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Abstract: The instability of electron-positron vacuum in strong electric fields is studied. First,
falling to the Coulomb center is discussed at Z > 137/2 for a spinless boson and at Z > 137 for
electron. Subsequently, focus is concentrated on description of deep electron levels and spontaneous
positron production in the field of a finite-size nucleus with the charge Z > Zcr ' 170. Next, these
effects are studied in application to the low-energy heavy-ion collisions. Subsequently, we consider
phenomenon of “electron condensation” on levels of upper continuum crossed the boundary of the
lower continuum ε = −m in the field of a supercharged nucleus with Z � Zcr. Finally, attention is
focused on many-particle problems of polarization of the quantum electrodynamics (QED) vacuum
and electron condensation at ultra-short distances from a source of charge. We argue for a principal
difference of cases, when the size of the source is larger than the pole size rpole, at which the dielectric
permittivity of the vacuum reaches zero and smaller rpole. Some arguments are presented in favor
of the logical consistency of QED. All of the problems are considered within the same relativistic
semiclassical approach.

Keywords: electron-positron production; supercritical atoms; electron condensation; polarization of
vacuum; zero-charge problem

1. Introduction

I dedicate this review to the blessed memory of Vladimir Stepanovich Popov, who
recently left us as the result of a many-year hard illness, which prevented him working
actively in his last years. The problem of the electron-positron pair production when the
ground-state electron level dives below the energy −mc2 (m is the electron mass, c is the
speed of light) was of his interest starting from the end of 1960-th. Especially he contributed
to this problem during the 1970s. V. S. Popov was awarded the I. Y. Pomeranchuk Prize in
2019 for his outstanding contributions to the theory of ionization of atoms and ions in the
field of intense laser radiation and the theory of the creation of electron-positron pairs in
the presence of superstrong external fields.

We worked together with Vladimir Stepanovich on problems of supercritical atoms
with the charge Z > Zcr = 170− 173 during 1976–1978 when we developed semiclassical
treatment of this problem. These works, cf. [1–7] became a part of my PhD thesis [8] that
was defended in 1977 under the guidance of Arkadi Benediktovich Migdal.

As follows from the Dirac equation in the Coulomb field of a point-like nucleus with
Z > 1/e2 (in units h̄ = c = 1, which will be used in this paper, e2 ' 1/137), the electron
that occupied the ground-state level should fall to the center. Following the idea of I.
Pomeranchuk and Ya. Smorodinsky [9], the solution of the problem of the falling of the
electron to the center can be found while taking into account the fact that the real nuclei
have a finite radius. With increasing Z, the energy of the ground state level decreases and,
at Z > Zcr, crosses the boundary of the lower continuum ε = −m. The problem received a
new push in the end of the 1960sThe important role of the Pauli principle was emphasized
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in [10]. However the authors erroneously assumed delocalization of the electron state
with ε ' −m. Independently, W. Pieper and W. Greiner [11] (in numerical analysis) and
V. S. Popov [12–16] (in analytical and numerical studies) correctly evaluated the value of
the critical charge to be Zcr ' 169− 173, depending on assumptions regarding the charge
distribution inside the nucleus and the ratio Z/A. It was argued that two positrons with
the energies > m go off to infinity and electrons with ε < −m screen the field of the nucleus
by the charge −2e. The typical distance characterizing electrons of the vacuum K shell
is ∼ 1/(3m) � Rnucl, cf. [7]. Subsequently, there appeared an idea to observe positron
production in heavy-ion collisions, where the supercritical atom is formed for a short
time [17,18]. As the reviews of these problems, I can recommend [19–21].

In 1976, with the inauguration of the UNI-LAC accelerator in GSI, Darmstadt, it
became possible to accelerate heavy ions up to uranium below and above the Coulomb
barrier. Instead of a positron line that is associated with the spontaneous decay of the
electron-positron vacuum, mysterious line structures were observed, which, in spite of
many attempts, did not get a reasonable theoretical interpretation. The experimental results
on the mentioned positron lines proved to be erroneous. New experiments were conducted
during 1993–1995, cf. [22–24]. The presence of the line structures was not observed.
Events, which could be interpreted as the effect of the decay of the QED vacuum with the
spontaneous production of the electron-positron pair, were not selected. In spite of the
effect of the spontaneous production of positrons in the electric field of the supercharged
nucleus being predicted many decades ago, it has not yet been observed experimentally in
heavy-ion collisions.

One also studied a possibility of a nuclear sticking in the process of the heavy-ion col-
lisions [25,26]. Although these expectations did not find a support in further investigations,
extra arguments were given for a possibility of the observation of the spontaneous positron
production in the heavy-ion collisions, cf. [27]. Especially, the usage of transuranium
ions looks very promising [28]. Besides a spontaneous production of positrons, a more
intensive induced production of pairs occurs due to an excitation of nuclear levels, cf. [20].
Therefore, the key question is how to distinguish spontaneous production of positrons that
originated in the decay of the electron-positron vacuum from the induced production and
other competing processes.

New studies of low-energy heavy-ion collisions at the supercritical regime are antici-
pated at the upcoming accelerator facilities in Germany, Russia, and China [29–31]. This
possibility renewed theoretical interest to the problem [27,32–34]. As one can see from
the numerical results reported in [34], these results support those that were obtained in
earlier works, although a comparison with the analytical results derived in [1–7] was not
performed. Additionally, it should be noted that there recently appeared statements that the
spontaneous production of positrons should not occur in the problem under consideration.
I see no serious grounds for these revisions and, thereby, will not review these works.

1.1. A General Picture

States with |ε| < m correspond to the energy E = (ε2 −m2)/2m < 0 and effective
potential U, see Figure 1. In terms of the Schrödinger equation these are ordinary bound
states. Let the ground state level be empty and we are able to adiabatically increase the
charge of the nucleus Z. The latter means that the time τZ characterizing the increase of
Z is much larger when compared to 1/|ε0 − εnjm|, where εnjm are the energies of other
bound states in the potential well, and τZ > 1/m for the case of transitions from the
ground-state level, ε0, to the continues spectrum. The empty level with ε < −m becomes
quasistationary, see Figure 1. When penetrating the barrier between continua, see Figure 2
below, two electrons (with opposite spins) are produced, which occupy this level, whereas
two positrons of the opposite energy go off through the barrier to infinity. In the standard
interpretation, cf. [16], the electron states, ψ ∝ e−iεt, with ε = ε0 + iΓ(ε0)/2 for ε0 < −m,
Γ > 0, cf. Equations (3.5) and (3.6) in [35], are occupied due to the redistribution of the
charge of the vacuum. The vacuum gets the charge 2e < 0 distributed in the region of
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the supercritical ion. Two positrons with εe+ = −ε0 − iΓ(ε0)/2 go off to infinity after
passage of a time ∼ τ0eΓt, τ0 ∼ R, where R is the size of the potential well for R >∼ 1/m,
as it occurs for any decaying quasistationary state, producing a diverging spherical wave

ψ ∝ eikr, k =
√

ε2
e+ −m2 for the positron. For far-distant potentials, the situation is similar

to that for the charged bosons, cf. [36]. For the case V = −Ze2/r for r > Rnucl, one obtains
Γ(−m) = 0.

Figure 1. Typical dependence of effective Schrödinger potential U on r for a charged particle in an
electric central-symmetric potential well, r± are turning points, and r0 corresponds to maximum of
the effective potential U. The dashed line describes the quasistationary level with ε < −m.

For Z < Zcr electrons of the lower continuum (with ε < −m), fill all energy levels
according to the Dirac picture of the electron-positron vacuum. They are spatially dis-
tributed at large distances. For Z > Zcr the process of the tunneling of the electron of the
lower continuum to the empty (localized) state that was prepared in the upper continuum
with ε < −m can be treated as the tunneling of the virtual positron (electron hole) with
εe+ = −ε0 − iΓ/2 from the region of the potential well to infinity, where it already can be
observed. If one scatters an external real positron with a resonance energy εe+ ' −ε0 > m
on such a potential, this positron, for a short time, forms a resonance quasistationary state
in the effective potential, which, after passage of a time ∼ 1/Γ, is decayed. As the result,
the positron goes back to infinity. After that, during a time of the same order of magnitude,
two positrons, being produced in a fluctuation together with two electrons, go off to infinity
and those two electrons fill the stationary negative-energy state, as was explained.

If the ground state level was initially occupied by two electrons of opposite spins,
then, at adiabatic change of the potential (in the sense clarified above), they remain on
this level ε = ε0. At the adiabatic change of the potential, electrons have no energy to
escape anywhere from this level. The production of pairs does not occur, since the level
is occupied by electrons. During a time ∼ 1/Γ, their charge 2e < 0 is redistributed over
the range of energies ε0 − Γ(ε0)/2 <∼ ε <∼ ε0 + Γ(ε0)/2. This charge is localized at distances
(∼ 1/(3m) that are typical for the ground state in the Coulomb field [7]). In this sense, one
formally requires a many-particle description of the stationary electron with Reε0 < −m at
Γ 6= 0. However, neglecting a tiny Γ correction, for the finding of ε(Z), one may continue
to employ the one-particle description. If the experimenter scatters an external positron
with εe+ ' −ε0 > m on such a potential, the positron annihilates with one of the two
electrons have occupied the ground-state level. After the passage of a time ∼ 1/Γ, there
occurs spontaneous production of the one new pair, the electron fills empty state (after that,
again, two electrons occupy the ground-state level) and the positron goes to infinity.

1.2. Semiclassical Approximation

Semiclassical approximation is one of the most important approximate methods of
quantum mechanics [37]. Classical and semiclassical ideas are widely used in quantum
field theory in problems dealing with the spontaneous vacuum symmetry breaking for



Universe 2021, 7, 104 4 of 59

bosons, cf. [21,36,38], in condensed matter physics, cf. [39–41], and in physics of nuclear
matter [42,43].

As a consequence of the instability of the boson vacuum in a strong external field,
there appears a reconstruction of the ground state and there arises a condensate of the
classical boson field [44,45]. Many-particle repulsion of particles in the condensate provides
the stability of the ground state. After that, excitations prove to be stable, cf. [42,43].
They are also successfully described using semiclassical methods, e.g., such as the loop
expansion [36,46].

For fermions, there exist two possibilities. In the first situation, fermions heaving
attractive interaction, being rather close to each other, may form Cooper pairs, cf. [40]. In
the second situation, which we focus on here, electron-positron pairs, being produced in
a strong static electric field, are well separated from each other by the potential barrier.
Consequently, the electric potential attracts particles of one sign of the charge and repels
antiparticles. Because of the Pauli principle, each unstable single-particle state is occupied
by only one fermion. Therefore, it is natural to prolong a single-particle description in a
overcritical region (until there appeared still not too many dangerous states). Classical
approximation does not work for fermions, but semiclassical methods prove to be working.
As is known, the semiclassical approach yields correct results for the values of the energy
levels with big quantum numbers and in the case of spatially smooth potentials, when
dλ̃/dx � 1, where λ̃ = 1/p(x) is the reduced electron De Broglie length, p(x) is the
momentum, and x is the coordinate. For the Coulomb field for the ground-state level,
a rough estimate yields dλ̃/dr ∼ 1/(Ze2) for r → 0. However, even for dλ̃/dx ∼ 1,
semiclassical approximation continues to work not bad in calculation of the energy levels,
with an error not larger than 10% due to the presence of a numerically small parameter
∼ 1/π2, cf. [37].

Instability of the vacuum near a nucleus heaving a supercritical charge. It proves
to be that the semiclassical approximation is applicable with an appropriate accuracy for
the description of the electron energy levels in the supercritical field of a nucleus with
the supercritical charge Z > (170− 173). Semiclassical approximation allows for finding
rather simple expressions for the critical value of the charge, cf. Refs. [8,47,48], for energies
of deep levels as a function of Z and for the probabilities of the penetration of the barrier
between continua, cf. [3–7].

The spontaneous positron production in low-energy heavy-ion collisions. A com-
parison of the theory and experiment should check the application of QED in the region
of strong fields outside the applicability of the perturbation theory. The description of
the spontaneous production of positrons in heavy-ion collisions needs a solution of the
two-center problem for the Dirac equation. Because variables are not separated in this case,
the problem does not allow for the analytical treatment and numerical calculations are
cumbersome. However, the use of the semiclassical approximation results in simple analyt-
ical expressions for the energies of the electron levels, cf. [6,7], valid with error less than
few %. Thereby, this is one more example of the efficiency of the semiclassical approach.

Electron condensation in a field of a supercharged nucleus. In supercritical fields,
many energy levels cross the boundary of the lower continuum and the problem of the
finding of the vacuum charge density becomes of purely many-particle origin. It can be
considered within the relativistic Thomas-Fermi method, cf. [2]. All of the initially empty
states, which crossed the boundary ε = −m, are filled after a while. In this sense, one may
speak about “electron condensate”.

Vacuum polarization and electron condensation at super-short distances from
Coulomb center. In spite of the successes in explanation of all purely electrodynami-
cal phenomena, QED is a principally unsatisfactory theory, since relations between the bare
mass and charge and observable ones contain divergent integrals [49,50]. As the result, as
one thinks, there is no not contradictive manner to pass from super-short to long distances.
In spite of this, as is well known, it is possible to remove divergencies from all observable
quantities with the help of the renormalization procedure.
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The problem of the so-called “zero charge” or Moscow zero, cf. [51,52], is one of
central problems related to renormalization of the charge. When considering the square
of the charge of electron e2(r) as a function of the radius r and assuming finite value of
the bare charge e2(r0) = e2

0 > 0 for the source-size r0 → 0, one derives e2(r → ∞) → 0
instead of an expected value e2(r → ∞)→ e2 = 1/137. The same problem appears, when
one considers the screening of the central source with the charge density next = Z0δ(r− r0)
for r0 → 0, cf. [3]. The problem of a distribution of the charge near an external source
of the charge with the radius R � 1/m, as well as the problem of the distribution of
the charge of the electron at distances r � 1/m are the key principal problems of QED.
The semiclassical approach proves to be very promising in the calculation of the vacuum
dielectric permittivity in strong inhomogeneous electric fields [53]. The density of the
polarized charge is supplemented by the density from the electron condensation [3,42]. The
problem proves to be specific and it depends on whether the radius of the external source
of the charge is larger than a distance rpole, where the dielectric permittivity decreases
to zero, or smaller rpole, cf. [54,55]. References [54,55] argued for the condensation of
electron states in the upper continuum at distances larger than rpole for r0 > rpole and for
the condensation of electron states originated in the lower continuum at distances smaller
than rpole (for r0 < rpole), at which the dielectric permittivity proves to be negative and
e2

0 < 0. The semiclassical consideration of this problem allows for presenting arguments in
favor of a logical consistency of QED.

Similar effects in semimetals and in stack of graphene layers. The existence of the
Weyl semimetals, i.e., materials with the points in Brillouin zone, where the completely
filled valence and completely empty conduction bands meet with a linear dispersion law,
ε = vF p, where the Fermi velocity is vF ∼ 10−2, has been predicted in [56]. Systems with
the relativistic dispersion law are likely to be realized in some doped silver chalcogenides,
pyrochlore iridates, and in topological insulator multilayer structures. Weyl semimetals are
three-dimensional analogs of graphene [57], where the energy of excitations is also approx-
imately presented by the linear function of the momentum, but the electron subsystem is a
two-dimensional one, whereas the photon subsystem remains three-dimensional. Even
though the mass of excitations m = 0 for ideal graphene and Weyl semimetals without
interactions, a non-zero mass, m 6= 0, can be induced in many ways [58], resulting in a
dispersion relation characterized by a gap, i.e. ε2 = p2v2

F + m2v4
F . In difference with a small

value of the fine structure constant in QED, e2 = 1/137, the effective coupling in Weyl
semimetals and in graphene is αef = e2/vFε0, where ε0 is the dielectric permittivity of the
substance. The coupling constant αef can be as� 1 as >∼ 1, depending on the substance,
and both weak and strong coupling regimes are experimentally accessible. Thus, Weyl
semimetals and an infinite stack of graphene layers make it possible to experimentally
study various effects have been considered in 3+1 quantum electrodynamics (QED) for
weak and effectively strong couplings, cf. [59,60].

Not concerning spontaneous production of positrons of our interest here, the electron-
positron production in heavy-ion collisions was studied in many papers, cf. [61–64].

Additionally, electron-positron pair production from the vacuum can be triggered by
the laser electromagnetic fields, e.g., see [65–72]. However it seems unlikely to realize such
a possibility at least in the nearest future, cf. [73] and the references therein.

Electric fields with the strength E� m2 may exist in astrophysical environments, e.g.,
they may occur at phase transitions in neutron and hybrid stars [43,74] and in neutron
star mergers [75], and they also exist at surfaces of hypothetical nuclearites and abnormal
superheavy nuclei [43,53,76–78].

Various radiative corrections to the deeply bound electron levels should certainly
be taken into account, e.g., cf. [79–81] and the references therein. These higher-order
corrections will not be considered in the given paper.

Below, attention is focused on a semiclassical description. I describe the instabilities
of the boson and fermion vacua in static potentials, in particular in the Coulomb field.
Afterwards, focus is concentrated on the description of the spontaneous positron produc-
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tion in low-energy heavy-ion collisions. Next, a many-particle semiclassical description
of the electron condensation is considered. Finally, modification of the Coulomb field at
super-short distances due to the vacuum polarization and electron condensation is studied.

The paper is organized, as follows. Section 2 starts with a brief discussion of insta-
bility for the charged bosons in static electric fields, in particular in the Coulomb field of
a point-like nucleus with the charge Z > Zcr = 1/(2e2). The behavior of deeply bound
electrons obeying the Dirac equation in the strong static electric fields is considered in
Section 3. First, I consider the case of a one-dimensional field and then of a spherically
symmetric field. The Dirac equation is transformed to equivalent Schrödinger form in
an effective potential and the interpretation of the solutions is discussed. Subsequently,
in Section 3.5, I demonstrate exact solution of the problem of bound states in the strong
Coulomb field of a point-like center. The focus is made on the problem of the falling of
the electron to the center for a nucleus with the charge Z ≥ 1/e2. Section 3.6 describes
how the problem is resolved while taking into account that nuclei have a finite size. In
Section 4, I introduce a semiclassical approach to the Dirac equation, being transformed to
the second-order differential equation. Electron levels crossed the boundary of the lower
continuum are considered. The mean radius of the K-electron shell and the critical charge
of the nucleus are found for ε = −m, as well as the number of levels that crossed the
boundary of the lower continuum and their energies. The critical charge of the nucleus
for the muon is also found. A comparison of semiclassical expressions with much more
cumbersome exact expressions permits understanding the merits of the semiclassical ap-
proach. In Section 5, a semiclassical approximation is developed for the system of linear
Dirac equations. Semiclassical wave functions in classically allowed and forbidden re-
gions are introduced, and the Bohr–Sommerfeld quantization rule is formulated. Next,
the probability of the positron production is calculated. Subsequently, semiclassical ap-
proximation is applied to non-central potentials. In Section 6, focus is concentrated on
problems of the spontaneous positron production in low-energy collisions of heavy ions.
The energies of deep levels as a function of the distance between colliding nuclei and the
angular distribution of the positron production are found while employing semiclassical
approach. Subsequently, I consider a screening of the charge at collisions of not fully striped
nuclei. Semiclassical approximation (imaginary time method) is adequate for describing
dynamics of the tunneling of electrons from the lower continuum to the upper one. In such
a way, a correction on non-adiabaticity to the probability of the production of positrons
is found. The electron condensation in the field of a supercharged nucleus is considered
in Section 7. Section 8 presents the effects that are associated with the polarization of the
electron-positron vacuum in weak and strong fields. Subsequently, in Section 9, I focus on
the description of the charge distribution at super-short distances from the charge source.
The effects of polarization of the vacuum and the electron condensation in the upper and
lower continua will be considered. Section 10 contains a conclusion.

2. Relativistic Spinless Charged Particle in Static Field Aµ = (A0,~0)
2.1. Reduction of Klein-Gordon-Fock Equation to Schrödinger Equation

Consider a spinless negatively charged boson placed in a stationary attractive potential
well V. The Klein–Gordon–Fock equation renders

∆φ + [(ε−V)2 −m2]φ = 0 . (1)

With the help of notations

E =
ε2 −m2

2m
, Uef = −

V2 − 2εV
2m

, (2)

we may rewrite Equation (1) in the form of the Schrödinger equation,

∆φ + 2m(E−Uef)φ = 0 . (3)
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As we see from Equation (2), for relativistic particles there appears to be an attractive
term in the effective potential −V2/(2mc2), even for a purely repulsive potential V. In
the limit case E � m and |V| � m, we have ε ' m + E and Uef ' V, and we recover
the Schrödinger equation for a nonrelativistic particle. For |ε| < m the “nonrelativistic”
energy is E < 0, which corresponds to bound states in the interval of energies−m < ε < m.
For a sufficiently deep potential well, the energy of the ground state level may cross the
boundary ε = −m. In a deeper potential, other levels cross this boundary. For ε < −m,
here ReE > 0, the levels become quasistationary, see Figure 1.

