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Abstract: The gravitational wave event, GW190521, is the most massive binary black hole merger
observed by ground-based gravitational wave observatories LIGO/Virgo to date. While the observed
gravitational wave signal is mainly in the merger and ringdown phases, the inspiral gravitational
wave signal of the GW190521-like binary will be more visible to space-based detectors in the low-
frequency band. In addition, the ringdown gravitational wave signal will be louder in the next
generation (3G) of ground-based detectors in the high-frequency band, displaying the great potential
of multiband gravitational wave observations. In this paper, we explore the scientific potential of
multiband observations of GW190521-like binaries with a milli-Hz gravitational wave observatory:
LISA; a deci-Hz observatory: B-DECIGO; and (next generation of) hecto-Hz observatories: aLIGO
and ET. In the case of quasicircular evolution, the triple-band observations of LISA, B-DECIGO,
and ET will provide parameter estimation errors of the masses and spin amplitudes of component
black holes at the level of order of 1–10%. This would allow consistency tests of general relativity in
the strong field at an unparalleled precision, particularly with the “B-DECIGO + ET” observation.
In the case of eccentric evolution, the multiband signal-to-noise ratio found in “B-DECIGO + ET”
observation would be larger than 100 for a five-year observation prior to coalescence, even with high
final eccentricities.

Keywords: gravitational waves; binary black holes; quasinormal modes; general relativity

1. Introduction

Among gravitational wave (GW) events detected by LIGO and Virgo during O1,
O2, and O3a runs [1,2], a binary black hole (BBH) merger, GW190521 [3,4], is one of
the most striking discoveries. GW190521 is the heaviest BBH merger ever observed,
producing a remnant black hole (BH) with a mass of 142+28

−16 M� that can be interpreted
as an intermediate mass BH; the source parameters of GW190521 (and our notations) are
summarized in Table 1. This measurement triggers the intense investigation of GW190521’s
unique source property. In this paper, we set G = 1 = c with the useful conversion factor
1M� = 1.477 km = 4.926× 10−6 s. We also assume a “Planck” flat cosmology (when it
is needed) with the Hubble constant H0 = 67.7 km s−1 Mpc−1, and density parameters
ΩM = 0.307 and ΩΛ = 0.694 [5].
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Table 1. Summary of the source parameters of GW190521 as a quasicircular BBH merger, reported by
the LIGO–Virgo collaboration [3] based on the BBH waveform model [6]. The symmetric 90% credible
interval for each parameter is also quoted. Note that the parameters are written in our notation and
masses are given in the source’s rest frame; multiply by (1 + z) to convert to the observer frame.

Parameter Symbol

Primary mass [M�] mr
2 85+21

−14

Secondary mass [M�] mr
1 66+17

−18

Primary spin magnitude |~χ2| 0.69+0.27
−0.62

Secondary spin magnitude |~χ1| 0.73+0.24
−0.64

Total mass [M�] mr
t (= mr

1 + mr
2) 150+29

−17

Mass ratio q (= mr
1/mr

2 ≤ 1) 0.79+0.19
−0.29

Luminosity Distance [Gpc] DL 5.3+2.4
−2.6

Redshift z 0.82+0.28
−0.34

A key element to better understand GW190521 is the precise measurement of the
binary parameters (see, for example, Ref. [7] for a possibility of an intermediate mass ratio
inspiral). GW190521 is, however, a much heavier BBH system than previously observed
GW events, and one of the difficulties here is the short duration and bandwidth of the GW
signal that can be observed in the LIGO/Virgo band. In the case of the quasicircular BBH
scenario (which is most favored by the LIGO/Virgo analysis [3,4]), the coalescing time and
the number of GW cycles at frequency f (in the observer frame) are estimated as:

tc ∼ 1.3 (1 + z)−5/3
(

mr
1

66M�

)−1( mr
2

86M�

)−1( mr
t

150M�

)1/3( f
10.0 Hz

)−8/3
s, (1)

Nc ∼ 1.0× 101 (1 + z)−5/3
(

mr
1

66M�

)−1( mr
2

85M�

)−1( mr
t

150M�

)1/3( f
10.0 Hz

)−5/3
. (2)

This indicates the lack of the GW signals from the sufficiently long inspiral phase.
Because of the short duration signal dominated by the merger and ringdown phases,
for example, only weak constraints are obtained for the component BH spins and their
orientations [4]. Furthermore, even alternative interpretations of the observed GW signal
other than massive quasicircular BBH merger in general relativity (GR) would become
more relevant; several plausible scenarios are assessed in Section 6 of Ref. [4] by the
LIGO–Virgo collaboration.

At the same time, the estimation in Equations (1) and (2) suggests a natural way to
overcome the hurdle here: observe the inspiral GW signal in the low-frequency band
offered by space-based GW detectors. Future GW astronomy in the 2030s will utilize the
LISA observatory in the milli-Hz band [8] and deci-Hz GW detectors such as B-DECIGO [9],
a prototype GW antenna of the DECIGO mission [10,11] (other proposed GW missions
in the low-frequency band, including Taiji [12] and TianQin [13] in the milli-Hz band
and MAGIS [14] and TianGO [15] in the deci-Hz band, are concisely summarized in, for
example, reviews by Ni [16,17]). Figure 1 plots the track of the strain sensitivity curve of
a GW190521-like non-spinning BBH system, assuming the quasicircular evolution and
a simple inspiral–merger–ringdown (IMR) amplitude model given in Equation (16). At
the GW frequency f = 0.1 Hz, for example, Equations (1) and (2) give the coalescence
time tc ∼ 1.1× 105 s and the number of GW cycles Nc ∼ 8.1× 103 with the dimensionless
characteristic strain:

hc ∼ 7.6× 10−22 (1 + z)5/6
(
Mr

65.1M�

)5/6( f
0.1 Hz

)−1/6( DL
5.3 Gpc

)−1
, (3)
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where we introduce the source’s rest-frame chirp massMr ≡ ν3/5 mr
t with the symmetric

mass ratio ν ≡ mr
1mr

2/mr
t
2. In fact, we find in Section 3 that the sky and polarization

averaged signal-to-noise ratio (SNR) (whose meaning is momentarily clarified in Section 2)
accumulated 5 years before the final coalescence would be ∼5.9× 101 in the B-DECIGO
band and ∼2.7 in the LISA band. These estimations show that the early inspiral signal of
GW190521-like BBHs would be sensitive in the LISA band and loud in the deci-Hz band.
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Figure 1. Strain sensitivity curves for the ground-based aLIGO and a next-generation (3G) detector:
Einstein Telescope (ET) and space-based B-DECIGO and LISA, together with the GW amplitude of a
GW190521-like nonprecessing, quasicircular BBH. We use the median values in Table 1 as source
parameters. The noise power spectral density (PSD) for each GW detector is given in Section 2.1, and
the spectral density of the BBH amplitude is obtained by the nonspinning, IMR amplitude model
in Section 2.3. As a reference, we mark with the black dots with 5 years, 1 year, 1 month, 1 day, 1 h,
1 min, and 1 s before the merger time (1) from the left to the right.

Although the observation with LISA and B-DECIGO alone would provide valuable
information on the inspiral GW signal from the GW190521-like BBH system, the true
potential of having the low-frequency sensitivity will be revealed only when it is combined
with the high-frequency sensitivity in the hecto-Hz band. As illustrated in Figure 1, the late-
inspiral and merger–ringdown GW signals of the GW190521-like BBH are best detected
with aLIGO, Virgo, and KAGRA [18]. In addition to ground-based GW observatories
that are online, the next generation (3G) of ground-based detectors such as the Einstein
Telescope (ET) [19,20] (see also Ref. [21] for Cosmic Explorer (CE)) will significantly improve
the visibility of GW190521-like BBH systems. We will see in Section 3 that the averaged
SNR of the late-inspiral and ringdown signals in the ET band would be ∼2.7× 10 and
∼1.5× 102, respectively. The joint “space + ground” observation across the full GW bands
would be therefore the best way to observe the GW190521-like BBH systems; this is the
basic idea of multiband GW astronomy.

