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Abstract: We investigate the influence of the chimney topology T × T × R of the Universe on the
gravitational potential and force that are generated by point-like massive bodies. We obtain three
distinct expressions for the solutions. One follows from Fourier expansion of delta functions into
series using periodicity in two toroidal dimensions. The second one is the summation of solutions of
the Helmholtz equation, for a source mass and its infinitely many images, which are in the form of
Yukawa potentials. The third alternative solution for the potential is formulated via the Ewald sums
method applied to Yukawa-type potentials. We show that, for the present Universe, the formulas
involving plain summation of Yukawa potentials are preferable for computational purposes, as they
require a smaller number of terms in the series to reach adequate precision.

Keywords: spatial topology; gravitational potential; Yukawa interaction

PACS: 04.25.Nx—Post-Newtonian approximation; perturbation theory; related approximations;
98.80.Jk—Mathematical and relativistic aspects of cosmology

1. Introduction

The shape of the space, whether it is positively curved, negatively curved, or flat,
and whether there is a limit to the size of the Universe are all among essential topics
of contemporary debate in theoretical physics and cosmology. Spatial topology of the
Universe, its function at the very early stages of evolution (in the quantum gravity regime),
and in the later process of large scale structure formation are quite interesting questions
yet to be answered. General Relativity does not favor any particular topology; hence, on
theoretical grounds, the space might be simply connected, in agreement with concordance
cosmology, or equally as well, multiply connected. It is worth noting that some “exotic”
non-simply connected spacetimes are timelike geodesically incomplete, since they have
singularities [1]. Hence, such topologies are not viable.

If the Universe is multiply connected, it may have a finite volume and yet be neg-
atively curved or flat [2]. The current available data cannot reveal the finiteness of its
volume if the Universe covers a much wider region than the observable sector. However, a
rather smaller volume points at the possibility of finding observational indications of its
topological features [3]. For instance, a photon can travel plenty of times across the volume
of multiply connected space and, thus, generate multiple images of the emitting source as a
signature [4,5]. Spaces with toroidal topology in one to three dimensions may be presented
as common examples of multiply connected spaces. To this class belongs the three-torus
T × T × T, chimney T × T × R, and slab T × R× R topologies.
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There are various comprehensive studies in the literature on potential indicators of
the shape of the space [6–10], and the majority of research is focused on their relation to the
Cosmic Microwave Background (CMB) data. Indeed, there exists a very appealing conjec-
tural relation which suggests that CMB anomalies in large angular scale observations, e.g.,
the suppression of the quadrupole moment and the quadrupole and octopole alignment,
are imprints of spatial topology [11,12]. The weak wide-angle temperature correlations
in the CMB can be also explained, e.g., with the help of dodecahedral topology of the
Universe [13]. In the present work we study the chimney topology, which admits a single
infinite axis subject to interpretations such as the preferred direction of the quadrupole and
octopole alignment and the commonly named “axis of evil” [14] (see [15] for additional
observable signatures of a preferred axis).

In connection with the investigation of possible topological imprints in CMB observa-
tions, Planck 2013 data [2] place the constraint Ri > 0.71χrec on the radius of the largest
sphere that may be inscribed in the topological domain for a flat Universe with the equal-
sided chimney topology. The parameter χrec specifies the distance from the recombination
surface and it is of the same order with the particle horizon, that is, χrec ∼ 14 Gpc. For
the toroidal topologies, the former restrictions on the size of the Universe from the seven-
and nine-year WMAP temperature map analyses are presented in [14,16]. The smallest
possible size of the fundamental topological domain for flat space, according to the seven-
year WMAP results, is d = 2RLSS cos(αmin) ' 27.9 Gpc [12], where RLSS stands for the
distance from the last scattering surface.

In this paper, we study the chimney topology T× T× R in terms of the gravitational
characteristics of the Universe, manifested in the shape of the gravitational potential
and force. In the cosmological setting, the inhomogeneous gravitational field is sourced
by fluctuations in the matter density [17] and, as expected, in the Newtonian limit, the
potential satisfies the Poisson equation. The form of the gravitational potential in the case
of toroidal topologies was previously studied in [18]. Particularly, the authors have shown
that there exists no physically justified nontrivial solution of the Poisson equation for the
T × T × R model. On the other hand, by employing the perturbed Einstein equations
from the very beginning, one automatically includes the essential relativistic effects in
the formulation and, for the gravitational potential, obtains a Helmholtz-type equation
instead of the Poisson one [19–21]. Quite remarkably, as we show in the present work for
the chimney topology, it then becomes possible to obtain exact solutions of this equation
that are nontrivial and physically meaningful. Herein, we derive distinct expressions
for the gravitational potential and force through alternative methods and point out the
particular solutions appearing in the form of summed Yukawa potentials as ready-to-
use notable sources for numerical computations. It is worth mentioning that, in the
above outlined approach, we make no presumptions regarding the spatial distribution of
gravitating bodies.

