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Abstract: We consider the low-temperature expansion of the Casimir-Polder free energy for an atom
and graphene by using the Poisson representation of the free energy. We extend our previous analysis
on the different relations between chemical potential µ and mass gap parameter m. The key role plays
the dependence of graphene conductivities on the µ and m. For simplicity, we made the manifest
calculations for zero values of the Fermi velocity. For µ > m, the thermal correction ∼ T2, and for
µ < m, we confirm the recent result of Klimchitskaya and Mostepanenko, that the thermal correction
∼ T5. In the case of exact equality µ = m, the correction ∼ T. This point is unstable, and the system
falls to the regime with µ > m or µ < m. The analytical calculations are illustrated by numerical
evaluations for the Hydrogen atom/graphene system.

Keywords: Casimir-Polder force; graphene; dispersion forces

1. Introduction

The Casimir [1] and Casimir-Polder [2] dispersion forces play an important role in
different phenomena [3,4]. The Casimir-Polder force is usually referred to as the van der
Waals force on large distances between micro-particles and macro-objects when the retar-
dation of interaction is taken into account. The Casimir-Polder force essentially depends
on the material of the macro-objects, its dimension, shapes, conductivity, and tempera-
ture [3,4], and it is important for the interaction of graphene with micro-particles [5–9].
The Casimir-Polder force and torque for anisotropic molecules have been the subject of
investigations in the recent years from the theoretical point of view [10–14], as well as
experimentally [15,16]. The non-ground state of an atom gives a specific resonant term
contribution to the Casimir-Polder force [17,18], but, here, we restrict ourself by an atom in
the ground state, only.

The thermal corrections to the Casimir-Polder interaction for micro-particle/graphene
were considered in Refs. [19–25]. In the last few years, much attention has been given to
the low-temperature expansion of the Casimir-Polder free energy for the atom/graphene
system [7,23–25]. In the case of an atom/ideal plane, the low-temperature correction to the
Casimir-Polder free energy is proportional to the fourth degree of temperature ∼ T4. As
opposed to the ideal case, the conductivity of graphene depends on the chemical potential
and temperature, and it has temporal and spatial dispersion [26–29]. The low-temperature
expansion depends on the relations between these macro-parameters.

It was shown in Ref. [23] that the low-temperature expansion reveals the unusual
quadratic ∼ T2 behavior. Next, detailed considerations [24,25] showed a more rich picture
of low-temperature expansion depending on the relation between chemical potential µ
and mass gap parameter m of the Dirac electron. For µ > m, the same quadratic behavior
was confirmed, but, in the case µ < m the ∼ T5, dependence was obtained. In the case
of the very specific exact relation µ = m, the linear ∼ T dependence was observed. To
obtain these results, the authors of Refs. [24,25] made the sophisticated treatment of the
Matsubara series.
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In the present paper, we extend our analysis made in Ref. [23] in the framework
of the Poisson representation of the Matsubara series to all relations between µ and m
and confirm results by numerical analysis. The Poisson representation is more suitable
for the low-temperature expansions—the zeroth term of the series coincides with a zero-
temperature contribution (with possible temperature and chemical potential dependence
via conductivity) and the rest of the series gives temperature correction. In Ref. [23],
we considered conductivity of graphene with cutting scattering rate, as in Refs. [30,31],
where the Kubo approach was used. In this case, the conductivity has a constant value
at zero frequencies which depends on the scattering rate parameter γ. It leads to the
low-temperature dependence ∼ T2 for any relation between chemical potential µ and mass
gap m. In the framework of the polarization tensor approach [27,29], there is no scattering
parameter, and the behavior of the conductivity at zero frequency strongly depends on the
relation between µ and m.

In the framework of our approach, we show that, for µ > m, the temperature correc-
tions to the free energy ∼ T2, and, for µ < m, we obtain correction ∼ T5, and, in the point
µ = m, the linear dependence ∼ T appears. Therefore, we confirm expansions obtained
in Ref. [24]. The main contribution for µ ≥ m to the low-temperature expansion of the
free energy comes from the expression for energy at zero temperatures (zeroth term of
Poisson expansion) via temperature dependence of conductivity. For µ < m, the main
contribution comes from the rest part of the series. The point µ = m is a very specific
point where the free energy is linear over temperature; therefore, the entropy is constant,
and the Nernst theorem is no longer valid. But, for an infinitely small deviation from
equality, µ = m shows different regimes where the Nernst theorem holds. The numerical
evaluations reveal the singular “beak-shaped” form of the temperature correction of the
free energy, which confirms this conclusion. The point µ = m is the point of changing a
regime of the temperature dependence of the free energy. The numerical evaluations show
that, for any small value of the deviations |µ−m|, there is a domain of temperatures T
close to the origin where the derivative of the free energy with respect to the temperature,
the entropy, is zero for T = 0, and the Nernst theorem is valid. The method developed here
may be used to obtain the low-temperature expansion in many other situations.