Soon after the first detection of GW150914 [22], the potential of the multiband GW
astronomy of BBH systems with LISA and aLIGO was emphasized [23] (see also Ref. [24]).
This study was immediately followed up with more detailed analyses. The works include
(but not limited to) the improved estimation of source parameters [25,26], tests of GR
with high precision [27–32], refined event rate estimations [33], probing environment
effects [34,35], and new data analysis ideas [36]; these all prove the scientific values added
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by the multiband observation. Among these investigations, Refs. [9,37–41] demonstrated
that the multiband observation of stellar-mass BBH systems will further benefit from
having (B-)DECIGO in the deci-Hz band, which naturally bridges the gap between the
LISA and aLIGO bands.

Goals and Organization of This Paper

Our purpose in this paper is to explore the prospects of the multiband observation of
GW190521-like nonprecessing, quasicircular “intermediate-mass” BBHs. The possibility
of the multiband observation of intermediate-mass BBHs with deci-Hz GW detectors
was pointed out by Amaro-Seoane and Santamaria [42] and Yagi [43]. We consider these
observations across the full GW spectrum provided by LISA in the milli-Hz band, B-
DECIGO in the deci-Hz band, and aLIGO and ET in the hecto-Hz, looking at two specific
aspects of multiband GW astronomy/physics: parameter estimation errors and tests of GR.

We begin in Section 2 by providing our set of basic tools for the signal analysis in the
matched filtering technique: (i) the noise PSD in Section 2.1, (ii) the GW signal models
in Sections 2.2 and 2.3, and (iii) the multiband Fisher matrix formalism in Section 2.4. In
Section 3, we present the parameter estimation errors of GW190521-like nonprecessing,
quasicircular BBH systems using multiband GW observations. They are displayed in
Table 2 and 3. Based on the estimated errors, we then examine in Section 4 to what extent
the future multiband observations of GW190521-like BBH systems will improve tests of
GR; this includes an inspiral–ringdown consistency test (see Table 4) and a simple test to
discriminate between the remnant BH based on GR and other remnant compact objects
(see Figure 2) We conclude in Section 5 with complications and various effects, which are
not covered in this paper due to our assumptions and simplifications.

The appendices contain some additional analysis and information. While a quasicircular
BBH merger is the most favored scenario in the LIGO/Virgo analysis [3,4], other alternative
scenarios such as an eccentric BBH merger may also be consistent with the observed source for
GW190521 [44]. We briefly discuss the multiband visibility of a GW190521-like eccentric BBH
in Appendix A. Additionally, the additional noise PSDs of ground/space-based current/future
GW detectors is provided in Appendix B as a complement to our treatment in Section 2.1.

Table 2. Parameter estimation errors of mass parameters (m, ν) and spin parameters (χs, χa) for the
GW190521-like quasicircular BBH inspiral, normalized to the total multiband SNR ρtot; for example,
the result of “BD” in “BD + aLIGO” is normalized to ρtot = 5.93× 101. We assume that the true binary
parameters are given by the median values of Table 1—i.e., mt = 151.0 M�, ν = 0.246, χs = 0.71, and
χa = 0.02. Since the source location can be determined well by B-DECIGO (BD here) [9,39], we fix
1 + z = 1.82. Note that only the inspiral SNR of aLIGO is 1.76, which is too small to give meaningful
estimation errors. Additionally, any normalized estimation errors δθ̂ > 1.0× 106 are discarded from
this table.

GW Detector SNR δm̂t/mt δν̂/ν δχ̂s/χs δχ̂a/χa

BD + aLIGO

BD 5.92× 101 3.51× 10−1 5.84× 10−1 4.91 1.12× 103

aLIGO 1.76 · · · · · · · · · · · ·
BD + aLIGO 5.93× 101 3.44× 10−1 5.73× 10−1 4.73 1.08× 103

BD + ET

ET 2.72× 101 3.70× 102 6.00× 102 5.86× 103 · · ·
BD + ET 6.52× 101 2.88× 10−1 4.80× 10−1 3.07 7.01× 102

LISA + BD + ET

LISA 2.68 1.73× 101 2.89× 101 2.37× 103 · · ·
LISA + BD 5.93× 101 1.83× 10−1 3.04× 10−1 4.01 9.11× 102

LISA + BD + ET 6.52× 101 1.45× 10−1 2.41× 10−1 2.52 5.71× 102
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Table 3. Parameter estimation errors of the central frequency fc and the quality factor Q of the
GW190521-like remnant BH using only the ringdown GW signal. The errors are normalized to the
signal-to-noise ratio (SNR) of each corresponding detector.

GW Detector SNR δ f̂c/ fc δQ̂/Q

aLIGO 1.08× 101 3.42× 10−1 2.71× 10−1

ET 1.47× 102 3.66× 10−1 2.86× 10−1

Table 4. Parameter estimation errors of the remnant mass and spin of GW190521-like and GW150914-like BBH systems,
using only the ringdown GW signal as well as the inspiral GW signal inferred via the NR remnant fitting formulas; the best fit
values are (M f /m, χ f ) ∼ (0.904, 0.883) for the GW190521-like BBH (recall Equation (27)) and (M f /m, χ f ) ∼ (0.891, 0.898)
for the GW150914-like BBH. Here, BD is an abbreviation for B-DECIGO. The results in the single band are normalized to the
SNR for a given GW observatory. In the multiband case, they are normalized to the total SNR of ρLISA+BD+ET.

GW190521-Like BBH GW150914-Like BBH

GW Detector SNR δM f /M f δχ f /χ f SNR δM f /M f δχ f /χ f

Single band: Ringdown GW signal

aLIGO 1.08× 101 3.09× 10−1 7.47× 10−1 1.78× 101 3.05× 10−1 6.47× 10−1

ET 1.47× 102 3.31× 10−1 7.90× 10−1 2.66× 102 3.26× 10−1 6.60× 10−1

Single band: inspiral GW signal

BD 5.92× 101 3.31× 10−1 9.63× 10−1 2.51× 102 3.19× 10−1 9.43× 10−1

Multiband: inspiral GW signal

BD + ET 6.52× 101 3.55× 10−1 5.91× 10−1 5.18× 102 1.07× 10−1 4.48× 10−1

LISA + BD 5.93× 101 2.46× 10−1 8.05× 10−1 2.51× 102 6.39× 10−1 1.85
LISA + BD + ET 6.52× 101 1.75× 10−1 4.98× 10−1 5.18× 102 1.06× 10−1 4.33× 10−1

Figure 2. Simple remnant test in the ( fR, fI) plane. The QNM frequency is given in the observer frame, and we assume the
GW190521-like ringdown GW signals with (M f /m, χ f ) ∼ (0.904, 0.883) (27). The figure shows the parameter estimation
error with the aLIGO noise curve (left, SNR= 1.08× 101) and the ET one (right, SNR= 1.47× 102). The black lines are the
Schwarzschild limit of | fI|/ fR ≈ 0.236. The colored ellipses show the contours of 1σ, 2σ, 3σ, 4σ, and 5σ. To obtain these
two-dimensional plots, the time and phase parameters (t0, φ0) have been marginalized out.
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Throughout this paper, the binary parameters and GW frequencies measured in the
source’s rest frame are denoted with the index ‘r’, explicitly distinguished from those in
the observer frame.

2. Method for Signal-to-Noise Ratio and Fisher Analysis

In this section, we summarize our methodology of multiband GW data analysis in
the specific context of a nonprecessing, spinning, quasicircular GW190521-like BBH system,
where the spins are aligned to the orbital angular momentum; an alternative scenarios of
non-zero orbital eccentricity in GW190521-like BBH system will be discussed in Appendix A.
Our simple framework here is largely based on the previous B-DECIGO works [9,38].

2.1. aLIGO, ET, B-DECIGO and LISA

For our multiband GW observation, we follow Ref. [38] by considering the four GW
observatories: aLIGO and ET in the hecto-Hz band, B-DECIGO in the deci-Hz, and LISA in
the milli-Hz band (see also Appendix B for some of other GW detectors in these bands). It
should be noted that we shall use the “non sky-averaged” PSD Sn( f ); we will account for
the average over the GW detector’s antenna pattern function at the level of the waveform.