The outline of the paper is as follows. In Section 2, following [22], we introduce the
main equations and derive alternative expressions for the gravitational potential using dis-
tinct methods, now including the Ewald technique. Subsequently, in Section 3.1, extending
the results of [22], we compare these expressions in view of their usefulness for numerical
computations. In Section 3.2, we obtain the gravitational force expressions for each form of
the potential. We briefly review the results of our work in the concluding Section 4.

2. Methods
The Model and Basic Equations

It is well known that the gravitational potential Φ, created by fluctuations in the
matter density, is defined by scalar perturbations of the metric coefficients [23] and that
in the framework of General Relativity, it satisfies the linearized Einstein equation (see,



Universe 2021, 7, 101 3 of 16

e.g., [24,25]). Ignoring peculiar velocities, in the case of the ΛCDM cosmological model,
this equation reads [19–21]

∆Φ0 −
3κρc2

2a
Φ0 =

κc2

2a
(ρ− ρ̄) , (1)

where κ ≡ 8πGN/c4 (with GN and c being the Newtonian gravitational constant and
the speed of light, respectively), a is the scale factor, while ∆ represents the Laplace
operator in comoving coordinates. Here, ρ and ρ̄ = const are the comoving mass density
and its averaged value, respectively. As we operate within the ΛCDM model, matter is
pressureless, and we consider it in the form of discrete point-like gravitating bodies with
masses mn to represent, e.g., galaxies. Therefore, the comoving mass density

ρ = ∑
n

mnδ(r− rn) . (2)

The 0 subscript of Φ in Equation (1) refers to the fact that peculiar velocities have been
disregarded (see also [26]).

The shifted gravitational potential

Φ̂0 ≡ Φ0 −
1
3

(3)

fulfils the equation

∆Φ̂0 −
a2

λ2 Φ̂0 =
κc2

2a
ρ , (4)

where the screening length [19]

λ ≡
(

3κρc2

2a3

)−1/2

. (5)

The presence of the term ∝ Φ0 in Equation (1) (consequently, ∝ Φ̂0 in Equation (4))
results in the Yukawa-type cutoff of the potential with the characteristic length λ. The
term ∝ Φ enters as a summand into energy-momentum fluctuations generating metric
perturbations [19].

In what follows, the overhat indicates that the gravitational potential is shifted. A sig-
nificant bonus of working with the shifted potential is that it is now possible to employ the
superposition principle in solving Equation (4): once we find a solution for a single particle
that is located at the center of Cartesian coordinates, we may immediately generalize it for
a collection of particles at random positions.

We consider the space with chimney topology T1 × T2 × R, where the tori T1 and T2
have periods l1 and l2 along, e.g., the x- and y-axes, respectively. Hence, each gravitating
body has its images positioned away from the original point in multiples of periods l1 and
l2 along the corresponding axes. Now, let us place a particle with mass m at the center of
Cartesian coordinates. For the above indicated topology, the delta functions δ(x) and δ(y)
may be presented as

δ(x) =
1
l1

+∞

∑
k1=−∞

cos
(

2πk1

l1
x
)

, δ(y) =
1
l2

+∞

∑
k2=−∞

cos
(

2πk2

l2
y
)

, (6)

which implicitly include the contribution from the images of the particle. Consequently,
Equation (4) for this particle reads

∆Φ̂0 −
a2

λ2 Φ̂0 =
κc2

2a
m

l1l2

+∞

∑
k1=−∞

+∞

∑
k2=−∞

cos
(

2πk1

l1
x
)

cos
(

2πk2

l2
y
)

δ(z) , (7)
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so, we are motivated to consider the solution

Φ̂0 =
+∞

∑
k1=−∞

+∞

∑
k2=−∞

Ck1k2(z) cos
(

2πk1

l1
x
)

cos
(

2πk2

l2
y
)

, (8)

where the coefficients Ck1k2(z) satisfy the equation

+∞

∑
k1=−∞

+∞

∑
k2=−∞

[
C
′′
k1k2

(z)− 4π2

(
k2

1
l2
1
+

k2
2

l2
2

)
Ck1k2(z)−

a2

λ2 Ck1k2(z)−
κc2

2a
m

l1l2
δ(z)

]

× cos
(

2πk1

l1
x
)

cos
(

2πk2

l2
y
)
= 0 . (9)