Throughout the paper, the units h̄ = c = kB = 1 are used.

2. The Casimir-Polder Free Energy

Taking into account the Poisson summation formula (see details in Ref. [23]), the free
energy may be represented in the following form

Ftm|te
E∞
CP

= −8
3

∞

∑
l=0

′
∫ ∞

0
z3e−2zdz

∫ 1

0
dx cos

(
zxl
aT

)
α(λ)

α(0)
{x2 − 2|x2}rtm|te , (1)

normalized to the E∞
CP = −3α(0)/8πa4—the Casimir-Polder (CP) energy for an ideal

plane/atom at large distance a. Here, the prime means factor 1/2 for l = 0, and we
have to use λ = zx

a , k = z
a

√
1− x2 for imaginary frequency ω = iλ and wave-vector k

in conductivities ηtm = 2πσtm and ηte = 2πσte. The α is the polarizability of atom or
molecule at the imaginary frequency, and the refraction coefficients of TE and TM modes are

rte = − 1
1 + 1

xηte

, rtm =
1

1 + x
ηtm

. (2)

The form of the zero terms, l = 0, in (1) coincides exactly with that obtained for zero
temperatures but, in general, with temperature and chemical potential dependence through
the conductivities ηtm|te = ηtm|te(λ, k, µ, m, T). We extract the zero, l = 0, term

F = Ftm +Fte = F 0 + ∆F , (3)
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and we consider the low-temperature expansion for ∆F and F 0 separately. We extract the
temperature contribution from F 0. Then,

F = FT=0 + ∆F 0 + ∆F , (4)

where ∆F 0 = F 0 −FT=0. Therefore, the total temperature correction, ∆TF , consists of
two parts,

∆TF = ∆F 0 + ∆F . (5)

In general (for the graphene case, for example), the FT=0 depends on the chemical
potential.

The expansion crucially depends on the behavior of the conductivities at zero fre-
quencies. In Ref. [23], we considered in detail the different models of conductivities with
a constant value of conductivity at zero frequencies. In particular, we have taken into
account the graphen’s conductivity with finite scattering factor γ, which means that the
ηtm|te|ω→0 = ηtm|te|ω=γ. As a result, the free energy has the main low-temperature term
∼ T2 for any relation between µ, m and T. With zero scattering factor, we have to consider
this expansion more carefully.

In the framework of the polarization tensor approach [26], the conductivities of the
TM and TE modes read [27,29]

ηi = η0
i + ∆ηi, ∆ηi = ηgr

∫ ∞

m
dy fi(y)Ξ(y, µ, T), (6a)

where

η0
te

ηgr
=

4m
πλ

(
1 +

k2
F − 4m2

2mkF
arctan

(
kF
2m

))
,

η0
tm

η0
te

=
λ2

k2
F

,

fte(y) =
8

πλ
Re

(4m2 + q2)(q2k2
F + 4m2k2v2

F)− q2k2
Fλ2

r(q2k2
F + 4m2k2v2

F + qλr)
, q = λ− 2iy,

ftm(y) =
8
π

Re
q(q2 + k2v2

F + 4m2)− λr
r(r + qλ)

, Ξ =
1

e
y+µ

T + 1
+

1

e
y−µ

T + 1
,

kF =
√

λ2 + v2
Fk2, r =

√
k2

F(q
2 + k2v2

F) + 4m2k2v2
F, (6b)

and ηgr =
2πσgr

c = πe2

2h̄c = 0.0114 with σgr =
e2

4h̄ being the graphene universal conductivity.
Let us consider, for simplicity, the conductivity in the zero approximation over the

Fermi velocity vF = 1/300� 1. In this approximation, we obtain more simple expressions
(x = tm, te)

η0
x

ηgr
=

4m
πλ

(
1 +

λ2 − 4m2

2mλ
arctan

(
λ

2m

))
, fx(y) =

16
(
m2 + y2)

πλ(λ2 + 4y2)
, (7)

and we observe that the conductivities have no dependence on k, which should be the case
because the Fermi velocity and wave-vector come in the single combination kvF.

