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Abstract: The main difficulties in constructing a viable early Universe bouncing model are: to bypass
the observational and theoretical no-go theorem, to construct a stable non-singular bouncing phase,
and perhaps, the major concern of it is to construct a stable attractor solution which can evade the
Belinsky–Khalatnikov–Lifshitz (BKL) instability as well. In this article, in the homogeneous and
isotropic background, we extensively study the stability analysis of the recently proposed viable
non-minimal bouncing theory in the presence of an additional barotropic fluid and show that, the
bouncing solution remains stable and can evade BKL instability for a wide range of the model
parameter. We provide the expressions that explain the behavior of the Universe in the vicinity of the
required fixed point i.e., the bouncing solution and compare our results with the minimal theory and
show that ekpyrosis is the most stable solution in any scenario.

Keywords: bounce; inflation; conformal transformation; modified gravity; non-minimal coupling;
stability; attractor

1. Introduction

In solving non-linear differential equations, initial conditions play a crucial role in
determining the dynamical behavior of the system as different initial conditions may lead
to different trajectories that may behave completely differently. Since gravity is highly non-
linear in nature, solving early Universe evolution depends highly on the initial conditions
as well. However, the already highly acceptable paradigm of the early Universe—the
inflationary paradigm [1–13], perhaps succeeds based on the fact that, not only it is in line
with the recent tighter observational constraints [14,15] but it also provides an attractor
solution [16,17]. This implies that the early Universe inflationary solution does not depend
on the initial conditions and because of this reason, even if the Universe contains additional
matter(s), inflation makes them decay exponentially and the Universe solely dominates by
the inflaton field responsible for inflationary evolution.

However, the greatest achievement comes from the fact that the inflationary solution
can also evade Belinsky–Khalatnikov–Lifshitz (BKL) instability: the anisotropic energy
density can grow faster than the energy density responsible for the evolution of the Uni-
verse [18] which can cause a highly unstable system. However, even with this much success,
the inflationary paradigm also suffers many crucial difficulties. First, despite the ever-
tightening observational constraints, there seem to exist many inflationary models that
continue to remain consistent with the data [19–22], even leading to the concern whether
inflation can be falsified at all [23]. Inflation being insensitive to initial conditions is still de-
batable. For instance, in Ref. [24], using non-perturbative simulations, authors showed that
the inflationary expansion starts under very specific circumstances. In Ref. [25], authors
pointed out the fact that small field potential fails to start the inflationary expansion under
most initial conditions. It suffers from the trans-Planckian problem: the cosmological scales
that we nowadays observe may correspond to length scales smaller than the Planck length
at the onset of inflation, which in contradiction to the inherent assumption that the scales
are classical even at the initial stage of inflation [26].
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These issues lead to in search for alternatives to the inflationary paradigm and the most
popular one is the classical non-singular bouncing scenario where, the Universe undergoes
a phase of contraction until the scale factor reaches a minimum value, before it enters the
expanding phase [27–32]. However, the problem with most bouncing models is that, it is
extremely difficult to construct. While only known attractors are the ekpyrotic models [33],
in fact, in Ref. [34], authors showed that the ekpyrotic contraction is a ‘super-smoother’,
i.e., it is robust to a very wide range of initial conditions and avoid Kasner/mixmaster chaos
and a similar statement could never be proven about any other primordial scenario, it fails
to be in line with the observations. On the other hand, while matter bounce models may
provide correct theoretical predictions consistent with the observations, the solution fails to
be stable and thus, any tiny initial deviation can grow exponentially to cause an instability
in the system. Another difficulty is, while constructing the contracting phase is rather easy
to achieve, obtaining the non-singular bouncing phase is extremely difficult as it requires
to violate the null energy condition: often called as the theoretical no-go theorem [35–44].
Most importantly, even if one may construct a model evading the instability and theoretical
no-go theorem, perturbations suffer from many difficulties such as gradient instability,
and these models fail to be in line with the observational constraints: a small tensor-to-
scalar ratio (r0.002 . 0.06) and simultaneously, very small scalar non-Gaussianity parameter
( fNL ∼ O(1)): referred to as the observational no-go theorem [45,46] (This has also been
addressed in the past in the context of the so-called pre-big bang scenario based on the
string cosmology equations, as reported for instance in a recent review in Ref. [47]). Apart
from these main three issues, in general, bouncing models possess another, rather weak,
difficulty as well: a natural exit mechanism from the bouncing phase to enter into the
conventional reheating phase.

In solving these problems, it is soon realized that one needs to go beyond the canonical
theories and consider non-minimal couplings, viz. the Horndeski theories or even beyond
Horndeski theories [35,35–42,45,46,48–54]. However, it remains an open problem until in
Ref. [55], we showed that a simple non-minimal coupling can solve all those issues.