For aLIGO in the hecto-Hz band, we use Equation (4.7) in Ref. [45],

SaLIGO
n =10−48

(
0.0152 x−4 + 0.2935 x9/4 + 2.7951 x3/2 − 6.5080 x3/4 + 17.7622

)
Hz−1;

x =
f

245.4 Hz
. (4)

For a third generation (3G) GW interferometer—ET in the hecto-Hz band—we find
Table 1 in Ref. [46] as:

SET
n =1.5× 10−52

(
y−4.1 + 186.0 y−0.69

+ 233.0× 1.0 + 31.0 y− 65.0 y2 + 52.0 y3 − 42.0 y4 + 10.0 y5 + 12.0 y6

1.0 + 14.0 y− 37.0 y2 + 19.0 y3 + 27.0 y4

)
Hz−1;

y =
f

200.0 Hz
. (5)

For B-DECIGO in the deci-Hz band, we use Equation (20) in Ref. [38], originally
proposed by Nakamura et al. [9]:

SBD
n =

[
(2.01× 10−23)2 +

(
2.53× 10−18

F2

)2

+
(

8.00× 10−22 F
)2
]

Hz−1;

F =
f

1.0× 10−3 Hz
. (6)

For LISA in the milli-Hz band, we use Equation (1) of Ref. [47], which is based on the
2018 LISA Phase-0 reference design parameters. It reads:

SLISA
n =

[(
2.4602× 10−41 + 4.0504× 10−38 z2 +

4.7850× 10−48

z2

+
2.8485× 10−51

z4 +
3.9412× 10−58

z6

)
+ SLISA

c

]
Hz−1;

z =
f

1.0 Hz
. (7)

where SLISA
c ( f ) represents the effective PSD due to the unresolved galactic binaries; the

explicit expression is given in Equation (14) of Ref. [47], and we have assumed a 4-year
mission for Figure 1. Here, our expression SLISA

n (7) is smaller than Equation (1) in Ref. [47]
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by a overall factor of 5; the difference arises simply because Equation (7) does not account
for the sky-averaging.

2.2. Waveform Models

We employ as our BBH waveform model the frequency domain, “restricted” waveform
in the stationary phase approximation for the inspiral phase, and the frequency domain,
single-mode waveform for the ringdown phase. We shall restrict our waveform model to
these two phases to simplify our analysis as far as possible; the complete IMR treatment at
the level of waveform (using, for example, the “effective-one-body” (EOB) approach [48,49]
and the “phenomenological” (IMRPhenom) model [50,51]) will be left for future work.

The GW waveform from a BBH inspiral in the frequency domain has the well-known
form (see, for example, Ref. [52]):

h̃Insp( f ) = A f−7/6eiΨInsp( f ) , (8)

where A is the “Newtonian” amplitude averaged over all sky positions and binary orienta-
tions (see, for example, Ref. [53]), so that:

A ≡ 2
5

√
5
24

π−2/3M5/6

DL
. (9)

The waveform’s frequency domain phase, ΨInsp( f ), in the post-Newtonian (PN)
approximation is given by (see, for example, Ref. [54]):

ΨInsp( f ) = 2π f tc −Ψc −
π

4
+

3
128νv5

(
∆Ψpp

3.5PN + ∆Ψpp−spin
3.5PN + ∆ΨBH−tidal

3.5PN

)
, (10)

where v ≡ (πmt f )1/3 is the PN parameter (in terms of the observer-frame total mass), and
tc and Ψc are the time and phase at coalescence. The phase terms ∆Ψpp

3.5PN and ∆Ψpp−spin
3.5PN

are the 3.5PN spin-independent, point-particle contributions derived in Ref. [55] and the
3.5PN spin-dependent, point-particle contributions that include linear spin-orbit [56,57],
quadratic-in-spin [58], and cubic-in-spin [59] effects, respectively. The remaining phase
term ∆ΨBH−tidal

3.5PN is related to the tidal response of a spinning BH as a finite-size body—i.e.,
BH-absorption corrections such as the GW energy and angular momentum fluxes down to
the horizons and the associated evolution of the BH itself [60–62].

Meanwhile, limited to only fundamental (n = 0), ` = 2 = m mode, the time-domain,
single-mode ringdown waveform measured at a GW observatory is written as [63–65]:

hRing( fc, Q, t0, φ0; t) =


e−

π fc (t−t0)
Q cos[2 π fc (t− t0)− φ0] for t ≥ t0,

0 for t < t0,

(11)

where t0 and φ0 are the initial time and phase of the ringdown, respectively, and we have
ignored the overall amplitude so that Equation (11) is not normalized; the initial ringdown
amplitude may be determined by matching the ringdown GW waveform with the merger
one (refer to, for example, Equation (16) below). When the final remnant object is a Kerr
BH, the central frequency fc and the quality factor Q are given in terms of quasinormal
mode (QNM) frequencies ( fQNM = fR + i fI) of the remnant BH as (see Equation (7) of
Ref. [66]):

fc := fR, Q := − fR

2 fI
. (12)
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It should be noted that fQNM = f r
QNM(1 + z)−1 here is given in the observer frame.

The Fourier transforms of Equation (11) provide the corresponding frequency-domain
waveform, which takes the form (here we follow the convention of Ref. [63]):

h̃Ring( fc, Q, t0, φ0; f ) =
Q( fc cos φ0 − 2 i Q f cos φ0 + 2 Q fc sin φ0)

π ( fc + 2 i Q fc − 2 i Q f )( fc − 2 i Q fc − 2 i Q f )
e2 iπ f t0 . (13)

We note that this frequency-domain GW waveform is not normalized either, following
the approach presented in Appendix B of Ref. [64]. The maximized SNR over the initial
ringdown phase φ0 is discussed in Ref. [67].

The ringdown waveforms (11) and (13) require input data for the QNM frequency of
the final remnant BH. Because we do not consider the complete IMR phase at the level
of waveforms, we employ the numerical relativity (NR) remnant-fitting formulas (see,
for example, Refs. [68–73] and references therein), from which the final mass M f and spin
S f of the remnant BH are consistently inferred for a given initial BH masses m1,2 and
dimensionless spin parameters ~χ1,2 (in the inspiral phase) as:

M f = M f (m1, m2, ~χ1, ~χ2), χ f ≡
|S f |
M2

f
= χ f (m1, m2, ~χ1, ~χ2). (14)

The mass and spin of the remnant BH in the remnant formulas are derived in the isolated
horizon framework (see, for example, Ref. [74]), not obtained from the ringdown GWs.
The latter is used only for checking the internal consistency of the formulas.

We then generate the accurate numerical data of fQNM of the inferred remnant BH
with the Black Hole Perturbation Club (B.H.P.C.) code [75] to obtain fc and Q (for accurate
numerical data of fQNM, see also Ref. [76], Emanuele Berti’s “Ringdown” website [77],
Ref. [78], and the Black Hole Perturbation Toolkit [79]). In practice, it is also convenient
to present fc and Q by means of a compact analytical formula. Such a formula for the
(` = 2, m = 2, n = 0) mode is obtained in Ref. [65] (by performing fits to the numerical
QNM frequency data), and it reads:

fc =
1

2πM f

[
f1 + f2 (1− χ f )

f3
]
, Q = q1 + q2 (1− χ f )

q3 , (15)

with f1 = 1.5251, f2 = −1.1568, f3 = 0.1292, q1 = 0.7000, q2 = 1.4187 and q3 = −0.4990.