A comment is in order (D. N. Voskresensky 1974, see comment in [82]). For a spin-
less particle under consideration, the ground-state single-particle level only crosses the
boundary ε = −m for far-distant potentials, when −V(r → ∞) > Ccr/r2, for a constant
Ccr > 0. For potentials obeying condition −V(r → ∞) < Ccr/r2, there appears to be a
bound state for the antiparticle. In both cases for a broad potential well of a typical radius
R � 1/m the vacuum instability occurs at |V| ' |V|cr ' 2m(1±O(1/(m2R2)) either at
εcr = −m or at εcr ' −m(1−O(1/(m2R2)). In the case of a broad potential well, solutions
of many-particle problems in both cases are almost the same, cf. [36]. For −V > −Vcr there
appears production of pairs. Positively charged antiparticles go to infinity and negatively
charged particles form a condensate, see [36,42].

Let us illustrate how the deformation of boundaries of upper and lower continua
occurs in a static electric field forming a broad potential well for a negatively charged
particle, cf. [2]. To be specific, consider a spherically symmetric field. Boundaries of
continua, ε±, are determined by

~p 2(r) = (ε± −V)2 −m2 = 0 . (4)

They are shown in Figure 2. In upper and lower continua p2(r) > 0, these are classically
allowed regions. In the gap between continua p2(r) < 0. This is a classically forbidden
region. For V < Vcr = −2m−O(1/(m2R2)), there arises a region of the overlapping of the
continua that means that the negatively charged particle may penetrate from the lower con-
tinuum (from the exterior of the potential well) to the upper one (to the interior of the well).

With an exponential accuracy, the probability of a passage of the one-dimensional
barrier is determined by

W ∼ e−2ImS ∼ e−2
∫ x2

x1
|p|dx , (5)

where x1 and x2 are the turning points at which p(x) = 0. This expression is applicable
for W � 1.

As example, consider a uniform static electric field eE = −∇V = const, |eE| � m2.
Then we have p '

√
(ε + eEx)2 −m2 . From Equation (5), we immediately obtain

W ∼ e−πE0/E , E0 = m2 . (6)

This expression coincides with the first term of the infinite series solution [83].
A question arises as to whether it is possible to observe a process of the production of

pairs already in a weak attractive electric field with the strength |E| � m2 at −δV > 2m?
The critical difference −δV ' −2m can be easily reached in the field of the capacitor,
where ∇A0 = const, at the increase of the distance d between plates. Employing |∇A0| =
|~E| ∼ 104 V/cm, the value, which is easily produced in electrical engineering, we estimate
|δV| > 2mπ already for d >∼ 103 cm. Here, mπ ' 140 MeV is the mass of the lightest charged
boson, the pion. However the probability of the production of the pairs W ∼ e−2ImS,
ImS =

∫ x2
x1
|p|dx, is negligibly small at these conditions. Indeed, for V = −eEx, we get

ImS =
∫ x2

x1
|p|dx = π

2
E0
E . For pions E0 ' 1021 V/cm. For electrons E0 ' 1.3 · 1016 V/cm.
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Figure 2. Illustration of the deformation of the upper and lower continua in a strong external electric
field (the boundaries of the continua are shaded). Electrons that belong to the vacuum shell in the
upper continuum fill the cross-hatched region. The states below the curve ε−/m = V(r)/m− 1 form
the unobservable Dirac sea. The quantity W shows an artificial cutoff energy.

2.2. Relativistic Spinless Charged Particle in Coulomb Field of Point-Like Center

In the case of the Coulomb field of a point-like nucleus, V = −Ze2/r, with the help
of the replacement φ(~r) = R(r)Ylm, we obtain equation for the radial wave function R(r)
in the form

∆rR + 2m
[

E +
(Ze2)2

2mr2 −
l(l + 1)

2mr2 +
εZe2

mr

]
R = 0 , ∆r =

1
r

∂2(rR)
∂r2 , (7)

where E = ε2−m2

2m is the effective nonrelativistic Schrödinger energy of the particle,

Uef(r) = −
(Ze2)2

2mr2 +
l(l + 1)

2mr2 −
εZe2

mr
(8)

is the effective potential, now, depending on l. Equation (7) and the ordinary Schrödinger
equation for the radial function in the effective potential coincide after undertaking
replacements

l(l + 1)− (Ze2)2 = λ(λ + 1) , εZe2/m→ Z′e2 (9)

in the former one. Thus, instead of the expression for the energy of the Schrödinger particle
in the Coulomb field, we derive

Enr ,l = −
(Z′e2)2m

2(nr + λ + 1)2 . (10)

Here, nr + λ + 1 = n + λ − l, nr = 0, 1, ... is the radial quantum number. Solving

Equation (9) and retaining solution with positive-sign square root, λ = − 1
2 +

√
(l + 1

2 )
2 − (Ze2)2,
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because, for Z = 0, l = 0, one should have λ = 0, we find the Sommerfeld formula for a
spinless particle,

ε2
nr ,l =

m2

1 + Z2e4

(n−l−1/2+
√

(l+1/2)2−(Ze2)2 )2

. (11)

There are two square-root solutions of this equation. Solution, which yields ε→ m for
Ze2 � 1, n = 1, l = 0, describes a negatively charged particle in the attractive Coulomb
field (Z > 0). Solution, which yields ε → −m for Ze2 � 1, n = 1, l = 0, Z > 0, after
a change of ε → −ε describes the positively charged particle of the same mass in the
field Z < 0, since Equation (1) does not change under simultaneous replacement ε→ −ε
and Z → −Z.

In the limit Ze2 � 1, Equation (11) for a negatively charged spinless boson, in the

ground state (n = 1, l = 0), produces ε→ m− (Ze2)2m
2n2 in accordance with the result for the

Schrödinger particle.
For Z > Zcr = 1/(2e2) the particle, being in the ground state (n = 1), falls down to

the center. Let Ze2 = 1/2 + δ for 0 < δ� 1. Subsequenty, choosing positive-sign square
root of solution (11) we have for Ze2 = 1/2 + δ, ε ' m(1+iδ)√

2
and the wave function

φ ∝ e−iεt ∝ emδt/
√

2 → ∞ for t→ ∞ ,

is not normalized, reflecting the fact of the falling of the negatively charged particle to
the Coulomb center with Z > 0 and the falling of the positively charged particle to the
Coulomb center at Z < 0. We dropped the negative-root solution of Equation (11) as not
physical one, since it arises at ε ' −m already for small Z > 0. However, note that the
negative-root solution of Equation (11), −m(1+iδ)√

2
, for the negatively charged particle near

the Coulomb center for Z > Zcr = 1/(2e2) yields φ ∝ e−mδt/
√

2, i.e., decreasing at t→ ∞.
This implies a possibility of a multi-particle interpretation of the ε < 0 solution for the
negatively charged particle in the field Z > 0. We return to this question in Section 9.2.

The value Zcr = 68.5. It means that the Mendeleev table would be closed on element
with Zcr = 68, if the nuclei were point-like. As we have mentioned, the lightest spinless
meson is the pion. The radius of the real nucleus with atomic number A is found from
the condition 4πρ0R3/3 = A, where ρ0 ' 0.16 fm−3 ' 0.48m3

π . For a symmetric nucleus
A ' 2Z we estimate R > aπ

1B = 1/(mπZe2) (radius of the ground-state orbit for the pion)
already for Z > 40. Subsequently, the lowest pion orbit enters inside the nucleus and
approximation of a point-like nucleus becomes invalid.

Note that, for Z = Zcr, εpart + εa.part = m
√

2 > 0, and thereby pairs are not produced
at such conditions. This peculiarity appears only for the case of the point-like Coulomb
field. For a field, being cut at R 6= 0 (R � 1/mπ , such that V = −Ze2/r for r > R
and V = −Ze2/R, the model I, or for V = − Ze2

R ( 3
2 −

r2

R2 ), the model II at r < R, the
ground state particle level continues to decrease with increasing Z and decreasing R and
for Z = Zcr(R) > Zcr, it reaches ε = −m. At Z = Zcr(R), the sum εpart + εa.part is zero,
corresponding to the spontaneous production of the pairs for Z ≥ Zcr(R), at R < Rcr.

Sommerfeld formula for electron. Electron has spin 1/2. In the absence of the mag-
netic field spin and orbital spaces are orthogonal. Thus one may expect that expression (11)
continues to hold also for electron after replacement l + 1/2 → |~J|+ 1/2 = |κ|, where
κ = −1, 0, 1... is integer number, since axial vectors of angular momentum and spin are
summed up,~L→ ~J = ~L +~s. Subsequently, we have

ε2
nr ,κ =

m2

1 + Z2e4

(nr+
√

κ2−(Ze2)2 )2

, (12)

where nr = n− |κ| = 0, 1, ... is a radial quantum number. Now, falling to the center appears
when the ground state level reaches the value ε = 0. It occurs for Z = Zcr = 1/e2 = 137.
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For a field cutted at R 6= 0, e.g., for the case V = −Ze2/r for r > R and V = −Ze2/R for
r < R, the ground state level continues to decrease with increasing Z and for Z = Zcr(R) >
Zcr it reaches ε = −m. After that, the sum εpart + εa.part reaches zero, corresponding
to the spontaneous production of the electron-positron pairs. Two electrons occupy the
ground-state level and two positrons with −ε > m move to infinity.

Note that the same expression (12) is derived from the exact solution of the Dirac
equation in the Coulomb field, as we will see in Section 3.5.

3. Dirac Equation for Particle in Static Electric Field, Aµ = (A0,~0)

We are now at the position to focus on the problem of our main interest in this paper,
i.e., to describe the behavior of electrons in a strong static electric field.

Interaction with 4-vector field Aµ = (A0, ~A) is constructed with the help
of minimal coupling

(γµ p̂µ − eγµ Aµ −m)Ψ = 0 , (13)

pµ = i∂µ, γµ are ordinary Dirac matrices.

3.1. Dirac System in Case of One-Dimensional Electric Field

In the case of a static one-dimensional electric field (~A = 0) using replacement

Ψ = e−iεtψ̃(x) (14)

we rewrite Equation (13) as

(ε−V + iγ0~γ
d

dx
− γ0m + V(x))ψ̃(x) = 0 . (15)

We may rewrite Equation (15) as

ψ̃′ = h̄−1D̂ψ̃ , D̂ =

 0 m + ε−V

m− ε + V 0

, ψ̃ =

 G

F

 . (16)

For further convenience, here we retained dependence on h̄.

3.2. Dirac System in Central-Symmetric Field

Introducing

ψjlm =
1
r

 G(r)ΩjlM(~n)

iF(r)Ωjl′M(~n ′)

, Ωjl′M = −~σ~nΩjlM(~n) , (17)

where ΩjlM is the spherical spinor, j, M are full angular momentum and its projection,
j = l ± 1/2, l is the orbital angular momentum, l + l ′ = 2j,~n =~r/r, |κ| = j + 1/2.

After the separation of angular and spin variables, the Dirac system becomes

ψ′ = h̄−1D̂ψ , D̂ =

 −κ̃/r m + ε−V

m− ε + V κ̃/r

, ψ =

 G

F

 , (18)

κ̃ = h̄κ , |κ| = j + 1/2. The ground state corresponds to κ = −1. The one-dimensional
result, see (16), follows from (18) provided one puts κ = 0 and replaces d/dr → d/dx.

3.3. Reduction of Dirac System to Schrödinger Equation

With the help of the replacement

φ = (m + ε−V)−1/2G , (19)
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Equation (18) is reduced to the equation of the second-order in r-derivative, similar to the
Schrödinger equation,

φ ′′ + p2(r)φ = 0 , p2 = 2m(E−Uef(r)) , (20)

where

E =
ε2 −m2

2m
, Uef(r) =

εV
m
− V2

2m
+

κ(1 + κ)

2r2m
+ Us , (21)

Us =
1

4m

[
V ′′

m + ε−V
+

3
2

(
V ′

m + ε−V

)2

− 2κV ′

r(m + ε−V)

]
(22)

is the term appeared due to the spin. If Us were zero, after the replacement κ → l we would
recover the Klein–Gordon–Fock equation for a spinless particle.

At r → 0, for V = −Ze2/r, we have Us → − 1+4κ
8mr2 . For 1 s level κ = −1, Us → 3

8mr2 . In
the latter case

Uef(r)→ −
(Ze2)2

2mr2 +
3

8mr2 (23)

for r → 0. The falling to the center in such a Schrödinger potential occurs when
Uef(r) < −1/(8mr2), cf. [84], which corresponds to Ze2 > 1.

3.4. Interpretation of Bound States in a Weak Field

The Dirac equation describes the electron and positron simultaneously. Therefore at
appearance of the bound state in a potential well there arises a question regarding whether
it relates to the electron or to the positron. As example, consider the case of a weak external
static central-symmetric electric field produced by a static source of a positive charge
distributed in a range r. Subsequently, V = −ζv(r) < 0 for the electron, where ζ > 0 is
a parameter proportional to the depth of the potential well. As is known, for sufficiently
small ζ, the Dirac equation, as the Klein–Gordon–Fock equation, can be transformed to
the Schrödinger equation for a nonrelativistic particle. The bound state for the electron
appears first at a certain value of ζ. At decreasing ζ, this state is diluted in the continues
spectrum with ε ≥ m.

The system of Dirac Equation (18) is symmetric in respect to replacements ε → −ε,
V → −V, κ → −κ, G → F. Equation describing energy levels does not depend on G and
F. Thereby, it is symmetric, respectively, replacements ε→ −ε, V → −V, κ → −κ. In the
case of the source of a positive charge, the electron undergoes attraction. In the field of
the opposite-sign charge (V → −V), the electron undergoes repulsion. Because, in the
attractive field, there appears the electron energy level going from the upper continuum,
in the repulsive field there appears the electron energy level originating from the lower
continuum. However, because the Dirac equation simultaneously describes electron and
positron, if the electron moves in a repulsive field, then the positron moves in an attractive
one. Thereby, the electron level moving in a repulsive field from the lower continuum can
be interpreted as the positron level (ε → −ε, κ → −κ) going from the upper continuum
(now in the field of attraction to the positron). It is natural to think that in a weak repulsive
field for the electron for a small ζ < 0 a deeply bound level with ε ' −m should not exist.
Because such a state nevertheless exists in the full set of solutions of the Dirac equation,
after the replacement ε→ −ε, κ → −κ, it should be interpreted as the positron state. This
interpretation is confirmed experimentally. In the field of a proton, there are electron bound
states lying near the boundary of the upper continuum but there are no positron states
with ε ' −m. Vise versa, in the field of an antiproton, there exist positron levels with
ε ' m, but there are no electron levels with ε ' −m. This picture is also established by
the minimization of the energy in the mentioned cases. Namely, in the field of a positive
charge, the presence of the bound electron is more energetically favorable when compared
to the presence of the positron.
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Statements done above seem obvious except the case, which I shall consider below in
Section 9.2, when polarization of the vacuum may result in a negative dielectric permittivity
and attraction is replaced by repulsion.

3.5. Exact Solution for Electron in Coulomb Field of Point-Like Center

Consider the discrete spectrum ε < m of the Dirac equation in the potential V =
−Ze2/r. We search G and F in Equation (18) as

G =
√

m + ε e−r̃/2r̃g(Q1 + Q2) , F = −
√

m− ε e−r̃/2r̃g(Q1 −Q2) , (24)

where
r̃ = 2r

√
m2 − ε2 , g =

√
κ2 − (Ze2)2 . (25)

This form of the solution, cf. [49], follows from asymptotic behavior of G, F ∼ r±g

at r → 0 and G, F ∼ e−r̃/2 at r → ∞. Solutions G, F ∼ C1,2r−g are dropped (i.e., we put
C1,2 = 0) due to the divergence of their contribution to the probability (

∫
|ψ|2dr → ∞).

Setting (24) in Equation (18), we obtain a system of equations

r̃Q ′1 +
(

g− Ze2ε√
m2−ε2

)
Q1 +

(
κ − Ze2m√

m2−ε2

)
Q2 = 0 ,

r̃Q ′2 +
(

g + Ze2ε√
m2−ε2 − r̃

)
Q2 +

(
κ + Ze2m√

m2−ε2

)
Q1 = 0 . (26)

These equations are reduced to

r̃Q ′′1 + (2g + 1− r̃)Q ′1 −
(

g− Ze2ε√
m2−ε2

)
Q1 = 0 ,

r̃Q ′′2 + (2g + 1− r̃)Q ′2 −
(

g + 1− Ze2ε√
m2−ε2

)
Q2 = 0 . (27)

As is seen, Equation (27) are symmetric under simultaneous replacement ε→ −ε and
Ze2 → −Ze2.

The finite solution for r̃ → 0 gets the form

Q1 = AF
(

g− Ze2ε√
m2 − ε2

, 2g + 1, r̃
)

, Q2 = BF
(

g + 1− Ze2ε√
m2 − ε2

, 2g + 1, r̃
)

, (28)

where F(α, β, z) is the degenerate hypergeometric function. Setting r̃ = 0 in one of
Equation (26), we find relation

B = −
g− Ze2ε√

m2−ε2

κ − Ze2m√
m2−ε2

A . (29)

Both of the hypergeometrical functions in (28) are reduced to polynomials, otherwise
they would grow as er̃ for r̃ → ∞, which results in the divergence of the probability. From
this requirement follows that α in F(α, β, z) equals a non-positive integer number, i.e.,

g− Ze2ε√
m2 − ε2

= −nr , nr = 1, 2, ... (30)

For nr = 0, only one of two functions is reduced to a polynomial. Subsequenty,
g = Ze2ε√

m2−ε2 and Ze2m√
m2−ε2 = |κ|. If κ < 0, then B = 0 in Equation (29) and Q2 = 0,

and the required condition is fulfilled. If κ > 0, then B = −A and Q2 is a divergent
function at nr = 0. Thereby, permitted states are nr = 0, 1, ... for κ < 0 and nr = 1, 2, ...
for κ > 0. From (30), it also follows the solution for the negatively charged particle with
ε < 0 for Z < 0. In a single particle problem under consideration, one should drop such
a solution, since it describes a strongly bound particle already in a weak field. However,
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such a solution can be appropriately treated within a many-particle picture with taking the
vacuum polarization and the electron condensation that originated in the lower continuum
into account, as we argue below in Section 9.2.

From (30), we obtain the Sommerfeld expression

ε = ±m

[
1 +

(Ze2)2

(
√

κ2 − (Ze2)2 + nr)2

]−1/2

, (31)

cf. Equation (12). Note that, for Z > 0, Z < 1/e2, only solution ε > 0 follows from (30),
since nr + g > 0. Thereby, “+” sign solutions (31) correspond to particles (electrons) in the
field of the positively charged Coulomb center (or to antiparticles (positrons) in the field of
the negatively charged Coulomb center). The “−” sign solutions (31), after replacements
ε → −ε, κ → −κ (after that “−” sign branch coincides with “+” sign branch) describe
antiparticles with ε > 0 in the field of negatively charged Coulomb center (Z < 0).

The ground state 1 s-level of the electron in the field of the positively charged Coulomb
center (Z > 0) corresponds to κ = −1, nr = 0. Its energy is

ε0 = mg0 , g0 =
√

1− (Ze2)2 . (32)

At Ze2 ≥ 1, there occurs falling of the electron to the center. Indeed, for r → 0
following (24), (27) we get

G = a1rg + a2r−g , F = b1rg + b2r−g . (33)

For Ze2 = 1 + δ > 1, the value g = i
√

2δ becomes imaginary and solutions oscillate as

C1 cos(|g| ln r) + C2 sin(|g| ln r) , (34)

that corresponds to not normalized probability
∫ ∞

0 |ψ|
2dr. At Ze2 = 1 + δ, 0 < δ � 1,

solution of Equation (32) yields ε = +im
√

2δ and the electron wave function grows as
Ψ ∝ e+m

√
2δt, indicating the falling of the electron to the center. The solution of opposite

sign (see Equation (31)) arises from the lower continuum at V → 0. In the single-particle
problem a negative-energy solution should be dropped. Note that at Ze2 = 1 + δ, it yields
ε = −im

√
2δ and Ψ → 0 at t → ∞ that may suggest an interpretation. However, an

appropriate interpretation proves to be possible only beyond the single-particle problem,
as will be shown in Section 9.2.

Solutions (31) and (32) hold formally for the positron in the Coulomb potential of the
nucleus with the charge Z < 0. Within the single-particle problem under consideration,
appropriate interpretation again exists for the solution, where energy originates from the
upper continuum decreasing with increasing −Z, rather than the negative-energy solution,
similarly to that happened for the electron at Z > 0.

For Z > 0, only two electrons (due to Pauli principle), if they have occupied the
ground state, undergo falling to the Coulomb center for Ze2 = 1. For levels with the
quantum number nr > 0, we have εnr ,κ > 0 for Z = 1/e2. Now, assume that the ground-
state level was empty and we adiabatically increase Z. There is no appropriate solution of
the single-particle problem for the point-like nucleus with Z > 1/e2 in this case.

Avoiding problem of falling to the center. A reasonable interpretation may appear,
only if one assumes that the nucleus has a size R 6= 0, and then we may safely decrease
R. First assume that R� rΛ = 1/m. In the limit Λ = ln(rΛ/R)� 1 for the ground-state
level of the electron, one gets [15,16]

ε0(ζ < 1) = mg0/th(Λg0) , for ζ = Ze2 < 1 . (35)

For ζ < 1, Λg0 � 1, the value th(Λg0) ' 1− 2e−2Λg0 rapidly tends to unity and
Equation (35) coincides with (32). For R 6= 0, the point ζ = 1 is already not a singular point
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for the function ε0(ζ). Equation (35) is analytically continued in the region ζ > 1. For ζ
close to unity, we have

ε0(ζ > 1) = mg̃0/tg(Λg̃0) , for ζ = Ze2 > 1 , (36)

where g̃0 =
√

ζ2 − 1. At any R 6= 0 the curve ε0(ζ > 1) continues to decrease with
increasing ζ and reaches the boundary of the lower continuum. It occurs at ζcr = 1 +
π2/(2Λ2) + O(Λ−3).