In Refs. [56,57], we have shown that, the issue of stability can easily be resolved by
using a simple non-minimal coupling. This has been achieved with the help of conformal
transformation and we also have shown that, it may lead to viable tensor spectra as well [58].
Recently, we extended the work to construct the first viable non-minimal bouncing model
which evades all the issues and is consistent with the constraints [55]. This model is
constructed in such a way that the scalar sector of the action is conformal to that of the
slow-roll inflationary model. Since, under conformal transformation, perturbations remain
invariant and the constraints are obtained from the correlation functions of the scalar and
tensor perturbations, we achieved to bypass observational no-go theorem. The choice of
the coupling function also helps us to achieve the non-singular bouncing phase without
any instability and therefore, it evades the theoretical no-go theorem and leads to the
conventional reheating scenario. It has been pointed out that since the work is similar to
works in Refs. [56,57], it can also resolve the issue of stability, mainly the BKL instability as
well. However, the model contains a free model parameter α (which needs to be greater
than zero to achieve the bouncing solution) and there is no bound on it. It is not clear how
the system behaves in the presence of an additional matter.

At this moment, we need to stress that, when a model is studied for perturbations
and is compared with the observations, it is assumed that, either the initial conditions
are chosen with extreme measure, or the model solution is stable enough so that there
is no need to fine-tune for choosing the initial conditions. Otherwise, even without the
external matter, the perturbations themselves can cause instability as it also possesses a
small amount of energy. This is the main reason why a stable solution is always preferred
(one may even argue that only stable solutions are allowed). Therefore, even our model is
conformal to inflationary solutions and obeys all relevant observational constraints, one
needs to verify the stability of the model, especially in the presence of an external matter.
This leads to the main motivation of this article.
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In this work, we analyze the stability of the model in presence of an additional
barotropic matter. The aim is to find the general attractor behavior of the bouncing solution
that is consistent with the observations. There is mainly one free model parameter α (for
minimal theory, α = −1, since for this value, the coupling function becomes unity) along
with the equation of state of the additional barotropic fluid wm. In addition to that, since we
consider conformal single field model that leads to slow-roll inflation, we also consider the
potential slow-roll parameter in the minimal Einstein frame to be (nearly) constant (in case
of exponential potential is strictly constant, as examined in Refs. [16,17]). With the help of
these model parameters, we find the condition for stability for the bouncing solution and
show that, to avoid the BKL instability leads to α < 2. Since bouncing solution requires
α > 0, the bound becomes 0 < α < 2. To understand the behavior of the stability, we study
the phase space in the vicinity of the fixed point corresponding to the bouncing solution
and find that the system acts like the Universe contains three different types of matter and
due to the attractor behavior, only the leading bouncing matter component remains intact,
whereas, other two decay very fast. This helps us realize how the external barotropic fluid
influences the system and how the attracting nature of the bouncing solution gets rid of
the initial deviations.

A few words on our conventions and notations are in order at this stage of our dis-
cussion. In this work, we work with the natural units such that h̄ = c = 1, and we define
the Planck mass to be MPl = (8 π G)−1/2. We adopt the metric signature of (−,+,+,+).
We should mention that, while the Greek indices are contracted with the metric tensor gµν,
the Latin indices contracted with the Kronecker delta δij. Moreover, we shall denote the
partial and the covariant derivatives as ∂ and ∇. The overdots and overprimes, as usual,
denote derivatives with respect to the cosmic time t and the conformal time η associ-
ated with the Friedmann-Lemaître-Robertson-Walker (FLRW) line-element, respectively.
The sub(super)script ‘I’ and b denote the quantity in the minimal Einstein theory and
non-minimal theory, respectively.

2. A Brief Introduction of the Bouncing Model

The non-minimal bouncing model is constructed in such a way that the scalar sector
of the non-minimal action transforms conformally to that of a minimal canonical Einstein
model that leads to slow-roll inflation. The slow-roll inflationary model can easily be
constructed by using a single canonical scalar field φ minimally coupled to the gravity,
i.e., the Einstein gravity as

SI =
1
2

∫
d4x
√
−gI

[
M2

Pl
RI − gµν

I ∂µφ∂νφ− 2 VI(φ)
]
+ SI

M(gµν, ΨM). (1)

RI is the Ricci scalar for the metric gI
µν, and VI(φ) is the potential responsible for

the inflationary solution. The part of the action SI
M(gµν, ΨM) indicates the presence of an

additional fluid. As mentioned above, since inflation is an attractor, the evolution of the
field does not depend on the additional fluid and is solely governed by the scalar sector
of the system. Assuming the above theory is responsible for the slow-roll inflationary
dynamics, the scale factor solution, during inflation, can approximately be written as a
function of the scalar field φ as

aI(φ) ∝ exp

(
−
∫ φ dφ

M2
Pl

VI
VI,φ

)
, (2)

with VI,φ ≡ ∂VI
∂φ . Now we shall construct a model which is conformal to the scalar part

of the above inflationary action (1) in such a way that the new scale factor behaves as a
bouncing solution. The transformation can be written as

gI
µν = f 2(φ) gb

µν ⇒ aI(η) = f (φ) ab(η). (3)
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gb
µν and ab(η) are the required bouncing metric and scale factor solutions, respectively,

along with f (φ) being the coupling function. Using the above conformal transformation
along with the action (1), we can construct the action responsible for such bouncing
solution as