Using the condition d2|z|/dz2 = 2δ(z), we can easily obtain the explicit expressions for
the coefficients Ck1k2(z), so that the shifted gravitational potential for the selected particle
and all its images eventually reads

Φ̂0 = −κc2

4a
m

l1l2

+∞

∑
k1=−∞

+∞

∑
k2=−∞

[
4π2

(
k2

1
l2
1
+

k2
2

l2
2

)
+

a2

λ2

]−1/2

× exp

−
√√√√4π2

(
k2

1
l2
1
+

k2
2

l2
2

)
+

a2

λ2 |z|

 cos
(

2πk1

l1
x
)

cos
(

2πk2

l2
y
)

. (10)

The above expression has the correct behavior in the Newtonian limit in the neigh-
borhood of the considered particle, where it is no longer possible to distinguish between
different (infinite and periodic) axes. For such regions, the summations in (10) may be
replaced by the integrals:

Φ̂0 → −κc2m
4a

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

[
4π2

(
k2

x + k2
y

)
+

a2

λ2

]−1/2

× exp

(
−
√

4π2
(

k2
x + k2

y

)
+

a2

λ2 |z|
)

cos
[
2π
(
kxx + kyy

)]
(11)

for kx ≡ k1/l1 and ky ≡ k2/l2. Introducing the vectors k = (kx, ky), r = (x, y) with the

absolute values k =
√

k2
x + k2

y and r =
√

x2 + y2, and assuming an angle ϕ between them,
we obtain

Φ̂0 → −κc2m
4a

∫ +∞

0
kdk
[

4π2k2 +
a2

λ2

]−1/2

exp

(
−
√

4π2k2 +
a2

λ2 |z|
)

×
∫ 2π

0
dϕ cos(2πkr cos ϕ)

= −πκc2m
2a

∫ +∞

0
kdk
[

4π2k2 +
a2

λ2

]−1/2

exp

(
−
√

4π2k2 +
a2

λ2 |z|
)

J0(2πkr)

= −GNm
c2

1√
Z2 + R2

exp
(
− 1

λ

√
Z2 + R2

)
→ −GNm

c2
1√

Z2 + R2
, (12)

where Z = az and R = ar represent the physical distances, and the last integration is
performed by using the formula 2.12.10(10) of [27].

Evidently, for a system of randomly positioned gravitating bodies, we have

Φ0 =
1
3
+ Φ̂0

{
m→∑

n
mn; x, y, z→ x− xn, y− yn, z− zn

}
. (13)
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For linear fluctuations, the averaged value of this expression is equal to zero, as it
should be (also see [28]). Indeed,

l1∫
0

dx
l2∫

0

dy
+∞∫
−∞

dzΦ̂0 = −κc2

4a
m

λ

a

+∞∫
−∞

exp
(
− a

λ
|z|
)

dz

=
κc2

2a
m

λ2

a2 exp
(
− a

λ
z
)∣∣∣+∞

0
= −κc2

2a
m

λ2

a2 = −1
3

m
ρ

, (14)

and, hence, the spatial average of the total gravitational potential is

Φ0 =
1
3
− 1

3
m
ρ
· N

l1l2Lz
=

1
3
− 1

3
= 0,

mN
l1l2Lz

= ρ . (15)

For the sake of simplicity, here we have considered the particular configuration in
which all N bodies in the volume V = l1l2Lz are assigned identical masses m.

Equation (4) is of Helmholtz type and we can likewise solve it by considering the
contribution of periodic images. In this case, the resulting expression consists of summed
Yukawa potentials attributed to each one of them:

Φ̂0 = −κc2m
8πa

+∞

∑
k1=−∞

+∞

∑
k2=−∞

1√
(x− k1l1)2 + (y− k2l2)2 + z2

× exp

(
− a
√
(x− k1l1)2 + (y− k2l2)2 + z2

λ

)
. (16)

As we have noted previously, the peculiar motion of gravitating bodies is disregarded
in Equation (1) and, consequently, in (4). Nevertheless, the significance of such a contribu-
tion has recently been pointed out in [29], where the authors have also shown that peculiar
velocities may be effectively restored by employing the effective screening length λeff
(given by the Formula (41) of [29]) instead of the screening length λ in Equations (1) and (4).
Specifically, in the matter-dominated epoch, the two quantities λeff and λ are related to one
another as λeff =