A comment is in order. The single-particle solution for R → 0 should be modified.
Indeed, for R as small as R ∼ rL ' rΛe−3π/(2e2), the multi-particle effects of the polarization
of the vacuum should be included, and the problem goes beyond the single-particle one,
see the below consideration in Section 8.

3.6. Avoiding Problem of Falling to Center in Realistic Treatment. Spherical Nucleus of Finite Size

For the Coulomb field with the charge Z < 1/e2, the electron in the ground state
is typically situated at distances ∼ a1B = 1/(Zobse2m) > 1/m and distribution of the
charge Z(r) at distances r ∼ Rnucl � a1B almost does not affect the electron motion. In
the realistic problem, the nucleus has a finite size, Rnucl ' rN A1/3 � a1B, where A is the
atomic number, rN ' 1.2 fm, and, thereby, the potential is smoothen at r < Rnucl. The
falling to the centrum does not occur, as it has been mentioned. Even for Z � 1/e2, the
electron density remains to be distributed at finite distances.

Taking into account of the distribution of the charge inside the nucleus, we have

V(r) = −ζ f (r/Rnucl)/Rnucl for 0 < r < Rnucl, V = −ζ/r , for r > Rnucl . (37)

Two models have been employed in the literature: model I, when f (x < 1) = 1, that
corresponds to the surface distribution of the charge, and model II, when f (x < 1) =
(3− x2)/2, which describes distribution of protons with the constant volume density.

The energy shift of the electron level can be found with the help of the perturbation
theory that is applied to the Dirac system (18). Following [16],

β =
∂ε

∂ζ
=
∫

V(r)(G2 + F2)dr/ζ < 0 , (38)

i.e., the curve ε(ζ) decreases monotonically with increasing ζ and crosses the boundary of
the lower continuum with a finite value β. After that, ε(ζ) acquires an exponentially small
imaginary part.

Because the exact solution of the Coulomb problem for r > R looks rather cumbersome
and for r < R is impossible for a realistic cut of the potential, it is natural to use approximate
methods. Most economical is a semiclassical approach. Here, we should notice that the
replacement (19) becomes singular for ε < −m in the point V(r1) = m + ε < 0. Because to
this, the effective potential

Uef(r, ε) =
3

8m
(r− r1)

−2 + ...→ ∞ , for r → r1 , (39)

and semiclassical expressions loose their sense due to the divergency of the integral∫ r 2m(E−Uef(r, ε))1/2dr. However, this is only a formal problem, since the initial Dirac
system (18) has no singularity at r → r1. To avoid the problem one should bypass the
singular point in the complex plane, as one usually does bypassing turning points, or one
may apply the semiclassical consideration straight to the linear Dirac equations. Note that,
in the one-dimensional case corresponding to κ = 0, see Equation (16), the mentioned
singularity occurs in the turning points, and one may use standard semiclassical methods.

The probability of the spontaneous production of positrons is determined by the width
of the corresponding electron level, Im ε, for Re ε < −m. Thus the width is found from the
solution of the Dirac equation. The value Γ, which determines probability of the positron
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production, W ∼ eΓt, can be expressed directly through components of the Dirac bispinor
(G and F). It yields the flux of particles going to infinity (at normalization on one particle):

Γ =
∫

ψ†γ0~γψd~f = 2Im(FG∗)|r→∞ . (40)

4. Semiclassical Approach to Dirac Equation Transformed to Second-Order
Differential Equation
4.1. Accuracy of Calculation of Energy Levels in Semiclassical Approximation

Substituting ψ = AeiS/h̄, where A and S are real quantities, in equation

h̄2∆ψ + p2(r)ψ = 0 (41)

we find two equations

h̄2∆A + p2 A = A(∇S)2 , ih̄(2∇A∇S + A∆S) = 0 . (42)

For a convenience, the dependence on h̄ is recovered here. The Hamilton–Jacobi
equation for the action (∇S)2 = p2 is obtained provided

h̄2 A ′′

p2 A
∼ h̄2

(pl)2 ∼
(

dλ̃

dr

)2

� 1 , λ̃ =
h̄
p

, (43)

where l is the typical size of the potential V. For the Coulomb potential at typical distances
r ∼ 1/(2m) characterizing ground-state electron with ε ' −m we have p ∼ g̃/r. From
estimate (43), we see that the semiclassical approximation for the wave function for such
distances is accurate up to terms 1/g̃2, g̃ =

√
ζ2 − κ2 for ζ > |κ|.

Using the Bohr–Sommerfeld quantization rule, we have

h̄2

(pl)2 ∼
h̄2

(
∫ r−

r0
pdr)2

∼ 1
π2(nr + γ)2 , (44)

where the phase γ ∼ 1, nr = 0, 1, ..., r0, and r− are the turning points separating the
classically allowed region. Thus even in calculation of the energy of the levels with small
quantum numbers one may consider on the error not larger that 10% .

Finally, let us notice that the transition from the Dirac equation in the external field
to the corresponding more simple Hamilton–Jacobi equation has been used in many
investigations, cf. [85–87]. The case of the deep electron levels, with the energy ε <∼ −m,
was studied in [3–7].

4.2. Semiclassical Approximation to Coulomb Field of Point-Like Nucleus

In the field V = −ζ/r, for ζ < |κ|, the semiclassical method results in exact expression
for the energy spectrum. Let us show this. For that, we do replacements

G =

√
m + ε

r
(χ1 + χ2) , F =

√
m− ε

r
(χ1 − χ2) . (45)

Subsequently, the system of two Dirac Equation (18) reduces to equations

χ ′′i + p2
i (r)χi = 0 , i = 1, 2 , (46)

with

pi(r) =

[
ε2 −m2 − 2εζ ±

√
m2 − ε2

r
+

ζ2 − κ2 + 1/4
r2

]1/2

. (47)

Adding the Langer correction to the effective potential results in replacements pi → p∗i ,
we find
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p∗i (r) =
√
−a + 2b/r− g2/r2 , a = m2 − ε2 , b = εζ ± 1

2

√
m2 − ε2 , g2 = κ2 − ζ2 . (48)

Subsequently, applying the Bohr–Sommerfeld quantization rule, we have∫ r−

r0

p∗i dr = (a−1/2b− g)π = (nr + 1/2)π . (49)

From here, we recover the exact result (31). To get (31) from an exact solution of the
Dirac equations, we have performed a cumbersome analysis of hypergeometric functions,
whereas the semiclassical approach needs taking only one simple integral.

After replacements b → εζ, g2 → (l + 1/2)2 − ζ2, Equation (48) is also valid for
spinless bosons. Performing integration leads us to the exact expression (11).

4.3. Finite Nucleus. Semiclassical Wave Functions and Quantization Rule

Certainly , it is also possible to apply semiclassical approach to Equation (20) with
effective potential in the form (21), (22). In the range, where the parameter of applicability
of semiclassical approximation is |dλ̃/dr| ∼ 1, the usage of Dirac equations presented in
different forms leads to slightly different results. For instance, applying (20) to the Coulomb
field does not yield the exact result for the energy of the levels, although the accuracy of
the approximation proves to be appropriate. For the electron energy ε < −m the variable
replacement (19) leads to the singularity in the point r1, where V(r1) = m + ε < 0 . Near
this point, semiclassical expressions become invalid due to divergence of the contribution
to the action

∫
[2m(E−Uef)]

1/2dr. However, as it was mentioned, this circumstance is not
reflected on the calculation of the energy levels, since r1 is situated under the barrier, where
wave functions prove to be exponentially small.

The electron energy levels can be found with the help of the Bohr–Sommerfeld quan-
tization rule [3] applied to the Dirac equation presented in the form (20) with effective
potential in the form (21), (22). We have∫ r−

r0

p∗dr = (nr + γ ′)π . (50)

Value p∗ is obtained from expression (20) after taking the Langer correction into
account, i.e., after doing the replacement κ(1+ κ)/r2 → (κ + 1/2)2/r2 in the expression for
the effective potential. The value of the phase γ ′ depends on whether the turning point is
inside the nucleus or outside it. In the latter case, the potential is V = −ζ/r and γ ′ = 3/4
for κ = −1 and γ ′ = 1/2 for κ 6= −1.

The contribution to the normalization of the semiclassical wave function from the
classically forbidden region is usually dropped. In order to understand accuracy of this
approximation consider the probability of the presence of the electron in sub-barrier region
r− < r < r+:

W0 =
∫ r+

r−
(G2 + F2)dr . (51)

To be specific, let us put ε = −m and consider ζ � |κ|. The wave function in the
classically allowed region is [37]:

χ = (c0/
√

p∗) sin(
∫ r

r0

p∗dr + π/4)dr . (52)

Constant c0 is found from the normalization condition [2],

2
∫ r−

r0

(ε−V)χ2dr/m ' 1 .
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Subsequently, we expand the effective potential (21) near the turning point. For
V = −ζ/r, we obtain

Uef = ζ/r− g̃2/(2r2m) = U(r−) + 4m2(r− r−)/ζ + ..., g̃ =
√

ζ2 − κ2 , (53)

for r− r− � r− ∼ ζ. The solution of Equation (20) in potential (53) is expressed through
the Airy function

χ(r) = (−V)−1/2G = c0 Ai(2ζ−1/3(r− r−)) . (54)

The probability of finding the particle in the sub-barrier region is

W = −
∫ ∞

r−
(V/m + 1)χ2dr ' c2

0

∫ ∞

0
Ai2(2xζ−1/3)dx = c1ζ−1/3 , (55)

where c1 = 34/3Γ2(2/3)/16π ' 0.158.
Thus, the probability of a penetration of the electron in classically forbidden region

is numerically small for ζ ∼ 1, and it falls down with increasing ζ. This justifies that we
neglected the contribution of the region r > r− at the normalization of the wave functions
(taking r0 < r < r−). Note that the quantization rule remains applicable with a larger
accuracy, 1/ζ2, since, at its derivation, it was not used how wave functions are normalized.
Strictly speaking, in the case of quasistationary levels, the quantization rule is slightly
modified, due to Imε 6= 0, cf. [88]. However, changes of the energy levels are exponentially
small, due to the exponential smallness of the penetrability of the barrier.

With the semiclassical χ function, we obtain an expression for the averages rλ. For
ε = −m and ζ � |κ|, one has [3],

rλ = ζλ 3π1/2(λ + 2)Γ(λ + 1)
mλ2λ+3Γ(λ + 5/2)

[
1− (λ + 3/2)κ2

(λ + 2)ζ2 + ...
]

. (56)

Γ(x) is the Euler Γ-function. For ζ ∼ 1, the accuracy of this expression is not as good,
but it increases appreciably with increasing ζ.

The quantity r characterizes the mean radius of the bound state at ε = −m, values
rλ at λ = 1/2, 3/2, 2 are met in the problem of the modification of the value Zcr due to a
screening of the charge by other electrons of the ion (if they are), see below in Section 6.4.
A comparison of the semiclassical expressions with the exact solutions numerically found
shows an appropriate accuracy of the semiclassical results, even for ζ ∼ |κ| ∼ 1. For ζ �
κ � 1, the result (56) coincides with the corresponding asymptotic of the exact solution.

4.4. Critical Charge of the Nucleus

Let us calculate the critical charge of the nucleus (when the electron level with quan-
tum numbers n, κ reaches ε = −m). Using the Bohr–Sommerfeld quantization rule in
the form (50), one obtains, cf. [48],

mRnucl = g̃2/(2ζch2y) , (57)

where y is positive root of the equation

y− thy =
(nr + γ1)π − γ̃

2g̃
, γ̃ = arcctg(Ξ/g̃) , (58)

nr = 0, 1, ... radial quantum number, γ1 = 3/4 for ns levels and γ1 = 1/2 for κ 6= −1.
In Ref. [48], quantity Ξ was found from matching of the exact solution inside the

nucleus and semiclassical one outside the nucleus. As was shown in [8], usage of the
semiclassical solutions both inside and outside the nucleus does not spoil the accuracy of
the result. Therefore we further follow consideration of [8].



Universe 2021, 7, 104 18 of 59

For the model I, the semiclassical solution inside the nucleus coincides with the exact
one and we find

Ξ = βctgβ β =
√

ζ(ζ − 2Rnuclm) . (59)

Here, note that a first estimate of Rcr in this model was performed in [47], where it
was taken γ̃ = ζ, that differs from that follows from (58), (59).

For the model II, an analytical expression can be found expanding p(r < R) in the
parameter ζ,

γ̃ = arcctg[((p∗(Rnucl)/(g̃m))ctg
∫ Rnucl

0
p∗dr] , (60)

∫ Rnucl
0 p∗dr =

∫ 1
0 dx[ζ2 f 2(x)− 2ζRnuclm f (x)− 9/(4 f 2(x))]1/2

= 4
3 ζ

[
1− c2

ζ2 − 3
4

Rnuclm
ζ + O

(
1
ζ4 , R2

nuclm
2

ζ2

)]
, c2 = 9

32

(
1 + 1√

3
arth 1√

3

)
, κ = −1 , (61)

where f (x) follows Equation (37), here for the model II. Although the parameter of appli-
cability of semiclassical expressions to the Coulomb field is g̃ � 1, the difference of the
above obtained expression with the result of the exact calculation is less than few percents,
even at ζ = ζcr ' 1.24.

For ζ ∼ 1, expanding (58) in 1/y and dropping numerically small term e−2y, from
Equation (57), we finally find

Rnucl '
2g̃2

cr
ζcrm

[
exp

(
π(nr + γ1)− γ̃

g̃cr
+ 2
)
+ 2
]−1

, (62)

from where we find Zcr(Rnucl).

4.5. Number of Levels Which Crossed Boundary of Lower Continuum

Now, let us find the number of levels nκ with fixed quantum number κ and the total
number of levels N, which have crossed the boundary ε = −m. For this aim [5], we need to
use the Bohr–Sommerfeld quantization rule at ε = −m. For g̃� 1, we have dλ̃/dr � 1. For
ζ � 1, this means that ζ − |κ| � ζ−1, i.e., semiclassical approximation can only be violated
for states with the momenta at which ζ − |κ| <∼ ζ−1. The accuracy of the semiclassical
expressions for the wave function is ∼ 1/ζ2, cf. [2]. Taking these approximations into
account, employing the Bohr–Sommerfeld quantization rule, we obtain

nκ =
1
π

∫
(V2 + 2Vm− κ2/r2)1/2dr . (63)

For the potential that is given by Equation (37), for Rnuclm� 1, we obtain

nκ =
g
π
[2(Arth

√
1− η −

√
1− η) + h(ρ) , (64)

where ρ = |κ|/ζ , η = Rnucl/r− = 2Rnuclm/(ζ(1− ρ2)), r− is the turning point in the
effective potential, h(ρ) takes into account integral over the interior region of the nucleus
0 < r < Rnucl,

h(ρ) = (1− ρ2)−1/2
∫ 1

x0

[ f 2(x)− ρ2x−2]1/2dx , (65)

where x0 = x0(ρ) is the root of equation x f (x) = ρ.
For Ze3 � 1 (at this condition distribution of electrons, which fill the vacuum shell,

only slightly modifies the bare potential, as we shall see below), Equation (63) correctly
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determines the distribution of electrons with ε < −m of the supercritical atom over the
momenta j = |κ| − 1/2. The maximum value of j corresponds to r− = Rnucl, η = 1,

κmax = ζ − Rnuclm + O(R2
nuclm

2/ζ) . (66)

The total number of levels with ε < −m,

N = ∑
κ

nκ , (67)

can be found by replacing the summation by the integration. We should take into account
that, in the Dirac equation, |κ| ≥ 1. Thereby, we still should subtract spurious term κ = 0.
Thus,

N =
∫

dr[ 1
2 (V

2 + 2Vm)r− 1
π (V

2 + 2Vm)1/2]

= A1ζ2 ln ζ
Rnuclm

+ A2ζ2 + A3ζ ln ζ
Rnuclm

+ A3ζ + A4 + ..., (68)

where A1 = 1/2, A2 =
∫ 1

0 f 2(x)xdx − ln 2 − 1 , A3 = −1/π,

A4 = − 1
π (
∫ 1

0 f (x)dx + ln 2− 2).
For the model II, the result of this calculation is shown in Figure 3. Again, we observe

an excellent accuracy of the semiclassical result, even for ζ ∼ 1.

Figure 3. The number of levels with ε < −m for the potential of the model II, cf. [5]. The stepwise
broken line represents a numerical solution of the Dirac equation, while the curve Q was computed
according to the semiclassical Equation (68).

4.6. Energy of Single-Particle Levels at ε < −m
4.6.1. Energy Spectrum for |ε| −m� m

Expand the effective potential in m + ε, cf. [3]:

Uef(r, ε) =
∞

∑
n=0

(m + ε)nun(r) , (69)

where Uef(r, ε) can be taken following Equation (21). Here, u0(r) = Uef(r, ε = −m).
For n ≥ 1,

un =
V
mn δn1 +

1
mVn

[
−V ′′

4V
+

3(n + 1)
8

(
V ′

V

)2

+
κV ′

2rV

]
, (70)
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where δn1 is the Kronecker symbol.
The energy of the levels is found from the Bohr–Sommerfeld quantization condition∫ r−

0

√
−2mu0dr + (m + ε)

∫ r−

0

√
−2u1dr + O((1 + ε/m)3/2) = (nr + γ′)π . (71)

As before, γ = 3/4 for levels with κ = −1 and γ = 1/2 for κ 6= −1. With the help of (71)
we find

ε = −m + β(ζcr − ζ) + ... , (72)

β = f2/ f1 , f1 =
∫ r−

0

√
−2m2u1 dr , f2 =

∫ r−

0

ζ f 2/(mRnucl)− f√
−2u0/m Rnucl

dr .

A comparison of numerical calculation done following these expressions with that for
the exact Dirac equation again shows a good agreement. Note that the value β determines
the threshold behavior of the probability of the production of positrons.

4.6.2. Energy Spectrum for |ε| � −m

This spectrum has been found in [5]. For ζ � ζcr, many levels have energies |ε| � −m.
In this case, as follows from Equation (21) and (22), the terms ∝ κ in the centrifugal potential
and in the spin term cancel each other. Approximately, we have

p∗(r) ' [(ε−V)2 − κ2/r2]1/2 . (73)

For k =
√

ε2 −m2 < ζ/Rnucl, the turning point r− lies outside the nucleus, r− > Rnucl.
Employing the Bohr–Sommerfeld quantization condition, we get

kn ' |εn| = c0ζR−1
nucle

−nπ/ζ = ζR−1
nucle

−(n−n∗)π/ζ , n > n∗ , (74)

c0 = exp(
∫ 1

0 f (x)dx− 1) , n∗ = ζπ−1(
∫ 1

0 f (x)dx− 1) .

For deeper levels, k > ζR−1
nucl, classically permitted region r0 < r < r− is completely

inside the nucleus. Thereby, the spectrum is entirely determined by the expression for f (x):

kn = ζR−1
nucl f (Ξn) , 1� n� n∗ , (75)

where Ξn is the root of equation∫ Ξ

0
f (x)dx− Ξ f (Ξ) = nπ/ζ . (76)

For example, for the model II at 1� n� n∗, we have

kn =
ζ

2Rnucl

[
3− (n/n∗)2/3

]
, n∗ =

ζ

3π
. (77)

From these expressions, it is easy to find expression for the level density dn/dε. For
model II, we find

dn/dε = Cy−1 , for 0 < y < 1 (78)

and
dn/dε = C(3− 2y)1/2 , for , 1 < y < 3/2 (79)

for y = kRnucl/ζ, C = const. From here, we see the accumulation of levels toward the
boundary ε = −m (k→ 0).

For levels with arbitrary angular momenta the “Coulomb” part of the spectrum gets
the form

εnκ = −ζR−1
nuclc(ρ)exp(−nπ/g̃) , (80)
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where ρ = |κ|/ζ, 0 < ρ < 1. Pre-exponential factor

c(ρ) = exp
[
ln(2(eρ)−1(1− ρ2))− (1− ρ2)−1/2Arth(1− ρ2)1/2 + h(ρ)

]
, (81)

where h(ρ) that is given by Equation (65) depends on the f (x), e = 2.718... is the Euler
number. The function c(ρ) monotonically decreases with increase of ρ from 1 for model I
and from ' 1.4 for model II at ρ = 0 up to zero for ρ = 1 in both models.

Equation (80) is obtained at the condition that the turning point r− lies inside the
nucleus. The condition of applicability of Equation (80) is g̃/π � n < nκ . Because
nκ ' (g̃/π) ln(ζ/Rnucl), then, due to large values of the logarithm, this equation describes
most of the levels crossed the boundary ε < −m.

The exponential dependence of εn on n and the accumulation of levels near ε = −m,
as follows from Equations (74) and (80), are related to the fact that Uef ' −g̃2/r2 for r → 0.
If R was zero, the electrons would collapse to the center. The spectrum of the Schrödinger
equation in such a potential behaves as [89],

En = E0e−2πn/g̃ , (82)

where E0 is the energy of the lowest level. In our case, E ' ε2/2m, and thereby we recover
Equation (80) for c(ρ) = 1.