Sb =
1
2

∫
d4x
√
−gb

[
M2

Pl
f 2(φ) Rb −ω(φ) gµν

b ∂µφ∂νφ− 2 Vb(φ)
]
+ Sb

M. (4)

ω(φ) and the potential Vb(φ) depend on the coupling function f (φ) and the inflation-
ary potential VI(φ) as

ω(φ) = f 2(φ)

(
1− 6M2

Pl

f,φ
2

f 2

)
, Vb(φ) = f 4(φ)VI(φ), (5)

where f,φ ≡ ∂ f
∂φ . Sb

M is the external fluid present in the system in the non-minimal theory.
Please note that, the above action resembles very similar to the gravi-dilaton string effective
action, with the inclusion of non-perturbative string-coupling corrections [47]. Therefore,
one can explain the existence of such kind of coupling functions in the domain of string
theory. Note that, while the scalar part of the above action (4) is conformal to that of (1),
these two actions in reality are not conformal due to the presence of the additional fluid.
However, if the scalar field dominated solution in the non-minimal theory also becomes
stable, similar to minimal theory, then, for a given inflationary model (1) with its solution
(2), one can obtain the bouncing scale factor solution ab(η) in the non-minimal theory
by setting f (φ) in a certain manner. For simplicity, if we desire the bouncing solution of
the form

ab(η) ∝ (−η)α ∝ exp

(
α
∫ φ dφ

M2
Pl

VI
VI,φ

)
, α > 0, (6)

where η is the comoving time, then by using Equations (2) and (3), one can obtain the
required solution of the coupling function f (φ) as

f (φ) = f0 exp

(
− (α + 1)

M2
Pl

∫ φ
dφ

VI
VI,φ

)
. (7)

f0 is normalized in such a way that at the minima of the potential, f (φ) becomes
unity. The non-minimal theory (4) is the desired bouncing model: given an inflationary
potential VI(φ), we can completely determine the coupling function f (φ), which in turn,
provides non-minimal theory (4) responsible for the bouncing scale factor solution (6).
Note that, since Equation (2) is an approximated form, by using the above expressions
(7) and (3), the obtained scale factor solution ab(η) is also not exact, but close to (6) (we
will evaluate it later). We need to stress that the form of the scale factor (6) is valid only in
the contracting phase, and during and after the bounce, it is extremely difficult to obtain
an analytical solution. Therefore, the bouncing model, in our case, is also asymmetrical.
The underlying assumption of the theory is that, either the bouncing solution is stable
or we must choose a precise initial condition that leads to the bounce. Last of all, while
α > 0 provides a bouncing solution, there are actually no bound on α as it can take any
value and negative values of it will lead to different Universe with different scale factor
solution (6). For instance, α = −1 brings us the conventional minimal Einstein scenario
as, for this value, the coupling function becomes unity. In this work, we will concentrate
only on the bouncing solutions where α > 0 and obtain the condition for stability and the
behavior of the system in the vicinity of the contracting solution, which we will explore in
the next section.
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Few things to note before we move in the next section. In case of scalar perturbation,
in the Einstein frame (1), the perturbed action is∫

dη dx3z2
I

(
ζ I
′2 − (∇ζ I)

2
)

, zI(η) ≡
aIφ
′

HI
, (8)

where, ζ is the curvature perturbation and∇ is the divergence operator. In the non-minimal
frame (4), the expression of the action for the scalar perturbation changes by replacing
zI(η) with zb(η). However, zb(η) is simply the conformally transformed zI(η), i.e.,

zb(η) =
f (φ) ab(η) φ′(
Hb + φ′ f,φ(φ)

f (φ)

) (9)

This implies that, zb(η) = zI(η) which leads to the action being identical in both
frames and hence, ζ I = ζb at linear order. As the speed of sound is conformally invariant,
cs is unity in both minimal inflationary as well as in non-minimal bouncing scenarios.
Similarly, one can evaluate the perturbed interaction Hamiltonian (for detailed evaluation,
see Refs. [59–63]) at any order and show that it also remains invariant in all conformal
frames. This implies that the curvature perturbations at any order in both the frames are
identical, which is not surprising, as we know, under conformal transformation, curvature
perturbation remains invariant. The argument extends to tensor perturbation as well.
Therefore, given a viable inflationary model which is consistent with the observations,
in our bouncing model, there appear no divergences or instabilities (e.g., gradient instabil-
ity) in the perturbations anywhere, even at the bounce and, in addition to that, the model
also satisfies all observational constraints: thus evading the no-go theorem. The model
leads to stable non-singular bounce as well as, shortly after the bounce, it leads to conven-
tional reheating phase (for detailed information, see Figures 1 and 2, along with Ref. [55] as
well as [64], to compare reheating in minimal theory with the same in non-minimal theory).