√
3/5λ. Returning to our formulation, the effect of peculiar motion is

included by replacing λ with λeff in the Formulas (10) and (16), which yields

Φ̃cos ≡
(
− κc2

8πa
m
l

)−1

Φ̂cos =
+∞

∑
k1=−∞

+∞

∑
k2=−∞

(
k2

1 + k2
2 +

1
4π2λ̃2

eff

)−1/2

× exp

(
−
√

4π2
(
k2

1 + k2
2
)
+

1
λ̃2

eff
|z̃|
)

cos(2πk1 x̃) cos(2πk2ỹ) (17)

and

Φ̃exp ≡
(
− κc2

8πa
m
l

)−1

Φ̂exp =
+∞

∑
k1=−∞

+∞

∑
k2=−∞

1√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

× exp

−
√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff

 . (18)

For simpler demonstration, we have assumed l1 = l2 = l and introduced the rescaled quantities

x = x̃l, y = ỹl, z = z̃l, λeff = λ̃effal . (19)
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Two alternative solutions are labeled with the subscripts “cos” and “exp” in Equations (17)
and (18). Now that the peculiar velocities are included in the calculations, the 0 subscript is
omitted in the new formulas.

There is also a third way to express the gravitational potential for the given topology.
Indeed, Yukawa-type interactions that are subject to periodic boundary conditions can
be formulated via Ewald sums, so that the expression for the potential consists of two
rapidly converging series, one in each of the real and Fourier spaces. The technique is
commonly employed while modeling particle interactions in plasma and colloids, and,
in such a context, the corresponding potential for quasi two-dimensional systems, i.e.,
three-dimensional systems with two-dimensional periodicity, has previously been derived
in [30,31]. Being implemented in the cosmological setting considered in our paper, the
discussed expression for the “Yukawa–Ewald” potential reads

Φ̃mix ≡
(
− κc2

8πa
m
l

)−1

Φ̂mix

=
+∞

∑
k1=−∞

+∞

∑
k2=−∞

D
(√

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2; α; λ̃eff

)
2
√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

+ π cos[2π(k1 x̃ + k2ỹ)]
F
(√

4π2(k2
1 + k2

2) + λ̃−2
eff ; z̃; α

)
√

4π2(k2
1 + k2

2) + λ̃−2
eff

 , (20)

where

D
(√

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2; α; λ̃eff

)

≡ exp


√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff


× erfc

(
α

√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2 +

1
2αλ̃eff

)

+ exp

−
√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff


× erfc

(
α

√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2 − 1

2αλ̃eff

)
(21)

and

F
(√

4π2(k2
1 + k2

2) + λ̃−2
eff ; z̃; α

)

≡ exp
(√

4π2(k2
1 + k2

2) + λ̃−2
eff z̃
)

erfc


√

4π2(k2
1 + k2

2) + λ̃−2
eff

2α
+ αz̃


+ exp

(
−
√

4π2(k2
1 + k2

2) + λ̃−2
eff z̃
)

erfc


√

4π2(k2
1 + k2

2) + λ̃−2
eff

2α
− αz̃

 . (22)

In these formulas, erfc is the complementary error function and the free parameter α,
as indicated in [31], is to be chosen in such a way that a balanced interplay of computational
cost and satisfactory precision is achieved. For definiteness, we set α equal to λ̃eff.
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In the forthcoming section, we will compare three expressions and present the opti-
mum formula in view of its efficiency in use for numerical analysis.

3. Results
3.1. Gravitational Potentials

Formulas (17), (18) and (20) describe the gravitational potential due to a point-like
body, with mass m, placed at (x, y, z) = (0, 0, 0), and by the accompanying images placed
at (x, y, z) = (k1l, k2l, 0), where k1,2 = 0,±1,±2, . . . All three forms of the rescaled potential
are composed of infinite series. Hence, for any desired precision, one needs to determine
the minimum number of terms that are needed to numerically calculate the potential.
The criterion that we use to specify this number n is the following: the ratio |exact Φ̃−
approximate Φ̃|/|exact Φ̃| should be less than 0.001. This defines the order of accuracy in
our analysis. Evidently, for each form of the potential the number n can be different, so we
denote these as nexp, ncos and nmix, correspondingly. The formula requiring the smallest
number of terms to define Φ̃ (i.e., to calculate “approximate Φ̃”) up to the adopted accuracy
is clearly the best alternative for numerical computation purposes. In this connection, we
are interested in comparing (17), (18) and (20) here. Because the formulas include double
series, the accompanying numbers n are to be ascribed the smallest possible number of
combinations (k1, k2) that can provide the necessary precision. We find these by listing

the summands in increasing order for
√

k2
1 + k2

2 and assigning to n the total number of
terms that are included in the list eventually. This procedure of generating a sequence of
combinations (k1, k2) and finding n is performed using Mathematica [32].