4.7. Exponential Estimate of Probability of Spontaneous Production of Positrons

Because, following Dirac the process of the production of e−e+ pairs can be treated
as the penetration of electrons of the lower continuum into the upper continuum through
the classically forbidden region (p2 < 0), the probability of this process is, as in case of
spinless particles, determined by Equation (5). Equivalently, one can find the coefficient
of transmission of the barrier in the effective potential or find semiclassical asymptotic of
the functions G and F for r → ∞. This single-particle picture is distorted with a deepening
of the level and with the increase of the number of levels crossed the boundary ε = −m.
We may use Equations (20)–(22) while taking the Langer correction into account, which
improves the application of semiclassical expressions.

In the threshold region of positron energies setting ε ' −m in the expression for the
spin term Us, we obtain

p∗ 2(r) ' (ε−V)2 −m2 − κ2/r2 , (83)

cf. with Equation (73) we have used for a description of the very deep levels. In case of the
Coulomb field V = −ζ/r, replacing (83) in (5), we obtain

W ∼ exp

[
−2πζ

(
(m2 + k2)1/2

k
− (1− ρ2)1/2

)]
, ρ = κ/ζ , k =

√
ε2 −m2 � m , (84)

that coincides with the asymptotic of the exact solution of the Coulomb problem.

4.8. Critical Charge of Nucleus for Muon

For the electron, one has Rnucl � 1/m, since 1/m ' 386 fm and Rnucl ' r0 A1/3 '
A1/3/mπ , mπ ' 280m. For muon Rnucl � 1/mµ, mµ ' 207me.

In order to find the critical charge for the muon, ζ
µ
cr, when µ− level reaches ε = −mµ,

we continue to apply the semiclassical approximation. For the model I, the turning point
lies outside the nucleus. Let us expand Uef(r, ε) near the turning point. Using Equation (54),
after the replacement r− → r0, and matching solutions G ′/G at r = Rnucl, we find [3]:

Ai ′(0)
Ai(0)

2
ζ1/3 '

βctgβ

mµRnucl
, β =

√
ζ(ζ − 2Rnuclmµ) (85)
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for the ns level. From here follows

ζ
µ
cr ' 2Rmµ +

(nπ)2

2Rnuclmµ
(1 + a(Rnuclmµ)

−2/3 + ...) , a = −24/33−5/6πΓ2(2/3) , (86)

that coincides with expression, which follows from the direct solution of the Dirac equation
at ε = −mµ. In the model II we obtain ζ

µ
cr ' 16.7 that corresponds to Zµ

cr ' 2300, and in
the model I, respectively Zµ

cr ' 3700.

5. Semiclassical Approximation to System of Linear Dirac Equations
5.1. Semiclassical Wave Functions

Let us apply semiclassical expansion to Equation (18), cf. [7]. The parameter of
expansion λ̃/l is ∝ h̄, where l is the typical length for the change of the potential. We present

ψ = φe
∫ r ydr , (87)

y(r) =
1
h̄

y−1(r) + y0(r) + ... , φ =
∞

∑
n=0

h̄nφ(n) , (88)

and arrive at the chain of equations for yn and φ(n):

(D̂− y−1)φ
(0) = 0 , (D̂− y−1)φ

(1) = φ
(0) ′
r + y0φ(0) , ... (89)

One usually restricts expansion by consideration of first two terms. Because semiclas-
sical series is an asymptotic one, retaining of too many terms may worsen the convergence
of the series to the exact solution.

In order the system of homogeneous Equation (89) to have nontrivial solution, y−1(r)
should be an eigenvalue and φ(0) ≡ φi, i = 1, 2, the eigenfunction of one of two-component
eigenvectors of the matrix D̂(r). From the condition detD̂ = 0, we get

y−1 ≡ λi = ±i
√
(ε−V)2 −m2 − κ̃2/r2 ≡ ±q . (90)

Replacing y−1 back to Equation (89), we obtain

φi = A

 m + ε−V

λi + κ/r

 = A1

 λi − κ/r

m− ε + V

 , (91)

where A and A1 are normalization constants.
Because the matrix D̂ is not symmetrical, besides the right-hand eigenvectors φi, we

should introduce the left-hand eigenvectors φ̃i:

(D̂− λi)φi = φ̃i(D̂− λi) = 0 , (92)

φ̃i = A(m− ε + V, λi + κ/r) = A1(λi − κ/r, m− ε−V) .

Note that the left eigenvectors do not coincide with transposed right eigenvectors
(φ̃i 6= φT

i ) and the left-hand and right-hand vectors are mutually orthogonal,

(φ̃i, φj) =
2

∑
α=1

(φ̃i)α(φj)α ∼ δij . (93)

To determine y0, let us put φ(0) = φi in Equation (89) and multiply both sides of
equation from the left by φ̃i. As follows from the first Equation (92), the term with φ(1)

vanishes, and we obtain
y0 = −(φ̃i, φ ′i )/(φ̃i, φi) . (94)
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Further calculations entail no difficulty, cf. [7,90]. The resulting wave functions of the
quasistationary state with energy ε < −m in the region of classically permitted motion
r0 < r < r− to have the form:

G = C1

[
ε+m−V

p

]1/2
sinθ1 , F = sgn κ · C1

[
ε−m−V

p

]1/2
sinθ2 , (95)

p = −iq =
√
(ε−V)2 −m2 − κ2

r2 , θ1 =
∫

r 0
r(p + κw

pr )dr + π/4 ,

θ2 =
∫ r

r0
(p + κw̃

pr )dr + π/4 , w = 1
2

(
V ′

m+ε−V −
1
r

)
, w̃ = 1

2

(
V ′

m−ε+V + 1
r

)
.

Here, C1 is normalization constant. As it was discussed, semiclassical wave functions
can be normalized neglecting penetration of the particle into the classically forbidden
regions r < r0 and r > r−, i.e.,

∫ r−
r0

(G2 + F2)dr = 1. Thus, we find

C1 =

[∫ r−

r0

ε−V
p

dr
]−1/2

=

(
2
T

)1/2
, (96)

where T is the period of the particle motion in the classically allowed region.
In the sub-barrier region r− < r < r+, where p2 < 0, p = iq and q, y−1 and y0 are real,

wave functions attenuate exponentially with increasing r. The resulting expressions have
different forms in dependence on the sign of κ. For κ < 0, i.e., for κ = −1, we have

ψ =

 G

F

 = C2−(Qq)−1/2 exp
[
−
∫ r

r−

(
q− V ′m

2Qq

)
dr
] m + ε−V

−Q

 (97)

with Q = q− κ/r.
For κ > 0, we have

ψ = C2+(Qq)−1/2 exp
[
−
∫ r

r−

(
q +

V ′m
2Qq

)
dr
] −Q

m− ε + V

 (98)

with Q = q + κ/r, C2± are normalization constants.
In the region r > r+, the quasistationary state describes outgoing positron and

represents a diverging wave. For κ < 0:

ψ = iC3−(Pp)−1/2 exp
[
−
∫ r

r+

(
ip− V ′m

2Pp

)
dr
] m + ε−V

iP

 (99)

with P = p− iκ/r. The flux of particles moving to infinity is then given by Γ = lim Im(F∗G)
at r → ∞.

For κ > 0:

ψ = iC3+(Pp)−1/2 exp
[
−
∫ r

r+

(
ip +

V ′m
2Pp

)
dr
] iP

m− ε + V

 (100)

with P = p + iκ/r. C2± are normalization constants.
The obtained formulas are valid for all r, except regions δr ∝ 1/ζ2/3 near the turning

points. The usual procedure is employed to match semiclassical solutions. The solution
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is either expressed in terms of an Airy function or one may use the Zwaan’s method.
Consequently, we have

C2± = −iC3± (101)

= − sgn κ

2
C1m

[
|κ|

mr− + (κ2 + r2
−m2)1/2

]−sgn κ/2

exp
[
−
∫ r+

r−

(
q + sgn κ

V ′m
2Qq

)
dr
]

.

Note that the effective potential, which we have used in (20), can be presented while
employing function w that appeared in (95):

Uef = −
V2

2m
+

εV
m

+
κ(κ + 1)

2r2m
− κ

rm
w +

1
2m

(w ′ + w2 +
w
r
) . (102)

The terms in Equation (102), which contain the function w, are due to the electron
spin. For |V| � m, they are small compared to the first three terms. Subsequently, the
expression for the effective potential takes the same form as for a scalar particle. At the
turning points r− and r+, the effective potential is not singular.

The action becomes

S =
∫ r

dr
√

2m(E−Uef) =
∫ r

dr
[

p +
2κw
pr
−m−1(w ′ + w2 +

w
r
)

]1/2
. (103)

Expanding S in 1/ζ � 1, we obtain

S =
∫ r

dr
[

p +
κw
pr

+ O(m/ζ2)

]
, (104)

that coincides with Equations (95)–(100), which we have derived in this section.
Using Equations (95)–(100) for ε = −m, we obtain

r =
3(ζ2 − κ2 + 1/4)(ζ2 + 2κ2/3− 5κ/3 + 1)

10ζ(ζ2 + (κ2 − 3κ/2 + 1/2)/2)
. (105)

This expression yields r = 0.301/m for the ground-state level, whereas the exact result
gives 0.303/m. For ζ � |κ| � 1, result (105) coincides with that follows from (56).

5.2. Nonrelativistic Limit

To be specific consider case κ < 0 and the classically allowed region. Introducing
a nonrelativistic energy ε̃ = ε−m and the variable q̃ = (q2 + κ/r2)1/2 ' q + κ

2qr2 , let us
transform the factor in exponent (97) as∫ r

r−
dr
(

q− V ′m
2Qq

)
=
∫ r

r−
dr
[

q̃− 1
2q

(V ′/Q + κ/r2)

]
=
∫ r

r−
dr
[

q̃− 1
2
(ln Q) ′

]
, (106)

where Q = q− κ/r. The latter term in the integral cancels with the pre-exponential factor
Q−1/2. Now let us take into account that κ(1 + κ) = l(1 + l). Subsequently, we have

q̃(r) =
[
2m(−ε̃ + V(r)− l(l + 1)/(2mr2)

]1/2
, G(r) =

C
q̃1/2(r)

exp(−
∫ r

r−
drq̃(r) , (107)

where C = const that reproduces the Schrödinger wave function in this region. Note that
q̃(r) enters not κ = ∓(j + 1/2), but orbital moment l. We formally considered case κ < 0
just to be specific. Case κ > 0 is considered similarly. Additionally, note that, for κ 6= −1,
one should add to q̃(r) the Langer correction.
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5.3. Bohr-Sommerfeld Quantization Rule

From (97), (98) we derive [7],∫ r−

r0

dr(p +
κw
pr

) = (n + γ ′) . (108)

As we have mentioned, value γ ′ depends on the fact does r0 lie inside the nucleus or
outside it. In the latter case, γ ′ = 1/2 for κ 6= −1 and γ ′ = 3/4 for κ = −1.

Equation (108) determines the real part of the energy εnκ . It differs from the ordinary
Bohr–Sommerfeld rule used in nonrelativistic quantum mechanics by expression for rela-
tivistic momentum p(r) and by the term ∝ w appeared due to the spin–orbital interaction.
Taking into account of the term ∝ w is legitimate within semiclassical scheme. Let us show
it on an example of the Coulomb field V = −ζ/r. Subsequently, w(r) = − m+ε

2(ζ+(m+ε)r) and
p(r) is determined by Equation (95). For r0 < r < r−, the momentum p(r) ∼ g̃/r and
the ratio | κw

p2r | ∼ |κg̃−2rw| ∼ |κ|/ζ2 for deep levels. Because semiclassical approximation

for wave functions is valid up to 1/ζ2, the second term in the integral (108) should be
retained in the case of deep levels |ε| � m for |κ| � 1, but it can be dropped for |κ| ∼ 1.
For ε = −m, we have w = 0.

Note that the results of calculations performed with the help of the quantization
rules (50) and (108) differ only in correction terms. For instance, from (108), we derive
exactly the same electron energy spectrum as that given by Equations (80) and (81), with
the help of the quantization rule in the form (50).

5.4. Probability of Spontaneous Production of Positrons

Let us calculate the probability of spontaneous production of positrons, Γ = −2Imε.
Replacing (99), (100) in (40), we find

Γ = Γ0e−2
∫ r+

r−
q(r)dr , Γ0 = T−1e2κPr

∫ r+
r−

wdr/(qr) . (109)

The last integral is understood in the sense of the principal value, being denoted as Pr, due
to singularity at the point where V(r) = m + ε.

In the nonrelativistic limit, the value Γ0 = 1/T has the meaning of the number of
impacts per unit time of the particle (localized inside the region r0 < r < r−) against the
potential barrier at r = r−, and the exponential is the probability of the penetration of the
barrier in each impact. The allowance for the relativistic effects and the spin change the
expression for the period of the oscillations and add to (109) a factor depending on the sign
of κ.

While taking into account that in the region of the barrier V is the purely Coulomb
field, for w = 0 all of the integrals are calculated exactly:

Γ = Γ0exp
[
−2πζ

(
(m2 + k2)1/2/k− (1− ρ2)1/2

)]
, (110)

1/Γ0 = 2ζ
k2

[
(1− ρ2)1/2(m2 + k2)1/2 − m2

k Arth
(

k
(

1−ρ2

m2+k2

)1/2
)]

.

For the positron momentum k =
√

ε2 −m2 → 0, we have Γ0 = c1 = 3/[2ζ(1 −
ρ2)1/2(2 + ρ2)], and, for k→ ∞, we have Γ0 = c2k = k/[2ζ(1− ρ2)1/2]. For k� ζ1/2m the
width Γ is exponentially small for any κ. For |κ| � (ζ/π)1/2 expression simplifies as

Γ ' k[2ζ(1− ρ2)]−1/2exp[−2πζ(1− (1− ρ2)1/2)] . (111)

For |κ| <∼ κ0 = (ζ/π)1/2, the exponential factor in Γ becomes of the order of unity, and
the semiclassical approximation becomes invalid. Note that κ0/κmax = 1/

√
πζ. Therefore,

a number of levels diffused in the continuum, for which Γ is not exponentially small, is
tiny for ζ � 1.
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5.5. Semiclassical Method for Noncentral Potentials Obeying System of Linear Dirac Equations

We described the spectrum of the quasistationary levels in the lower continuum for a
spherical nucleus with the charge Z > Zcr. The results can be generalized to the case, when
the potential does not obey spherical symmetry [7]. Let us present the Dirac equation as

− i(~̂α∇)ψ = h̄−1D̂ψ , D̂ = ε−mβ̂−V(~r) , (112)

where ~̂α = γ0~γ, β̂ = γ0 are Dirac matrices, and we recovered dependence on h̄. Let us
present bispinor ψ as ψ = φeiσ and expand real quantities φ and σ in the parameter that is
proportional to h̄:

σ = h̄−1σ−1 + σ0 + ..., φ = φ(0) + h̄φ(1) + ... (113)

Replacing these series to Equation (112), we obtain the chain of equations

[D̂− (~̂α∇σ−1)]φ
(0) = 0 , (114)

[D̂− (~̂α∇σ−1)]φ
(1) = ~̂α∇)φ(0) + (~̂α∇σ0)φ

(0) , ...

The condition of existence of a nontrivial solution φ(0),

det[D̂− (~̂α∇σ−1)] = 0 , (115)

results in the Hamilton–Jacobi equation

(∇σ−1)
2 = (ε−V)2 −m2 . (116)

In difference with the spherically-symmetric case, the matrix

D̂−~̂α∇σ−1 = ε−V(~r)−mβ̂−~̂α∇S (117)

is Hermitian; therefore, its left-hand, φ̃i, and right-hand, φi, eigenvectors are Hermitian
conjugates, φ̃i = φ†

i , and

(D̂−~̂α∇S)φi = φ†
i (D̂−~̂α∇S) = 0 , i = 1, 2, 3, 4 . (118)

With the help of this equation, from (114), we find a system of equations for σ0,

φ†
i (~̂α∇σ0)φj = −φ†

i ~̂α∇φj . (119)

Bispinors φi are found by diagonalizing the matrix D̂−~̂α∇S, so that the right-hand
side of Equation (119) contains known quantities. Determining from this equation σ0, we
obtain the quasiclassical solution of the Dirac equation

ψ = φiexp(h̄−1σ−1 + σ0) . (120)

In practice, the calculation of the functions σ−1 and σ0 for noncentral potentials
is a complicated mathematical problem requiring the solution of first-order differential
equations in partial derivatives. In contrast to the case when V is spherically symmetric, in
general case the result is not expressed in quadratures. If a parameter of a “non-sphericity”
is small, then one may develop a perturbation theory.

6. Spontaneous Production of Positrons in Heavy-Ion Collisions
6.1. Approach to the Problem

The minimal distance between colliding nuclei with charges Z1 and Z2 is as
follows [18,91],

Rmin = (Z1 + Z2)
2e2/(2Ec.m.) +

√
(Z1 + Z2)2e2/(2Ec.m.)2 + b2 ,
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where Ec.m. is the kinetic energy of colliding nuclei in c.m. reference frame, b is the impact
parameter. In order the energy of the electron, ε1s, in the quasi-molecule would become
< −m the colliding heavy nuclei should reach distances |~r1 −~r2| = R < Rcr, where
Rcr ' 33 fm for central U+U collisions, see below. Thus, Rcr is approximately twice
larger than 2Rnucl, where Rnucl ' 1.2A1/3 fm is the radius of the single nucleus ' 7
fm. On the other hand, Rcr � rK ' 0.3ζcr, where r is estimated using Equation (105).
For U+U collisions, Rcr/rK ∼ 0.2. Nuclei move with the velocity vA ∼ (0.025− 0.07),
cf. [18], whereas the electron of the K-shell has a typical velocity ve ' 1. Thereby, one may
use adiabatic approximation, i.e., we may use ε(R(t)). Because Rcr/rK ∼ 0.2 � 1, the
anisotropy of the potential is not as large, and we may present

V(r) = −
(

Z1e2

r1
+

Z2e2

r2

)
= −Ze2

r

(
1 +

R2

(2r)2 P2(cos θ) + ...
)

, (121)

where Z = Z1 + Z2,~r1,2 = |~r± ~R/2|, P2 is the second Legendre polinomical, R(t) is the
distance between centers of nuclei. In the second equation and, further we for simplicity,
consider the case Z1 = Z2. Otherwise, odd-power terms appear in the expansion. In
inclusive experiments, this anisotropy disappears due to the averaging. However for event-
by-event collisions such terms may lead to the forward-backward anisotropy reflecting in
some observable effects. In the first approximation in (R/2rK)

2, the problem is reduced to
that we have considered above for the spherical nucleus with the charge Z = Z1 + Z2. The
effective nucleus radius now is 2Rnucl.

The process of the spontaneous production of positrons can also be described in
adiabatic approximation, since, as we have argued, we may use that ε(R(t)) and, since
1/Γ(ε(R(t))) � τcol

>∼ 2Rcr/vA. The most serious experimental problem is to separate
spontaneous production of positrons in the tunneling process from the frequency depen-
dent processes also resulting in a production of positrons. For example, the parameter
2Rnucl/Rcr ∼ (1/2− 1/3) is not as small. Therefore, a serious competing time-dependent
process is associated with an induced production of positrons occurring due to excitation of
the nuclear levels, cf. [20,92] and the references therein. However, the difference between
characteristics of the induced and spontaneous production of positrons is significant. The
induced positron production exists in both subcritical and supercritical regimes. When
the electron level crosses the boundary ε = −m, there appears a narrow energy-line in
the positron spectrum owing to the switching on of the spontaneous positron production
occurring in the tunneling process. Thus, there is a principal difference between the sub-
critical and the supercritical regimes that may help in the experimental identification of the
spontaneous positron production.

Another effect is associated with the presence of a magnetic component of the field.
First, an indication on presence of strong magnetic fields in heavy ion collisions was
performed in [93]. For peripheral collisions of heavy ions at collision energies <∼ GeV·A it
yields h ∼ Hπ(Ze6)1/3 for R ' A1/3/mπ , vA ∼ 1, Hπ = m2

π/e. More generally, replacing

1→ vAγ, γ = 1/
√

1− v2
A, we have

eh ∼ Ze2vAγ/R2 . (122)

For collisions with low energies E ∼ (5− 10)MeV·A of our interest here, it follows
that h ∼ 1015G, for R ∼ Rcr ' (30− 50) fm, and vA ∼ 10−1, cf. also [94].

In the presence of a “weak” homogeneous magnetic field, the reduction of Zcr in the
case of the supercritical atom has been found by using the perturbation theory [95],

ζcr(h) = ζcr(0)−
5π2µ

6 ln(1/R3
nucl)

h
H0

, (123)

H0 = m2/e ' 4.4 · 1013G, µ ' 1/3 for ζ = ζcr.
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For strong fields, numerical evaluations [95], see also [19], yielded Zcr = 165 for
h = H0, and Zcr = 96 at h = 102H0. For h = 1018G, one gets Zcr = 41. This effect appears
because of the exact compensation of the diamagnetic and paramagnetic contributions
to the ground state for the electron. Although these estimates are performed for the case
of purely uniform static magnetic field, they show that a magnetic effect also should be
carefully studied for the case of realistic time-space configuration of the field.

Below, I only focus on the description of the spontaneous production of positrons and,
simplifying this consideration, I also ignore the mentioned magnetic effects.