2.3. Signal-to-Noise Ratio

We estimate the SNR of a complete IMR GW signal, making use of the simple
frequency-domain, IMR “amplitude” model [9]. This model is motivated by the waveform
amplitude in the IMRPhenomB model [80] and it is given by:

IMR( f ) = A×



f−7/6 for f < fmax,

f−1/2
max f−2/3 for fmax ≤ f < f r

R/(1 + z),

f−1/2
max

[
f r
R/(1 + z)

]−2/3[ f r
I /(1 + z)

]2{
f −

[
f r
R/(1 + z)

]}2
+
[

f r
I /(1 + z)

]2 for f r
R/(1 + z) ≤ f ,

(16)

where the overall constant A is chosen to be the (averaged) GW signal’s amplitudes in the
inspiral phase (9). We set fmax = 1/[63/2π(1+ z)mr

t ] as the GW frequency at the innermost
stable circular orbit (ISCO) of a test particle in the Schwarzschild spacetime with the total
mass of BBH mr

t , and f r
R and f r

I are the real and imaginary parts of the QNM frequency (i.e.,
f r
QNM = f r

R + i f r
I ) of the fundamental (n = 0), ` = 2 = m mode, which are determined

by the final mass and spin of the remnant BH; the redshift dependence appears because
the model parameters (mr

t , f r
R, f r

I ) are all given in the source’s rest frame (while the GW
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frequencies f and fmax are in the observer frame). The averaged SNR (in the above sense)
can be then obtained by

ρave = 2
{∫ fend

fin

[IMR( f )]2

Sn( f )
d f
}1/2

, (17)

where Sn( f ) is the noise PSD and the frequency range [ fin, fend] is determined by the GW
detector with which we observe the GW signals. For the given Fourier transform of a
GW signal h̃( f ), the SNR can be written in terms of either h̃( f ) itself with the dimension
of 1/Hz, the spectral density of the source amplitude

√
Sh( f ) ≡ 2

√
f |h̃( f )| with the

dimension of 1/
√

Hz, or the dimensionless characteristic strain hc( f ) ≡ 2 f |h̃( f )| [81]:

ρave =

(∫ fend

fin

|2h̃( f )|2
Sn( f )

d f
)1/2

=

(∫ fend

fin

|
√

Sh( f )|2
Sn( f )

d f
f

)1/2

=

(∫ fend

fin

[hc( f )]2

f Sn( f )
d f
f

)1/2

.

Note that the amplitude spectral density (i.e., the square root of the PSD of the source
amplitudes) is

√
Sh( f ) ≡ 2

√
f |IMR( f )| in this model, and its track for the GW190521-like

BBH is plotted in Figure 1 with the (square root of) the noise PSD
√

Sn( f ), assuming the
median values of Table 1 and the remnant formulas of Ref. [68].

2.4. Multiband Fisher Analysis

We approximate the variance (i.e., uncertainty squared) associated with the measure-
ment of a set of signal parameters, making use of the standard Fisher matrix formalism.
The Fisher information matrix for a single-band GW detector is defined by:

Γab ≡
(

∂h̃
∂θa

∣∣∣∣ ∂h̃
∂θb

)∣∣∣∣
θ=θ0

, (18)

where h̃( f , θ) is the frequency-domain GW signal described by the set of parameters θ, and
θ0 are the best-fit values of the binary parameters. The bracket defines the noise-weighted
inner product over the frequency range of [ fin, fend] [82]:

(a | b) ≡ 2
∫ fend

fin

ã∗( f )b̃( f ) + b̃∗( f )ã( f )
Sn( f )

d f , (19)

where an asterisk ‘∗’ denotes the complex conjugation. The inverse Fisher matrix defines
the corresponding variance-covariance matrix Σab ≡ (Γab)

−1. In the limit of suitably high
SNR [83], the variance of the parameter θa is given by:

σ2
a = Σaa. (20)

In the case of the multiband analysis (to combine the information from, for example,
aLIGO + B-DECIGO), we simply construct a multiband SNR and Fisher matrix by adding
individual (averaged) SNRs and Fisher information matrices for each GW detector:

ρ2
tot ≡∑

I
(ρI

ave)
2, Γtot

ab ≡∑
I

ΓI
ab, (21)

where ρI
ave and ΓI

ab are the averaged SNR and the Fisher matrix for the I-th detector. The
multiband variance-covariance matrix is defined by:

Σab
tot ≡ (Γtot

ab )
−1, (22)

The variance of θa is then obtained by σ2
a = Σaa

tot.
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3. Parameter Estimation Errors via Multiband Observation

In this section, we summarize the parameter estimation errors of the inspiral and
ringdown phases for a nonprecessing, spinning, GW190521-like BBH system using the
multiband GW network (LISA, B-DECIGO, aLIGO, and ET) detailed in Section 2.1. We
follow Refs. [38,66] in our treatment of the Fisher matrix calculation for BBH GW signals
(the setup here is slightly different from Ref. [38]; (i) we will assume a 5 yr observation
rather than a 4 yr observation and (ii) we will use the new LISA sensitivity curve proposed
by Ref. [47] and displayed in Equation (7), not the earlier eLISA sensitivity curve presented
in Ref. [84]). We will also continue to neglect the contribution from the merger GW signal
(using our IMR amplitude model in Equation (16), we have the (averaged) merger SNR of
17.0, 1.97× 102, and 3.42 for aLIGO, ET, and B-DECIGO, respectively, and the addition of
these contributions to the signal analysis will improve the parameter estimations), for the
reason that one cannot separate the inspiral, merger, and ringdown phases cleanly in the
strict sense, although we have presented a simple IMR amplitude model in Equation (16).
When the merger contribution is introduced into the inspiral or ringdown signal analy-
sis, it causes some bias in the inspiral or ringdown parameter estimation. For example,
the merger–ringdown waveform is parametrized by binary parameters, not solely by the
remnant BH parameters after the merger. Similarly, in the inspiral–merger waveform,
the “late” merger phase can be described by the overtones of QNMs [85]—i.e., the remnant
BH parameters. Thus, we shall perform a inspiral–ringdown consistency test of GR without
the merger contribution in Section 4.1.

3.1. Setup of Fisher Analysis

We set the default frequency interval of each GW detector [ flow, fup] as [10.0, 3.0×
103] Hz (aLIGO), [2.0, 3.0 × 103] Hz (ET), [0.01, 1.0 × 102] Hz (B-DECIGO), and [1.0 ×
10−4, 1.0] Hz (LISA), respectively. We shall adopt the Tobs = 5-year observation time
and assume that the binary merges at the GW frequency of the Schwarzschild ISCO,
fISCO = 1/[63/2π(1 + z)mr

t ]. In this setup, the minimum frequency of the GW signal is:

fmin = 9.24× 10−3 (1 + z)−5/8
(
Mr

65.1M�

)5/8( 5 yr
Tobs

)3/8
Hz, (23)

whereMr is the chirp mass in the source’s rest frame, normalized to that of GW190521.
Therefore, the GW signal observed by each GW detector is truncated at the corresponding
initial frequency fin ≡ max( fmin, flow) as well as the end frequency fend ≡ min( fISCO, fup);
recall Figure 1.

The parameters of the inspiral waveform (8) are:

θInsp = ( f0 tc, Ψc, ln mt, ν, χs, χa), (24)

where we define the symmetric and anti-symmetric combinations of BH spins by χs ≡
(χ1 + χ2)/2 and χa ≡ (χ1 − χ2)/2 with the component (aligned) BH spins χ1,2 ≡ |~χ1,2| ≡
|S1,2|/m2

1,2. At the same time, the parameters of the ringdown waveform (13) are:

θRing = (t0, φ0, fc, Q). (25)

It should be noted that the amplitude parameters are left out from the set of our
independent parameters in both Equations (24) and (25). They are entirely uncorrelated
with other parameters θa because the variance-covariance matrix Σa b gives the variance
σ2

lnA = ρ−2
ave and the correlation clnA, a ≡ ΣlnA, a/(σlnA σa) = 0 for the inspiral GW sig-

nal (8) (see, for example, Ref. [86]), and similar for the ringdown GW signal (if we explicitly
introduce the amplitude to the normalized waveform of Equation (13)). For simplicity, we
consider that all (other) parameters are unconstrained.
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The best fit values of inspiral parameters are given by the median values in Table 1 with
tc = 0.0 = Ψc, while those of the ringdown parameters are assumed to be φ0 = 0.0 = t0 and:

( fc, Q) = (85.061 Hz, 4.8354), (26)

for the (observer-frame) central frequency and quality factor. Note here that the parameter
estimation errors are independent of the value of the initial time t0. In our frequency-
domain, single-mode ringdown waveform in Equation (13), the t0 dependence is factorized
as e2 iπ f t0 and it does not contribute to the noise-weighted inner product in Equation (19).
On the other hand, the estimation errors depend on the initial phase φ0 weakly [64].

