cases

〈Eωk(R)Eω′k′(R)〉 = −2}(2π)2δ
(
ω + ω′

)
δ
(
k + k′

)
cot h

}ω

2T

∞

∑
n=−∞

ImZn(kR, ω) (A13)

where Zn(kR, ω) is defined in (30).

Appendix C

We use the plasma model ε(iω) = 1 + ω2
p/ω2 to calculate (59) and Drude model

ε(ω) = 1−ω2
p/
(
ω2 + iγω

)
to calculate (60), introducing the parametrization y = ω/ω0,

p = ωp/ω0 , τ = γ/ω0, b = V/ω0R, x = kR. Changing the order of integration in (58)
with allowance for (68) and (69), the integration by ω in (59) is carried out, yielding the
integral of the form

f1(x, y) ≡ 4
π

∞∫
0

dz
(
1 + z2 − y2)

(z2 + x2)
[
z2 + (y− 1)2

][
z2 + (y + 1)2

] (A14)

Working out integral (A14) by making use of a partial fraction expansion explicitly yields

f1(x, y) =
1

x2 − (y + 1)2 −
sign(y− 1)

x2 − (y− 1)2 +
2
(
1− x2 − y2)

x
[

x2 − (y− 1)2
][

x2 − (y + 1)2
] (A15)

Using (A15), (71) and (72) and the previously used parametrization, the expressions for U1
and U2 in (78) take the form

U1 =

∞∫
0

dxx4R1(x) f1

(
pϕ1/2(ax/R), bx

)
(A16)

U2 =

∞∫
0

dxx4R2(x) f1

(
p/
√

2, bx
)

(A17)
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where ϕ(x) = 0.5x2 ln(1.123/x). The numerical coefficient 1.123 stems from 2/γ in (67).
With the same notation, expressions for U3 and U4 in (78) reduce to

U3 =

∞∫
1/b

dxx4R1(x) f2

(
bx− 1, pϕ1/2(ax/R), τ

)
(A18)

U4 =

∞∫
1/b

dxx4R2(x) f2

(
bx− 1, p/

√
2, τ
)

(A19)

where R1(x), R2(x) are defined in Equations (71) and (72) and f2(x, y, z) reads

f2(x, y, z) =
x2 − y2

(x2 − y2)
2 + x2z2

(A20)

Using the same parametrization in (63), expressions for F1 and F2 in (79) take the form

F1 =

∞∫
1/b

dxx5R1(x)
(bx− 1)[

(bx− 1)2 − p2 ϕ(ax/R)
]2

+ τ2(bx− 1)2
(A21)

F2 =

∞∫
1/b

dxx5R2(x)
(bx− 1)[

(bx− 1)2 − p2
]2

+ τ2(bx− 1)2
(A22)
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