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Abstract: For the Szekeres system which describes inhomogeneous and anisotropic spacetimes we
make use of a point-like Lagrangian, which describes the evolution of the physical variables of the
Szekeres model, in order to perform a canonical quantization and to study the quantum potentiality
of the Szekeres system in the content of de Broglie–Bohm theory. We revise previous results on
the subject and we find that for a specific family of trajectories with initial conditions which satisfy
a constraint equation, there exists additional conservation laws for the classical Szekeres system
which are used to define differential operators and to solve the Wheeler–DeWitt equation. From the
new conservation laws we construct a wave function which provides a nonzero quantum potential
term that modifies the Szekeres system. The quantum potential corresponds to new terms in the
dynamical system such that new asymptotic solutions with a nonzero energy momentum tensor of
an anisotropic fluid exist. Therefore, the silent property of the Szekeres spacetimes is violated by
quantum correction terms, which results in the quantum potential adding pressure to the solution.

Keywords: Bohmian mechanics; quantum cosmology; inhomogeneous spacetimes; exact solutions;
Szekeres universes

1. Introduction

Quantum gravity is motivated by the idea to have a quantum description of all the
matter fields and of their interactions in a gravitational system [1]. The dynamical variables
of the spacetime interact with the matter fields as is described by General Relativity.
Hence, in quantum gravity the dynamical variables of the spacetimes are described by
quantum physics. The study of the quantum properties of the whole universe as a unique
gravitational system is part of quantum cosmology. For extended discussions we refer
the reader to [1,2]. In this work we are interested in the analytic solutions of the Wheeler–
DeWitt Equation [3,4] for quantum cosmology in the case of inhomogeneous spacetimes
and in the derivation of quantum corrections on the semiclassical limit as described by de
Broglie–Bohm theory [5–9].

Inhomogeneous cosmological models are exact spacetimes which in general do not ad-
mit any isometry vector field while the conditions described by the cosmological principle,
that is, the limit of the Friedmann–Lemaître–Robertson–Walker universe is provided [10].
Inhomogeneous cosmological models can be used for the description of the universe in the
preinflationary era [11–15], as also in the description of the small inhomogeneities which
are found by cosmological observations [16–20]. This is an alternative approach based on
exact solutions and is different from the cosmological perturbation theory.

In the following we are interested in Szekeres spacetimes [21]. These spacetimes are
exact solutions of the gravitational field equations for a diagonal line element with two
dynamical variables and zero magnetic component for the Weyl tensor. The matter field is
described by an inhomogeneous pressureless fluid. Szekeres spacetimes are characterized
as “partially locally rotational” spacetimes [22]. The term “partially” indicates that the
exact solutions do not admit any isometry vector field. Furthermore, there is no information
dissemination with gravitational or sound waves on these exact solutions which means
that they are silent universes [23]. There are various interesting results in the literature
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which have shown that Szekeres spacetimes can play a significant role in the description of
various epochs of our universe [18,24–26], while the present isotropic and homogeneous
on large scales observed universe can be provided by Szekeres spacetimes for specific
initial conditions with or without an inflationary era in the cosmological evolution [27–29].
Various generalizations of the Szekeres spacetimes with other kind of matter fields can be
found in [30–36].

Szekeres universes are described by (pseudo)-Riemannian geometry with line element
ds2 = gµνdxµdxν, xµ = (t, x, y, z) and

gµν = diag
(
−1, e2α(t,x,y,z), e2β(t,x,y,z), e2β(t,x,y,z)

)
, (1)

where functions α(t, x, y, z) and β(t, x, y, z) satisfy the following algebraic-differential sys-
tem known as the Szekeres system. The first-order differential equations are

ρ̇ + θρ = 0, (2)

θ̇ +
θ2

3
+ 6σ2 +

1
2

ρ = 0, (3)

σ̇− σ2 +
2
3

θσ + E = 0, (4)

Ė + 3Eσ + θE +
1
2

ρσ = 0 (5)

with the algebraic constraint

θ2

3
− 3σ2 +

(3)R
2

= ρ, (6)

where θ =
(

∂α
∂t

)
+ 2

(
∂β
∂t

)
and σ2 = 2

3

((
∂α
∂t

)
−
(

∂β
∂t

))2
are the expansion rate and

the anisotropic parameter, ρ = ρ(t, x, y, z) is the energy density of the inhomogeneous
dust fluid and E = E(t, x, y, z) is the electric component of the Weyl tensor Eµ

ν = Eeµ
ν ;

and (3)R is the spatial curvature of the three-dimensional hypersurface. In addition to
the latter system, the dynamical variables satisfy the propagation equations which are
hν

µσα
ν;α = 2

3 hν
µθ;ν , hν

µEα
ν;α = 1

3 hν
µρ;ν in which hµν is the decomposable tensor defined by the

expression hµν = gµν − uµuν, where uµ is a unitary vector field, uµuµ = −1, which defines
the physical observer [37].