In short, for α > 0, the model (4) leads to a stable, asymmetrical bouncing Universe,
where the scale factor in the contracting region behaves as a(η) ∝ (−η)α. If the slow-roll
inflationary potential VI(φ) satisfies the observational constraints (e.g., the Starobinsky
potential), the corresponding bouncing model, irrespective of the value of α, also satis-
fied all observational constraints, as the perturbations remain invariant under conformal
transformation, thus evading the observational no-go theorem.
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Figure 1. The slow-roll parameter in the contracting region (top-left), the slow-roll parameter in the bouncing region
(top-right), the coupling function (bottom-left), and ω(φ) (bottom-right) in the non-minimal theory (4) are plotted for
the chaotic bouncing model with α = 1 with respect to the e-N-fold time convention N (N 2 ≡ 2 ln(a/a0) for contraction,
N is negative, whereas, at bounce, it becomes zero and then during expansion, it becomes positive). It is apparent that,
during the contraction period, the scale factor behaves as a(η) ∝ (−η), and thus, εb ' 2. One also finds that the bouncing
solution is asymmetrical. The coupling function f (φ) as well as ω(φ) become nearly unity in the reheating epoch, which
arises shortly after the bounce.
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Figure 2. The slow-roll parameter εb (top-left), Hubble parameter Hb (top-right), the coupling function f (φ) (bottom-left)
and ω(φ) (bottom-right) in the non-minimal theory (4) are plotted for the chaotic bouncing model with α = 2 with respect
to the e-N-fold time convention N (N 2 ≡ 2 ln(a/a0), for contraction, N is negative, whereas, at bounce, it becomes zero
and then during expansion, it becomes positive) during and after the bounce. One can see that the bouncing solution is
asymmetrical. The coupling function f (φ) as well as ω(φ) become nearly unity in the reheating epoch, which appears
shortly after the bounce.

3. Stability Analysis

Let us now analyze the stability condition for the above system (4). Assuming the
additional fluid is barotropic, in nature, with the equation of state wm, the governing
equations become

f 2
(

Rµν −
1
2

gµνR
)
− 2∇µ f ∇ν f − 2 f ∇µν f + 2gµν

(
∇λ f ∇λ f + f � f

)
=

1
M2

Pl

[
ω(φ)

(
∇µφ∇νφ− 1

2
gµν∇λφ∇λφ

)
− gµνVb + T(M)

µν

]
, (10)

�φ +
1

2ω(φ)

(
ω,φ∇λφ∇λφ− 2V,φ + 2M2

Pl
f f,φ R

)
= 0, (11)

where, T(M)
µν is the energy-momentum tensor of the additional barotropic fluid in the

non-minimal theory (4), satisfying

∇µT(M)
µν = 0. (12)
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We have not used any subscript b since, from now on, all concerning equations will
correspond only to the non-minimal theory. These equations, using Friedmann–Robertson–
Walker (FRW) homogeneous and isotropic Universe with the line element

ds2 = −dt2 + a2(t)dx2, (13)

turn into

3 f 2 H2 = −6H f f,φ +
1

M2
Pl

(
1
2

ω φ̇2 + V(φ) + ρM

)
= 0, (14)

φ̈ + 3H φ̇ +
1

2ω

(
ω,φφ̇2 + V,φ − 2M2

Pl
f f,φR

)
= 0, (15)

ρ̇M + 3H(ρM + PM) = 0, (16)

where ρM ≡ −T(M)0
0 and Ti

j ≡ PMδi
j = wmρMδi

j are the energy density and the pressure of
the barotropic fluid with wm being the equation of state. To study the stability analysis,
instead of using quantities with dimensions, we can express and re-write these field
equations in terms of dimensionless quantities. These are defined as

x ≡ φ̇√
6MPl H

, y ≡
√

V√
3MPl f H

(17)

Using these dimensionless variables, one can quickly express the evolution equation
of them as

dx
dN
≡ 1

H
dx
dt

= − 1
2γ4

e
(36(3wm − 1)(1 + α)4 x3 − 18

√
6(3wm − 1)(1 + α)3γe x2 −

6(1 + α)2γ2
e (3− 4x2 − y2 − 3wm(3− 2x2 − y2)) x +

√
6(1− 7x2 − y2 − 3wm(1− 3x2 − y2))(1 + α)γ3

e −
3x((wm − 1)(1− x2 − y2) + 2y2α)γ4

e +
√

6y2γ5
e ), (18)

dy
dN
≡ 1

H
dy
dt

=
1

2γ4
e
((6(1− 3wm)(y2 − 1)(1 + α)2γ2

e y + 3(1 + wm + y2 − wmy2

+2y2α)γ4
e +
√

6γe(12(3wm − 1)(1 + α)3 x− 6wm(1 + α)γ2
e + γ4

e ) +

3(12(1 + α)4 − 8(1 + α)2γ2
e + γ4

e − wm(6(1 + α)2 − γ2
e )