2.1. Expansion of the ∆F
The sum with l ≥ 1, the ∆F , may be represented in the following form [23]:

∆F
E∞
CP

=
8
3

Re
∞

∑
l=1

∫ ∞

0
dzeiΛl z(Ytm + Yte), (8)

where
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Ytm(z) =
α(λ)

α(0)

∫ ∞

z

e−2ss(2s2 − z2)

s + z/ηtm
ds,

Yte(z) =
α(λ)

α(0)

∫ ∞

z

e−2sz3

z + s/ηte
ds, (9)

and Λl = l/aT, λ = z/a, and k =
√

s2 − z2/a. This representation is suitable for T → 0
analysis, which means Λl → ∞.

In the case vF → 0, the conductivities do not depend on k; therefore, we can calculate
integral over s:

Ytm(z) =
α
( z

a
)
e−2z

α(0)2η3
tm

{
ηtm
(

η2
tm +

(
η2
tm − 2ηtm + 2

)
z2 + ηtm(2ηtm − 1)z

)
− 2

(
η2
tm − 2

)
z3e2(1+η−1

tm )zEi
[
−2z

(
1 + η−1

tm

)]}
,

Yte(z) = −α
( z

a
)

α(0)
ηtez3e2ηtezEi[−2z(1 + ηte)], (10)

where Ei[x] is the exponential logarithm function. The function Ei[x] has the following
representation as a series

Ei(x) = γE + ln(−x) + ∑
n≥1

xn

n · n!
, (11)

that contains polynomials, as well as logarithmic contributions.
Then, we make expansion over z,

Yx = ∑
n≥0

Ax
nzn + ∑

n≥1
Bx

nzn ln z, (12)

and use the Lemmas Erdélyi (These lemmas are sometimes called etalon integrals in the
asymptotic methods of the stationary phase.) (see Ref. [32], Equations (1.13) and (1.35)),
and Ref. [23]) to calculate asymptotic Λl → ∞ for integral over z in Equation (8) for each
term of series. The manifest form of the coefficients depends on the specific model of
conductivity. We obtain the series (12) in which we have to make replacements

zn → n!ei π
2 (n+1)Λ−n−1

l ,

zn ln z → n!ei π
2 (n+1)

(
iπ
2

+ ψ(n + 1)− ln Λl

)
Λ−n−1

l ,

where ψ(x) is the digamma function, and then we take the real part (see Equation (8)) and
obtain the following replacements

z2n+1 → (−1)n+1(2n + 1)!Λ−2n−2
l ,

z2n → 0,

z2n+1 ln z → (−1)n+1(2n + 1)!(ψ(n + 1)− ln Λl)Λ
−2n−2
l ,

z2n ln z → (−1)n+1(2n)!
π

2
Λ−2n−1

l . (13)

Then, we make a summation over l ≥ 1 and arrive with relation

∆F
E∞
CP

=
8
3
(Xtm + Xte), (14)
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where

Xx = ∑
n≥0

Ax
2n+1(−1)n+1(2n + 1)!ζR(2n + 2)(aT)2n+2

+ ∑
n≥1

Bx
2n(−1)n+1(2n)!

π

2
ζR(2n + 1)(aT)2n+1

+ ∑
n≥0

Bx
2n+1(−1)n+1(2n + 1)!([ψ(n + 1) + ln(aT)]ζR(2n + 2)− ζ ′R(2n + 2))(aT)2n+2,

and ζR is the Riemann zeta function. We observe that the polynomial contributions come
from odd Ax

2n+1 and Bx
n. The logarithmic contributions come from odd Bi

2n+1. The main
contribution reads

∆Fx
E∞
CP

= −4π2

9

[
Ax

1 − Bx
1

(
γE + 6

ζ ′R(2)
π2

)]
(aT)2 +

8πζR(3)
3

Bx
2(aT)3

+
8π4

45

[
Ax

3 + Bx
3

(
1− γE − 90

ζ ′R(4)
π4

)]
(aT)4 − 32πζR(5)Bx

4(aT)5

− 32π6

189

[
2Ax

5 + Bx
5

(
3− 2γE − 1890

ζ ′R(6)
π6

)]
(aT)6 + . . .

+ ln(aT)
{
−4π2

9
Bx

1(aT)2 +
8π4

45
Bx

3(aT)4 − 64π6

189
Bx

5(aT)6 + . . .
}

, (15)

where γE is the Euler constant. Note that, in general, the coefficients Ax
n and Bx

n depend on
m, µ, and T.