The integrability properties of the Szekeres system have been widely studied in the
literature [38–40], In [38], the Szekeres system has been written as a system of two second-
order differential equations and a conservation law quadratic in the derivatives of the
dynamical variables was derived. The gravitational field equations of the Szekeres model
do not admit a minisuperspace description. However, as was shown in [38], the time-
dependent field equations can be described by a point-like Lagrangian with respect to the
variables {ρ, E}, while the conservation law quadratic in the derivatives is derived easily
with the use of Noether’s theorem. In addition in this work we show that the Szekeres
system admits as an additional conservation law the Lewis invariant.

The Lagrangian description of the Szekeres system and the Noetherian conservation
law were applied in [41] to quantize and write the “time”-independent Wheeler–DeWitt
equation for the Szekeres system. The solution of the Wheeler–DeWitt equation which
satisfies the quadratic conservation law has been found which does not affect the classical
trajectories of the Szekeres system and there is no any quantum potential term provided.
Moreover, a probability function was found from which it was found that a stationary
surface of the probability function is related with classical exact solutions. A similar study
was performed recently for the Szekeres system with the cosmological constant term [42].

In the following we revise the analysis of [41]. Specifically, we find that, in the
special case for which the “energy” of the two-dimensional Hamiltonian system which
describes the Szekeres system vanishes, new conservation laws exist for the Szekeres
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system. These new conservation laws are used to define quantum operators which are
used as supplementary conditions on the Wheeler–DeWitt equation and to determine new
similarity solutions for the Wheeler–DeWitt Equation [43–45]. From the new wavefunction
we are able to construct a nontrivial quantum potential given by the Broglie–Bohm theory.
The effects of the quantum correction in the original Szekeres system is investigated as also
the effects on the dynamics are studied. The plan of the paper is as follows.

In Section 2, we present the two-dimensional Hamiltonian dynamical system which
is equivalent to the Szekeres system (2)–(5) and we derive the new conservation laws. In
particular, we show that the Szekeres system admits as conservation law the Lewis invariant
as also a family of conservation laws generated by Lie point symmetries when the energy
of the Hamiltonian dynamical system is zero. The new conservation laws are applied
for the derivation of quantum operators and for the derivation of exact solutions of the
Wheeler–DeWitt equation in Section 3. The quantum potential is determined in Section 4,
in which we show that a nonzero quantum correction exists for specific trajectories of the
Szekeres system satisfying a specific set of initial conditions. In Section 5, we study the
effects of the nonzero quantum correction in the Szekeres system. We write the modified
Szekeres system for which a contribution in the equation for the expansion rate θ follows
by quantum corrections. This new term modifies the dynamics of the Szekeres system
and leads to new asymptotic solutions with nonzero matter, pressure and anisotropic
component of an energy momentum tensor. These latter fluid components have their origin
in the quantum corrections as provided by Bohmian mechanics. Finally, in Section 6, we
summarize our results and we draw our conclusions.

2. Hamiltonian Formulation of the Szekeres System

From Equations (2) and (5) we find that

θ = − ρ̇

ρ
, σ =

2
(
ρ̇E−ρĖ

)
ρ(ρ + 6E)

. (7)

Thus, by substituting (7) into (3) and (4) we obtain an equivalent form for the Szekeres
system comprising two second-order differential equations with respect to the variables ρ
and E. The resulting equations are [38]

ü +
1
u2 = 0, (8)

v̈− 2
v
u3 = 0, (9)

where {u, v} are new variables defined as [38]

ρ(u, v) =
6

(u− v)u2 , E(u, v) =
v

u3(v− u)
(10)

with inverse transformation

u(ρ, E) =
(ρ

6
+ E

)− 1
3 , v(ρ, E) = −6E

ρ

(ρ

6
+ E

)− 1
3 . (11)