6.2. Electron Energy as a Function of Distance between Nuclei

Usage of the Bohr–Sommerfeld quantization rule allows for considering the problem
analytically [8], cf. [7]. From (19)–(21), taking into account of the Langer correction resulting
in the replacement p→ p∗, we have

p∗(r) =
F(r, ε)

r
, F(r, ε) =

[
(ε2 −m2)r2 + 2εζr +

κ + 1
ã
− 3

4ã2 − (κ + 1/2)2 + ζ2
]1/2

, (124)

where ã = 1+ r(m + ε)/ζ, ζ = Ze2, Z = Z1 + Z2. Applying the quantization rule (50), first
for ε 6= −m and then for ε = −m, and subtracting one result from the other, we obtain∫ rε

R/2
drF(r, ε)/r =

∫ r−m

Rcr/2
drF(r, ε = −m)/r . (125)

Here, rε is the turning point for the given ε and r−m is the turning point for ε = −m.
I used that in integration over the regions r < R/2, r < Rcr/2 dependence on ε can be
dropped, since at |ε| ∼ m of our interest, we have |V| � |ε|. Thereby, the specifics of the
behavior V(r) in the region r < Rcr/2 almost does not affect the result. To be specific, we
may use V = const for r < Rcr/2. Integrals undergo logarithmic diverge at the lower limit.
After their regularization, the dependence on R and Rcr is separated in the explicit form:∫ rε

0
dr[F(r, ε)− F(r, ε = −m)]/r +

∫ rε

r−m
drF(r, ε = −m)/r = g̃ ln

R
Rcr

. (126)

Integrals in (126) are calculated numerically. A comparison with the exact solution of
two-center Dirac problem shows that the error of the semiclassical result does not exceed
0.1%. We can proceed further using that r|m + ε|/ζ < rε|m + ε|/ζ � 1 at least for |ε| ∼ m
of our interest. Thereby, we expand ã in Equation (124) in the series of r. As the result,
we find

F(r, ε) = (g̃2 + br + cr2)1/2 , (127)

b = 2εζ − (κ − 1/2)(m + ε)/ζ , c = ε2 −m2 + (κ − 5/4)(ε + m)2/ζ2 .

From (126) and (127), we obtain

R
Rcr

= −2ζ

b

(
1 +

g̃2c
3b2 + O(c2)

)
. (128)

For |ε + m| � m, we find

ε = −m− βm(R− Rcr)/Rcr , β =

(
1− κ − 1/2

2ζ2 − g̃2

3ζ2

)−1

. (129)

For U+U collisions for the ground-state level, we find ζ ' 1.343 and β ' 0.79. The
slope-parameter β determines the probability of the production of positrons for |ε + m| �
m. The semiclassical approximation reproduces the Z dependence of β correctly, the
difference with exact calculation done within solution of the two-center problem for the
Dirac equation [96] is approximately (3–4)%.
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Setting c = 0 in Equation (128), we obtain a very simple and accurate result [6–8]:

ε(R) = ε(R/Rcr) = −m
Rcr/R− (κ − 1/2)/(2ζ2)

1− (κ − 1/2)/(2ζ2)
. (130)

The difference of this simple expression with exact solution of the two-center Dirac
Equation [96] is less than (1–2)% already for ζ → 1 when the parameter of applicability of
the semiclassical approximation is 1. Such an accuracy is sufficient; therefore, here I do not
present a more accurate semiclassical expression [7] obtained without using expansion in
c2, which has still higher accuracy. It may be curious to notice that, when in 1976 I showed
the result (130) to Vladimir Stepanovich Popov, he did not believe in it, saying that one
of his collaborators during a year is trying to solve the Dirac equation for the two-center
problem numerically on ITEP big computer and, yet, only obtained the result for ζ = 1. He
took the slide rule (that time there were no PCs) and confirmed that for ζ = 1 the whole
curve (130) fully coincides with the result of the exact numerical calculation. Because the
criterion of applicability of the semiclassical approximation for the ground state is g̃0 � 1,
it became clear that, for ζ > 1, the accuracy of approximate solution (130) should at least
not be worse than in case ζ = 1.

Subsequently, the result (130) was reflected in our publications [6,7]. Result (130) is
shown in Figure 4. For ζ = 1.343, κ = −1, we get −ε(R/Rcr) = 0.705(Rcr/R) + 0.295.

Figure 4. Solution ε(R/Rcr) of Equation (130) for various values of the parameter ζ.

The expression for the critical distance between nuclei, Rcr, can be found from
Equation (62) for a spherical nucleus after replacement of the nucleus radius Rnucl by
R/2, where, now, R is the distance between nuclei and Z → Z1 + Z2. Consequently,
we find

Rcr =
4g̃2

ζm

[
exp

(
π(n + γ1)− γ̃

g̃
+ 2
)
+ 2
]−1

. (131)

For the case of U+U collisions, in the model I that we obtain Rcr ' 33 fm, whereas
exact solution of the Dirac equation [96] yields Rcr ' 34.3 fm.

6.3. Tunneling in the Two-Center Problem. Angular Distribution of Positrons

The potential of the system of two nuclei (121) contains, at r � R, a quadrupole
correction. In the sub-barrier region, the correction is <∼ (Rcr/(2r−))2 <∼ 10−2. Therefore,
the problem is reduced to the calculation of the penetrability of a three-dimensional barrier
that only differs little from a spherically symmetrical one. Thus, we may use expansion

V = V0 + m2R2V1 , S = S0 + m2R2S1 . (132)
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We substitute these expressions to the Hamilton–Jacobi equation and obtain

(∇S0)
2 = 2m(E−U0) , ∇S0∇S1 = −U1 , (133)

U0(r) = −
(

ζ2

2r2m + ζε
rm

)
, U1(r) = − ζ

4r3m2

(
ε + ζ

r

)
P2(cos θ) .

The first equation is easily integrated, resulting in

S0(r, θ) =
∫ r

pdr + κθ . (134)

Taking the first term into account leads to exponential term in Equation (110). Second term
in (134) is due to anisotropy of the potential.

Equation for S1 in the under-barrier region r− < r < r+ gets the form

iq
∂S1

∂r
+

κ

r2
∂S1

∂θ
= −U1(r, θ) , p = iq , (135)

and it is solved by the method of separation of the variables. Supposing

r2U1(r, θ) = u(r)(
3
4

cos(2θ) +
1
4
) (136)

and taking into account the boundary condition ImS1(r−, θ) = 0, for r = r+ we obtain

ImS1(r+, θ) = aP2(cos θ) + a1 , (137)

a =
∫ r+

r−
dr u(r)m2

q(r) ch
(

2κ
∫ r+

r
dr ′

q(r ′)r ′ 2

)
, a1 = − 1

2

∫ r+
r−

dr u(r)m2

q(r) sh2
(

κ
∫ r+

r
dr ′

q(r ′)r ′ 2

)
.

For the angular asymmetry of the positron production, the constant a1 is immaterial.
A remarkable fact is that the expression for a acquires a hyperbolic cosine that enhances

the angular anisotropy of the emitted particles when compared with the anisotropy of the
potential. The cause of this effect is that the sub-barrier trajectory of a tunneling particle
with nonzero angular momentum is not a straight line due to κ 6= 0. This leads to a
substantial difference in the description of the three-dimensional and the one-dimensional
tunneling of particles.

For the Coulomb field integrals (137) can be calculated exactly. However, the result
looks cumbersome. An estimate shows that W(θ) ' exp(−2ImS) = Cexp(αP2(cos θ)),
where C is a constant, α ∼ m2R2η−1shη � m2R2, η = 2πκ/g̃. For U+U collisions α ∼ 1/3,
and we can expect a noticeable angular anisotropy. The positrons are predominantly
emitted along the axis joining the nuclei at the instant of their closest approach. This
question is worthy of experimental study.

Concluding, note that we needed the applicability of semiclassical approximation for
both the radial motion and the angular motion. Strictly speaking, the latter takes place only
for |κ| � 1. However, as it always occurs, even for |κ| ∼ 1, one may expect good accuracy
of semiclassical expressions.

6.4. Screening of K-Electron by Electron Cloud of Not Fully Stripped Quasi-Molecule

If the colliding nuclei are not fully stripped, the quasi-molecule is surrounded by
an electron cloud. Screening weakens the attraction of the K-electron to the nuclei in the
quasi-molecule. Consequently, the critical distance Rcr, at which the K-electron level crosses
the boundary ε = −m, is decreased. This effect can be calculated using nonrelativistic
many-particle semiclassical approximation (Thomas–Fermi method), cf. [7,8]. Let us
use that

Rcr � rK � aTF = (9π2/128)1/3(Ze6)−1/3/m ' 30ζ−1/3/m , (138)
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where aTF is the mean radius of the Thomas–Fermi atom. The shift of the ground-state
electron energy level can be found with the help of the perturbation theory. We have

∆ε0 ' V(~r)−V0(~r) , (139)

where V0(~r) is the potential of the two striped nuclei (121) and V(~r) is the potential of the
two not fully striped ions. The typical size for the change of δV is aTF. Therefore, with
the accuracy ∼ (Rcr/aTF)

2 ∼ 10−5, the perturbation can be considered to be spherically
symmetric. Thus,

V(r) = V(ri)−
Ze2φ(r)

r
, V(ri) = −

Z1e2

ri
, (140)

ri = x0aTF is the radius of the ion, φ(r) is the solution of the Thomas–Fermi equation [84],

φ ′′x = x−1/2φ3/2 (141)

with boundary conditions φ(0) = 1, φ(x0) = 0, x = r/aTF, and Z1 = −Zx0φ ′x(x0) is the
observed charge of the two partially screened nuclei.

Expansion φ(x → 0) yields [84]:

φ(x) = 1 + φ ′x(0)x +
4
3

x3/2 + ... (142)

For the case of neutral atoms φ ′x(0) = −1.588.
From (140) and (142) for the shift of the ground-state level, we obtain

∆ε0 = V(ri) + φ ′x(0)
Ze2

aTF
=

Ze2

aTF
[φ ′x(0)− φ ′x(x0)] +

4ζ

3a3/2
TF

r1/2 + ... (143)

Values φ ′x(0) and φ ′x(x0) are tabulated. We estimate |∆Rcr/Rcr| ∼ |∆ε0/ε0| ' 10% for
the ionization parameter q = (Z1 + Z2 − N)/(Z1 + Z2) ' 0.5, and ' 12% for q = 0, where
N is the total number of electrons in the quasi-molecule.

6.5. Calculation of Positron Production Employing the Imaginary-Time Method
6.5.1. General Description of the Method

First, consider the problem of the one-dimensional motion of a relativistic particle in
the potential V(x, t). The Lagrangian is as follows

L = −m
√

1− ẋ2 −V(x, t) + V0 . (144)

The constant is added to recover Lorentz invariance of the action

S =
∫ t2

t1

Ldt , (145)

since t is not a scalar. At the initial time-moment particle was in the point x1(t1) and, at the
final moment, in x2(t2).

In the semiclassical approximation, the wave function is

ψ(x) ∼ eiS(x1,x) = eiReS(x1,x)−ImS(x1,x) . (146)

The action is found from the Hamilton–Jacobi equation.
In the imaginary-time method, the sub-barrier motion is formally considered at imagi-

nary values of the time variable. Performing the variable replacement τ = it, we arrive at
the Euclidian action

SE =
∫ τ2

τ1

[m
√

1 + (dx/dτ)2 + V(x, τ)−V0]dτ . (147)
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The trajectory x(τ) in the under-barrier motion, where SE is real, is determined by the
condition δS = 0. From here, one finds the equation of motion, which has a meaning of the
Newton equation

dp̃
dτ

=
d

dτ

mdx/dτ√
1 + (dx/dτ)2

= −∂VE(x, τ)

∂x
, VE = −V . (148)

With exponential accuracy, the probability to find the particle in the turning point of
the exit from the barrier, if it initially were in the point of the entrance of the barrier, is
given by

W(x1, x2) = e−2ImS(x1,x2) = e−2SE(x(τ1),x(τ2)) . (149)

This expression can be generalized to take the pre-exponential coefficient into account.
However, we will restrict ourself by consideration of the exponential term.

It is essential that the sub-barrier trajectory satisfies the classical equation of motion,
but now in the Euclidian time. To find it and to calculate S and W, we may formally use
the known equations of the classical physics.

6.5.2. Tunneling in Slowly Time-Dependent Potential

The case of space-dependent and slowly time-dependent fields was considered in [7],
cf. [68]. For simplicity, consider a scalar particle in a one-dimensional field. Let the proba-
bility of the tunneling in the static limit be known,

W = e−2
∫ x2

x1
|p|dx , (150)

where x1 and x2 are the entrance and exit turning points, i.e., p(x1) = p(x2) = 0. Variation
of the action due to a weak dependence of the potential on time V(x, t) yields

δS = δ
∫ t2

t1
[−m(1− ẋ2)1/2 −V(x, t)]dt (151)

=
∫ t2

t1
[pδẋ− (∂V/∂x)δx− δV(t)]dt = −

∫ t2
t1

δV(x(t))dt .

We used equation of motion and integration by parts. The last integral can be calculated
while using imaginary-time method. Thus, we obtain

δSE =
∫ τ2

τ1

δVE(x(τ))dτ . (152)

Dependence x(τ) is determined from (148) as

τ(x1, x) =
∫ x2

x1

dx
√

m2 − p̃2

p̃
=
∫ x2

x1

dx
V − ε√

m2 − (ε−V)2
, (153)

where we used relation p̃2 = m2 − (ε−V)2 and that ε may only adiabatically change with
time, i.e., it may depend on τ only via the dependence of one of the parameters.

6.5.3. Correction on Non-Adiabaticity to the Spontaneous Positron Production in
Low-Energy Heavy-Ion Collisions

As a specific example, consider the probability of the spontaneous positron production
in low-energy heavy-ion collisions. Deriving Equations (110) and (137), we assumed that,
during a time of the tunneling ((r+ − r−)

√
m2 + k2/k), the potential V and ε did not have

a time to change. Here, please do not mix typical time, for which the particle passes the
barrier, cf. [97], and time 1/Γ, with an inversed probability to observe the positron. As we
see from this simple estimate, adiabatic approximation does not hold at least for k→ 0, i.e.,
in the vicinity of the boundary of the continua, |ε| ' m.
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Let us find a correction to the penetrability of the Coulomb barrier due to finite speed
of the colliding nuclei [7]. Following (121), the R(t) dependent correction to the static
Coulomb potential is as follows

δV = − ζ

4r3 P2(cos θ)R2(t) . (154)

Further consider the case when positrons are emitted along the axis that joins the
nuclei, P2(0) = P2(π) = 1. Subsequently, the probability of their production is maximal.
Expanding R(t) near the closest approach point, we obtain

R(t) = R0 + v2t2/(4R0) . (155)

From (154) and (155), we have

δV = − ζv2

8r3 t2 . (156)

The imaginary time τ = it is found from Equation (153). Thus, we obtain

τ =
ζ

k3 [m
2φ + (m2 + k2)1/2(m2 + ρ2k2)1/2 sin φ] , (157)

where we introduced variable φ = 2arcsin[(r+ − r)/(r − r−)]1/2, 0 ≤ φ ≤ π, r =
r+ cos2(φ/2) + r− sin2(φ/2), values τ = 0 and φ = 0 correspond to the instant of emer-
gence from under the barrier. The total imaginary tunneling time is τt = πζm2/k3,
i.e., τt → ∞ for the electron energy ε → −m, whereas, for deep electron levels, τt
strongly diminishes.

The replacement of (157) in (152) yields

δSE = δImS = − 2Z
AmN

ζ2

R0v3
p

I(εp, η) , (158)

where εp = −ε, vp = (1−m2/ε2
p)

1/2 is the speed of the positron,

I(εp, η) = − 1
8

∫ π
0 dφ

[
sin φ+(1−v2

p)η

cos φ+η

]2
cos φ+(1−v2

p)η

cos φ+η , (159)

η = [1− (1− ρ2)v2
p]

1/2 .

The ratio
δ =

ImδS
ImS0

, (160)

where ImS0 = πζ[v−1
p − (1− ρ2)1/2] , for the collisions U+U (ζ = 1.343) is shown in

Figure 5 as a function of the positron energy εp. It is seen that δ < 0.1 for εp > 1.65m. The
adiabatic approximation in the problem of spontaneous production of positrons becomes
invalid near εp = m, where the positron production cross section is, in any case, tiny.
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Figure 5. Correction on non-adiabaticity of the motion of nuclei, δ, cf. [7], for collisions U+U as a
function of the positron energy εp.

Numerical calculations [18,48] have shown that Rcr rapidly increases with increasing
charge Z = Z1 + Z2 of colliding nuclei. The cross section of the spontaneous production
of positrons increases in this case ∝ R7/2

cr , while the correction for the non-adiabaticity of
the tunneling decreases as 1/Rcr at a fixed εp. Therefore, it would be more convenient to
perform experiments with heavier nuclei, for which Rcr is larger.

7. Many-Particle Semiclassical Approximation. Electron Condensation in
Upper Continuum
7.1. Screening of a Source of Positive Charge in Presence of External Electrons

In a many-particle problem, most of the electrons in spherically symmetric potential
well, V < 0, have angular momenta l � 1. Thereby, to find distribution of the charge, we
may deal with a more simple Klein–Gordon–Fock Equation (1) while assuming j ' l. The
value of the maximum momentum, at which the electron placed in the positively charged
ion where all levels with energies less than εbound are already occupied is bound, satisfies
the condition

pmax =
√
(εbound −V)2 −m2 (161)

with εbound ≥ −m. If there is a sufficient amount of external electrons, the resulting
system is charge-neutral. In this case, we should put εbound = m. Subsequently, pmax =√
−2mV + V2 , and taking into account that each cell of the phase space can only be

occupied by two electrons of opposite spin, we have

ne =
p3

max
3π2 =

(−2mV + V2)3/2

3π2 . (162)

Thus, the relativistic Thomas–Fermi equation renders

∆V = 4πe2

[
nnucl −

(−2mV + V2)3/2

3π2

]
, (163)

nnucl is the charged density of the nucleus. It is curious to note that such an equation for
neutral atom has been introduced long ago [98], but a relativistic term was then treated as
a small correction in nonrelativistic limit |V| � m.
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7.2. Filling of the Vacuum Shell by Electrons

Note that, even in the absence of external electrons, which may fill the empty states,
in case when the potential well V < −2mc2 electrons and positrons can be created already
from the vacuum in the absence of any external electrons. Positrons go off to infinity,
whereas electrons screen the initial positive charge of the source. In this case, we should put
εbound = −m. Subsequently, the relativistic Thomas–Fermi equation renders, cf. [1,2,99],

∆V = 4πe2

[
nnucl −

(2mV + V2)3/2

3π2 θ(2mV + V2)

]
, (164)

where θ(x) is the step-function, with the boundary conditions on the boarder of the ion

V(ri) = −2m = −Zie2/ri , V′(ri) = Zie2/r2
i , (165)

and with V(r) = −Zie2/r for r > ri. Reference [99] presented numerical solutions. The
thorough analytical and numerical study of the problem of the filling of the vacuum shell
by many electrons was performed in an independent study [1,2]. This phenomenon was
called “electron condensation”, demonstrating that all of the vacuum levels are filled by
electrons of the lower continuum, cf. [42].

7.3. A Detailed Derivation of Relativistic Thomas-Fermi Equation

The electron density can be found by direct summation of the moduli squared of the
wave functions [2]:

ne = − ∑
nκm
|ψnκm|2 , (166)

where ψnκm are semiclassical wave functions presented in Equations (95)–(100). Actually,
we need wave functions in the classically allowed region given by (95).

Differentiating quantization rule (108) over n, we obtain

∂ε

∂n

∫ r−

r0

ε−V
p

dr ' π , (167)

where we dropped the term ∂
∂n

κw
pr , which only leads to a small correction |w|/V2 ∼ 1/ζ2,

cf. [5].
From (167) and (96), we obtain

C1 =

(
1
π

∂ε

∂n

)1/2
. (168)

Using that ∑
j
m=−j |Ylm|2 = (2j + 1)/(4π), where Ylm is the spherical function, from

Equation (166), we have

ne(r) = −∑
nκ

2j + 1
4π2

∂ε

∂n
ε−V

pr2 . (169)

Here, we replaced sin2 θ1 and sin2 θ2 by 1/2 due to multiple oscillations. Replacing
summation in n by integration, we find

ne = −
1

4π2 ∑
j

Nj = −
1

4π2 ∑
j

2(j + 1/2)
r2

√
(εbound −V)2 −m2 − (j + 1/2)2/r2 . (170)

Doing further integration in j with εbound = −m, we recover (164).
Now, let us estimate the number of electrons in the vacuum shell, for which single-

particle approximation fails, i.e., number of levels, for which the width has no exponential
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smallness. Integrating (170) over the volume, we find the number of levels with momenta
j ≤ κ − 1/2,

δ(κ) =
1

Ne

κ−1/2

∑
j=1/2

Nj = cκ2 , (171)

where

c = 3I1/(2I2) , I1 =
∫
(V2 + 2mV)1/2dr , I2 =

∫
(V2 + 2mV)3/2r2dr , (172)

V2 ≥ −2mV. In particular, for V = −ζ/r with logarithmic accuracy, we obtain

I1 = ζ ln(ζ/Rnucl) , I2 = ζ3 ln(ζ/Rnucl) , c = 3/(2ζ2) . (173)

For ζ � 1 and κ0 = (ζ/π)1/2 it follows that

δ(κ0) = 3/(2πζ)� 1 . (174)

Getting (171), we counted all states with |κ| < κ0, whereas not all of them have
exponentially suppressed Γ. Taking a correction (174) into account leads to the appearance
of a numerical factor ln(κ0/Rnucl)/ ln(ζ/Rnucl) ' 1/4 for ζ � 1 since R ∝ ζ1/3. We
estimate δ ' 0.1/ζ, i.e., δ ∼ 1% for Z ∼ 1/e3. The smallness of δ characterizes the accuracy
of Equation (164).