For the constant conductivity case Bx
1 = Bx

2 = 0 and Ate
1 = 0, Atm

1 = −1/(2ηtm).
Therefore, the main contribution comes from TM mode and reads [23]

∆F
E∞
CP

= − (2πaT)2

9
Atm

1 =
2π2(aT)2

9ηtm
. (16)

For graphene case, the conductivities are expanded in the following series over z:

ηx
ηgr

=
1
z
(b0 + z2b2 + z4b4 + . . .), (17)

where the coefficients bn are functions of m, µ, and T:

b0 =
4a
π

∫ ∞

m

dy
y2 (m

2 + y2)Ξ,

b2 =
4

3πma
− 1

πa

∫ ∞

m

dy
y4 (m

2 + y2)Ξ,

b4 = − 2
15πm3a3 +

1
4πa3

∫ ∞

m

dy
y6 (m

2 + y2)Ξ. (18)

The zero term b0 crucially depends on m and µ for low temperatures:

I. µ > m, T � µ−m

b0 =
∫ µ

m
g(y)dy +

π2

6
T2g′(µ) +

7π4

360
T4g′′′(µ) + O(e−

µ−m
T ). (19a)

II. µ = m, T � m

b0 = T ln 2g(m) +
π2

12
T2g′(m) +

3
4

ζR(3)T3g′′(m) +
7π4

720
T4g′′′(m) + O(e−

m
T ). (19b)
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III. µ < m, T � m− µ

b0 = O(e−
m−µ

T ). (19c)

Here, g(y) = 4a
π

m2+y2

y2 . These asymptotic are illustrated by numerical evaluation in
Figure 1.

0 100 200 300 400
0

1

2

3

4
·10−3

T (K)

b0

µ = 0.1eV
µ = 0.099eV
µ = 0.09eV
µ = 0.07eV
µ = 0eV

0 100 200 300 400
0

2

4

6

·10−3

T (K)

b0

µ = 0.13eV
µ = 0.12eV
µ = 0.11eV
µ = 0.101eV
µ = 0.1eV

Figure 1. The functions b0 for a = 100 nm, m = 0.1 eV, and different values of chemical potential µ. For µ < m, the function
b0 ∼ 0 for low temperatures; for µ = m, it is linear, and, for µ > m, it starts from constant values in agreement with
Equation (19).

In the first case (19a) with µ > m, the expansion b0 over T starts from the constant
term (see Figure 1, right panel), and we obtain the following non-zero coefficients

Atm
3 =

1
3

, Ate
3 = −1,

Atm
5 =

α′′(0)
6a2α(0)

+
2

3ηgrb0
− 3

η2
grb2

0
− 2

15
, Ate

5 = − α′′(0)
2a2α(0)

− 2
3ηgrb0

− 1
3η2

grb2
0
− 2

3
,

Btm
4 = − 1

ηgrb0
, Btm

6 = − α′′(0)
2a2α(0)ηgrb0

+
b2 − 2
η2
grb2

0
+

2
η3
grb3

0
. (20)

The main contribution to the b0 comes from the first term of expansion in Equation (19a):

b0 =
4a
π

µ2 −m2

µ
. (21)

In the last case (19c) with µ < m, the b0 is exponentially small (see Figure 1, left panel),
and we set it at zero, and the conductivities are expanded as the following:

ηx
ηgr

= z(b2 + z2b4 + . . .), (22)

and the firsts non-zero coefficients read

Atm
5 =

1
15

ηgrb2(ηgrb2 + 2), Ate
5 = 2ηgrb2, Bte

4 = −ηgrb2. (23)
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For the specific case (19b), when µ = m, we consider the main contribution for T → 0
and can set b0 = 0, as in the case (19c). Therefore, for all cases, we have the following
expansion up to T5:

∆F
E∞
CP

= −16π4

135
(aT)4 +

8π2ζR(3)µ
aηgr(µ2 −m2)

(aT)5 + . . . , (µ > m, T � µ−m),

∆F
E∞
CP

=
128ηgrζR(5)

3am
(aT)5 + . . . , (µ = m, T � m),

∆F
E∞
CP

=
128ηgrζR(5)

3am
(aT)5 + . . . , (µ < m, T � m− µ). (24)

2.2. Expansion of the F 0

The zero term reads

F 0
tm|te
E∞
CP

=
4
3

∫ ∞

0
z3e−2zdz

∫ 1

0
dx

α( zx
a )

α(0)

{
2− x2

1 + x
ηtm

∣∣∣∣∣ x2

1 + 1
xηte

}
. (25)

The conductivities (6) depend on the temperature, and ∆ηx have the following low-
temperature expansions [23]

I. µ > m, T � µ−m

∆ηx
ηgr

=
∫ µ

m
fx(y)dy +

π2

6
T2 f ′x(µ) +

7π4

360
T4 f ′′′x (µ) + O(e−

µ−m
T ). (26a)