The parameters θ and σ, are expressed in terms of the new variables as

θ(u, v, u̇, v̇) =
(3u− 2v)u̇− uv̇

u(u− v)
, (12)

σ(u, v, u̇, v̇) =
uv̇− vu̇

3u2 − 3uv
. (13)

Equation (8) can be integrated by quadratures, that is,
∫ du√

2u−1+I0
= t− t0, where I0

is a constant of integration and a conservation law for the dynamical system (8)–(9). That
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is, I0 = u̇2 − 2u−1. Thus, by writing u = u(t) in (9) we obtain a linear equation of the
form v̈ + ω(t)v = 0, ω(t) = −2u(t)−3. This linear second-order equation is known as
the time-dependent oscillator [46] and it is a maximally symmetric equation. Moreover, it
admits as conservation law the Lewis invariant given by the expression [47–49]

Φ =
1
2

(
(yv̇− ẏv)2 +

(
v
y

)2
)

, (14)

where y(t) is any solution of the Ermakov–Pinney differential Equation [50], that is,

ÿ + ω(t)y =
1
y3 . (15)

Conservation law (14) is a new conservation law found for the Szekeres system and
has not been derived before. It is really a point of interest that the Lewis invariant and
the Ermakov–Pinney equation appears in inhomogeneous cosmology. Previously, the
Ermakov–Pinney equation has appeared and in other gravitational such in scalar tensor
theories and in modified theories of gravity [51,52].

It is easy to observe that the Szekeres Equations (8) and (9) can be derived by the
variation of the point-like Lagrangian [38]

L(u, u̇, v, v̇) = u̇v̇− v
u2 (16)

with Hamiltonian function

H = pu pv +
v
u2 ≡ h(u, v, pu, pv), (17)

where
u̇ = pv , v̇ = pu (18)

and
ṗv = − 1

u2 , ṗv = 2
v
u3 . (19)

That is a Hamiltonian description for the Szekeres system, for which we can see
that (17) is a conservation law with h(u, v, pu, pv) = const., which corresponds to the
“energy” of the Hamiltonian system, because Equations (8) and (9) are autonomous. In
terms of the momentum the conservation law I0 becomes I0 = p2

v − 2u−1, which is in
involution and independent of the Hamiltonian h. Hence, as has found before the Szekeres
system is Liouville integrable [38]. The conservation law I0 is related with a generalized
symmetry which generates a constant transformation for the dynamical system in which
the Action Integral for the Szekeres system remains invariant, that is, I0 is a Noetherian
conservation law. That is not true for the Lewis invariant (14).

The application of Noether’s theorem for point and contact transformations of the
Hamiltonian system (17), (18) and (19) as was found in [38] does not provide additional
conservation laws. However, the existence of conservation laws for the trajectories with
initial conditions h = 0 has been investigated before. When h = 0, the trajectories of the
Szekeres system can be seen as “null-like” trajectories which are conformally invariant, see
the discussion in [53–55].

Therefore, when h ≡ 0, we find that the Szekeres system (8), (9) admits the additional
conservation laws

I1 = u2v̇ or I1 = u2 pu , (20)

I2 =
u̇
v

or I2 =
pv

v
, (21)
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and
I3 = 2uv̇ + vu̇ or I3 = 2upu + vpv. (22)

These conservation laws can be derived by the application of Noether’s theorem for a
conformally related Lagrangian of function (16), while they are generated by conformal
transformations of the two-dimensional flat space which defines the kinetic energy for the
Lagrangian function (16).

Consider now the conformal transformation dt = u2dτ. The conformally equivalent
Lagrangian of (16) is given by

L̄
(

u,
du
dτ

, v,
du̇
dτ

)
=

1
u2

(
du
dτ

)(
dv
dτ

)
− v, (23)

where now the Szekeres system becomes

ü− 2
u

u̇2 + u2 = 0 , v̈ = 0. (24)

Under the conformal transformation the conservation law Ī1 becomes Ī1 = v̇. Hence,
with the use of the constraint equation 1

u2

(
du
dτ

)(
dv
dτ

)
+ v = 0, the closed-form solution of

the Szekeres system is expressed as

u(τ) = 2
(
(τ − τ0)

2 + u1

)−1
, v(t) = Ī1(τ − τ0). (25)

Hence, we can write the closed-form solution for the original variables

ρ(τ) =
3
(
(τ − τ0)

2 + u1

)3

2
(

I1(τ − τ0)
(
(τ − τ0)

2 + u1

)
− 2
) , (26)