The values in Equation (26) are obtained via Equation (12) for the given QNM fre-
quency data of the remnant BH, assuming that the remnant mass M f and spin χ f of the
final BH are inferred via the remnant formula in Equation (14) with the parameters of each
component BH in Table 1. Specifically, we use the remnant formula provided by Ref. [71],
and we quote: (M f

mt
, χ f

)
= (0.90356, 0.88269). (27)

Note that these values are different from the mass and spin (M f , χ f ) = (142+28
−16 M�,

0.72+0.09
−0.12) of the remnant BH reported in the LIGO/Virgo GW190521 detection paper [3];

we have assumed that the individual spins of GW190521-like BBH are nonprecessing
and completely aligned to the orbital angular momentum for simplicity, while the observed
GW190521 is actually considered to be a precessing BBH.

The associated QNM frequency data of this remnant BH are then generated by the
B.H.P.C. code [75], yielding the results in Equation (26).

The root-mean-square of parameter estimation error scales like the inverse of SNR,
∼1/ρ, and it depends on both the ρ and bandwidth over which the SNR is accumulated.
To see the benefit of having wider bandwidth due to the multiband observation, we finally
introduce the normalized root-mean-square error as:

δθ̂ ≡ ρ σ, (28)

We display our error estimations in terms of δθ̂ with the total averaged SNR ρtot
ave

accumulated over the multi-frequency bands.

3.2. Result: Inspiral Phase

In Table 2, we present the parameter estimation errors of mass parameters (m, ν) and
spin parameters (χs, χa) for the GW190521-like BBH inspiral in various combinations of
ground/space-based GW observatories (while suppressing those of tc and Ψc). Here, it
should be noted that only the inspiral phase is analyzed, and the merger–ringdown phase
which contributes to the SNR for ground-based observatories is ignored; recall the merger
SNR shown in Section 3. Therefore, the SNR for aLIGO quoted here is much smaller than
the observed LIGO/Virgo network SNR of 14.5 [3].

In the single-band case, as seen in Figure 1, the inspiral GW signal of the GW190521-
like BBH is best observed by B-DECIGO because it can cover both the early (1 yr before
merger) and late (around the ISCO) phases. However, B-DECIGO observation alone is not
enough benefit to discern the spin parameters.

In the multiband cases, thanks to the wider bandwidth, the observation with B-
DECIGO and ET gives a factor of 2 improvement in all the parameter estimation, even if
we observe only the inspiral GW signal. This is further refined if we combine the data from
LISA, forming a triple-band network (although the estimated LISA SNR of ∼2.68 is likely
too small compared to the ‘realistic’ detection SNR threshold of ∼15 [87]). Importantly,
the normalized errors of BH spins (δχ̂s/χs, δχ̂a/χa) = (2.52, 5.71× 102) in this best case
imply that the magnitudes of individual BH spins σχ can be recovered with the fractional
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statistical errors (i.e., now accounting for the total multiband SNR of ρtot
ave = 6.52× 101 to

the uncertainties; recall Equation (28)) (σχ1 /χ1, σχ2 /χ2) = (2.43× 10−1, 2.51× 10−1).
The joint LISA, B-DECIGO, and ET observatories would be only viable network to

measure all the binary parameters of GW190521-like BBH system in the inspiral phase,
including BH’s component spins.

3.3. Result: Ringdown Phase

In Table 3, we show the parameter estimation errors of the central frequency fc
and quality factor Q (while suppressing those of t0 and φ0) for the ringdown phase of
the GW190521-like BBH in ground-based observatories. For simplicity, we estimate the
ringdown amplitude and associated SNR via the IMR amplitude model in Equation (16)
(we should note that this approximation is likely too raw because the ringdown amplitude
strongly depends on the starting time t0 of the ringdown phase, which is difficult to
determine in practice). We see that ET will be able to measure the QNM frequency of the
remnant BH with the statistical error ∼10−3. At the same time, however, the difference
in the normalized errors δ f̂c and δQ̂ between the aLIGO and ET observations is not so
evident. We speculate that this arises from the difference in the spectrum shapes (not
the overall amplitudes) because the ringdown waveform (13) is narrow-banded in the
frequency domain.

4. The Implications for Tests of GR via Multiband Observation

In this section, we explore to what extent the multiband observation of the GW190521-
like BBH system discussed in Section 3 could improve tests of GR. A handful of tests have
been already formulated and performed with merging BBH systems (see, for example,
Refs. [88–91]), and we follow the (very) simple tests proposed by Nakano et al. [66,92].

4.1. A Consistency test of GR with the Inspiral and Ringdown GW Signals

One possible test of GR with a BBH system is to establish the consistency of the mass and
spin of the final remnant BH determined by two different parts of the GW signals. Thanks to
the recent advancement in NR simulations of BBH systems [93–95] (see also Refs. [96–100]),
one can infer these values from the initial component masses and spins measured from the
inspiral GW signal (in the low-frequency band), making use of the NR fitting formulas for
the remnant properties of the final BH; recall Section 2.2. At the same time, they are directly
estimated from the succeeding merger–ringdown GW signal (in the high-frequency band).
This type of test is now known as the “IMR consistency test” [101,102]. By formulation,
multiband observations of heavy BBH mergers such as GW190521-like BBH systems will
be “golden binaries” [103] of such an IMR consistency test.

Given that the early inspiral and late ringdown GW signals will be best observed
in a different frequency band (such as “B-DECIGO + aLIGO” network etc.), we here
perform the multiband version of the “inspiral–ringdown consistency test” formulated
by Nakano et al. [66] (see also Refs. [103,104]), solely using the inspiral and ringdown
parts, and test the consistency of GR across the merger part, which is a highly dynamical
phase in a strong-field regime. We estimate the statistical errors on M f and χ f from the
inspiral GW signal by using the (normalized) statistical errors δθ̂ in Table 2 and applying a
standard variance propagation of non-linear functions to the specific NR remnant formulas
(“UIB formulas”) [71] publicly available in LALInference [105,106]. Here, we ignore the
systematic bias due to our specific choice of the NR remnant formulas, for simplicity
(see, for example, Refs. [99,102] for details). The errors from the ringdown GW signal are
estimated from Table 3, through the dependence of fc and Q on (M f , χ f ). Technically, this
procedure requires the evaluation of the partial derivatives (∂ fc/∂χ f )M f etc. to compute
the variance propagation. We construct the numerical function of QNM frequencies
M f fQNM(χ f ) with the B.H.P.C. code [75] around the best fit values of Equation (27), from
which these derivatives are extracted.
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In Table 4, we present the parameter estimation errors of the remnant mass M f
and spin χ f from both the inspiral and ringdown phases. For the reference, we also
present the same errors of the GW150914-like BBH with the redshifted component masses
(m1, m2) = (30 M�, 40 M�), spin magnitudes (χ1, χ2) = (0.9, 0.7), and the luminosity
distance DL = 0.4 Gpc (i.e., the redshift z ∼ 0.085). This system was analyzed as “System
B” in Ref. [38]. We see that the “LISA + B-DECIGO + ET” observation allows us the IMR
consistency test at the sub-percent precision both for the GW150914-like, and GW190521-
like BBH systems. The result of the GW190521-like BBH system is slightly worse than
the case of the GW150914-like BBH system because the luminosity distance of GW190521
(DL = 5.3 Gpc) is much larger than that of GW150914 (DL = 0.4 Gpc) [22,107,108]. Addi-
tionally, the GW190521-like BBH system has the central frequency fc ∼ 85 Hz lower than
that of the GW150914-like BBH system ( fc ∼ 350 Hz), missing the most sensitive frequency
of aLIGO and ET ∼ 250 Hz. If a GW190521-like BBH was observed at the same distance as
GW150914, the accuracy of its inspiral–ringdown consistency test would be at the level of
∼O(0.01%).