II. µ = m, T � m

∆ηx
ηgr

= T ln 2 fx(m) +
π2

12
T2 f ′x(m) +

3
4

ζR(3)T3 f ′′x (m) +
7π4

720
T4 f ′′′x (m) + O(e−

m
T ). (26b)

III. µ < m, T � m− µ
∆ηx
ηgr

= O(e−
m−µ

T ). (26c)

Taking these expansions into account, we obtain the following low-temperature cor-
rections to zero term

∆F 0
x

E∞
CP

= (aT)2Gx, (µ > m, T � µ−m),

∆F 0
x

E∞
CP

= (aT)Hx, (µ = m, T � m),

∆F 0
x

E∞
CP

= 0, (µ < m, T � µ−m), (27)

where

Gtm|te =
2π2

9a2

∫ ∞

0
z3e−2zdz

∫ 1

0
dx

α( zx
a )

α(0)

{
(2− x2)x f ′tm(µ)

(x + η0
tm + ∆0ηtm)2

∣∣∣∣ x3 f ′te(µ)
(1 + x

(
η0
te + ∆0ηte

)
)2

}
,

Htm|te =
4 ln 2

3a

∫ ∞

0
z3e−2zdz

∫ 1

0
dx

α( zx
a )

α(0)

{
(2− x2)x ftm(m)

(x + η0
tm)

2

∣∣∣∣ x3 fte(m)

(1 + xη0
te)

2

}
. (28)

The functions fx are given by Equation (6) and

∆0ηx = ηgr

∫ µ

m
fx(y)dy. (29)
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Therefore, taking into account (24), we obtain the low-temperature expansion of the
free energy

∆TF
E∞
CP

= (aT)2(Gtm + Gte), (µ > m, T � µ−m), (30a)

∆TF
E∞
CP

= (aT)(Htm + Hte), (µ = m, T � m), (30b)

∆TF
E∞
CP

=
128ηgrζR(5)

3am
(aT)5 + . . . .(µ < m, T � m− µ). (30c)

3. Numerical Evaluations

We evaluated numerically the total temperature correction (5) by using the expression
for the free energy in the form of Matsubara sum. We considered the Hydrogen atom
at distance a = 100 nm from the graphene sheet. The polarizability of the Hydrogen
atom in the single oscillator approximation may be found in Ref. [8], for example. The
graphene conductivities are given by Equations (6). We used the Fermi velocity vF = 1/300
and the mass gap m = 0.1 eV. To visualize the dynamic of µ dependence, we made
calculations for the value of µ close to m = 0.1 eV. The free energy is normalized to the
E∞
CP = −3α(0)/8πa4—the CPenergy for an ideal plane/atom at large distance a.

The zero-temperature free energy, FT=0, depends on the chemical potential µ, and
this dependence is shown in Figure 2. For µ ≤ m, it has the constant value, and it grows up
starting with mass gap µ > m.

0 0.1 0.2 0.3 0.4 0.5

4.6

4.8

5

5.2

5.4

5.6
·10−2

µ (eV)

FT=0/E∞CP

Figure 2. The zero temperature free energy, FT=0, as a function of chemical potential µ.

We proceed now to the consideration of the temperature correction, ∆TF to the
free energy. First of all, let us consider the functions Gx, which define low temperature
expansion for µ > m case (30a). They are plotted in Figure 3. We observe that they are
negative, and contribution from the TE mode is 100 times smaller.

One comment is in order. Because Gx < 0, then the temperature correction ∆TF > 0
close to the T = 0. At the same time, in Refs. [7,24], the positive value of correction was
observed. The disagreement is connected with that in which we use distance a = 100 nm
for numerical evaluations, which is out of distances considered in Refs. [7,24].
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0.1 0.11 0.12 0.13 0.14 0.15
−5

−4

−3

−2

−1

0

µ (eV)

Gtm

0.1 0.11 0.12 0.13 0.14 0.15
−5

−4

−3

−2

−1

0
·10−2

µ (eV)

Gte

Figure 3. The functions Gx (30a) for different values of the chemical potential µ > m.

The numerical evaluation of Hx(a) for a = 100 nm gives the following values Htm =
3× 106 and Hte = 0.18. Again, the main contribution comes from TM mode. The value of
Htm strongly depends on the value of the Fermi velocity. For vF → 0, the Htm → ∞.

The temperature contribution for µ ≥ m is shown in Figure 4. We observe that, for low
temperatures, the free energy has the form of parabola, ∼Gtm(aT)2, in agreement with (30)
with negative parameter Gtm (see Figure 3).
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Figure 4. The temperature contribution to the free energy in the different intervals of temperatures and µ ≥ m.