E(τ) =
I1(τ − τ0)

(
(τ − τ0)

2 + u1

)4

8
(

I1(τ − τ0)
(
(τ − τ0)

2 + u1

)
− 2
) , (27)

θ(τ) =

(
(τ − τ0)

2 + u1

)(
I1

(
(τ − τ0)

(
(τ − τ0)

2 + u1

)3
− 4
)
− 12(τ − τ0)

)
8− I1

(
(τ − τ0)

2 + u1

)3 , (28)

σ(τ) =
I1

(
(τ − τ0)

2 + u1

)(
8 + (τ − τ0)

(
(τ − τ0)

2 + u1

))
6
(

8− I1

(
(τ − τ0)

2 + u1

)3
) . (29)

In a similar way closed-form solutions can be found for other conformal time dt→ dτ̄,
by using the remaining vector fields. However, they are the same solutions expressed in
different coordinates. Moreover, it is important to mention here that the constants of inte-
gration and the conservation laws, are constants with respect to the derivative in time, that
is, they are functions of the original coordinates of the spacetime, for instance t0 = t0(x, y, z)
and t0 is an essential integration parameter that is why we have not omitted it.

We continue our analysis by performing a canonical quantization for the Hamiltonian
(17) to write the Wheeler–DeWitt equation for the Szekeres system, while we use the
conservation laws related with point and contact symmetries to solve the Wheeler–DeWitt
equation and write the wave function.
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3. The Wheeler–Dewitt Equation

In terms of the 3+ 1 decomposition notation of General Relativity, the Wheeler–DeWitt
equation follows from the Hamiltonian constraint of the field equations [3]. The Wheeler–
DeWitt equation is not a single differential equation, but it defines a family of equations
where at every point of the 3-dimensional hypersurfaces a unique equation is defined.
However, in the case of the minisuperspace approximation the infinite degrees of freedom
of the superspace reduce to a finite number. Hence, instead of having an equation for each
point of the hypersurface, there follows a unique equation for all of the points [4].

The Szekeres system (2)–(5) does not admit a minisuperspace description. However,
through the dynamical variables it can be written as a two-dimensional Hamiltonian
system with constraint (17). By using that property we are able to study the quantization
of the Szekeres system. Specifically we perform a canonical quantization by promoting
the Poisson brackets to commutators and the variables on the phase space into operators
xi → x̂i = xi, pi → p̂i = i ∂

∂xi . Thus, from the Hamiltonian (17) there follows the time-
independent Schrödinger equation [41](

− ∂

∂u∂v
+

v
u2 − h

)
Ψ(u, v) = 0. (30)

At this point we can use the conservation laws to define operators which keep invariant
the Wheeler–DeWitt Equation (30). For arbitrary value of h from I0, there follows the
quantum operator (

∂

∂v2 +
2
u
+ I0

)
Ψ(u, v) = 0 , (31)

while, when h = 0, the additional operators(
u2 ∂

∂u
+ iI1

)
Ψ(u, v) = 0 , (32)

(
1
v

∂

∂v
+ iI2

)
Ψ(u, v) = 0 , (33)(

2u
∂

∂u
+ v

∂

∂v
+ iI3

)
Ψ(u, v) = 0 (34)

exist.
With the use of one of these differential operators we can construct a solution for the

Wheeler–DeWitt Equation (30). These solutions are called similarity solutions because the
differential operators are related with Lie symmetries for the differential Equation (30).

In [41], the differential operator (31) was applied, which provides the wavefunction

ΨA(h, I0, u, v) =
√

u√
2 + I0u

(
Ψ1

A cos f (u, v) + Ψ2
A sin f (u, v)

)
, (35)

where f (u, v) =
(

I3/2
0
√

u
)−1

(
(hu + I0v)

√
2I0 + I2

0 u− 2h
√

uarcsinh
(√

I0u
2

))
, for I0 6= 0,

or f (u, v) =
√

2
3
(
hu2 + 3v

)
u−

1
2 , for I0 = 0. Coefficients Ψ1,2

A are constants of integration. In
a similar way we can construct similarity solutions by using the other differential operators.
For more details on the properties of the wavefunction (35) we refer the reader in [41].