4.2. A Simple Test of the Remnant Compact Object with Quasinormal Modes

Another simple test of GR is to bracket whether the remnant object should be a BH
predicted by GR or not, making use of the parameter estimation errors of QNM frequencies
( fQNM = fR + i fI) obtained from the ringdown GW signals [66].

Figure 2 plots the 1σ, 2σ, 3σ, 4σ, and 5σ error contours on the fundamental (n = 0),
` = 2 = m mode of the QNM frequency in the ( fR, fI) plane, in the case of the GW190521-
like BBH system observed by aLIGO (left) and ET (right). The errors are estimated through
the results in Table 3 concerning the parameter estimation error on the ringdown GW signal
(after t0 and φ0 being marginalized out), and the outermost contour in each panel shows
the 5σ error. The black lines in each panel depict the Schwarzschild limit of | fI|/ fR, which
may be obtained by setting χ f = 0 in Equation (15) with Equation (12):

| fI|
fR
≈ 0.236. (29)

This is marginally consistent with the exact QNM frequency of the fundamental (n = 0),
` = 2 = m mode in the Schwarzschild limit. For example, the B.H.P.C. code gives | fI|/ fR =
0.23808 . . . , and the difference is negligibly small here. The key point of this test is that the
top-left side of the black line becomes the prohibited region in GR—i.e., for the (n = 0),
` = 2 = m mode the QNM frequencies ( fR, fI) of any rotating Kerr BHs must sit in the
bottom-right side of the black line.

In the aLIGO case, due to the low SNR (= 10.8) the parameter estimation errors
already go beyond the Schwarzschild limit at the 3σ level, and we cannot confirm whether
the remnant object is a BH predicted by GR with the 5σ level. For such low SNR events, the
“coherent mode stacking method” [109] will be useful. On the other hand, thanks to the
high SNR (=147) in the ET case, this simple test can necessarily confirm that the remnant
object is a GR-predicted BH. Note that the (M f , χ f ) plane has been discussed as Figure 5
in Ref. [3]. The remnant BH spin is restricted to 0 ≤ χ f < 1 in the analysis. Therefore,
the simple test presented in this paper is not applicable.

5. Summary and Discussion

This work underlines the multiband observation of the GW190521-like nonprecessing,
quasicircular “intermediate-mass” BBH with LISA and B-DECIGO in the low-frequency
band, combining it with aLIGO and ET in the high-frequency band. Our first result for
the parameter estimation errors is displayed in Tables 2 and 3; the statistical errors of the
binary’s mass parameters by B-DECIGO observation will be ∼10−2, and the multiband
observation with LISA, B-DECIGO, and ET will further improve them to a factor of 2,
even allowing the statistical errors of component BH spins at the accuracy level of ∼10−1.
Based on the ringdown analysis, ET will measure the QNM frequency with about O(0.1)%
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precision. Our second result for the GR tests is presented in Table 4 as well as Figure 2.
We showed that the multiband observation of the GW190521-like BBH system by LISA,
B-DECIGO, and ET would perform the inspiral–ringdown consistency test at a percent
level of precision.

The main point of our analysis is that there is the principal advantage of measuring
GW190521-like BBH systems using the full GW spectrum from milli-Hz to deci-Hz bands,
and to hecto-Hz band. We expect that our findings will motivate further investigation on
prospects for the multiband observation of GW190521-like BBH systems, which are much
alike the prototypical GW150914-like BBH systems [22].

Nevertheless, we emphasize that our study was performed with (very) simple meth-
ods. Therefore, our results should be only indicative and tentative. In the remainder of
this section, we discuss what work remains to be carried out to refine our analysis in
the future, so that we can eventually make a strong scientific case for multiband GW
astronomy/physics.

Assessment of Prospects

First, our methodology in Section 2 should be replaced with more modern, sophisti-
cated approaches to the GW data analysis; it will include (but not be limited to), for example,
the use of complete IMR waveforms such as EOB approach as well as IMRPhenom models
(see, for example, Ref. [110] and the references therein), full-fledged Bayesian posterior-
based techniques (see, for example, Refs. [105,111,112]), and more ‘realistic’ noise and
waveform models that account for the sky-location of sources as well as orbital configura-
tions of B-DECIGO [11] and LISA [8].

Second, our target GW190521-like BBH system was restricted to the nonprecessing,
spinning, quasicircular configuration; although there is large uncertainty, the spin pre-
cession of GW190521 is estimated as nonzero [3,4]. Future studies are therefore needed
to concern both the spin precession and orbital eccentricity of the BBH system: we will
briefly discuss the eccentric, non-spinning BBH system in Appendix A. In general, the BH’s
spins in the precessing binary have not only their magnitudes but also orientations, which
can be described by, for example, the effective inspiral spin parameter χeff (related to the
components aligned with the orbital angular momentum) and the precession spin param-
eter χp (related to the components in the orbital plane for the inspiral GW waveform).
Adding the orbital eccentricity to the (precessing) BBH system will be fully generic, and
the waveform modeling becomes (much) more complicated. Despite that challenge, there
is a considerable development of the analysis on fully generic binary systems [113].

Related to the point mentioned above, it should be noted that we have ignored
subdominant (` 6= 2, |m| 6= 2) harmonics in our GW waveform model. They are more
notable in the observed signal when system’s mass ratio becomes smaller (such as the
analysis of GW190814 [114] with the mass ratio q = 0.112+0.008

−0.009). With the subdominant
harmonics, one can access the source orientation to reduce uncertainty in the distance
estimation [115].

Third, we should note that there are two main hurdles to analyze the ringdown GW
signals; the low SNR with aLIGO and the starting time of the ringdown phase that is a priori
unknown to the whole observed GW signal (see, for example, Refs. [116,117] for discussions
on the starting time). Our simple analysis is carried out with the single-mode waveform
model (11) as the template to analyze the ringdown phase, assuming the starting time of
the ringdown phase to be t = t0, which corresponds to f = fR—i.e., just after the end of
the merger phase. While this choice does not affect our results of parameter estimation
errors, in practice the best fit values (that should be obtained rather than assumed in the
context of the full-parameter estimation against the raw GW data) can be biased if one
assumes the earlier starting time in the analysis (see, for example, Figure 5 in Ref. [88]).
Although one may delay the starting time to avoid the bias in the parameter estimation,
the SNR becomes much lower than the expected SNR with the assumption of t = t0.
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These obstacles will be overcome if one includes higher overtones (n > 0) into the
ringdown GW analysis [85], for which a much larger SNR than the single-mode analysis
will be expected. Indeed, a superposition of overtones (n > 0) in a single harmonic mode
will be observed [85,118–120] in the high SNR events (with ET). Another step-functional
improvement of the ringdown GW analysis will be offered by using completely different
signal analysis methods than the traditional matched filtering analysis, which may not
be always optimal for the ringdown GW signal. There is ongoing work to assess the
improvement due to new techniques for the ringdown GW signal analysis (such as Hilbert–
Huang transformation, autoregressive modeling, and neural networks) [121,122].

Fourth, there are other GR tests that were not covered in Section 4 but that can
be greatly improved using the multiband observation of GW195021-like BBH systems.
Reference [91] performs various tests of GR with the BBH events in GWTC-2 (see also the
reviews by Carson and Yagi [123] about the current and future test with GWs), including
(i) the IMR consistency test between the inspiral and postinspiral phases divided at some
cutoff frequency; (ii) constraining deviations from GR with parametric deformations to
a predicted GR waveform model, (iii) “BH spectroscopy” [124,125] with ringdown GWs
which contains two (or possibly more) QNMs [126,127], and so on.

The test (i) is similar to our inspiral–ringdown consistency test directly using the
information of the merger phase, and makes the most of the GW waveform. It has been
pointed out that the values of this test with GW150914-like BBH systems will be maximized
in the multiband observation [28,29,128]. Our result suggests that the same will be true for
the GW190521-like “intermediate-mass” BBH systems, too. Similarly, Gupta et al. [31,32]
have showed that the multiband observations of stellar- and intermediate-mass BBHs with
LISA and 3G detectors will be only workable way to carry out the most general version of
test (ii). Adding B-DECIGO (or any other planned GW detectors) in the deci-Hz band to
the multiband analysis, we expect the precision of this test will be unprecedented.