The closer µ > m to m, the smaller domain of temperature T where this approximation
is valid, and the greater value of the parameter of parabola Gtm, in agreement with Figure 3.
If µ = m, this domain becomes zero, and the free energy drastically changes its form. If
µ→ 0, the part of the curve which is out of this domain (the vertical part of the green curve,
for example) goes to free energy for this very special position with µ = m (black curve).
Therefore, for any infinitely small difference µ−m 6= 0, the derivative of free energy with
respect temperature T is zero for T = 0, and the Nernst theorem is valid. The experimental
realization of the exact equality µ = m cannot be realized, and we conclude that the Nernst
theorem is valid for this system.

The temperature contribution for µ ≤ m is shown in Figure 5. We observe the com-
pletely different dependence of the energy on the µ.
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Figure 5. The temperature contribution to the free energy in the different intervals of temperatures and µ ≤ m.

For zero chemical potential (brown curve), the temperature correction is, in fact, zero
for the large domain of temperatures. The closer µ to m, the smaller domain in which
temperature correction is zero. According to (30b),

∆TF
E∞
CP

=
128ηgrζR(5)

3am
(aT)5 = 10−24T5(K), (31)

in this domain.
Figure 6 shows the temperature contribution to the free energy as a function of chem-

ical potential. The function has a very sharp form with the maximum for µ = m with a
different slope at the left and the right of this point.
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Figure 6. The temperature contribution to the free energy as a function of the chemical potential for
distance between Hydrogen atom and graphene a = 100 nm.

The point µ = m looks like a phase transition point between different regimes from
∆TF ∼ T4 to ∆TF ∼ T2. In fact, it is an unstable point—infinitely small deviation µ from
m changes regime.

From Figures 4 and 5 and relations (30), we observe the different signs of the entropy,
S, for µ < m and µ > m. The entropy is the negative derivative of the free energy with
respect of temperature. Therefore, Sµ<m < 0 (see Figure 5), and Sµ>m > 0 (see Figure 4). In
both cases, the Nernst theorem is valid, ST→0 → 0. The negative entropy of the dispersion
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forces has already been observed in Refs. [19,33] for plain and spherical configurations in
the framework of plasma model and was also discussed recently in Ref. [34].

The domains of temperatures where the low-temperature expansions (30) over dimen-
sionless parameter (aT) � 1 are valid depend on the chemical potential µ, mass gap m,
and the distance a between an atom and plain. Let us make some numerical estimations.
The mass gap m = 0.1 eV corresponds to the temperature Tm = 1160 K. Therefore, the
restriction T � |µ−m| in Equations (30a) and (30c) plays the role for |µ−m| < 0.1 eV, in
agreement with Figures 4 and 5. The restriction in the second case (30b) plays the role if
T � m < 0.1 eV. The more strong limitation appears due to the huge value of parameter
Htm ∼ 106 (for a = 100 nm): T � (Htma)−1 = 0.14 K for a = 100 nm. It means that, in
this case, there is no domain of temperatures where this case is valid, according to above
discussion. The restriction (aT)� 1 is important starting from a = 10 µm. In this case, the
effective temperature Ta = 1/a = 1438 K.

4. Conclusions

We considered the low-temperature correction to the Casimir-Polder free energy for
atom/graphene system by using the Poisson representation of the free energy, which is
more suitable for low-temperature analysis. The analysis is naturally broken into three
different regions, (i) µ > m, (ii) µ = m, and (iii) µ < m, for chemical potential. This division
is the consequence of the same regions for the conductivity of graphene (see Equation (26)).
The conductivities have completely different expansion in these regions. It starts from the
constant in the first region, linear on the temperature in the second one, and exponentially
small in the third region.

The free energy may be divided into the two parts (3). The first one, F 0, has the form
of the free energy at zero temperature but with µ, m, and T dependence via the conductivity
dependence on these parameters. The main contribution in the low-temperature expansion
in the first (i) and second (ii) regimes comes from this first term, and it is quadratic and
linear on the temperature, correspondingly (see Equation (30)). In the third (iii) regime, the
main contribution ∼ T5 comes from the rest part ∆F .

Author Contributions: Investigation, both authors; writing, both authors; numerical calculations,
both authors. All authors have read and agreed to the published version of the manuscript.

Funding: The NK was supported in part by the grants 2019/10719-9, 2016/03319-6 of São Paulo
Research Foundation (FAPESP) and by the Russian Foundation for Basic Research Grant No.
19-02-00496-a.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All necessary data are contained in this paper.