For h = 0, the wave function, Ψ(u, v), which satisfies the differential operator (32) is

ΨB(I1, u, v) = Ψ1
B exp

(
− i

2I1

(
v2 + 2

(I1)
2

u

))
, (36)
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while from (33) we find that

ΨC(I2, u, v) = Ψ1
C exp

(
i

2I2

(
2
u
+ (I2)

2v2
))

. (37)

Furthermore, from (34) there follows the wave function

ΨD(β, u, v) =
(

v2u
) β

4

(
Ψ1

D J β
2

(
v

√
2
u

)
+ Ψ2

DYβ
2

(
v

√
2
u

))
(38)

in which Jα(u, v) and Yα(u, v) are the Bessel functions of the first and of the second kinds,
respectively, and I3 = −iβ.

In the limit for which
√

2
u v → ∞ , the wave function (38) is approximated by the

functional form

Ψ̂D(β, u, v) = v
β−1

2 u
β+1

4

(
Ψ̂1

D exp

(
i

(√
2
u

v− (β + 1)
π

4

))
+ Ψ̂2

D exp

(
−i

(√
2
u

v− (β + 1)
π

4

)))
, (39)

where Ψ̂1
D, Ψ̂2

D are constants. Function Ψ̂D(β, u, v) describes oscillations of the polar

form Ψ(u, v) = Ω(u, v)eiS(u,v) with amplitude Ω(u, v) = v
β−1

2 u
β+1

4 and radial argument

S(u, v) =
(√

2
u v− (β + 1)π

4

)
.

4. Quantum Potential

In Bohmian quantum theory, the main difference from the classical theory is the
quantum Hamilton–Jacobi equation which for a wave function expressed in the Madelung
representaiton Ψ(y) = Ω(y)eiS(y) is defined as

1
2

GAB∂AS(y)∂BS(y) + V(y) + h + QV(y) = 0, (40)

where the term QV(y) is known as the quantum potential and is related with the amplitude
of the wave function

QV(y) = −
�Ω(y)
2Ω(y)

(41)

and � is the Laplacian of the time-independent Schrödinger equation, that is, for our model,
� = ∂

∂u∂v . The radial argument play the role of the action, so that the canonical momentum
is given as pA = ∂S

∂yA . In the WKB approximation the quantum potential it is neglected and
the classical limit is recovered. The Madelung representation is an alternative way to write
the Schrödinger equation in a real and complex imaginary part [56].

We continue with the calculation of the quantum potential for the wave functions
which were found above.

For the wave function ΨA(u, v) in [41] it was found that there is no nonzero corre-
sponding quantum potential. Wave functions ΨB(u, v), ΨC(u, v) are already written in
polar form with constant amplitudes. Hence the quantum potential related with these
wave functions is zero.

However, from the wave function ΨD(u, v) and in the limit
√

2
u v → ∞ which is

expressed in polar form from the amplitude Ω(u, v) = v
γ−1

2 u
γ+1

4 the quantum potential
term is

QV(u, v) =
Q0

uv
with Q0 = −

(
β2 − 1

)
8

. (42)

Therefore, for the trajectories with h = 0, a quantum correction term exists. Below,
we continue our analysis with the study of the effects of the quantum corrections on the
original variables and how the Szekeres system is modified.
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5. The Modified Szekeres System

With the use of the quantum potential the Hamiltonian equivalent of the Szekeres
system (17) is modified to be

H = pu pv +
v
u2 +

Q0

uv
≡ 0. (43)

Thus, the equations of motion are

u̇ = pv , v̇ = pu (44)

and
ṗv = − 1

u2 +
Q0

uv2 , ṗv = 2
v
u3 +

Q0

u2v
. (45)

Therefore with the use of the inverse transformation from the variables {u, v, u̇, v̇} →
{ρ, E, θ, σ} as is given by expressions (11), (12) and (13) we find that the only equation of
the Szekeres system which is modified is Equation (3) which becomes

θ̇ +
θ2

3
+ 6σ2 +

1
2

ρ +
Q0

72
ρ2

E2 (ρ + 6E)
4
3 = 0. (46)

Because we are working in the limit where
√

2
u v → ∞, it follows that√

2
u v = − 6

√
2E

ρ

( ρ
6 + E

)− 1
6 → ∞. Hence the last term of (46) is approximated as

Q0
72

ρ2

E2 (ρ + 6E)
4
3 → ε Q0

2 (ρ + 6E), where ε is an infinitesimal parameter such that ε−1 → ∞.
Thus, Equation (46) takes the form

θ̇ +
θ2

3
+ 6σ2 +

1
2

ρ +
εQ0

2
(ρ + 6E) = 0. (47)

We proceed with the study of the evolution of the modified Szekeres system and we
compare our results with that of the original system.