Based on the generalized likelihood ratio test [129], the test (iii) is performed (see,
for example, Section 9.5 in Ref. [130] and references therein, and also Ref. [131] for the
future O5 era). This test with aLIGO and Advanced Virgo alone is quite challenging to
have any conclusive result, simply because of the too low SNRs and larger parameter
estimation errors in the ringdown phase. In the 3G era, two (or possibly more) QNMs
will be measurable [126,127]. It is also helpful to use the multiband observation in order
to optimize ground-based detectors via the forewarnings from the low-frequency, LISA
band [132]. In either cases, the multiband observation with B-DECIGO and ET will give the
additional advantage of being able to perform the best test of Kerr hypothesis of remnant
BHs via BH spectroscopy.

Author Contributions: The authors contribute equally to this paper. All authors have read and
agreed to the published version of the manuscript.

Funding: H.N. acknowledges support from JSPS KAKENHI Grant No. JP16K05347. S.I. acknowl-
edges support from STFC through Grant No. ST/R00045X/1. S.I. also thanks to networking support
by the GWverse COST Action CA16104, “Black holes, gravitational waves and fundamental physics”.
N.S. and H.N. acknowledge support from JSPS KAKENHI Grant No. JP17H06358.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to thank Carlos O. Lousto, James Healy. and Leor Barack for
useful discussion. We also express our sincere gratitude to anonymous referees, who gave us valuable
comments and kindly pointed out many typos in a previous version of this manuscript. All the
analytical and numerical calculations in this paper were performed with Maple and Black Hole
Perturbation Club (B.H.P.C.) codes [75].

Conflicts of Interest: The authors declare no conflict of interest.



Universe 2021, 7, 53 16 of 25

Appendix A. Signal-to-Noise Ratio of GW190521-Like Eccentric BBH Systems

Throughout the bulk of this paper, we have looked at the GW190521-like BBH system
under the assumption of a quasicircular BBH merger. While the quasicircular evolution
of GW190521 is totally consistent with the LIGO/Virgo observation [3,4], due to the lack
of the inspiral GW signal long enough, it appears that alternative scenarios, for example,
GW190521 as an eccentric BBH merger also become relevant. Indeed, Gayathri et al. [44]
demonstrated that observed GW190521 data could be explained as an equal-mass, highly
eccentric (e = 0.7) BBH system (the orbital eccentricity (e = 0.7) is provided as initial data
for NR simulations at a frequency of 10 Hz for a system with the total mass of 50 M� that
is the orbital separation ∼ 24.5 mt for BBHs with the total mass mt [133] and note that the
NR waveforms are scaled by the total mass mt ), and the estimated source parameters are
quite different from those derived from the quasicircular BBH scenario (recall Table 1):
the primary mass mr

1 = 102+7
−11 M�, the secondary mass mr

2 = 102+7
−11 M�, and the total

mass mr
t = 204+14

−33 M� in the source’s rest frame, the mass ratio q = 1, the luminosity
distance DL = 1.84+1.07

−0.054 Gpc and the redshift z = 0.35+0.16
−0.09 (see Ref. [44] for the spin

parameters). The possibility of GW190521 with nonvanishing eccentricity is also pointed
out by Refs. [134,135].

Like the quasicircular case, the multiband observation of eccentric GW190521-like BBH
systems will once again help in distinguishing these two scenarios. Assuming a quadrupole
GW generation from a Newtonian Kepler orbit [136,137], the typical coalescing time tecc

c
and the characteristic strain amplitude hecc

c, n of the n-th harmonic are (see, for example,
Section 4.1 of Maggiore’s text [138] as well as Ref. [139]):

tecc
c ∼ tcirc

c (1− e2
0)

7/2, hecc
c ∼ hcirc

c g(n, e), (A1)

where tcirc
c and hcirc

c are corresponding circular-inspiral results given in Equations (1)
and (3), respectively, and the function g(n, e) will be defined momentarily. We see that the
early inspiral phase of the eccentric binary is well within the B-DECIGO and LISA bands,
too. Specifically, Holgado et al. [140] (see also the works by Amaro-Saoane [42,139,141])
pointed out that having deci-Hz GW observatories such as B-DECIGO, MAGIS [14] and
TianGO [15] will be a key element to observe the eccentric inspiral GW signals in multiband
networks because the GW signals may skip the LISA band entirely; hecc

c, n can be suppressed
by a function of g(n, e) significantly, depending on its eccentricity in the LISA band.

To better understand the visibility of eccentric BBH systems with aLIGO, ET, B-
DECIGO, and LISA, let us estimate the SNR of non-spinning, eccentric BBH inspirals
accumulated in each band; see also Ref. [142] for a recent review about waveform families
for the eccentric binary systems. We also see various active works on eccentric waveform
approximants [143–146]. The squared SNR averaged over the all-sky positions and binary
orientations may be written as [23,53,81,147]:

ρ2
ave ≈

1
5 ∑

n

∫ fend

fin

h2
c, n

fn S( f )
d (ln fn), (A2)

where S( f ) is the noise PSD for a given GW detector, and

fn = n forb = n f r
orb (1 + z)−1, (A3)

is the frequency of the harmonic in the observer frame, defined by the source’s rest-frame
frequency f r

orb of the Kepler orbit with the redshift z. The expression for the average
SNR (A2) recovers Equation (17) (of the inspiral part) in the circular orbit limit, e → 0
(note that the harmonics are restricted to only n = 2 in the circular limit because one has
lime→0 g(n, e) = δ2, n). The dimensionless characteristic strain hc, n of the n-th harmonic
is [147]:

hc, n ≡
1 + z
π DL

√
2

dEr
n

d f r
n

, (A4)
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where DL is the luminosity distance. Assuming the quadrupole formula applied to the
Kepler orbit (with the chirp massM in the observer frame) [136,137],

dEr
n

d f r
n
≡ π

3
M5/3

(1 + z)2
g(n, e)

F(e)

(
2
n

)2/3
(π fn)

−1/3, (A5)

is the emitted GW energy per unit frequency f r
n at the n-th harmonic measured in the

source’s rest frame, and we define:

g(n, e) ≡ n4

32

{[
Jn−2(ne)− 2e Jn−1(ne) +

2
n

Jn(ne) + 2e Jn+1(ne)− Jn+2(ne)
]2

+ (1− e2) [Jn−2(ne)− 2 Jn(ne) + Jn+2(ne)]2 +
4

3n2 J2
n(ne)

}
, (A6)

F(e) ≡
1 + 73

24 e2 + 37
96 e4

(1− e2)7/2

(
=

∞

∑
n=1

g(n, e)

)
, (A7)

with the Bessel functions of the first kind Jn(x) (n: integer); see, for example, Ref. [148] for
the derivation of Equation (A5).