Taking the exchange and correlation corrections in the relativistic Thomas–Fermi
equation into account is conveniently done by means of a variational method analogously
to that is performed for the nonrelativistic Thomas–Fermi equation [100]. We arrive at

ne ' −
1

3π2 [(V
2 + 2mV)1/2 − ν(V + m)]3θ(V2 + 2mV) , (175)

ν ' e2/π. For Ze3 � 1 this correction can be safely dropped. For Ze3 � 1 it can be
taken into account in Equation (164) by introducing the renormalized coupling constant
e2 → e2(1 + 3e2/π), cf. [2].

Additionally, a correction appears due to that the dielectric permittivity of the vacuum,
ε(eE), differs from unity, e~E = −∇V. Thus, one should replace ∆V → ∇(ε(E)∇V)
in Equation (164). However, this correction, as the correlation correction, is tiny, since
ε(eE) = 1− (e2/(3π)) ln(eE/m2), and at distances r >∼ 1/(aZ) of our interest ε(eE) '
1 + O(e2/(3π)), cf. [49] and Equation (252), below.

7.4. Weak Screening, 1/e2 � Z � 1/e3

Consider the screening of the positively charged nucleus of the initial proton number
Z and the radius R (typically Rnucl ' A1/3/mπ , A ∼ 2Z). Assume that, inside the nucleus,
the proton charge density is n0

p = const. Introducing ψ = −V/m− 1 in the region V < −m
(ψ ≥ 1), where the electrons of the vacuum shell give some contribution to the screening of
the charge Z, from Equation (164) we obtain

∆(mψ) =
4e2m3

3π
(ψ2 − 1)3/2θ(ψ− 1)− 4πn0

pθ(Rnucl − r) , (176)

θ(x) is the step-function. For r > Rnucl, with the help of the replacement x = r/ri, we obtain

ψ ′′x +
2ψ ′x

x
= µ(ψ2 − 1)3/2 , ψ(1) = 1 , ψ ′(1) = −2 , µ =

4e2m2r2
i

3π
=

(Zobse3)2

3π
. (177)

Here, Zobs is the charge seen at infinity. Because µ� 1, we may use expansion

ψ(x, µ) = ψ0(x) + µψ1(x) + ... (178)
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Subsequently, we have equations

∆xψ0 = 0 , ψ0(1) = 1 , ψ ′0(1) = 2 , (179)

∆xψ1 = 3(ψ2
0 − 1)3/2ψ0ψ1 , ψ1(1) = 0 , ψ ′1(1) = 0 . (180)

At the edge of the nucleus x = 2mR/ζ � 1. At x � 1, we derive

1 + ψ(x, µ) = 2x−1[1 + 4µ(− ln x + C0) + O(x, µ2)] , C0 = 2 ln 2− 11/3 . (181)

Inside the nucleus at the condition Ze3 � 1, the potential is close to the bare one.
Setting ψ = ζy(Ξ)/(Rnuclm), Ξ = r/R, we obtain

y ′′Ξ +
2y ′Ξ
Ξ

=
4e2R3

3πζ

(
ζ2y2

R2 −m2
)3/2

− 4πR3e2

ζ
n0

p , r < Rnucl . (182)

Using that inside the nucleus |V| ∼ ζ/Rnucl ∼ Z2/3m � m and 4π
3 R3

nucln
0
p = Z,

we get

y ′′Ξ +
2y ′Ξ
Ξ

= −3 + νy3 , ν =
4(Ze3)2

3π
. (183)

Because ν� 1, we expand

y = y0(Ξ) + νy1(Ξ) + ... (184)

and get

y0(Ξ) =
1
2
(3− Ξ2) , y1(Ξ) = C + Ξ−1

∫ Ξ

0
y3

0(x)x(Ξ− x)dx . (185)

Matching of V and V ′ at the edge of the nucleus yields

C = −1−
∫ 1

0
y3

0(x)xdx , (186)

and

Zobs = Z
[

1− 4
3π

(Ze3)2(ln
ζ

R
+ C1) + ...

]
, (187)

C1 = ln 2− 8
3
+
∫ 1

0
y3

0(x)x2dx ' 1.38 . (188)

7.5. Strong Screening, Ze3 � 1

Continue to consider a nucleus with Z ∼ A/2 and Rnucl ' Z1/3/mπ . Because R
grows with Z, one may expect that, for a sufficiently large Z, most of the electrons enter the
nucleus and the interior becomes charge-neutral, as infinite matter. For the bare nucleus,
the energy that is associated with the electric field,

Eel =
∫

(∇V)2

8πe2 d3x ∼ Z2e2/Rnucl ∼ Z5/3e2mπ , (189)

increases with Z more sharply when compared to the binding energy ∼ A ∼ Z, thereby
the volume-charged systems do not exist. The charge, if it exists, is repelled to the surface.

To approximately solve Equation (164), we now introduce variables x = (r− Rnucl)/l
and V = −V0χ(x). Constant V0 is found from the condition of the charge neutrality at
x → −∞, i.e., V3

0 /(3π2) = n0
p for V0 � m. Thus, in new variables, Equation (164) renders

χ ′′x l−2 + 2χ ′xl−2/(x + Rnucl/l) =
4πe2n0

p

V0
[χ3 − θ(−x)] , (190)
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with boundary conditions χ(−∞) = 1, χ(∞) = 0. The latter condition just means that
typical decrease of the potential occurs already at x ∼ l near the nucleus boundary, whereas
the transition to the Coulomb law occurs at x � l. The solution at such large distances can
only be found numerically.

Because, in dimensionless equation with dimensionless boundary conditions typ-
ical |x| ∼ 1, for Rnucl � l, which we assume, we can neglect the second term in l.h.s.
of Equation (190). In this case, geometry becomes one-dimensional and Equation (190)
reduces to

χ ′′ = χ3 − θ(−x) , (191)

where we determined the length l, as

l−2 = 4πe2n0
p/V0 = 4e2(π/3)1/3(n0

p)
2/3 . (192)

Taking the boundary conditions into account, the first integral of Equation (191) is as
follows

2χ ′ 2 = χ4 + (−4χ + 3)θ(−x) , (193)

and the final solution is

χ(x) = 1− 3[1 + 2−1/2sh(a− x/
√

3)]−1 x < 0 , sha = 11
√

2 , (194)

χ(x) = 21/2(x + b)−1 , x > 0 , b = 4
√

2/3 . (195)

Note that Equation (191) allows for very simple approximate solution for x < 0. To
get it, we write χ = 1 + ψ, ψ� 1 and, from (191), find

χ(x) ' 1− C′ex
√

3 . (196)

Using the boundary conditions at x = 0, we find C′ ' 0.24. This solution with an error less
than 1.5% coincides with the exact solution.

The maximal strength of the electric field is reached at the edge of the nucleus,

Emax =
9π
√

2
16

(
3
π

)1/6
(n0

p)
2/3 ' 8.2 · 1019 V/cm ,

that ' 6000 times exceeds the electron QED unit EQED = m2c3/(eh̄) ' 1.3 · 1016 V/cm.
Note that, to obtain this conclusion, we essentially used the relation Rnucl ∼ Z1/3/mπ .

The energy of the system can be recovered by the integration of Equation (164). For
|V| � m, we have

E =
∫ [
− (∇V)2

8πe2 −
V4

12π2 − n0
pθ(Rnucl − r)V

]
d3x . (197)

Expression (189) is obtained, after one puts to zero the term V4

12π2 related to the electron
condensation and employs the partial integration and Poisson equation.

In our case, ∇V = 0 inside the system for Rnucl � l and V0 = (3π2n0
p)

1/3. With these
values, Equation (197) yields

E =
V4

0
4π2 ·

4π

3
R3

nucl . (198)

Accordingly, the energy is reduced to the kinetic energy of the degenerate relativistic
electron gas filling all energy levels of the vacuum shell with ε < −m. One should add
to it the energy that is associated with the strong interaction of nucleons resulting in the
binding of the ordinary atomic nuclei. In such a way, we get transition to the description
of infinite matter. We see that, not taking into account a pion condensate or some other
complex processes, we have E > 0 and such a matter, without inclusion of the gravity, is
unstable, cf. [2,43].
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If, instead of the usage that A ∼ 2Z, we assumed the validity of the β equilibrium
conditions, n ↔ p + e + ν̄, we would get A � Z, and taking into account the gravity
and the filling of all electron levels up to ε = m, we would recover the description of the
ordinary neutron-star matter, cf. [43].

7.6. Falling to the Center in Relativistic Thomas-Fermi Equation

For V = −Ze2/r, the number of electrons filling the vacuum shell is

Ne '
∫ r |V|3

3π2 d3x ∼ ln 1/(rm)→ ∞ (199)

for r → 0.
Now, consider a formal solution of Equation (164) at r < ri with boundary conditions (165)

corresponding to that for r > ri, we deal with the Coulomb law with the charge equal
to the observable charge Zobs. As we shall see, such a problem has a unique solution
independently on the charge Z0 put in the center, i.e., at r → 0. It proves to be that the exact
solution of Equation (164) has the pole singularity already at a finite value r = rpole(µ). In
a weak screening limit from Equation (176), for r → rpole(µ), in the dimensionless variable
x = r/ri, xpole = rpole/ri, we get [3],

ψ(x, µ) =
C

x− xpole

[
1 +

a1(x− xpole)

xpole
+

a2(x− xpole)
2

x2
pole

+ ...

]
, C = (µ/2)−1/2 , (200)

a1 = −1/3, a2 = 2/9 + µx2
pole/6, ... The substitution of (200) in Equation (176) allows

for finding coefficients an, but does not allow for recovering dependence xpole(µ). To
obtain a full solution of the problem, we need to solve Equation (176) with the boundary
conditions (165) in the whole interval 1 > x > xpole(µ). The numerical solution yields

xpole(µ) = rpole(µ)/ri = D(µ)e−1/(8µ) , µ→ 0 . (201)

Pre-exponential factor D(µ) is shown in Figure 6. For Zobs � 1/(2e2) with increasing
Zobs the pole moves towards the value 1/m.

Figure 6. Pre-exponential factor D(µ) in Equation (201), cf. [3].

We conclude that, in the many-particle problem, including the electron condensation
but not including the polarization of the vacuum, the falling to the center manifests
itself in the presence of the pole at a distance rpole(µ). Accordingly, in the problem of
the distribution of the charge at r � 1/m, there appeared a typical size rpole(µ), which
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characterizes the electron condensation, where all of the states are occupied according to
the Pauli principle. Thus, we have found a relation between Zobs and Z(r0(µ)), for the size
of the source r0 > rpole(µ). To match this exterior solution with the interior solution for
r < r0, we may use either model I or model II. It is important that r0 should be larger than
rpole(µ).

At this instance, we should remind about the existence of the Landau pole for
r = rL ' e−3π/(2e2)/m, which appears within the multi-particle problem of the polar-
ization of the electron-positron vacuum near the Coulomb center, cf. [49]. Comparison
of the exponential factors shows that, for Zobs < 1/(2e2), we have rL > rpole(µ) and, for
Zobs > 1/(2e2), we have rL < rpole(µ). Thus, in the case Zobs < 1/(2e2), with decreasing r,
first the polarization of the vacuum becomes effective and only at r in a narrow vicinity of
rL, where Z(r) > 1/e2, the electron condensation becomes to be efficient. For Zobs > 1/e2,
the electron condensation first becomes effective and only at r in a narrow vicinity of
rpole(µ) > rL the polarization of the vacuum begins to contribute, see a detailed discussion
below in Section 9.

Note that the value Zobse2 plays a role of an effective coupling in description of
semimetals and effects under discussion might be relevant in this case, cf. [60].

It is curious to note that the inclusion of gravitational field of the source into consider-
ation modifies the QED problem of the distribution of the charge while taking the electron
condensation into account, cf. [101]. Solution (200) is modified at r approaching rpole. After
a growth, solution continues up to r → 0 as V → −Z0e2/r with Z0 ∼ Z2/3

obs /(eGm2)1/3,
where G is the gravitational constant. Additionally, the pole solution (200) disappears in
case of the electron condensation in presence of a strong uniform magnetic field, cf. [102].

At the end, note [3] that Equation (164) can be solved within the main logarithmic
approximation [49,103], being broadly used in different problems of the quantum field
theory, see a discussion below in Section 8.1. Introducing variables ψ = φ(x)/x, t = − ln x,
x = r/ri, in ultra-relativistic limit |V| � m, we obtain

φ′′t + φ′t = µφ3 . (202)

Assume φ = ∑∞
n=1 µnφn with φn = Cntn + O(tn−1) for t → ∞. Subsequently, we

get solution Cn = 2n+1(2n)!/(n!)2 that finally yields ψ(x → 0) = Cnx−1(− ln x)n + ... A
summation of these terms yields solution

ψ(x) = 2x−1(1 + 8µ ln x)−1/2 , (203)

which has a spurious square-root singularity at x → x0 = e−1/(8µ), whereas the exact
solution has the pole. Thus, this example demonstrates the possible deficiencies of the
main logarithmic approximation in cases when we deal with divergent series.

8. Polarization of Vacuum
8.1. Polarization of Vacuum in Uniform Stationary Electric and Magnetic Fields

In the absence of external electromagnetic fields, electrons of the lower continuum
have infinite energy

E0 = ∑
~pσ

ε0,−
~pσ , (204)

where ε0,−
~pσ = −

√
m2 + ~p 2 are negative-sign solutions of the dispersion relation of the free

Dirac equation. In pure QED, i.e., at ignorance of gravitational effects, infinite constant (204)
has no sense, being subtracted within renormalization procedure. In the presence of
the electric and magnetic fields energy levels of the lower continuum, ε−~pσ are changed.
The difference

E − E0 = ∑
~pσ

ε−~pσ −∑
~pσ

ε0,−
~pσ (205)
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has the physical meaning.
Heisenberg and Euler considered the polarization of the electron-positron vacuum in

the static uniform stationary electric and magnetic fields [104], cf. [49,105,106]. For the case
of uniform purely magnetic field calculation is more transparent. Eigenvalues of the Dirac
equation are

ε±~pσ = ±
√

m2 + p2
z + |e|H(2n + 1) + |e|Hσ n = 0, 1, ..., σ = ±1 . (206)

The ground-state corresponds to the “−” sign solution. To calculate the sum (205), one
uses that the number of states in the interval dpz in the uniform magnetic field is given by

|eH|
(2π)2 dpzV3 , (207)

cf. [39]. Taking into account the double degeneracy of levels with n, σ = 1 and n + 1,
σ = −1 excluding ground state n = 0, σ = −1, with ε−~pσ solution, one obtains

E = −
∫ ∞

−∞
2
|e|H
(2π)2

∞

∑
n=1

√
m2 + p2

z + 2|e|Hn dpzV3 +
|e|H
(2π)2

∫ ∞

−∞

√
m2 + p2

z dpzV3 . (208)

The divergence of integrals is removed by the subtraction of E0. To do this renormal-
ization, it is convenient to calculate a convergent derivative of the energy

∂2E
∂(m2)2 =

|e|H
8π2

∫ ∞

0
e−m2η

[
2

1− e−2|e|Hη
− 1
]

dηV3 =
|e|H
8π2

∫ ∞

0
e−m2ηcth(|e|Hη)dηV3 . (209)

After double integration and subtraction of the value E0, we obtain

E − E0 =
V3

8π2

∫ ∞

0

e−m2η

η3 [η|e|Hcth(η|e|H)− 1]dη + C1 + C2m2 . (210)

The contr-terms C1 and C2 do not depend on m2, but may depend on H.
In the case of uniform stationary fields ~E and ~H, the Lagrangian density L = −E can

only be a function of Lorentz invariants ~E2 − ~H2 and ~E~H. Note here that, in the presence
of the sources of the current, the Lagrangian density additionally depends on jµ Aµ.

In the case under consideration employing arguments of dimensionality and parity in
~H, one can write

L(H) = L0(H) + L ′(H) = −H2

8π
+ m4 f (H2/m4) . (211)

The first term is the ordinary Lagrangian density in the magnetic field, whereas the second
term is the contribution of the polarization of the vacuum in the magnetic field. In Equa-
tion (211), there are no terms odd in m2, so C2 = 0. Using that cthx = x−1 + x/3 for x → 0,
we may see that the absence of H2 term L ′(H) corresponds to the choice

C1 = − H2e2

3 · 8π2

∫ ∞

0
e−ηηdη . (212)

In the case of uniform static magnetic and electric fields, function f (H) in (211) should
be replaced by

f (H, E) = f (H2 − E2, (~E~H)2) . (213)

At H = 0, thereby f (0, E) = f (−E2, 0). At E = 0, f (H, 0) = f (H2, 0). From here,
we see that f (0, E) = f (H = iE, 0), i.e., the expression (211) for the case H 6= 0, E = 0,
remains valid after replacement H → iE. Note that f (−E2, 0) has a small imaginary part
associated with a possibility of the tunneling of a part of electrons, which initially occupied
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levels of the lower continuum, to the upper continuum. Created in a sufficient number,
the electron-positron pairs change the spatial dependence of the electric field. In a realistic
treatment of the problem one should consider electron and positron condensates occurred
near the plates of the capacitor, which produced initially uniform electric field.

In case of strong uniform electric and magnetic fields |eE|/m2 � 1 and |eH|/m2 � 1,
with a logarithmic accuracy from Equations (210), (212), one finds expressions for the
dielectric and magnetic permittivities [49,104]:

εHE(E) = 1− e2

3π
ln(|eE|/m2) +O(e2) , µHE(H) = 1− e2

3π
ln(|eH|/m2) +O(e2) . (214)

The corresponding contributions to the energy of the lower continuum are

EE =
∫

d3x
ε(∇V)(∇V)2

8πe2 , EH =
∫

d3x
µ(H)H2

8πe2 . (215)

Note that expressions (214) are derived with the logarithmic accuracy, i.e., at the
assumption that ln(|eE|/m2)| � 1 and ln(|eH|/m2)| � 1. Thereby, they are also formally
applicable for negative values of ε and µ provided for the calculation of the vacuum
energy in stationary uniform electric and magnetic fields one may employ the single-
particle Dirac equation. At this assumption they are invalid only in a narrow region of
fields, where | e2

3π ln(|eE|/m2)| ∼ O(e2) and | e2

3π ln(|eH|/m2)| ∼ O(e2). The result (214)
also follows from the Dyson equation for the photon propagator that was calculated
at one-loop, but with the electron Green functions that are dressed by the background
field. In such an approximation, the radiative photon corrections to the electron Green
function and vertices in the photon polarization operator are dropped. Figure 7 shows
the effective action with one-particle irreducible (1PI) diagrams presented up to two-
loops. The same result (214) is also recovered within the so-called main logarithmic
resummation, when e2l lnl(eE), e2l lnl(eH) terms in the Dyson equation for the photon
Green function are summed up, whereas terms e2l lnl−1(eE), e2l lnl−1(eH) are disregarded,
cf. [49,103,106–109]. The radiative photon corrections to the electron Green function
continue to be disregarded. The difference between two approximations is only manifested
in the region where e4 ln2(eE) >∼ e2, e4 ln2(eH) >∼ e2. At the two-loop order, the term that
is included in the effective action is given by the sandwich diagram (the one-particle-
irreducible (1PI) contribution). The resulting dielectric and magnetic permittivities up to
correction terms are

ε1PI(E) ' εHE(E), µ1PI(H) ' µHE(H). (216)

Figure 7. The 1PI effective action shown up to two-loops. Double solid line shows the electron Green
function dressed by the background field. Wavy line shows photon Green function.

Recently, Refs. [110–112] studied the role of the one-particle reducible (1PR) loop
diagrams. In this scheme, Figure 8 shows the effective action up to four loops. These 1PR
diagrams yield zero contribution in the case of constant fields [107], since, in the case of
purely constant classical fields, the four-current term is absent. However, the argument
for the vanishing of the current no longer holds as soon as the external field supports a
slightest inhomogeneity somewhere in the space-time [110].
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Figure 8. The 1PR effective action shown up to four loops summed up in [112]. Double solid line
shows electron Green function dressed by the background field. The wavy line shows photon
Green function.

In the latter case, all possible 1PR loop diagrams, being included, can be constructed
from the 1PI one-loop constant-field diagram. The result of such a resummation of the
diagrams in the strong-field limit yields [112],

ε1PR(E) = 1− e2

3π ln |eE|
m2

(
1 + 1

2
e2 ln(|eE|/m2)

3π(1−(e2/(3π)) ln(|eE|/m2)

)[
1 + O(1/ ln |eE|

m2 )
]

, (217)

µ1PR(H) = 1− e2

3π ln |eH|
m2

(
1 + 1

2
e2 ln(|eH|/m2)

3π(1−(e2/(3π)) ln(|eH|/m2)

)[
1 + O(1/ ln |eH|

m2 )
]

.