Tables 1 and 2 show the outputs for eight selected points. As to the adopted accuracy,
for all n > nexp, the approximate value of Φ̃exp (calculated by (18)) differs from the exact
value by less than one tenth of a percent. In both tables, the exact value Φ̃ is calculated
from (18) for n � nexp. The quantities ncos and nmix indicate the numbers of terms in
formulas (17) and (20), respectively, which one needs to keep in order to obtain the
same values of the potential at the selected points with the same precision as attained by
using (18). In the ncos column, the dash reflects either incorrect outputs that are produced
because of complications in the computational process, or the fact that unreasonably large
number of summands is necessary. Because our results depend on the ratio of λeff to the
physical size al of the periods of tori, i.e., λ̃eff = λeff/(al), we present the results that were
obtained for small and large values of λ̃eff separately in Tables 1 and 2, which include
λ̃eff = 0.01, 0.1 and λ̃eff = 1, 3, respectively.

Table 1. Potentials Φ̃ as well as the numbers nexp, ncos and nmix at a selection of points for λ̃eff = 0.01 and λ̃eff = 0.1 in the
left and right tables, respectively.

x̃ ỹ z̃ Φ̃ nexp ncos nmix x̃ ỹ z̃ Φ̃ nexp ncos nmix
A1 0.5 0 0.5 5.524× 10−31 2 1007 2 A1 0.5 0 0.5 2.418× 10−3 7 40 7
A2 0.5 0 0.1 2.810× 10−22 2 — 2 A2 0.5 0 0.1 2.398× 10−2 6 808 6
A3 0.5 0 0 7.715× 10−22 2 — 2 A3 0.5 0 0 2.700× 10−2 4 — 4
B1 0.1 0 0.5 1.405× 10−22 1 187 1 B1 0.1 0 0.5 1.203× 10−2 4 28 4
B2 0.1 0 0.1 5.101× 10−6 1 2119 1 B2 0.1 0 0.1 1.719 1 380 1
B3 0.1 0 0 4.540× 10−4 1 — 1 B3 0.1 0 0 3.679 1 — 1
C1 0 0 0.5 3.857× 10−22 1 236 1 C1 0 0 0.5 1.353× 10−2 4 37 4
C2 0 0 0.1 4.540× 10−4 1 1479 1 C2 0 0 0.1 3.679 1 490 1

According to these tables, both expressions (18) and (20) seem preferable for numerical
calculations in the case λ̃eff < 1 since nexp, nmix � ncos, although Equation (20) is, of
course, much more complicated than Equation (18), and the computation of its every single
summand takes longer. However, for λ̃eff & 1, the Yukawa–Ewald formula (20) alone
becomes superior to the remaining two and the distinction grows as λ̃eff becomes larger.
According to Planck 2013 data [2], the lower limit on the periods of tori (in the case of



Universe 2021, 7, 101 8 of 16

chimney topology) is ∼20 Gpc. Meanwhile, the current value of the effective cosmological
screening length, as indicated in [29], is 2.6 Gpc. Thus, the region that is defined by λ̃eff < 1
depicts the observable Universe and, here, as we have just discussed, Equation (18) is
more convenient for numerical analysis.

Table 2. Potentials Φ̃ as well as the numbers nexp, ncos and nmix in a selection of points for λ̃eff = 1 and λ̃eff = 3 in the left
and right tables, respectively.

x̃ ỹ z̃ Φ̃ nexp ncos nmix x̃ ỹ z̃ Φ̃ nexp ncos nmix
A1 0.5 0 0.5 3.783 174 9 15 A1 0.5 0 0.5 15.93 1418 7 6
A2 0.5 0 0.1 5.067 163 229 15 A2 0.5 0 0.1 17.60 1379 120 9
A3 0.5 0 0 5.153 163 — 15 A3 0.5 0 0 17.71 1377 — 9
B1 0.1 0 0.5 3.990 171 10 13 B1 0.1 0 0.5 16.14 1411 8 6
B2 0.1 0 0.1 9.405 133 164 11 B2 0.1 0 0.1 22.00 1290 138 9
B3 0.1 0 0 12.34 123 — 10 B3 0.1 0 0 24.96 1242 — 9
C1 0 0 0.5 4.014 170 13 13 C1 0 0 0.5 16.17 1410 8 7
C2 0 0 0.1 12.30 123 357 9 C2 0 0 0.1 24.91 1243 286 9

Concluding this section, we also present Figures 1–4, demonstrating the shape of the
rescaled potential Φ̃ for the same values of λ̃eff as those picked for Tables 1 and 2. To plot
these figures (using Mathematica [32]), we use (18) for n� nexp.