For an inspiraling eccentric BBH, the evaluation of SNR through Equation (A2) re-
quires the knowledge of the slowly evolving orbital eccentricity e and the frequency fn in
time, under the gravitational radiation losses. Again, in the quadrupole formalism, this is
given by [136,137]:

forb
forb, 0

=

1− e2
0

1− e2

(
e
e0

)12/19
(

1 + 121
304 e2

1 + 121
304 e2

0

)870/2299
−3/2

, (A8)

with reference eccentricity e0 and orbital frequency forb, 0 (in the observer frame). One can
set these constants by the values at the last stable orbit (LSO) of the eccentric geodesic (of a
test particle) in the Schwarzschild geometry [149]: namely, e0 = eLSO and:

forb, 0 = fLSO =
1

2π(1 + z)mr
t

(
1− e2

LSO
6 + 2eLSO

)3/2

∼ 8.0 (1 + z)−1
(

mr
t

204M�

)−1
(

1− e2
LSO

6 + 2eLSO

)3/2

Hz, (A9)

with the total mass mr
t in the source’s rest frame. The frequency evolution (A8) is therefore

completely determined with a given single parameter eLSO.
We compute the averaged SNR ρave given in Equation (A2) for the GW190521-like,

non-spinning, eccentric BBHs with the source-frame masses (mr
1, mr

2) = (102 M�, 102 M�)
and the luminosity distance DL = 1.9 Gpc (i.e., the redshift z ∼ 0.35), which mimics the
eccentric BBH merger obtained by the NR simulations in Ref. [44]. We assume the five year
observation prior to the final merger determined by Equations (A1) and (A9), and apply
the same setup described in Section 3.1 to each n-th harmonic of GW strains. Because the
frequency evolution (A8) is expressed in term of eccentricity, in practice, we change the
integration variable of Equation (A2) from fn to e for the computational efficiency, making
use of d fn = n|d forb/de| de with (see, for example, Ref. [150]):

d forb
de

= −18
19

forb
e

F(e)

(1− e2)9/2
(

1 + 121
304 e2

) . (A10)

Additionally, the infinite summation over the harmonics n in Equation (A2) is trun-
cated at some finite value of nmax; we chose nmax = O(104) so that the resultant SNRs are
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guaranteed to have at least 3 significant digits (a good analytical estimator of nmax can be
found in, for examples, Refs. [151,152]).

In Table A1, we summarize the averaged SNRs ρave of the GW190521-like, non-
spinning, eccentric BBH accumulated in each GW band, for sample values of final eccen-
tricities at the last stable orbit eLSO = {10−6, 10−3, 0.1, 0.4, 0.6}. For references, the ‘initial’
eccentricities at fin for each band are also listed. It is approximated by solving Equation (A8)
for e at the detector’s initial GW frequency of the second harmonics forb = fin/2. We found
three main results: (i) B-DECIGO and ET always accumulate a total SNR greater than at
least 10, independent of the value of the final eccentricity eLSO; (ii) LISA has the detectable
SNR only when eLSO < 10−3. That is, the inspiral GW signal from the GW190521-like
BBH that has the high-eccentricity in the aLIGO band would entirely skip the LISA band;
(iii) the SNR with B-DECIGO becomes bigger when eLSO becomes smaller, while the SNR
with ET and aLIGO shows the opposite behavior. Therefore, the multiband observation
could provide much louder SNR than the single-band SNR across the full range of eLSO.
Using Equation (21) with the result in Table A1, we find that the multiband SNR with
B-DECIGO and ET are∼180 for eLSO = {10−6, 10−3}, ∼140 for eLSO = {0.4, 0.6} and∼100
for eLSO = 0.1.

Table A1. Averaged SNRs ρave of the GW190521-like, non-spinning, eccentric BBHs accumulated
in each band five years prior to coalescence, for given values of final eccentricity e = eLSO. We
assume the source-frame component masses (mr

1, mr
2) = (102 M�, 102 M�), and the luminosity

distance DL = 1.9 Gpc (i.e., the redshift z ∼ 0.35) [44]. The values in parentheses indicate the ‘initial’
eccentricity estimated from the initial GW frequency ( fin defined in Section 3) of the second harmonic
mode in each detectors. Note that aLIGO’s ‘initial’ eccentricity when eLSO = 0.6 is not displayed
because the second harmonic mode is not detectable in this case.

SNR and Eccentricity at fin

eLSO = 10−6 eLSO = 10−3 eLSO = 0.1 eLSO = 0.4 eLSO = 0.6

aLIGO 4.95 4.95 5.55 1.07× 101 1.11× 101

(1.64× 10−6) (1.64× 10−3) (0.150) (0.405) (· · · )
ET 7.64× 101 7.63× 101 8.73× 101 1.42× 102 1.42× 102

(8.98× 10−6) (8.97× 10−3) (0.505) (0.746) (0.793)

B-DECIGO 1.67× 102 1.70× 102 5.08× 101 1.85× 101 1.20× 101

(2.41× 10−3) (0.709) (0.982) (0.992) (0.993)

LISA 7.60 2.05 <1.00 <1.00 <1.00
(3.86× 10−3) (0.985) (>0.999) (>0.999) (>0.999)

Finally, although the parameter estimation is not the main focus here, we briefly
discuss the potential accuracy of the eccentricity measurement. In the small-eccentricity and
high-SNR limit, the orbital eccentricity may be measured within the fractional error [153]
(see also Ref. [154]):

δê0 ∼ 5× 10−5 (1 + z)5/3
√

2 + 3α

(
Mr

65.1M�

)5/3( f0

0.1 Hz

)5/3( e0

0.1

)−1
, (A11)

from Equation (2) in Ref. [153] by using a rough approximation with the quasicircular
amplitude and the eccentric phase, where δê0 denotes the parameter estimation error of e0
(at the GW frequency f0 for n = 2) normalized by the SNR. Here, the power α is due to the
approximation of the noise PSD by the power law, Sn ∼ f 2α (assuming α > −2/3), and
B-DECIGO may have α = 1, for example. This estimator implies that B-DECIGO would
be able to precisely measure the eccentricity of GW190521-like BBH systems. Because we
find that the ‘B-DECIGO + ET’ combination always provides the multiband SNRs larger
than ∼100 independent of the value of eLSO, one might expect that this combination best
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observes GW190521-like BBHs over the full range of eccentricity, helping to understand the
population properties of BBH mergers [155]. We will explore this possibility in future work.

Appendix B. Some More Noise Power Spectral Densities of (Next-Generation)
GW Detectors

In this appendix, we summarize some (fitting) curves of the noise PSD for both ground
and space-based, current and future GW detectors. These sensitivity curves are not used
in the bulk of this paper, but it will serve as a convenient all-in-one-place summary with
our notation; these curves with f in unit of Hz are shown in Figure 4 of Ref. [156] (except
DECIGO and TianQin).

• “LIGO O3a-Livingston” rough fitting curve (during the first half of LIGO/Virgo third
observing run by using Ref. [157]):

SO3a−L
n =

(
2.13068× 10−12 f−7.938724592 + 4.0× 10−22 f−1.0

+ 3.0× 10−24 + 1.74546× 10−27 f 1.178746922
)2

Hz−1. (A12)

• “LIGO O5” rough fitting curve (will be in the fifth observing run by using Ref. [157]):

SO5
n =

(
480985000.0 f−30.28419138 + 6.63263× 10−20 f−3.122716032

+ 6.15101× 10−21 f−2.089976737 + 1.32853× 10−27 f 1.059219544
)2

Hz−1. (A13)

• “ET-B” (another sensitivity curve for ET in Ref. [158] other than Equation (5); see also,
for examples, Ref. [159] and ET sensitivity page [160]):

SET−B
n = 1.0× 10−50

(
45540.5 f−15.64 + 6804.96 f−2.145

+ 3.05853 f−0.12 + 0.00258062 f 1.1
)2

Hz−1. (A14)

• “CE2” rough fitting curve (for Cosmic Explorer presented in Ref. [21]):

SCE2
n =

(
1.74408× 10−16 f−8.908164528 + 2.0× 10−25 + 8.23008× 10−32 f 2.095903274

)2
Hz−1. (A15)

• “DECIGO” (the noise PSD of the L-shaped configuration [161]):

SDECIGO
n =

{
7.05× 10−48

[
1 +

(
f
fp

)2
]
+ 4.8× 10−51 f−4

[
1 +

(
f
fp

)2
]−1

+ 5.53× 10−52 f−4
}

Hz−1. (A16)

with fp ≡ 7.36. Note that this expression accounted for the factor of (
√

3/2)−2 due to
DECIGO having arms that make an angle of 60◦.

• “TianQin” [13,162] (the sky averaged noise PSD; the expression below is quoted from
Equations (9) and (10) of Ref. [163]):
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STianQin
n = 3.0× 10−51

(
0.009505539123 f−5 + 95.05539123 f−4 + 0.07550033531 f−3

+ 755.0033531 f−2 + 3.703703703× 1010

+ 2.941767614× 1011 f 2
)

Hz−1. (A17)
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