We use the new dimensionless variables in the θ-normalization

Ωm =
3ρ

θ2 , Σ =
σ

θ
, α =

E
θ2 , ΩR =

3
2

(3)R
θ2 . (48)

The modified Szekeres system is written as follows

Ω′m =
1
3

Ωm

(
36Σ2 + Ωm − 6ΩΛ − 1 + εQ0(Ωm + 18α)

)
, (49)

Σ′ = −α +
1
6

Σ(6Σ(1 + 6Σ)− 2 + Ωm − 6ΩΛ) +
ε

6
Q0Σ(Ωm + 18α), (50)

α′ =
1
6
(−ΣΩm + 2α(9Σ(4Σ− 1) + Ωm − 6ΩΛ − 1)) +

ε

3
Q0α

(
Ωm + 18α2

)
, (51)

where the algebraic Equation (6) takes the form

ΩR = 9Σ2 + Ωm − 1 (52)

in which prime “ ′” denotes total derivative with respect to the new independent variable
dτ = θdt. The dynamics for the latter system with ε = 0, has been studied in [23]. However,
from all the stationary points we are interested in the asymptotic solutions which satisfy the
constraint condition h = 0. Hence from (17) and (11)–(13) with the use of the dimensional
variables (48) the constraint equation is

18α2 − Σ(1 + 3Σ)Ωm + α(2− 6Σ(1 + 6Σ) + Ωm) = 0. (53)



Universe 2021, 7, 52 9 of 14

With the use of the constraint Equation (53) the three-dimensional dynamical system
(49)–(51) can be reduced by one dimension, that is, every stationary point P of the system
is defined in the two-dimensional space of variables P = (Σ(P), α(P)) and describes an
exact solution with expansion rate

θ̇

θ2 = −1
6

(
2 + 36Σ2 + Ωm + εQ0(Ωm + 18α)

)
= −q(Σ, α, Ωm). (54)

At every point P the expansion rate is found to be θ(t) = 1
q(t−t0)

, for
q(Σ(P), α(P), Ωm(P)) 6= 0 or θ(t) = const. for q(Σ(P), α(P), Ωm(P)) = 0.

5.1. Stationary Points of the Szekeres System

We study the dynamics of the classic Szekeres system (50)–(53) without the quantum
potential term. The stationary points P = (Ωm(P), Σ(P), α(P)) of the Szekeres system
have already been derived in [23]. However, because now we impose the constraint (53),
we present the analysis in detail.

From the constraint Equation (53) we see that α = a(Ωm, Σ) as follows

α+(Ωm, Σ) =
1
36

(
36Σ2 + 6Σ− 2−Ωm +

√
72Σ(1 + 3Σ)Ωm + (2− 6Σ(1 + 6Σ) + Ωm)

2
)

(55)

α−(Ωm, Σ) =
1
36

(
36Σ2 + 6Σ− 2−Ωm −

√
72Σ(1 + 3Σ)Ωm + (2− 6Σ(1 + 6Σ) + Ωm)

2
)

(56)

5.1.1. Branch α+

With the use of α = α+(Ωm, Σ) we obtain a two-dimensional system which admits
the following stationary points A = (Ωm(A), Σ(A)),

A1 = (1, 0) , A2 = (0, 0) , A3 =

(
0,−1

3

)
, A4 =

(
0,

1
3

)
, (57)

A5 =

(
0,

1
6

)
, A6 =

(
−3,−1

3

)
, A7 =

(
−8,−1

2

)
. (58)

Point A1 describes a spatially flat FLRW (-like) universe where the dust fluid domi-
nates, point A2 describes the asymptotic Milne (-like) universe. The asymptotic solutions
at the points A3, A4 describe Bianchi I (-like) spacetimes and specifically Kasner (-like)
universes, while the spacetime at point A5 is that of Kantowski-Sachs (-like) universe.
Points A6, A7 are not physically accepted because Ωm(A6) < 0 and Ωm(A7) < 0.

In order to infer for the stability of the stationary points we determine the eigen-
values of the linearized systems. The eigenvalues e(A) = (e1(A), e2(A)) are, e(A1) =(
− 1

2 , 1
3

)
, e(A2) =

(
− 1

3 ,− 1
3

)
, e(A3) = (1, 1), e(A4) =

( 7
3 , 1
)

and e(A5) =
(

0, 1
2

)
. There-

fore we conclude that A2 is a stable point, A1 is a saddle point while points A3, A4 and A5
are sources. Hence, the unique attractor on that branch is the Milne (-like) universe.