Figure 1. Φ̃ =
[
−GNm/(c2al)

]−1Φ̂ for λ̃eff = 0.01 for the sections z = 0 (left panel) and y = 0 (right panel).

3.2. Gravitational Forces

It is also interesting to study the forces (per unit mass) associated with the alterna-
tive forms of the gravitational potential derived in the previous section. We intend to
consider the projections of these forces on the x- and z-axes. Owing to the symmetry of
the model, the x and y projections are similar. We calculate the gravitational forces for
the same points as for the potentials and, among these, naturally, we only investigate the
points at which projections on the axis of interest are nonzero. In this connection, the
points A1, A2, A3, C1, C2 and the points A3, B3 are omitted for the x- and z-components,
respectively. The accuracy of force calculations is of the same level as that of the potentials.
Here, once again, we compare the number of terms needed to achieve this accuracy, but
now for three different forms of the gravitational force presentation.
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Figure 2. Φ̃ =
[
−GNm/(c2al)

]−1Φ̂ for λ̃eff = 0.1 for the sections z = 0 (left panel) and y = 0 (right panel).

Figure 3. Φ̃ =
[
−GNm/(c2al)

]−1Φ̂ for λ̃eff = 1 for the sections z = 0 (left panel) and y = 0 (right panel).

Figure 4. Φ̃ =
[
−GNm/(c2al)

]−1Φ̂ for λ̃eff = 3 for the sections z = 0 (left panel) and y = 0 (right panel).
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3.2.1. x-Component of the Gravitational Force

From (17), (18) and (20), we derive three alternative expressions for the x-component
of the rescaled force:

∂

∂x̃
(
Φ̃cos

)
= −2π

+∞

∑
k1=−∞

+∞

∑
k2=−∞

(
k2

1 + k2
2 +

1
4π2λ̃2

eff

)−1/2

× exp

(
−
√

4π2
(
k2

1 + k2
2
)
+

1
λ̃2

eff
|z̃|
)

k1 sin(2πk1 x̃) cos(2πk2ỹ) , (23)

∂

∂x̃
(
Φ̃exp

)
= −

+∞

∑
k1=−∞

+∞

∑
k2=−∞

exp

−
√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff


×

 x̃− k1[
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

]3/2 +
x̃− k1

λ̃eff

[
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

]
 , (24)

∂

∂x̃
(
Φ̃mix

)
= −1

2

+∞

∑
k1=−∞

+∞

∑
k2=−∞

 (x̃− k1)D
(√

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2; α; λ̃eff

)
[
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

]3/2

+
x̃− k1

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2
· C− exp

−
√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff


+

x̃− k1

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2
· C+ exp


√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff



+ 4π2k1 sin[2π(k1 x̃ + k2ỹ)]
F
(√

4π2
(
k2

1 + k2
2
)
+ λ̃−2

eff ; z̃; α

)
√

4π2
(
k2

1 + k2
2
)
+ λ̃−2

eff

 , (25)

where

C∓ = C∓

(√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2; α; λ̃eff

)
≡ 2α√

π
exp

[
−
(

α

√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2 ∓ 1

2αλ̃eff

)2
]

± 1
λ̃eff

erfc
(

α

√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2 ∓ 1

2αλ̃eff

)
. (26)

We present the results of the calculations that were performed in Mathematica [32]
in Tables 3 and 4 for λ̃eff = 0.01, 0.1 and λ̃eff = 1, 3, respectively. As in the case for the
gravitational potential, a straightforward analysis shows that Formulas (24) and (25) that are
related to the Yukawa and Yukawa–Ewald potentials, respectively, are preferable over (23)
for the physically significant case λ̃eff < 1 (although the structure of the expression (25) is
again much more complicated compared to (24)). Meanwhile, when λ̃eff & 1, the Yukawa–
Ewald force becomes superior. In both tables, Equation (24) was employed for n� nexp
while computing the values of the rescaled x-component Φ̃x.
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Table 3. Numerical values of the x-component of the rescaled force Φ̃x ≡ ∂Φ̃/∂x̃ as well as the numbers nexp, ncos and nmix

for points B1, B2 and B3 for λ̃eff = 0.01 and λ̃eff = 0.1 in the left and right tables, respectively.

x̃ ỹ z̃ Φ̃x nexp ncos nmix x̃ ỹ z̃ Φ̃x nexp ncos nmix
B1 0.1 0 0.5 −2.810× 10−21 1 263 1 B1 0.1 0 0.5 −2.783× 10−2 5 54 5
B2 0.1 0 0.1 −3.862× 10−4 1 2448 1 B2 0.1 0 0.1 −20.75 1 592 1
B3 0.1 0 0 −4.994× 10−2 1 — 1 B3 0.1 0 0 −73.57 1 — 1

