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Abstract: Quantum gravity is expected to resolve the singularities of classical general relativity.
Based on destructive interference of singular spacetime-configurations in the path integral, we find
that higher-order curvature terms may allow to resolve black-hole singularities both in the spherically
symmetric and axisymmetric case. In contrast, the Einstein action does not provide a dynamical
mechanism for singularity-resolution through destructive interference of these configurations.
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1. Introduction

Within general relativity (GR), several solutions of the field equations develop curva-
ture singularities. These signal the geodesic incompleteness of the corresponding space-
times. The latter include the Schwarzschild, Kerr and Friedmann–Lemaître–Robertson–
Walker (FLRW) metrics, all of which are of relevance in astrophysics and cosmology. For
instance, detections of gravitational waves from black-hole binaries [1], observations of
stars orbiting the galactic center [2] and the very first image of the shadow of a black hole [3]
show that astrophysical objects exist for which the spacetime metric is well-approximated
by a Kerr metric, at least at a sufficiently large geodesic distance to the object. Yet, that
description must ultimately break down, as the curvature singularity of the Kerr metric
cannot be physical. This singularity occurs at large values of the local curvature, where
quantum-gravitational effects are expected to become important. Therefore, it is a key
requirement of quantum gravity to provide a mechanism that reliably resolves such sin-
gularities. We assume, that even in the quantum gravitational regime, an effective metric
description holds. Thus, the dynamical singularity-resolution mechanism in quantum
gravity must result in regular black-hole spacetimes that agree with the Kerr spacetime at
low curvature scales and are therefore candidate spacetimes that capture the true nature of
the observed compact objects.

We search for such a mechanism within the gravitational path integral. Schematically,
it reads

Z =
∫
Dgµν eiS[gµν ], (1)

where all possible metric configurations (modulo diffeomorphisms) are being summed
over. Thus, the singular spacetime metrics that constitute solutions of the field equations
in GR are included in the path integral. In addition, regular black-hole spacetimes, which
agree (approximately) with the Schwarzschild or Kerr solution outside the black-hole
horizon but do not harbor a curvature singularity, are also included. We ask whether there
can be a dynamics that forces singular black-hole spacetimes to interfere destructively,
suppressing the contribution of such spacetimes to the Lorentzian path integral, while
regular black-hole solutions provide a finite contribution. The mechanism at work here,
see [4], is that any configuration gµν on which the action S[gµν] exhibits a divergence,
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is excluded from the path integral through destructive interference. The divergence of
the action signifies a rapidly oscillating quantum-mechanical phase factor for singular
spacetimes. Thus, the singular spacetime and “neighboring” configurations (using an
appropriate notion of distance on the configuration space) interfere destructively. Here, it
is immaterial, whether or not the considered configurations solve the classical equations of
motion. In fact, destructive interference necessarily also involves off-shell configurations.

In this context, it is important to highlight that in the path integral expression (1),
S need not be the Einstein–Hilbert action. Indeed, little is known about the form of the
microscopic action S in the path integral, as observations actually constrain the effective
action Γ that is obtained once the microscopic degrees of freedom are integrated over.
These observational constraints restrict the leading-order terms in a curvature/derivative
expansion of Γ. For instance, the cosmological constant and the Newton coupling have
been determined with good accuracy, while, at the quadratic order in the curvature,
the observational constraints on the couplings are not very strong. The couplings are
restricted to ≤ O

(
10−61) [5], using sub-millimeter tests of Newton’s law [6]. Observational

constraints on curvature invariants of cubic or higher-order are not available yet.
Since these observational constraints all apply to the effective action, distinct, theoreti-

cal constraints are required to fix the form of the microscopic action S. In fact, demanding
a dynamical mechanism for singularity resolution through destructive interference can
serve as one such theoretical constraint, as we will show in this paper. Indeed, requiring
a divergence of the action on singular spacetimes divides actions into viable candidates
and ruled-out dynamics, since a curvature singularity of a given spacetime is not nec-
essarily reflected in a divergence of the action. This happens if the action is built out
of only those curvature invariants that remain finite despite a divergence in some other
curvature invariants. As a simple example, for the Schwarzschild black hole, the curvature
invariant R vanishes everywhere, while the invariant RµνκλRµνκλ diverges. Demanding a
dynamics that diverges on singular black-hole spacetimes can therefore serve as a principle
to distinguish different candidate dynamics for quantum gravity. Accordingly, we will
explore which form of the action is preferred in order to obtain a divergent action integral
for different singular black-hole solutions. For cosmology, a similar investigation has been
performed previously in [4] and has provided the intriguing result that curvature-squared
terms could ensure a homogeneous and isotropic early universe.