2) x2)), (19)

along with the constraint equation

ΩM ≡
ρM

3M2
Pl

f 2H2 = 1− 2
√

6(1 + α)

γe
x +

(
6(1 + α)2

γ2
e

− 1
)

x2 − y2, γe ≡ MPl

VI,φ

VI
. (20)

N is defined as the e-folding number in the non-minimal frame ≡ ln(a/a0), a0 is the
initial value of the scale factor and VI(φ) is the potential in the minimal Einstein frame
and is related to V(φ) through Equation (5). Note that, the model parameter γe actually
represents a parameter in the Einstein frame which is completely arbitrary and can be
fixed from the observations. For example, while near the pivot scale, for chaotic inflation,
γe ∼ 0.01, for Starobinsky model, at the same scale, it becomes ∼ 0.003. However, chaotic
inflation has already been ruled out from the observations while, the Starobinsky model
remains consistent with it and one of the most important models in the paradigm. We
should stress that the phase during the stability is analyzed is the contraction in a bouncing
model and therefore, instead of the e-N-fold time convention, here we are using the e-fold
time convention.
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One can also express the slow-roll parameter εb in terms of these dimensionless
parameters as

εb ≡ −
Ḣ
H2 =

1
2γ4

e
(6(1− 3wm)(1− y2)(1 + α)2γ2

e + 3(1 + wm + y2 − wmy2

+2y2α)γ4
e + 2

√
6γe(3wm − 1)(1 + α)(6(1 + α)2 − γ2

e ) x +

3(12(1 + α)4 − 8(1 + α)2γ2
e + γ4

e − wm(6(1 + α)2 − γ2
e )

2) x2). (21)

Using the above expression, one can define the effective equation of state as

weff = −1 +
2
3

εb. (22)

Although γe is a function of φ and thus, it is dynamical, the minimal theory that we are
considering leads to slow-roll inflation and thus one can consider it to be nearly constant,
similar to exponential potential.

In this system, as one can see, there exist three model parameters: {α, wm, γe}. wm
is arbitrary as it describes the nature of the additional field. For example, in the case of
anisotropic stress fluid that corresponds to the stiff matter, wm = 1. This field results in the
BKL instability that, later, we will investigate. As mentioned above, γe is nearly constant
and hence, we are left with one model parameter α that can be constrained. In the next
section, we will try to constrain it using the Lyapunov exponents.

3.1. Fixed Points and the Bouncing Solution

Using the evolution equation, one can find the fixed/critical point of the system and
these points correspond to the solutions of the system, in this case, the Universe depicted
by the non-minimal theory (4). These can be found by setting Equations (18) and (19) to be
equal to zero, i.e., the velocities of x and y vanishes at these points. There are seven such
fixed points:

1. x∗1 =
γe√
6 α

, y∗1 = −
√

6− γ2
e√

6 α
(23)

2. x∗2 =
γe√
6 α

, y∗2 =

√
6− γ2

e√
6 α

(24)

The sign of the y∗ signifies whether the Universe is expanding or contracting. Since,
H appears in the denominator in the expression of y in (17), the negative sign of y leads to
contraction (bouncing), while positive y corresponds to expanding Universe. Therefore,
{x∗1 , y∗1} leads to contraction, and {x∗2 , y∗2} implies the expanding Universe. In fact, {x∗1 , y∗1}
is our desired solution and the scalar field dominated solution as the fractional energy
density of the additional fluid and the effective equation of state (see Equation (22)) of
corresponds to this point are

Ω(1,2)
M = 0 (25)

w(1,2)
eff =

2− α− γ2
e

3 α
(26)

which corresponds to the the scale factor solution as

ab(−η) ∝ (−η)β, β ≡ 2 α

2− γ2
e

. (27)

As you can see, the exponent is not exactly α but β, which is contrary to the Equation (6).
However, as mentioned before, γe � 1 for slow-roll models and only by using such
model, we achieved such non-minimal bounce, and therefore, β ' α. Therefore, {x∗1 , y∗1}
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corresponds to our bouncing solution that we will investigate thoroughly in the next
section. Other fixed points are

3. x∗3 =

√
6 γe

6(1 + α)−
√

6 γe
, y∗3 = 0 (28)

4. x∗4 = −
√

6 γe

6(1 + α)−
√

6 γe
, y∗4 = 0 (29)

5. x∗5 = −

√
3
2 (1 + wm)γe

−4(1 + α) + γ2
e

,

y∗5 = −
√

2(1− 3wm)2α(1 + α)2 + α(1− 3w2
m − 2α + 6wm(1 + α))γ2

e

(
√

2 α(4(1 + α)− γ2
e ))

(30)

6. x∗6 = −

√
3
2 (1 + wm)γe

−4(1 + α) + γ2
e

,

y∗6 =

√
2(1− 3wm)2α(1 + α)2 + α(1− 3w2

m − 2α + 6wm(1 + α))γ2
e

(
√

2 α(4(1 + α)− γ2
e ))

(31)

7. x∗7 =

√
2
3 (3wm − 1)(1 + α)γe

2(−1 + 3wm)(1 + α)2 − (−1 + wm)γ2
e

, y∗7 = 0 (32)

Since our desired fixed point is {x∗1 , y∗1}, in this work, we will focus only on this point.
In the next subsection, we will explore the Lyapunov exponents that determine the stability
of the solution, and then later, we will focus on the behavior of the Universe close to the
fixed point.