Table 4. Numerical values of the x-component of the rescaled force Φ̃x ≡ ∂Φ̃/∂x̃ as well as the numbers nexp, ncos and nmix

for points B1, B2 and B3 for λ̃eff = 1 and λ̃eff = 3 in the left and right tables, respectively.

x̃ ỹ z̃ Φ̃x nexp ncos nmix x̃ ỹ z̃ Φ̃x nexp ncos nmix
B1 0.1 0 0.5 −4.730× 10−1 130 38 21 B1 0.1 0 0.5 −4.920× 10−1 862 38 21
B2 0.1 0 0.1 −34.65 20 553 9 B2 0.1 0 0.1 −34.88 77 552 13
B3 0.1 0 0 −99.14 19 — 8 B3 0.1 0 0 −99.49 34 — 9

Additionally, we present Figures 5–8, demonstrating the x-component of the rescaled
force Φ̃x for the same values of λ̃eff as those picked for Tables 3 and 4. To plot these figures
(using Mathematica [32]), we employ the Formula (24) for n� nexp.

Figure 5. x-component of the rescaled force Φ̃x for λ̃eff = 0.01 for the sections z = 0 (left panel) and y = 0 (right panel).

Figure 6. x-component of the rescaled force Φ̃x for λ̃eff = 0.1 for the sections z = 0 (left panel) and y = 0 (right panel).
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Figure 7. x-component of the rescaled force Φ̃x for λ̃eff = 1 for the sections z = 0 (left panel) and y = 0 (right panel).

Figure 8. x-component of the rescaled force Φ̃x for λ̃eff = 3 for the sections z = 0 (left panel) and y = 0 (right panel).

3.2.2. z-Component of the Gravitational Force

For the z-component of the rescaled force, three alternative formulas are:

∂

∂z̃
(
Φ̃cos

)
= −2π

+∞

∑
k1=−∞

+∞

∑
k2=−∞

exp

(
−
√

4π2
(
k2

1 + k2
2
)
+

1
λ̃2

eff
z̃

)
× cos(2πk1 x̃) cos(2πk2ỹ) , (27)

where, for simplicity, z̃ > 0,

∂

∂z̃
(
Φ̃exp

)
= −

+∞

∑
k1=−∞

+∞

∑
k2=−∞

exp

−
√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff


×

 z̃[
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

]3/2 +
z̃

λ̃eff

[
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

]
 (28)
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and

∂

∂z̃
(
Φ̃mix

)
=

− 1
2

+∞

∑
k1=−∞

+∞

∑
k2=−∞

 z̃D
(√

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2; α; λ̃eff

)
[
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

]3/2

+
z̃

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2
· C− exp

−
√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff


+

z̃

(x̃− k1)
2 + (ỹ− k2)

2 + z̃2
· C+ exp


√
(x̃− k1)

2 + (ỹ− k2)
2 + z̃2

λ̃eff


− 2π cos[2π(k1 x̃ + k2ỹ)]

1√
4π2

(
k2

1 + k2
2
)
+ λ̃−2

eff

×
[

F− exp

(
−z

√
4π2

(
k2

1 + k2
2
)
+

1
λ̃2

eff

)
+ F+ exp

(
z

√
4π2

(
k2

1 + k2
2
)
+

1
λ̃2

eff

)]]
, (29)

where

F∓ = F∓

(√
4π2

(
k2

1 + k2
2
)
+ λ̃−2

eff ; z̃; α

)
≡

± 2α√
π

exp

−

√

4π2
(
k2

1 + k2
2
)
+ λ̃−2

eff

2α
∓ αz̃

2
∓

√
4π2

(
k2

1 + k2
2
)
+ λ̃−2

eff erfc


√

4π2
(
k2

1 + k2
2
)
+ λ̃−2

eff

2α
∓ αz̃

 , (30)

and C∓ are given by (26).
Now, we employ these formulas to calculate the nonzero z-components of the gravita-

tional force at the previously selected set of points and, again, for the desired precision. The
results that were obtained in Mathematica [32] are presented in Tables 5 and 6, which show
that while λ̃eff < 1, depicting well the observational restrictions, two Formulas (28) and (29)
are favorable (as before, the latter is much more cumbersome). On the other hand, for
λ̃eff & 1, the Yukawa–Ewald Formula (29) gives the best results. Herein, the quantity
Φ̃z stands for the z-component of the rescaled force, calculated from Equation (28) for
n � nexp. We depict the behavior of this component in Figures 9 and 10 for the section
y = 0. Obviously, the projection of the gravitational force on the z-axis is absent for the
section z = 0 due to the symmetry of the model.