5.1.2. Branch α−

On the second branch for which α = α−(Ωm, Σ), the stationary points of the field
equations are

B1 =

(
0,−1

3

)
, B2 =

(
0,

1
6

)
and B3 =

(
−8,−1

2

)
. (59)

Points B1 and B2 have the same physical properties as A3 and A5, respectively, while
B3 is not physically accepted. As far as the stability of the stationary points is concerned,
we calculate the eigenvalues of the linearized system around the stationary points from
which we get e(B1) = (2, 1) and e(B2) =

(
− 1

2 , 0
)

, and infer that B1 is a source, while
for point B2 in order to infer for the stability we may apply the centre manifold theorem.
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The latter is not necessary to be true because we can always reduce the three-dimensional
system (49)–(51) into a two-dimensional system for other variables, for the set {Ωm, α}
or {Σ, α} and we can infer the stability properties there. We performed that analysis and
found that point B2 is a saddle point.

Therefore the unique attractor for the Szekeres system with the constraint condition
(53) is the Milne universe. In Figure 1 we present the phase-space portrait for the two-
dimensional dynamical system (49) and (50) for the two branches α+ and α−.

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

Ωm

Σ

Phase-space portrait for a+

0.0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0.0

0.2

0.4

Ωm

Σ

Phase-space portrait for a-

Figure 1. Phase-space portraits for the two-dimensional dynamical system (49) and (50) for α = α+(Ωm, Σ) (left figure)
and α = α−(Ωm, Σ) (right figure).

5.2. Stationary Points of the Modified Szekeres System

We perform the same analysis for the determination of the stationary points for the
modified Szekeres system with the quantum potential term by assuming that εQ0 6= 0.

5.2.1. Branch α+

For the α+ branch and for small values of εQ0, the stationary points are calculated

Ā1 = (1− εQ0, 0) , Ā2 = (0, 0) , Ā3 =

(
0,−1

3

)
, Ā4 =

(
0,

1
3
(1− εQ0)

)
, (60)

Ā5 =

(
0,

1
6

)
, Ā6 =

(
−3,−1

3

)
, Ā7 =

(
−8 + 4εQ0,−1

2
+

εQ0

18

)
. (61)

Points Ā6, Ā7 are not physically accepted, while Ā1 cannot be accepted because at

this stationary solution the condition
√

2
u v→ ∞ is violated. Therefore, the only stationary

solution which is modified is the asymptotic solution of point Ā4. The spatial curvature
at the point Ā4 is derived to be ΩR(Ā4) = −εQ0, from which we infer that the solution at
the point describes a Kantowski-Sachs (-like) universe or a Bianchi III (-like) universe for
εQ0 < 0. However, because εQ0 → 0, the solution at the point can be seen as the limit of a
Kasner (-like) solution.
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For the asymptotic solution at the points Ā4 we calculate q(Ā4) = −1 + 4
3 εQ0. Hence

θ̇

θ2 = −1 +
4
3

εQ0 , (62)

that is,

θ(t) =
1

1− 4
3 εQ0

1
(t− t0)

'
(

1 +
4
3

εQ0

)
1

(t− t0)
(63)

while the anisotropic index σ is

σ(t) ' 1
3

(
1 +

εQ0

3

)
1

(t− t0)
. (64)

Therefore, the power law indices of the scale factors follow from the algebraic system
p1 + 2p2 =

(
1 + 4

3 εQ0

)
, 1

3 (p1 − p2)
2 = 1

3

(
1 + εQ0

3

)
which gives

(p1, p2)A =

(
−1

3
+

εQ0

3
,

2
3
+

εQ0

2

)
, (65)

(p1, p2)B =

(
1 +

5εQ0

9
,

7
18

εQ0

)
. (66)

It is clear that the asymptotic solution at point Ā4 is not that of vacuum and that a
nonzero energy momentum tensor corresponds to that solution. In the 1+ 3 decomposition,
and for the comoving observer uµ = δ

µ
t , the energy momentum tensor has components

Tµν = µuµuν + phµν + πµν, (67)

where µ = Tµνuµuν , p = 1
3 Tµνhµν and πµν = Tκλ

(
hκ

µhλ
ν − 1

3 hκλhµν

)
.