Acknowledgments: We are grateful to Dmitri Vassilevich, Galina Klimchitskaya, and Vladimir
Mostepanenko for fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Casimir, H.B.G. On the attraction between two perfectly conducting plates. Kon. Ned. Akad. Wetensch. Proc. 1948, 51, 793–795.
2. Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 1948, 73, 360–372.

[CrossRef]
3. Parsegian, A.V. Van der Waals Forces. A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press:

Cambridge, UK, 2006; p. 380.
4. Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Cambridge University Press:

Cambridge, UK, 2009; pp. 1–768. [CrossRef]
5. Bondarev, I.V.; Lambin, P. van der Waals coupling in atomically doped carbon nanotubes. Phys. Rev. B 2005, 72, 35451. [CrossRef]
6. Blagov, E.V.; Klimchitskaya, G.L.; Mostepanenko, V.M. Van der Waals interaction between a microparticle and a single-wall

carbon nanotube. Phys. Rev. B 2007, 75, 235413. [CrossRef]

http://doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1093/acprof:oso/9780199238743.001.0001
http://dx.doi.org/10.1103/PhysRevB.72.035451
http://dx.doi.org/10.1103/PhysRevB.75.235413


Universe 2021, 7, 70 12 of 12

7. Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir and Casimir-Polder Forces in Graphene Systems: Quantum Field Theoretical
Description and Thermodynamics. Universe 2020, 6, 150. [CrossRef]

8. Khusnutdinov, N.; Kashapov, R.; Woods, L.M. Casimir-Polder effect for a stack of conductive planes. Phys. Rev. A 2016, 94, 12513.
[CrossRef]

9. Khusnutdinov, N.; Woods, L.M. Casimir Effects in 2D Dirac Materials (Mini-review). JETP Lett. 2019, 110, 1–10. [CrossRef]
10. Babb, J.F. Long-range atom-surface interactions for cold atoms. J. Phys. Conf. Ser. 2005, 19, 1–9. [CrossRef]
11. Marachevsky, V.N.; Pis’mak, Y.M. Casimir-Polder effect for a plane with Chern-Simons interaction. Phys. Rev. D 2010, 81, 65005.

[CrossRef]
12. Shajesh, K.V.; Schaden, M. Repulsive long-range forces between anisotropic atoms and dielectrics. Phys. Rev. A 2012, 85, 012523.

[CrossRef]
13. Thiyam, P.; Parashar, P.; Shajesh, K.V.; Persson, C.; Schaden, M.; Brevik, I.; Parsons, D.F.; Milton, K.A.; Malyi, O.I.; Boström, M.

Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO2 and CH4 molecules near surfaces and
thin films. Phys. Rev. A 2015, 92, 052704. [CrossRef]

14. Antezza, M.; Fialkovsky, I.; Khusnutdinov, N. Casimir-Polder force and torque for anisotropic molecules close to conducting
planes and their effect on CO2. Phys. Rev. B 2020, 102, 195422. [CrossRef]

15. Obrecht, J.M.; Wild, R.J.; Antezza, M.; Pitaevskii, L.P.; Stringari, S.; Cornell, E.A. Measurement of the Temperature Dependence of
the Casimir-Polder Force. Phys. Rev. Lett. 2007, 98, 063201. [CrossRef] [PubMed]

16. Laliotis, A.; de Silans, T.P.; Maurin, I.; Ducloy, M.; Bloch, D. Casimir-Polder interactions in the presence of thermally excited
surface modes. Nat. Commun. 2014, 5. [CrossRef]

17. Wylie, J.M.; Sipe, J.E. Quantum electrodynamics near an interface. II. Phys. Rev. A 1985, 32, 2030–2043. [CrossRef] [PubMed]
18. Buhmann, S.; Welsch, D. Dispersion forces in macroscopic quantum electrodynamics. Prog. Quantum Electron. 2007, 31, 51–130.

[CrossRef]
19. Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Lifshitz theory of atom-wall interaction with applications to

quantum reflection. Phys. Rev. A 2008, 78, 042901. [CrossRef]
20. Chaichian, M.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Tureanu, A. Thermal Casimir-Polder interaction of different atoms

with graphene. Phys. Rev. A 2012, 86, 12515. [CrossRef]
21. Bordag, M. Low Temperature Expansion in the Lifshitz Formula. Adv. Math. Phys. 2014, 2014, 1–34. [CrossRef]
22. Khusnutdinov, N.; Kashapov, R.; Woods, L.M. Thermal Casimir and Casimir–Polder interactions in N parallel 2D Dirac materials.