3.2. Lyapunov Exponent and the Stability of the Bouncing Solution

Now, in order to study the stability of these fixed points, we need to linearize the
Equations (18) and (19) as


dδx
dN
dδy
dN

 =


∂A(x, y)

∂x

∣∣∣
∗

∂A(x, y)
∂y

∣∣∣
∗

∂B(x, y)
∂x

∣∣∣
∗

∂B(x, y)
∂y

∣∣∣
∗


(

δx

δy

)
, (33)

where, A(x, y) and B(x, y) are the right-hand side of (18) and (19), respectively. |∗ denotes
the value at the fixed point. δx and δy are the deviations of the fixed points. By linearizing
equations, we assume that we are studying the stability condition in the vicinity of the
fixed points, i.e., the deviation from the fixed points are very small. We are considering
homogeneous and isotropic background and assume that the anisotropies and inhomo-
geneities caused by the deviations do not impact on the background. This can be achieved
by assuming that the energy fractions due to the deviations are extremely small.

In order to check the stability of the fixed points, we need to evaluate the eigenvalues
of this matrix. These eigenvalues are the Lyapunov exponents that arise in the evolution of
both δx and δy and thus, only these values determine the stability of the fixed points as

δx = C11 eλ1 N + C12 eλ2 N

δy = C21 eλ1 N + C22 eλ2 N

As defined earlier, N is the e-folding number; in an expanding Universe, while it
increases, it decreases for contracting solution, and therefore, if both the eigenvalues
are negative (positive) in an expanding (contracting) Universe, then δx and δy approach
zero as N approaches ∞ (−∞). This implies that the deviation from the actual trajectory
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reduces with time and the new trajectory returns to the original trajectory asymptotically
in time. In other words, both eigenvalues being negative (positive) in an expanding
(contracting) Universe implies that the fixed point is stable and the corresponding solution
is an attractor solution.

Let us now calculate the Lyapunov exponents for our desired fixed point (23). It takes
the form

λ
(1)
1 =

4 + α− 3wm α− γ2
e

α
, λ

(1)
2 =

6− γ2
e

2α
(34)

The above expression bears one of the main results of this work. As one can see
properly since the desired fixed point is the bouncing solution, we require both of the
λ’s to be positive. Few things to note: since α = −1 represents the minimal solution as
mentioned before (coupling function (7) becomes unity), one can easily obtain the results
in Refs. [16,17] by substituting α = −1. Since α, wm and γe are positive, increasing values
of wm and γe narrow the permissible regime of α for being an attractor. Anisotropic fluid
or the stress fluid resembles similar to a stiff matter with the equation of state wm = 1
and the energy density ρM ∼ a−6, where a is the scale factor. Therefore, since BKL
instability is caused by it, the condition to evade the BKL instability can easily be obtained
by substituting wm = 1:

γ2
e < 6, α < 2− γ2

e
2

. (35)

Therefore, for exponential potential, γe is constant and positive domain of α can
only be obtained if γe < 2. In the case of slow-roll, γe � 1 and therefore, for slow-roll
inflationary models which are conformal to the non-minimal bounce, the condition becomes

0 < α < 2. (36)

as the bouncing solution can only be obtained for α > 0. This is the main result of this
article as, now, α cannot possess arbitrary positive values for a stable viable solution. In the
next section, in order to understand how the deviations impact the system near the fixed
point, we will study the phase space in the concerned region.

4. Evolution of the Deviations

Using the eigenvalues and the eigenvectors, one can easily solve (33). For the fixed
point (23), it becomes

δx(1)(N) = A11(α, wm, γe) eλ
(1)
1 N + A12(α, wm, γe) eλ

(1)
2 N (37)

δy(1)(N) = A21(α, wm, γe) eλ
(1)
1 N + A22(α, wm, γe) eλ

(1)
2 N , (38)

where, λ
(1)
1 and λ

(1)
2 are given in (34). The A’s can be evaluated as
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A11 =
(2(3wm − 1)(1 + α)− (wm − 1) γ2

e ) ((6 + 6α− γ2
e ) δx0 + γe

√
6− γ2

e δy0)

αγ2
e (γ

2
e − 2− 2(1− 3wm)α)

(39)

A12 =
1

αγ2
e (γ

2
e − 2− 2(1− 3wm)α)