Hence, for the power indices (p1, p2)A we calculate

µA =
7
9

εQ0

(t− t0)
2 , pA = −1

9
εQ0

(t− t0)
2 , (68)

Aπ
µ
ν = diag

(
0,−26

27
εQ0

(t− t0)
2 ,

10
27

εQ0

(t− t0)
2 ,

10
27

εQ0

(t− t0)
2

)
. (69)

Furthermore, for the set of the power indices (p1, p2)B we calculate

µB =
7
9

εQ0

(t− t0)
2 , pB = −1

9
εQ0

(t− t0)
2 , (70)

Bπ
µ
ν = diag

(
0,

22
27

εQ0

(t− t0)
2 ,−14

27
εQ0

(t− t0)
2 ,

14
27

εQ0

(t− t0)
2

)
. (71)

Recall that in the later solutions ṫ0 = 0 holds, but t0 is a function of the space variables
of the spacetime.

We conclude that a nonzero energy momentum tensor is introduced by quantum
corrections in Bohmian mechanics for the Szekeres system. Hence, the Szekeres system
admits semi-classical trajectories which do not remain silent in the quantum level.

As far as the stability of the stationary points is concerned, that remains invariant and
it is the same with that of the Szekeres system studied above.
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5.2.2. Branch α−

For α = α−(Ωm, Σ) we calculate the stationary points

B̄1 = (1−Q0, 0) , B̄2 =

(
0,−1

3

)
, B̄3 =

(
0,

1
6

)
, (72)

B̄4 =

(
0,

1
3
(1− εQ0)

)
, B̄5 =

(
−8 + 4εQ0,−1

2
+

εQ0

18

)
. (73)

The stationary point B̄5 is not physically accepted, while point B̄1 violates the condition√
2
u v→ ∞ and we do not consider it. Points B̄2 and B̄3 have the same physical properties

and stability with points B2, B3 respectively. B̄4 is a new point which has the physical
properties of point Ā4.

Therefore in the branch α = α−(Ωm, Σ) because of the quantum potential a new
stationary point exists. The eigenvalues of the linearized system around the point Ā4 are
found to be e(Ā4) =

(
1− 4

3 εQ0, 2
3 −Q0ε

)
from which we infer that point Ā4 is a source

and the asymptotic solution at the point is always unstable.

6. Conclusions

In this work we studied the quantization process for the Szekeres system and the
effects of the quantum corrections in inhomogeneous cosmological models as they are
described by the De Broglie–Bohm theory for quantum mechanics. We make use of previous
results and we wrote the Szekeres system in its Hamiltonian equivalent. We calculated
the conservation laws for the classical system and we derived previous results while we
were able to determine new conservation laws which were not found before. One of these
conservation laws is the Lewis invariant which is an important adiabatic invariant for the
oscillator with many applications in quantum mechanics. The remaining new conservation
laws which we derived exist when the Hamiltonian system is conformally invariant, that
is, when the conservation law of the “energy” is identical to zero. That means that these
new conservation laws, which are constructed by conformal symmetries of the kinetic
metric for the Hamiltonian system, exist for a specific set of trajectories for the classical
Szekeres system.

These new conservation laws applied to define differential operators are necessary to
quantize the Szekeres system. We found new similarity solutions for the wave function
of the Szekeres system. From these new wave functions we were able to constructed a
nonzero quantum potential by applying the approach of Bohmian mechanics. In order
to understand the effects of the quantum potential term in the original Szekeres system
we wrote the modified Szekeres system and we studied the dynamics and the asymptotic
solutions, for the trajectories with the initial condition the “energy” of the Hamiltonian
equivalent system to be zero.

The main result of this analysis is that because of the quantum correction term, the
dynamical evolution of the Szekeres system is modified, such that new asymptotic solutions
exist which describe approximately Bianchi I spacetimes which modify the Kasner solutions
of the Szekeres systems. These new Bianchi I solutions correspond to exact inhomogeneous
solutions with a nonzero anisotropic fluid component with nonzero pressure and stress
tensor terms. We conclude that quantum corrections can remove the “silent” property of
the Szekeres universe, making the Szekeres model more useful in cosmological studies.
Therefore, we show that quantum corrections can be seen as a mechanism to introduce
negative pressure term in the cosmological fluid which is interesting since it may have
applications for the description of the mechanism which starts the inflationary epoch.
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