Note that, although, formally, these expressions are derived in the approximation
ln(|eE|/m2), ln(|eH|/m2)� 1, as noticed in [112], they cannot be valid at least in the region
where |1− (e2/(3π)) ln(|eE|/m2)|, |1− (e2/(3π)) ln(|eH|/m2)| <∼ e2, due to the presence
of the pole in expressions (217). For example, the dielectric permittivity ε1PR(E) → −∞
for (e2/3π) ln(|eE|/m2) → 1− δ and ε1PR(E) → +∞ for (e2/3π) ln(|eE|/m2) → 1 + δ
for δ → 0. Conversely, (214) and (216) do not produce any non-physical singularities,
yielding zero, rather than the pole at (e2/3π) ln(|eE|/m2) → 1. In the region where
ln(|eE|/m2), ln(|eH|/m2)� 3π/e2 expressions (214), (217) yield

εHE(E)→ − e2

3π ln(|eE|/m2) , µHE(H)→ − e2

3π ln(|eH|/m2) , (218)

ε1PR(E)→ − 1
2

e2

3π ln(|eE|/m2) , µ1PR(H)→ − 1
2

e2

3π ln(|eH|/m2) .

In the one-loop order, results (214)–(217) coincide. Beyond the one-loop approximation,
various partial resummation schemes produce different results.

To proceed further, we will use expression

ε(E) = 1− ν
e2

3π
ln(|eE|/m2) . (219)

With ν = 1, we deal with the result [49,104,106], for e2

3π ln(|eE|/m2) < 1 being
recovered within the main logarithmic approximation for the 1PI diagrams and, for
e2

3π ln(|eE|/m2) � 1, being also recovered within the main logarithmic approximation
applied for the 1PR diagrams. With ν, being a very smooth function of the tortoise variable
ln(|eE|/m2) varying from 1 at |eE| ∼ m2 to 1/2 for ln(|eE|/m2)� 3π/e2, we recover the
asymptotic behavior that was derived in [112] with the included 1PR loop diagrams.

At the end, we stress that both main-logarithmic resummation schemes consid-
ered above may be not valid for (e2/3π) ln(|eE|/m2), (e2/3π) ln(|eH|/m2) → ∞, since
the dropped sub-series of the diagrams may yield divergent contributions. We have
demonstrated examples of such a kind in Section 7.6, cf. [3]. A summation of the 1PR
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diagrams leads to the appearance of the pole in expressions ε1PR(E) and µ1PR(H) for
(e2/3π) ln(|eE|/m2) = 1, (e2/3π) ln(|eH|/m2) = 1. Moreover, recall that the expansion in
the number of loops is a semiclassical series. The latter series is an asymptotic one, and
retaining too many terms may worsen the convergence of the series to the exact solution.
Bearing this in mind, the result that is given by εHE(E), µHE(H) looks more physically
motivated. Nevertheless, further on, we use Equation (219) varying parameter ν in the
interval (1/2, 1) to recover both asymptotics in Equation (218).

8.2. Noninteracting Photon, Electron, and Spin-Zero Boson Propagators

The Green function of the free photon is given by

iD0
µν(x− x ′) = < 0|T̂Âint

µ (x)Âint
ν (x ′)|0 > , (220)

T̂ is the ordinary time ordering, operators are in interaction picture, cf. [49]. The most
general form is as follows,

D0
µν(x− x ′) = gµνD0((x− x ′)2)− ∂µ∂νD0

(l)((x− x ′)2) , (221)

gµν is the metric tensor. One usually uses the Feynmann gauge condition D0
(l) = 0.

For D0
xx = −D0, we have

D0(k2) =
4π

(k2 + i0)
. (222)

In the Feynmann gauge,

D0
µν(k

2) = gµν
4π

(k2 + i0)
. (223)

The free propagator of spin 1/2 electron is

G0
ik = −i < 0|T̂Ψ̂0

i (x)Ψ̂
0
k(x ′)|0 > , (224)

where Ψ = Ψ†γ0 and Ψ0
i (x) satisfy the Dirac equation (γµ p̂µ −m)Ψ0

i (x) = 0.
Thus, the Fourier transform is

G0(p) =
1

γµ pµ −m
, G0(p) =

γµ pµ + m
p2 −m2 . (225)

We may turn the contour in p0 plane against clock arrow not touching poles and, then,
we perform replacements ip0 = p4, ix0 = x4, px = − p̃x̃ = −(p4x4 + ~p~x), p̃ = (~p, p4),
x̃ = (~x, x4),

∫
dp0/i→

∫
dp4. Let us present

1
p̃2 + m2 =

∫ ∞

0
e−α( p̃2+m2)dα , (226)

G0,ch
b (x) =

∫ d4 p
(2π)4

e−ipx

p2
0−~p 2−m2+iδ

= −i
∫ ∞
−∞

d4 p̃
(2π)4

ei p̃x̃

p̃2+m2

= −i ∏4
i=1
∫ ∞
−∞

dp̃
2π ei p̃i x̃i

∫ ∞
0 dαe−α( p̃2

i +m2) = − i
16π2

∫ ∞
0 due−m2/u−x̃2u/4 , (227)

u = 1/α. For x̃m� 1, we may put m = 0 and find

G0,ch
b (x) =

i
4π2x2 , x̃m� 1 . (228)
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For x̃m� 1, we may use the pass method and present

−m2

u
− x̃2u

4
' −mx̃− x̃3(u− um)2

8m

and we find

G0,ch
b (x) = −i

√
m

32π3 x̃3 e−mx̃ , x̃m� 1 . (229)

For Dirac electrons

G0(x) =
∫ d4 p

(2π)4 e−ipx γµ pµ + m
p2 −m2 = (m + iγµ∂µ)G0,ch

b (x) . (230)

Thus, for x̃m � 1, we obtain G0(x) =
γµxµ

2π2x4 , the electron Green function is odd
function of its coordinate argument. The power law increase of G0 for r → 0 reflects the
fact that there is no scale of the length, which could describe the free particle at r � 1/m.
For r � 1/m, processes of polarization of the vacuum in the absence of external fields are
suppressed as follows from Equation (229).

8.3. Dyson Equation for Photon Propagator

Taking the vacuum polarization diagrams in the first order perturbation theory in e2

into account, the Dyson equation gets the form

iDµν(X2 − X1) = iD0
µν(X2 − X1) (231)

+
∫

d4X3d4X4iD0
µλ(X2 − X3)Tr[(−ieγλ)iG0(X4 − X3)(−ieγρ)iG0(X3 − X4)]iD0

ρν(X4 − X1) .

In the momentum representation, we obtain

iDµν(k) = iD0
µν(k) + iD0

µλ(k)
∫ d4 p

(2π)4 Tr[(−ieγλ)iG0(p + k)(−ieγρ)iG0(p)]iD0
ρν(k)(−1) . (232)

The last factor (−1) comes from the closed fermion loop. The next terms in the full Dyson
equation are constructed analogously.

The sum of all irreducible diagrams (which cannot be separated by a single photon
line) is called the photon polarization operator, −iΠµν. Thereby, in the lowest order

−iΠλρ
0 = Tr[(−ieγλ)iG0(p + k)(−ieγρ)iG0(p)]. In brief, notations Dyson equation renders

D = D0 + D0ΠD . (233)

In the lowest order in e2 one has Π = Π0.

8.4. Calculation of Photon Polarization Operator
8.4.1. Case of a Weak Static Electric Field. Renormalization of Charge

To remove divergencies in observables, one employs renormalization procedure.
Below, we demonstrate this procedure on an example of renormalization of the charge.
One assumes that, initially, the action enters the bare coupling e2

0 rather than physical one,
e2 = 1/137. As we shall see, the polarization characteristics are divergent for r → 0. At
the same time, the r → 0 limit is legitimate, because QED is the theory with the local
interaction. To proceed, one introduces the cut-value r0, with performing the limit r0 → 0
in final expressions. According to diagrammatic rules in the first non-vanishing order

− iΠµν
0 = Tr(−ie0γµ)iG0(x)(−ie0γν)iG0(−x) . (234)

At r > 1/m, in the case of weak external fields, the effects of polarization of vac-
uum should be suppressed, since the electron Green function and, thereby, the photon
polarization operator decrease exponentially in Euclidean variables, cf. Equation (229).
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Therefore, consider the opposite limit case x̃ � 1/m when the effects of the polarization
of the vacuum can be significant. We recognize that at short distances there is no scale of
length, except the Compton wave length. Thus, G0 and Π0

µν should be power-law functions
of x̃. We have

− iΠ0
µν(x) = −e2

0Tr[
γµ x̂γν x̂
4π4x8 ] = −e2

0
2xµxν − x2δµν

π4x8 , (235)

− iΠ0
00(t, ~R) = −e2

0
t2 + ~R2

π4(t2 − ~R2)4
. (236)

In mixed ω, ~R representation:

Π0
00(ω = 0, ~R) =

∫
dτΠ0

00(R) =
e2

0

4π3(~R2)5/2
. (237)

Using Equation (221) with D(l) = 0, we have

A0(x) =
∫

d4x′D(x, x′)j0ext(x′) . (238)

Multiplying Equation (233) by e2
0next(~r) and integrating, we arrive at the Poisson

equation for the static field V(~r) = e0 An.ren
0 = eAren

0 , being expressed in terms of non-
renormalized quantities,

∆V(~r) = 4πe2
0(−next(~r) + 4π

∫
K0

00(ω = 0, ~R)d3R V(~r + ~R)) , (239)

where in case of weak fields we took the polarization operator in the lowest order, i.e.,
K0

00(ω = 0, ~R) = Π0
00(ω = 0, ~R)/e2

0. K0
00(ω = 0, ~R) does not depend on e2

0. As will be
shown below, K0

00(ω = 0, ~R) diverges for r0 → 0.
Now, our aim is to rewrite the Poisson Equation (239) in the form

∆V = −4πe2next(~r) .

To perform this procedure of renormalization of the charge, we continue to consider
the polarization of the vacuum in a weak field, i.e assuming next to be small. Subsequently,
we may use expansion

V(~r + ~R) ' V(~r) +∇V(~r)~R +
1
2

∂2V
∂Ri∂kRk

RiRk + ... (240)

We may drop convergent terms in the expansion (240) irrelevant for the renor-
malization procedure. The term

∫
K0

00(ω = 0, ~R)d3RV(~r) should be put zero, since
constant potential cannot produce polarization charges due to gauge invariance. The
term

∫
K0

00(ω = 0, ~R)~Rd3R∇V(~r) = 0 due to isotropy of the vacuum in the weak field.
Hence, we obtain

∆V = −e2
ren4πnext , e2

ren = e2 =
e2

0

1 + 4π
6 e2

0
∫

K0
00(ω = 0, ~R2)~R2d3~R

. (241)

Finally, we derived a formal relation between the bare coupling constant e2
0 and

the physical one e2 = 1/137. After this procedure is performed, we may say that all
physical values already depend only on e2. Thus, in the lowest approximation over e2

0
using Equation (237) and relation between Π0

00 and K0
00, we obtain

e2 =
e2

0

1 + e2
0

3π ln 1
m2r2

0

, e2
0 =

e2

1− e2

3π ln 1
m2r2

0

, r0 → 0 , (242)
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The formal solution of the first equation for any e2
0 > 0 yields e2 → 0, rather than e2.

This is known as “the problem of the zero charge”, (or “Moscow zero”), cf. [49]. Strictly
speaking, such a consideration suffers from inconsistency, since the inverse relation given
by the second equation has so called Landau pole for

r = rL =
1
m

e−3π/(2e2) . (243)

From the second Equation (242), for r0 → 0, follows the solution

e2
0 → −

3π

ln((1/(m2r2
0))

(
1 +

3π

e2 ln(1/(m2r2
0))

)
, (244)

corresponding to e2
0 < 0 and imaginary e0. A similar procedure could be performed in

four-invariant form for the 4-potential e0 Aµ, instead of e0 A0.

8.4.2. Case of a Strong Static Electric field

In the presence of a strong static electric field the electron polarization operator, even
being considered with the only one-loop diagram, should be calculated with full electron
Green functions, G, instead of free ones [42,53]. In this approximation, expression (234) is
replaced by

− iΠµν = Tr(−ie0γµ)iG(x)(−ie0γν)iG(−x) . (245)

At this level, the Ward–Takahashi identity is only satisfied approximately. It can be fulfilled
exactly after taking the higher order diagrams into account.

Multiplying Equation (233) by e2
0next(~r), we derive the Poisson equation for the static

field V(~r) = e0 An.ren
0 = eAren

0 , expressed in terms of non-renormalized quantities,

∆V(~r) = −4πe2
0(next(~r)− 4π

∫
K00(ω = 0,~r, ~R)d3RV(~r + ~R)) , (246)

where K00(ω = 0,~r, ~R, e2
0) = Π00(ω = 0,~r, ~R, e2

0)/e2
0. Being expressed in non-renormalized

terms, both of these quantities depend on e2
0. For G → G0, they transform to K0

00(ω =

0,~r, ~R) = Π0
00(ω = 0,~r, ~R, e2

0)/e2
0.

We again use expansion (240). The term
∫

K00(ω = 0,~r, ~R)d3RV(~r) should be put to
zero, since the constant potential cannot produce polarization charges due to the gauge
invariance. The term

∫
K00(ω = 0,~r, ~R)~Rd3R = 0 due to the symmetry respectively

replacement~r ↔~r ′. Accordingly, we obtain

∆V = −4πe2
0(next + n1) , n1 =

1
2

∫
d3RK00(ω = 0,~r, ~R)RiRk∂i∂kV(~r) + δn1 , (247)

where we retained the residual convergent term δn1.
Let the field E(~r) be locally directed in the z direction. Subsequently, we rewrite

1
2

∫
d3RK00(ω = 0,~r, ~R)RiRk∂i∂kV(~r) = 1

4

∫
K00(ω = 0,~r, ~R)ρ2d3R∆V (248)

− 1
4

∫
K00(ω = 0,~r, ~R)ρ2d3R∂2

zV + 1
2

∫
K00(ω = 0,~r, ~R)z2d3R∂2

zV ,

where ρ2 = x2 + y2. The renormalization of the charge is performed by addition and
subtraction to n1 the term

1
4

∫
K0

00(ω = 0, ~R)ρ2d3R =
1
6

∫
K0

00(ω = 0, ~R)~R2d3R,

where we used isotropy of the quantity K0
00(ω = 0, ~R). Thus, we obtain
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∆V = −e24π(next + nren
1 ) , (249)

nren
1 =

∫
(K00(ω = 0,~r, ~R)− K0

00(ω = 0, ~R)) ρ2

4 d3R∆V

+
∫

K00(ω = 0,~r, ~R)( z2

2 −
ρ2

4 )d
3R∂2

zV + δn1 ,

where e2 = 1/137, see Equation (241). From this moment, all of the functions are expressed
in terms of e2.

Now, let us evaluate the electron Green function in a strong static electric field. For
this, it is sufficient to use a semiclassical expression for the Green function in mixed space
G(ω,~r,~r ′) ∝ eiS(~r)−iS(~r ′) , with

S(~r)− S(~r ′) '
∫ ~r ′

~r
p(l)dl '

∫ ~r ′

~r
(ω−V(l))dl ,

where V = V0 +∇V~R + ..., V0 is const. The quantity p(l) can be estimated from the Klein–
Gordon–Fock equation ∆ψ+ ((ω−V)2−m2)ψ = 0, since, in a strong field, spin effects can
be neglected with a certain accuracy. Thus, we estimate G(ω,~r,~r ′) ∝ eiω ′ |~R|−ieE~R2C , where
ω ′ = ω−V0, C ∼ 1 is a constant. Thus, at |~R| � 1/

√
|eE|, eE = −∇V, the Green function

G, is reduced to G0, and with a logarithmic accuracy Π00(ω = 0) ' Π0
00(ω = 0). For

|~R| � 1/
√
|eE|, the Green function G rapidly oscillates and with a logarithmic accuracy

Π00(ω = 0) can be put zero. Thereby, from (249) with the logarithmic accuracy, we obtain

nren
1 ' −∆V

1
4

∫
~R2>1/|eE|

K0
00ρ2d3R + δn1 ' −∆V

1
12π2 ln |eE|+ δn1 . (250)

Now, we should take into account that
∫

n1(r)d3r = 0 due to the conservation of the
charge of the vacuum. Thereby, n1 = div~P, where ~P is a polarization vector. Thus, with
our logarithmic accuracy, we should replace

− ln |eE|
12π2 ∆V → −∇

(
ln |eE|
12π2 ∇V

)
.

Accordingly, finally, we arrive at the Poisson equation

∇(ε(E)∇V) = −4πe2next , (251)

with

ε(E) = 1− e2

3π
ln |eE| = 1− e2

3π
ln

Q(r)
m2r2 . (252)

For Z = 1, we have ε(E) ' 1− e2

3π ln(1/(m2r2)) + O(e4 ln2(1/(m2r2))) with loga-
rithmic accuracy, that reproduces known Uehling law [49]. Equation (252) was derived
with the inclusion of the one-loop diagram (although with full Green functions). We used
approximation e2

3π ln(1/(m2r2))� 1. Otherwise, higher-loop order diagrams and vertex
correction diagrams should be included. However, Ref. [49] demonstrated that the given
expression might be valid with a higher accuracy, since, for Z � 1/e2, it is also recovered
in the main logarithmic approximation to 1PI diagrams in the action, which shows that
ε(E) ' 1− e2

3π ln(1/(m2r2)) + O(e2, e4 ln(1/(m2r2))). Therefore, it might be also valid for
e2 ln(1/(m2r2))� 1 but e4 ln(1/(m2r2))� 1, i.e., in a region, where ε(E) < 0. Recall that
the main logarithmic approximation means that terms ∝ e2l lnl(1/(m2r2)) are summed up,
but terms ∝ e2l lnl−1(1/(m2r2)) are dropped. As a precaution, we should emphasize that
the sum of the sub-leading terms disregarded within the main logarithmic approximation
can be divergent.
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We may also use another intuitive argument in favor of a formal validity of this
expression at ε(E) < 0. For this, let us consider theory with N � 1 number of charged
species with masses ∼ m and let the coupling is e2/N, cf. [113]. Afterwards, instead of
Equation (252), we immediately arrive at expression

ε(E) = 1− N
e2

3πN
ln |eE|+ O(N

e4

N2 ln2 |eE|) = 1− e2

3π
ln |eE|+ O(1/N) , (253)

being valid in the region, where ε(E) > 0, as well as for ε(E) < 0. Note that, obviously,
expressions (214) that are derived by Heisenberg and Euler for the cases of purely uniform
fields [104] also continue to hold for slightly inhomogeneous fields provided

|H/H ′| � RH = 1/
√
|eH| , |E/E ′| � RE = 1/

√
|eE| , (254)

where RH = 1/
√
|eH| is the typical radius of the curvature of the charged particle trajectory

in the magnetic field (Larmor radius) and RE = 1/
√
|eE| is the typical radius of the

curvature of the charged particle trajectory in the electric field. Thus, for the electric field
of the form

E = Q(r)/r2 , (255)

criterion of applicability of approximation of a uniform field coincides with inequality
Q(r)� 1 provided rQ ′ � 1. Accordingly, the expression for the dielectric permittivity of
the vacuum (214) derived for the case of the uniform field coincides with (252)

ε(E) = 1− e2

3π
ln(Q(r)/(r2m2)) + O(e2) , (256)

with the logarithmic accuracy and with the same accuracy we may write
interpolation expression

ε(E) = 1− ν
e2

3π
ln

(Q(r) + 1)
r2m2 + O(e2) . (257)

Here, we additionally inserted a smooth function ν varying within the interval (1/2, 1).
With ν = 1/2, we recover the asymptotic behavior that is found by a resummation of the
sub-set of 1PR diagrams [112], as we have discussed above.

Once more, notice that we will use Equations (214), (252), and (257) for both ε(E) > 0
and ε(E) < 0. There exist corrections to Equation (257) in the region, where |ε(E)| ∼ e2;
however, as we have discussed, there are no physical reasons to expect the presence of any
singularities in this region. Therefore, it seems reasonable to use the same expression (257)
at all distances.

8.5. Polarization of Vacuum and Electron Condensation

In the presence of charge sources, the Lagrangian density is already not only a function
of ~E 2, as was the case in the purely uniform field, but it contains the term nextV. The charge
sources always exist in a realistic problem. Indeed, the uniform electric field can only be
constructed in a limited region of space, namely inside the capacitor with the length of
plates l � d, where d is the distance between the plates. Outside the capacitor, the field
decreases to zero. The electron–positron pairs produced in the tunneling process inside the
capacitor go to the plates. The electrons are localized near the positively charged plate and
positrons, near the negatively charged one.

Recall that the energy of the electron in a smooth field V in the classical approximation
is given by

ε = V ±
√
~p 2 + m2 , (258)
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cf. Figure 2, demonstrating the boundaries of the upper and lower continua in the field
V < 0. The upper sign solution corresponds to states that originate in the upper continuum,
which can be occupied in an attractive field for electrons, V < −2m in the case of a broad
potential well, after the tunneling of electrons from the lower continuum. In the standard
interpretation, see the discussion in Section 3.4, the lower sign solution corresponds to
positrons after replacement ε → −ε. Let us also study another interpretation when the
lower sign solution corresponds to electron states that originate in the lower continuum,
being occupied by the electrons. As we show below, this interpretation might be relevant
in a specific case, when ε < 0 in some region and, thereby, the resulting potential V > 0.

The introduction of the electric field in the Dirac equation for electron corresponds to
the replacement ε→ ε−V. Let us expand the potential V(~r ′) near a point~r:

V(~r ′) = V(~r)− e~E(~r)~R + ... , ~R =~r ′ −~r . (259)

Assuming V(~r) to be very smooth function of coordinates, we may only retain these two
terms in the expansion.