(
(γ2

e − 6)(2(3wm − 1)(1 + α)2+

(1− wm + α)γ2
e ) δx0 + γe

√
6− γ2

e (2(1− 3wm)(1 + α) + (wm − 1)γ2
e ) δy0

)
(40)

A21 =
1

αγ3
e (γ

2
e − 2− 2(1− 3wm)α)

(
(2(3wm − 1)(1 + α)2+

(1− wm + α)γ2
e )(
√

6− γ2
e (γ

2
e − 6− 6α)δx0 + γe(γ

2
e − 6)δy0)

)
(41)

A22 =
1

αγ3
e (γ

2
e − 2− 2(1− 3wm)α)

(
(6 + 6α− γ2

e )(
√

6− γ2
e (2(3wm − 1)

(1 + α)2 + (1− wm + α)γ2
e ) δx0 + γe(2(3wm − 1)(1 + α)− (wm − 1)γ2

e ) δy0)
)

(42)

These solutions are obtained by using the initial conditions δx(0) = δx0, δy(0) = δy0.
The slow-roll parameter can also be obtained in the vicinity of the fixed point (23) by
perturbing the Equation (21) and this becomes

εb = ε
(1)
b + εbx δx(N) + εby δy(N), ε

(1)
b = 1 +

1
α
− γ2

e
2α

, (43)

where,

ε
(1)
bx =

√
3
2 (6 + 12α + 6α2 − γ2

e )(2 + 2α− γ2
e − wm(6 + 6α− γ2

e ))

αγ3
e

(44)

ε
(1)
by =

√
9− 3γ2

e
2 (2 + 2α2 − γ2

e + 2α(2− γ2
e )− wm(6 + 12α + 6α2 − γ2

e ))

αγ2
e

. (45)

Once we obtain the solution expression for the slow-roll parameter, we can solve the
energy density equation as ε(N) = −dN ln H(N) and by performing the integral, one can
easily solve for H. It becomes, H2(N) = H2

0 exp(−2
∫

dN ε(N)), H0 is the initial value of
the Hubble parameter. Using (37) and (43), and by using the fact that, δx0 and δy0 are tiny
and act like perturbations, we obtain the evolution of the Hubble parameter as

H2

H2
0
= (1−Ωm1 −Ωm2)

(
a
a0

)−2ε
(1)
b

+ Ωm1

(
a
a0

)λ
(1)
1 −2ε

(1)
b

+ Ωm2

(
a
a0

)λ
(1)
2 −2ε

(1)
b

(46)

where,

Ωm1 = −2
ε
(1)
bx A11

λ
(1)
1

− 2
ε
(1)
by A21

λ
(1)
1

(47)

Ωm2 = −2
ε
(1)
bx A12

λ
(1)
2

− 2
ε
(1)
by A22

λ
(1)
2

(48)

One can easily obtain the the above expressions in terms of model parameters
{α, wm, γe} by using relations (39)–(42), (44) and (45). It is clear from the above equa-
tion that the system behaves as the Universe contains three fluids, where the leading
solution corresponds the scalar field dominated solution, in the case of additional flu-
ids having the initial energy density fraction Ωm1 and Ωm2, the energy density of them

grow/decay as ρm1 ∝
(

a
a0

)λ
(1)
1 −2ε

(1)
b and ρm2 ∝

(
a
a0

)λ
(1)
2 −2ε

(1)
b . It is apparent that, relative to
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the leading order term with
(

a
a0

)−2ε
(1)
b , the other two decay/grow with the factor

(
a
a0

)λ
(1)
1

and
(

a
a0

)λ
(1)
2 , respectively. Therefore, for a contracting solution, λ’s being positive signifies

that the those additional fluids represented by the Ωm1 and Ωm2 decay. This can even be
seen from the expression of the energy fraction of the additional fluid (20). This becomes

ΩM =

√
2
3 ((6 + 6α− γ2

e ) δx0 + γe
√

6− γ2
e δy0)

(αγe)

(
a
a0

)λ1 N
. (49)

From the above expression, it becomes obvious that, for a bouncing solution, if λ’s are
positive, the energy fraction vanishes after a while. To understand the correct nature of it,
below, we presented three different scenarios with different choices of model parameters
that try to help us realize the system.

4.1. Radiation Bounce

As we know from (36), α must be positive and less than 2 in order to satisfy bouncing
solution as well as to evade the BKL instability. Therefore, in the first example, we consider
radiation bounce where α = 1, i.e., the scale factor solution approximately becomes
ab(η) ∝ (−η). We consider the additional fluid as the anisotropic stress fluid with stiff
equation of state wm = 1. Assuming typical conformal slow-roll model (e.g., chaotic
inflation with VI(φ) =

1
2 m2 φ2) with γe ≈ 0.01, the Hubble solution takes the form

H2

H2
0
= (1−Ωm1 −Ωm2)

(
a
a0

)−4
+ Ωm1

(
a
a0

)−2
+ Ωm1

(
a
a0

)−1
(50)

with

Ωm1

Ωm2
=
−1.125 δx0 + 0.002 δy0

δx0 + 0.002 δy0
. (51)

The equation represents the attractor nature of the solution as the leading order
solution, i.e., the effective radiation matter solution dominates over the additional fluid
evolution. The actual energy density fraction of the additional fluid (49) takes the form

ΩM = (980 δx0 + 2 δy0)

(
a
a0

)2
. (52)

For bouncing solution, as it is obvious, it quickly vanishes after a while.