Table 5. Numerical values of the z-component of the rescaled force Φ̃z ≡ ∂Φ̃/∂z̃ as well as the numbers nexp, ncos and nmix

for points A1, A2, B1, B2, C1 and C2 for λ̃eff = 0.01 and λ̃eff = 0.1 in the left and right tables, respectively.

x̃ ỹ z̃ Φ̃z nexp ncos nmix x̃ ỹ z̃ Φ̃z nexp ncos nmix
A1 0.5 0 0.5 −3.962× 10−29 2 1070 2 A1 0.5 0 0.5 −1.946× 10−2 6 47 6
A2 0.5 0 0.1 −5.620× 10−21 2 — 2 A2 0.5 0 0.1 −5.620× 10−2 2 1647 2
B1 0.1 0 0.5 −1.405× 10−20 1 187 1 B1 0.1 0 0.5 −1.407× 10−1 2 33 2
B2 0.1 0 0.1 −3.862× 10−4 1 2228 1 B2 0.1 0 0.1 −20.75 1 649 1
C1 0 0 0.5 −3.935× 10−20 1 240 1 C1 0 0 0.5 −1.620× 10−1 3 44 3
C2 0 0 0.1 −4.994× 10−2 1 1620 1 C2 0 0 0.1 −73.58 1 722 1
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Table 6. Numerical values of the z-component of the rescaled force Φ̃z ≡ ∂Φ̃/∂z̃ as well as the numbers nexp, ncos and nmix

for points A1, A2, B1, B2, C1 and C2 for λ̃eff = 1 and λ̃eff = 3 in the left and right tables, respectively.

x̃ ỹ z̃ Φ̃z nexp ncos nmix x̃ ỹ z̃ Φ̃z nexp ncos nmix
A1 0.5 0 0.5 −3.571 85 21 15 A1 0.5 0 0.5 −5.072 444 21 11
A2 0.5 0 0.1 −1.673 64 900 15 A2 0.5 0 0.1 −2.037 331 863 13
B1 0.1 0 0.5 −5.045 74 20 13 B1 0.1 0 0.5 −6.593 397 19 9
B2 0.1 0 0.1 −35.48 15 444 5 B2 0.1 0 0.1 −36.04 57 444 8
C1 0 0 0.5 −5.241 73 26 13 C1 0 0 0.5 −6.795 392 24 12
C2 0 0 0.1 −99.97 8 678 4 C2 0 0 0.1 −100.7 21 677 7

Figure 9. z-component of the rescaled force Φ̃z for λ̃eff = 0.01 and λ̃eff = 0.1 (left and right panels, respectively).

Figure 10. z-component of the rescaled force Φ̃z for λ̃eff = 1 and λ̃eff = 3 (left and right panels, respectively).

4. Conclusions

In this work, we have studied how the chimney topology T × T × R of the Universe
affects the form of the gravitational potential and, consequently, that of the gravitational
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force. In this connection, we have proposed three alternative forms for each of the solutions.
One of them (see Equation (17)) relies on the Fourier expansion of the delta functions into
series while using periodicity in two toroidal dimensions in the model. The second one
(see Equation (18)) follows from the summation of solutions of the Helmholtz equation,
each in the form of the Yukawa potential, for a source mass and all of its periodic images.
Finally, the third form of the potential (see Equation (20)) is formulated via the Ewald
sums for Yukawa potentials. Subsequently, we have presented three alternative forms of
the gravitational force (see Equations (23)–(25) and (27)–(29) for the x- and z-components,
respectively) derived from the potential expressions.

In all three alternative forms, the screening length λ̃eff serves as a crucial parameter,
as it specifies the distance (from the source or the periodic images) where the gravitational
potential undergoes exponential cutoff. This fact is most clearly demonstrated in the case
where the solution takes on the form of summed Yukawa potentials (18). The observational
data show that this parameter should be less than 1 (λ̃eff < 1) in today’s Universe.

One of the main goals of this work was to reveal which of the obtained alternative
formulas would serve better as a tool to be employed in numerical calculations. Namely, to
show which formula would require less terms in the series to reach the desired precision.
Our calculations have demonstrated that, for both the gravitational potentials and forces,
two expressions involving plain summations of Yukawa potentials are preferable for the
physically significant case λ̃eff < 1. However, in the case λ̃eff & 1, the Yukawa–Ewald
presentation stands out as the best alternative.

Additionally, we have produced Figures 1–10 for λ̃eff = 0.01, 0.1, 1, 3 to provide
graphical demonstration of the gravitational potentials and force projections.
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