It is easy to ascertain the consequences of the replacement −e~E~r → V(~r)− e~E~r. The
term −∑

∫
ψ∗e~E~Rψd3R was already taken into account in the problem solved by Heisen-

berg and Euler in the case of purely uniform electric field. The expressions for the La-
grangian and the energy of the lower continuum in uniform fields are more easily calculated
for the case of purely magnetic field as we have mentioned. We found Equation (208),
where typical momenta pz contributing to the sum are pz ∼

√
|eH|. In case of purely

electric field the typical momenta contributing to the sum are pz ∼
√
|eE|. Performing

summation in Equation (208) Refs. [49,104] derived expression (211) and with the help of
invariants recovered Equation (213). After doing replacement H → iE, |eH| → |eE| one
arrived at expressions (214).

Now, see Equation (258), in the expression for the energy, there appears an additional
potential term

δEV = ∑
∫

ψ∗V(~r)ψd3r = ∓|V
4|

3π2 , (260)

since ∑njm |ψnjm|2 = |V3|
3π2 > 0. The upper sign is for V < −2m and the lower sign is for

V > 0 and we, for simplicity, assume |V| � m.
There is still a kinetic term in the energy, see Equation (258), which we should add

while considering the condensation of electrons, corresponding to the region of momenta
|~p| ∼ |V| � m rather than to |~p| ∼

√
|eE|, the latter term we have included. At least in

limit cases V2 � |eE| and V2 � |eE|, the mentioned contributions are not overlapped. As
a result, the kinetic term is

δEkin(V) = ±
∫ |V|

0
|~p| 2 · 4π~p 2d|~p|

(2π)3 d3r ' ±
∫ V4

4π2 d3r . (261)

The upper sign corresponds to the electron condensation on levels of the upper
continuum that is occupied during the tunneling of electrons from the lower continuum in
the field V < 0. We have studied this case in Section 7. The lower sign solution corresponds
to the electron condensation on levels of the lower continuum, may be possible for V > 0,
compare with the first term in Equation (208), which was summed up in the case of the
magnetic field.

Finally, in the case of a weakly inhomogeneous electric field we obtain

E = EE + δEV + δEkin = −
∫

d3x
ε(∇V)(∇V)2

8πe2 −
∫

nextd3x∓
∫ V4

12π2 d3x . (262)

From the semiclassical derivation, one may see the difference between the conden-
sation of electrons on levels of upper continuum crossed the boundary ε = −m, cf.
Equation (197), and condensation on levels in the lower continuum in a repulsive field.
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In the former case, vacant states with ε < −m are occupied only in the process of the
tunneling of electrons from the lower continuum. In the upper continuum, the kinetic
energy of electrons is positive Ekin = +∑

∫
ψ∗|~p|ψd3x, |~p| > 0, whereas the kinetic energy

of electrons occupying levels of the lower continuum is negative, Ekin = −∑
∫

ψ∗|~p|ψd3x,
|~p| > 0, cf. the first term in Equation (208), has been used in the case of the uniform
magnetic field.

Variation of the energy yields the Poisson equation,

∇(ε∇V) = 4πe2(next − θ(V2 + 2mV)(V2 + 2mV)3/2/(3π2)) , (263)

cf. Equation (164), which described the electron condensation in the attractive potential
of a supercharged nucleus at ε ' 1. Although we are interested in the case |V| � m,
we recovered the dependence on m in Equation (263). Now, for ε > 0 and V < −2m,
we deal with the electron condensation on levels of the upper continuum crossed the
boundary ε = −m with increasing |V|, as it follows from the standard interpretation of the
levels, appearing from the upper continuum during an adiabatic increase of |V|. Below,
we will argue for a possibility of the condensation of electrons that originated in the lower
continuum in the problem of the screening of the positively charged source at ultrashort
distances from it (at r < rL), εren(rL) = 0, εren(r < rL) < 0 and the potential is repulsive
due to that.

9. Distribution of Charge at Super-Short Distances from the Coulomb Center
9.1. Charge Distribution Near the Charge Source of Radius r = r0 > rL
9.1.1. Electron Condensation Is Not Included

Let us to be specific next = Z0δ(~r −~r0), Z0 > 0, which corresponds to the surface
distribution of protons following model I, and r0 > r̃m, see Equation (267) below. First
neglect a possibility of the electron condensation and only include the polarization of the
vacuum in consideration. We seek a solution of Equation (251) in the form

V = −Q1(r)/r < 0 , eE = −∇V = Q(r)/r2 > 0 . (264)

Substituting it in (251), we find solution

Q(r) =
C

ε(r, Q(r))
, ε(r, Q(r)) = 1− e2

3π
ln

Q(r) + 1
m2r2 , C = const. (265)

For r >∼ 1/m, we can set ε(r, Q(r)) ' 1 and, thereby, we may put C = Zobse2.
The potential V is easily recovered in the case of a smooth variation of the charge

Q1(r), when
Q(r) ' Q1(r) . (266)

This condition is fulfilled for |Q ′1| � |Q1|/r that yields |ε(r)| � e2/(3π).
The solution of Equation (265) has two branches, one corresponds to ε(r, Q(r)) > 0,

other relates to ε(r, Q(r)) < 0. We assume Z = Zobs for r >∼ 1/m and find Q(r) for
decreasing r. Subsequetly, we obtain

Q(r) = Zobse2/ε(r, Q(r)) (267)

on the positive branch of ε(r, Q(r)). Expression (267) has a kink at r = r̃m, ε(r̃m) ∼ e2/(3π)
and Q(r̃m) ∼ 3πZobs � 1. Therefore, Equation (267) only has a meaning for r0 > r̃m.
Only then can one find a relation between Zobs and Z0. However, note that, actually,
Equation (267) already becomes invalid at a slightly larger r than r̃m, when ε(r, Q(r))
reaches values ∼ e2. At these distances, Equation (265) for ε becomes invalid and approxi-
mation (266), which we have used, also fails.

A comment is in order. Consider what would be, if we used Equations (251) and (265)
for r < r̃m. Subsequently, we would get Q1(r) = −Z0e2/ε(Q1) > 0, ε(Q1) < 0. This
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solution becomes invalid in the vicinity of r̃m, where −ε ∼ e2 , now for r < r̃m, and it
cannot be smoothly matched with the solution we have derived for r > r̃m.

9.1.2. Electron Condensation on Levels of Upper Continuum Is Included

In the region, where Q(r) > 1, besides the vacuum polarization, cf. Equation (251),
we should include the electron condensation on levels of the upper continuum crossed the
boundary ε < −m, cf. Equation (263). Thus, we have

∇(ε(E)∇V) = 4πe2V3/(3π2) , at r > r0 , (268)

−V � m. The solution of this equation can be easily obtained in the approximation (266).
We have [42],

Q2(r) =
C2

ε2(r, Q(r))− 2C2 . (269)

To be specific, consider the case Qobs � 1. Constant C is determined from the
condition Q(r >∼ 1/m) ' Qobs = Zobse2, since ε(r >∼ 1/m) ' 1. Thus, we obtain

Q2(r) =
Q2

obs
ε2(r, Q(r))(2Q2

obs + 1)− 2Q2
obs
'

Q2
obs

ε2(r, Q(r))− 2Q2
obs

. (270)

This solution shows an apparent pole at r = rap
pole. Near this point, in the region where

ε(r, Q(r))−
√

2Qobs
<∼ e2/(3π), the condition (266) is no longer fulfilled and solution given

by Equation (270) loses its meaning. Now, let rpole < r0 < rap
pole. To determine Q(r) in

immediate vicinity of the point rpole (at r0 approaching rpole) we, as before, assume that
ε(r, Q(r)) is a smooth function of coordinates but now Q(r) � Q1(r). Above we have
found the pole solution of the relativistic Thomas-Fermi equation for ε(r, Q(r)) = 1, cf.
Equation (200) and [3]. Now with ε(r, Q(r)) ' const < 1 assuming Q(r) � Q1(r) we
similarly get [54],

V = −
(

3πηε(r, Q(r))
2e2

)1/2 1
(r− rpole)

, 0 < r− rpole � rpole . (271)

The value r̃m is now irrelevant, because solution (267) is modified due to inclusion
of the electron condensation. Solution (271) with η = 1 is valid for ε(r, Q(r))� e2/(3π).
At very short distances from rpole, at which 0 < ε(r, Q(r)) <∼ e2/(3π), the condition that
ε(r, Q(r)) varies smoothly with r is violated. In this region, we may present ε(r, Q(r)) '
a(r − rpole), for a = const and then solution (271) continues to be valid, but now for
η = 1/8.

Finally, we stress that solution (271) corresponds to the charge distribution near the
bare charge Z0 for r0 > rpole. It looses the meaning for r0 < rpole. At fixed Zobs for r >∼ 1/m,
the charge Z0(r0) that is related to this Zobs is increased with decreasing r0. Even for
Zobs � 1/e2, at tiny distances, r ∼ rpole, the charge Q(r) becomes very large, Q(r) � 1,
and at these distances the electron condensation on levels of the upper continuum crossed
the boundary ε < −m comes into play. Our solution does not exist for r0 < rpole, rpole = rL,
where ε(rL) = 0. The value of rpole essentially depends on the value of Zobs. For Qobs

>∼ 1
the value rpole increases considerably, see Figure 6 and Equation (201), being derived for
ε ' 1.

9.2. Charge Source of Radius r = r0 < rL. Polarization of Vacuum and Electron Condensation on
Levels in Lower Continuum

Because QED is the theory with a local interaction, the charge sources can be of
arbitrary sizes, including r0 → 0. To attack the zero-charge problem, let us reconsider
the interpretation of the electron condensation in the field of the charged source of a very
small size.
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Because the Dirac equation in the spherically symmetric field does not change under
simultaneous replacements ε → −ε and e → −e, i.e., V → −V and κ → −κ, in the
Coulomb field of a negative charge Z0 < 0, there are electron levels (and in the field of a
positive charge Z0 > 0, there are positron levels), which originate in the lower continuum.
With increasing |Z0|, the energy of such level, εe, goes up and at a value |Z0| > 137− 170
(depending on r0), the level intersects the boundary of the upper continuum εe = m.
According to the traditional interpretation, which we have used while considering r0 >
rpole, the electron states with εe > −m, which appeared from the lower continuum already
in a weak field of repulsion to the electron, should be regarded as unphysical, and they
should be reinterpreted as positron states with energies εe+ = −εe. As a consequence
of such reinterpretation, for a nucleus with −Z0 > 1/e2, upon decreasing r0, the lowest
positron level reaches the energy εe+ = −m. Subsequently, two positrons, after tunnelling
from the lower continuum, occupy this empty level and two electrons move to infinity.
Similarly, positron states with εe+ > −m appeared from the lower continuum already
in a weak field of attraction to electron (for Z0 > 0) are regarded as unphysical, being
interpreted as electron states with energies εe = −εe+ . As we have demonstrated, such an
interpretation allows for solving the problem of the charge distribution only for r > r0 >
rpole, even while taking such multiparticle effects into account, such as the polarization of
the vacuum and (for Z > 0) the electron condensation on levels of the upper continuum
crossed the boundary εe = −m.

However, beyond the framework of a single-particle problem, there appears to be a
possibility of another interpretation [54,55]. Following this possibility, we may interpret
the electron levels that originated in the lower continuum in the weak repulsive field
(for Z0 < 0), as levels have been occupied by electrons of the lower continuum, while
taking into account that dielectric permittivity ε(r) can be negative at small distances.
Subsequently, no preliminary tunneling occurs from one continuum to another. Near
the positively charged center of radius r0 < rpole, the desired repulsive potential for the
electrons appears, since the dielectric permittivity of the vacuum expressed in terms of the
physical charge e2 > 0 becomes negative at r < rpole. In terms of a not renormalized charge
εn.ren(r → r0 → 0)→ 1 but e2

0 < 0 leading to the same result, V(r) > 0, cf. (244). Passage
of the pole with decreasing r becomes possible because of the phenomenon of electron
condensation on levels originated in the lower continuum even in a weak field.

Above, dealing with the electron condensation on levels of the upper continuum, due
to presence of the pole, we could not get a continues solution for all r. Now, dealing with
ε < 0 at r → r0 → 0, we are able to find an appropriate solution connecting Q(r > r0 → 0)
and Qobs = Q(r → ∞).

For ε < 0 and Z0 > 0, the resulting potential V proves to be repulsive. Thus, for a
positively charged center, due to change of the sign of ε there are electron levels coming
from the lower continuum. Since the quantity |Z0/ε(r)| increases with increasing r, in
a certain range of r, where −Q(r) > 1, in the bare potential there are many such levels.
To count them, one can use the relativistic Thomas–Fermi approach, now employing the
electron density −V3/(3π2) for V > 0. We have

∇(ε(r)∇V) = −θ(V)4πe2V3/(3π2) + 4πZ0e2δ(~r−~r0) , (272)

cf. [54], and Equation (263) derived above. Introducing tortoise coordinate, Ξ = ln(1/r2m2),
we obtain

d(Qε)

dΞ
= −2e2

3π
Q3

1 − 2πr3Q0δ(~r−~r0) , Q = Q1 +
2dQ1

dΞ
, (273)

where Q0 = Z0e2 > 0. With condition Q ' Q1 (justified by the resulting distribution),
we have

du
u3 = −2e2

3π

dΞ
ε3 , u = εQ , r > r0 . (274)
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Using explicit expression (257) with approximately constant value ν, and integrating
further, we find

Q2(r) =
C2

ε2 + 2C2/ν
=

Q2
0

ε2 + 2Q2
0/ν

. (275)

Choosing an appropriate sign of the solution corresponding to the repulsive potential
for the electron due to ε < 0 for r < rpole, we arrive at

Q(r) = − Q0√
ε2 + 2Q2

0/ν
. (276)

For r → r0 → 0, for any finite value of Q0 > 0 we obtain Q(r) ' −Q0/|ε| → 0.
Thus, a test particle does not interact with the nucleus at ultrashort distances. Recall the
asymptotic freedom property in the QCD for r → 0. For r ∼ 1/m, we have ε ' 1 and
Q(r) = Zobse2. Thus, we obtain a relation between the bare and observed charges

Zobs = −Z0/(1 + 2(Z0e2)2/ν)1/2 . (277)

For Z0 � 1/e2, we get Zobs ' −Z0. The maximum possible value of |Z(r)| is
|Zmax| ' 1/(

√
2/νe2), ε(rmax) = 0. All levels are occupied by electrons of the lower

continuum. Thereby, in the region where ε < 0, the vacuum remains stable.
It is important that, at distances r � rpole, the potential looks like an ordinary Coulomb

potential. Individual charges situated at these distances, each with Zobs � 1/e2, can be
summed up to the total charge Z > Zcr ∼ 1/e2. At these distances ε > 0 and it is close
to unity for r � rpole, and there may appear the electron condensation on the levels in
the upper continuum crossed the boundary ε = −m. These levels become occupied by
electrons, after the tunneling from the lower continuum, as we have demonstrated in
Section 7. Thus reconstruction of the interaction at r < rpole does not affect any phenomena
that can be observed experimentally occurring at much larger distances.

Note that solution (276) is similar to the solution obtained within QCD in the model [102],
which took a possibility of the quark condensation near the external color-charge source
into account. The essential difference is in the dependencies of ε(r) in QCD and in QED.
In QCD within a logarithmic approximation εQCD(r) ' b0 ln(r2

Λ/r2) where b0 and rΛ are
some positive constants, i.e., εQCD(r → 0)→ ∞ and εQCD(r → ∞)→ −∞, whereas, within
QED, we employed that εQED(r → 0) → −∞ and εQED(r → 1/m) → 1. In QCD, there
appears to be condensation of quarks on levels that originate in the upper continuum and
in the case under consideration in QED for r0 → 0, we included the electron condensation
on levels that originate in the lower continuum.

Note that, in terms of not renormalized dielectric permittivity, Equation (272) renders

∇(εn.ren(r)∇V) = −θ(V)4πe2
0V3/(3π2) + 4πe2

0Z0δ(~r−~r0) , (278)

with εn.ren(r) = 1− ν
e2

0
3π ln(r2

0/r2). Using that e2
0 is a function of e2, we obtain εn.ren(r →

r0)→ 1 and εn.ren < 0 for r > rpole. Thus, at small distances r < rpole, the non-renormalized
dielectric permittivity is positive. Value Z0e2

0 < 0 for Z0 > 0, that corresponds to V > 0,
and −e2

0V3/(3π2) is positive. Accordingly, near a negative external charge, there appear to
be positive charges and, vise versa, near a positive external charge, negative charges arise,
as expected in QED.

Additionally, recall that the Hamiltonian, where one replaced pµ → pµ − e0 An.ren
µ

should be Hermitian operator, as well as the same Hamiltonian that is expressed in terms
of the renormalized charge, where one uses the replacement pµ → pµ − eAren

µ . Within the
ordinary second quantization scheme, one expands Âµ in series of plane waves, where the
creation and annihilation operators appear, considering Aµ as the real quantity. Because e0
is imaginary, An.ren

µ should be considered as purely imaginary quantity. Now, we should
perform expansion for e0 An.ren

µ , being real quantity. The energy is reduced to the energy



Universe 2021, 7, 104 55 of 59

of stable oscillators only after performing renormalization, i.e., being expressed in terms
of eAren

µ .

9.3. Distribution of Charge of Electron

Up to now, we considered the charge distribution near the external charge source,
which was assumed to be infinitely massive. For description of the electron mass distribu-
tion, m(r), one needs to study Dyson equation for the electron Green function, cf. [103]. At
distances of our interest |V| � m(r) and the dependence of m(r) does not influence the
charge distribution in the logarithmic approximation that we have used. Equation for the
mass is given by [114],

dm(Ξ)
dΞ

= −
3e2

0
4π

dt(Ξ)m(Ξ) , (279)

where dt is the so called d-function of the photon and Ξ = ln(1/(r2m2)) is the tortoise
coordinate introduced above.

A clarification is in order. As is known, the presence of a zero in the expression for the
dielectric permittivity ε̃(Ξ) defined via the photon d-function,

e2
0dt = e2(Ξ) , ε̃(Ξ) = e2/e2(Ξ) , (280)

according to the Källen–Lehmann expansion, would correspond either to the violation of
the causality or to the instability of the vacuum [115]. However, note that, in our case, the
quantity ε̃(Ξ) does not have zero,

ε̃(Ξ) =
e2

e2(Ξ)
= (ε2(Ξ) + 2e4/ν)1/2 , (281)

as follows from (275) for Q0 = Z0e2, Z0 = 1. Thus, the quantity ε̃(Ξ) does not coincide
with ε(Ξ). The latter quantity may vanish and it can even be negative, whereas the "true”
value ε̃(Ξ) > 0.

Integrating (279), we obtain [54],

m(Ξ) = m

(
ε(Ξ) + (ε2(Ξ) + 2e4/ν)1/2

1 + (1 + 2e4/ν)1/2

)9/4

, (282)

where m is the observed electron mass. Thus m(Ξ→ ∞)→ 0 and m(Ξ→ 1)→ m, i.e., in
this case, the entire electron mass is of purely electromagnetic origin.

Concluding, we presented some arguments for the logical consistency of QED.

10. Conclusions

Most actively, the problem of a spontaneous production of positrons from the QED
vacuum in strong fields has been attacked in theoretical works in Moscow (in the group
of V. S. Popov in 1970s) and in Frankfurt (in the group of W. Greiner in 70s and 80s of the
previous century). The experiments performed at GSI Darmstadt in 1980s had turned out
puzzling line structures in the energy spectra. These results were not confirmed by the
subsequent experiments performed in the 1990s. Questions regarding the experimental
confirmation of existence of the spontaneous positron production in low-energy heavy-ion
collisions remained open. Now, interest in this problem is renewed [34], in connection
with the possibility to perform new experiments at the upcoming accelerator facilities in
Germany, Russia, and China [29–31]. The study of many-particle effects in description of
the QED vacuum in strong fields is of of principal interest. The problem of the zero-charge
remains one of the most important fundamental problems of QED already about 70 years.
In the given paper, these problems were studied within a common relativistic semiclassical
approach that was developed in the reviewed papers.
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In the given paper, first, the problems of the falling to the Coulomb center for the
charged spinless boson and for the fermion were considered within the single-particle
picture. Subsequently, focus was concentrated on a case of the spontaneous positron pro-
duction in the field of a finite supercritical nucleus with the charge Z > Zcr ' (170− 173).
The behavior of deep electron levels that crossed the boundary of the lower continuum
and the probability of the spontaneous positron production were studied. Subsequently,
similar effects were considered in application to the low-energy collisions of heavy ions,
when, for a short time, the electron level of the quasi-molecule crosses the boundary of
the lower continuum ε = −m. Next, the phenomenon of the electron condensation on
levels of the upper continuum crossed the boundary of the lower continuum in the field
of a supercharged nucleus with Z � Zcr was studied. Subsequently, focus was concen-
trated on many-particle problems of the polarization of the QED vacuum and the electron
condensation at ultra-short distances from the source of the charge. Arguments were
presented for the important difference of the cases, when the size of the source is larger
than the pole size rpole = rL, at which the dielectric permittivity of the vacuum reaches
zero, and smaller rpole. Subsequently, distributions of the charge and mass of the electron
were considered and arguments were given in favor of the logical consistency of QED.
Additionally, I believe that at least some of the results reviewed in this paper can find
applications in the description of semi-metals and stack of layers of graphene.
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