4.2. Comparing with the Minimal Scenario

As it has been mentioned before, negative α represents the expanding solution,
and α = −1 reduces to the minimal Einstein inflationary scenario as for this value, the cou-
pling function becomes unity. In this subsection, we will compare the above result with the
minimal inflationary case. Again using the similar value of the additional fluid equation of
state as well the γe, i.e., wm = 1, γe ≈ 0.01, the Hubble solution becomes

H2

H2
0
= (1−Ωm1 −Ωm2) + Ωm1

(
a
a0

)−6
+ Ωm1

(
a
a0

)−3
, (53)

with

Ωm1

Ωm2
= −0.05 + 122.47

δy0

δx0
. (54)

Notice that, in this case, the additional fluids with Ωm1 and Ωm2 initial mass fractions
decay faster compared to the radiation bounce scenario as the Lyapunov exponents, i.e., the
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λ’s are having high values. This can even be seen from the expression of energy fraction of
the additional fluid (49):

ΩM = (0.008 δx0 − 2 δy0)

(
a
a0

)−6
(55)

It vanishes faster than that of the radiation bounce case. Therefore, one may consider,
by judging the capability of stability solution, minimal inflationary models are preferred
compared to the non-minimal bouncing models. In the next subsection, we will show that,
this is clearly not the case.

4.3. Comparing with the Viable Ekpyrosis

In Ref. [34], it has been studied extensively and showed that the ekpyrosis is a super-
attractor (although it has been studied for minimal models, one can easily extend it for
non-minimal solution as well. See Ref. [56] in this context). It can also been seen from (34)
as α appears in the denominator in the expressions. This implies that the smaller values of
α leads to higher values of Lyapunov exponents and this, in return, implies the solutions
are, in comparison, more stable. Consider the example of α = 0.1: the solution leads to
the ekpyrosis solution. By using similar values of wm and γe, one can obtain the Hubble
solution for the ekpyrosis as

H2

H2
0
= (1−Ωm1 −Ωm2)

(
a
a0

)−22
+ Ωm1

(
a
a0

)16
+ Ωm1

(
a
a0

)8
(56)

with

Ωm1

Ωm2
=
−0.95 δx0 − 0.003 δy0

δx0 + 0.003 δy0
. (57)

Again, compared to the leading solution, the externals fluids decay much faster than
the minimal case, shown above. This is because the Lyapunov exponents are, in this case,
38 and 30, respectively. For instance, the energy fraction of the additional fluid becomes

ΩM = (5389 δx0 + 20 δy0)

(
a
a0

)38
. (58)

Therefore, even if all the examples, that are presented in this work, are in line with
the observations, there is a difference in the behavior of the stability and among them,
ekpyrosis is the most stable, and in this sense, the ekpyrosis is the most preferred, which
again, has been re-established.

5. Conclusions

In this article, we construct a non-minimal bouncing model that is conformal to the
scalar sector of the minimal inflationary model. However, along with the presence of the
additional matter in the system, the minimal and non-minimal models do not conform and
therefore, the stability of the two systems is not related by the conformal factor. α is the
main model parameter and by setting it to be equal to −1, one can arrive at the stability
conditions of the minimal model as well as it had been studied before in the literature.
While, the scalar part of the non-minimal bounce is conformal to that of the minimal
inflationary model, choosing a viable inflationary model that satisfies the observational
constraints, the non-minimal bouncing model also satisfies the observation constraints
with the inherent assumption that the model solution is an attractor. If the solution is not
stable, then even the quantum fluctuations can grow and diverge and the system becomes
unstable. In this article, therefore, we study the stability of the non-minimal bouncing
model with the presence of an additional fluid with the equation of state wm. We show
that, while α being positive leads to a viable bouncing solution, not all positive values of it
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leads to a stable solution, and to avoid BKL instability, we obtained the constraint in α as
the domain for stability as well as bounce as 0 < α < 2. We also showed that the ekpyrosis
is the best attractor among them and thus is always preferred.

While we studied the system for homogeneous and isotropic background, one can
easily extend the work for homogeneous and anisotropic systems as well and may arrive
at a similar condition. One can even go beyond the homogeneous system and study the
stability using numerical relativity. However, this is beyond the scope of this article. We
did not consider the negative values of α as well as α = 0 case. The last one signifies the
emergent gravity scenario. Apart from that, we also did not study the behavior of the other
fixed points (28)–(32). While in the minimal scenario, most of them are unstable, in our
case, it may not be the same and may impact the system heavily. We reserve these works
for our future prospects.
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