2D Mater. 2018, 5, 35032. [CrossRef]
23. Khusnutdinov, N.; Emelianova, N. Low-temperature expansion of the Casimir-Polder free energy for an atom interacting with a

conductive plane. Int. J. Mod. Phys. A 2019, 34, 1950008. [CrossRef]
24. Klimchitskaya, G.L.; Mostepanenko, V.M. Nernst heat theorem for an atom interacting with graphene: Dirac model with nonzero

energy gap and chemical potential. Phys. Rev. D 2020, 101, 116003. [CrossRef]
25. Klimchitskaya, G.L.; Mostepanenko, V.M. Quantum field theoretical description of the Casimir effect between two real graphene

sheets and thermodynamics. Phys. Rev. D 2020, 102, 016006. [CrossRef]
26. Bordag, M.; Fialkovsky, I.V.; Gitman, D.M.; Vassilevich, D.V. Casimir interaction between a perfect conductor and graphene

described by the Dirac model. Phys. Rev. B 2009, 80, 245406. [CrossRef]
27. Fialkovsky, I.V.; Marachevsky, V.N.; Vassilevich, D.V. Finite-temperature Casimir effect for graphene. Phys. Rev. B 2011, 84, 35446.

[CrossRef]
28. Bordag, M.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Petrov, V.M. Quantum field theoretical description for the reflectivity of

graphene. Phys. Rev. D 2015, 91, 045037. [CrossRef]
29. Bordag, M.; Fialkovskiy, I.; Vassilevich, D. Enhanced Casimir effect for doped graphene. Phys. Rev. B 2016, 93, 075414, Erratum in

Phys. Rev. B 2017, 95, 119905. [CrossRef]
30. Falkovsky, L.A.; Varlamov, A.A. Space-time dispersion of graphene conductivity. Eur. Phys. J. B 2007, 56, 281–284. [CrossRef]
31. Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Magneto-optical conductivity in Graphene. J. Phys. Condens. Matter 2007, 19, 26222.

[CrossRef]
32. Fedoryuk, M.V. The Saddle-Point Method; Nauka: Moscow, Russia, 1977. (In Russian)
33. Khusnutdinov, N.R. The thermal Casimir–Polder interaction of an atom with a spherical plasma shell. J. Phys. A Math. Theor.

2012, 45, 265301. [CrossRef]
34. Li, Y.; Milton, K.; Parashar, P.; Hong, L. Negativity of the Casimir Self-Entropy in Spherical Geometries. Entropy 2021, 23, 214.

[CrossRef] [PubMed]

http://dx.doi.org/10.3390/universe6090150
http://dx.doi.org/10.1103/PhysRevA.94.012513
http://dx.doi.org/10.1134/S0021364019150013
http://dx.doi.org/10.1088/1742-6596/19/1/001
http://dx.doi.org/10.1103/PhysRevD.81.065005
http://dx.doi.org/10.1103/PhysRevA.85.012523
http://dx.doi.org/10.1103/PhysRevA.92.052704
http://dx.doi.org/10.1103/PhysRevB.102.195422
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://www.ncbi.nlm.nih.gov/pubmed/17358936
http://dx.doi.org/10.1038/ncomms5364
http://dx.doi.org/10.1103/PhysRevA.32.2030
http://www.ncbi.nlm.nih.gov/pubmed/9896314
http://dx.doi.org/10.1016/j.pquantelec.2007.03.001
http://dx.doi.org/10.1103/PhysRevA.78.042901
http://dx.doi.org/10.1103/PhysRevA.86.012515
http://dx.doi.org/10.1155/2014/981586
http://dx.doi.org/10.1088/2053-1583/aac612
http://dx.doi.org/10.1142/S0217751X19500088
http://dx.doi.org/10.1103/PhysRevD.101.116003
http://dx.doi.org/10.1103/PhysRevD.102.016006
http://dx.doi.org/10.1103/PhysRevB.80.245406
http://dx.doi.org/10.1103/PhysRevB.84.035446
http://dx.doi.org/10.1103/PhysRevD.91.045037
http://dx.doi.org/10.1103/PhysRevB.93.075414
http://dx.doi.org/10.1140/epjb/e2007-00142-3
http://dx.doi.org/10.1088/0953-8984/19/2/026222
http://dx.doi.org/10.1088/1751-8113/45/26/265301
http://dx.doi.org/10.3390/e23020214
http://www.ncbi.nlm.nih.gov/pubmed/33578730

	Introduction
	The Casimir-Polder Free Energy
	Expansion of the F
	Expansion of the F0

	Numerical Evaluations
	Conclusions
	References