A further important theoretical constraint is the predictivity of the theory, linked to
its perturbative or non-perturbative renormalizability. Indeed, demanding control over
ultraviolet (UV) divergences disfavors the Einstein–Hilbert action

SEH[g] =
1

16πGN

∫
d4x

√
−g(R− 2Λ), (2)

as it is not asymptotically free and in fact not even perturbatively renormalizable [7–9].
Therefore, it cannot be predictive when used beyond the effective field theory regime [10,11],
since it features infinitely many free parameters linked to the infinitely many counterterms
required for its perturbative renormalization. Additionally, it has been debated whether or
not this dynamics can give rise to a well-defined Hartle–Hawking wavefunction, which
would provide a well-defined beginning of the universe [12–14]. Both points motivate
to go beyond the Einstein–Hilbert action. Generalizing to a curvature-squared action of
the form

S[g] =
∫

d4x
√
−g
(

1
16πGN

(R− 2Λ) + aR2 + bRµνκλRµνκλ

)
, (3)

results in asymptotic freedom [15,16] for an appropriate choice of signs of the couplings,
see [17] for a review. Yet, unless b = 0, this theory appears non-unitarity, as there is a
spin-2 ghost entering the perturbative graviton propagator around a flat background, [15],
see [18,19] for newer developments on this question.

Finally, the asymptotic-safety scenario [20,21] motivates the presence of higher powers
of curvature invariants in the action, see, e.g., [22–35], also in its unimodular form [36].
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At present, the form of the fixed-point action is not completely known; the so-called
Reuter fixed point and its relevant directions are only determined within truncations of
the full space of couplings, see [37–39] for reviews. The most important limitation of
these results in the present context is their origin in a Euclidean path integral, see [40]
for a first step in Lorentzian signature and [41] for a discussion of limitations and open
questions. Additionally, those results are obtained within the functional Renormalization
Group (RG) framework, see [42] for a review, which does not provide direct access to
the microscopic action S [43–45]. This motivates us to explore whether a requirement
different from the fixed-point requirement can provide useful constraints on the form of
the microscopic action.

In summary, we explore whether, in addition to the requirement of predictivity and
(non-) perturbative renormalizability, a candidate mechanism for dynamical singularity-
resolution of curvature singularities in black-hole spacetimes could also favor the presence
of higher curvature terms in the action.

This paper is structured as follows: in Section 2 we first motivate our choice of
curvature invariants. We provide the line elements and values of the scalar invariants for
various singular and non-singular black-hole spacetimes. In addition, relations between
the curvature invariants that are particular for a given spacetime are highlighted. Section 3
establishes our general ansatz for the gravitational action and introduces functions for
the spherically symmetric and axisymmetric spacetimes that are used for the subsequent
analyses. Following the examination of minimal Einstein–Hilbert and curvature-squared
dynamics for both singular and regular spacetimes, we turn to investigate beyond-four-
derivative terms in the action. We conclude and provide a short outlook in Section 4.

2. Singular and Regular Black-Hole Spacetimes and Their Curvature Invariants

We focus on two classes of black-hole metrics, namely those harboring a spacetime
singularity, encoded in a divergent curvature invariant like the Kretschmann scalar, as well
as regular ones where the curvature is finite everywhere. For our purposes, it is not relevant
whether these black-hole spacetimes constitute solutions to the classical gravitational
equations of motion, the Einstein equations, or to modified classical gravitational equations
of motion. The gravitational path integral includes all configurations, irrespective of
whether or not they solve Einstein’s equations. In particular, we demand a well-defined
theory of quantum gravity, that singular black-hole spacetimes interfere destructively.
On the other hand, we expect that with the appropriate boundary conditions, a regular
black-hole spacetime can emerge from the Lorentzian gravitational path integral as the
expectation value for the spacetime geometry—in accordance with the observation of
extremely compact objects in astrophysics. Therefore, we demand that (i) singular black-
hole spacetimes come with a divergent action, resulting in their destructive interference in
the Lorentzian gravitational path integral and (ii) regular black-hole spacetimes come with
a finite action, allowing their contribution to the gravitational path integral.

We focus on a set of curvature invariants K(i) up to mass dimension eight, which is
complete in a sense to be detailed below up to mass dimension six:

K(1) = R,
K(2) = RµνRµν,
K(3) = RµνκλRµνκλ,
K(4) = RµνκλR τ ω

µ κ Rντλω,
K(5) = RµνκλRκλρσRρσ

µν,
K(6) = Rµνκλ;τ Rµνκλ;τ ,
K(7) = RµνκλRκλρσRρσαβRαβµν,
K(8) = (K(3))2.

(4)

As has been shown in [46], a complete basis of non-derivative invariants can be
constructed without including the dual Riemann tensor. Thus, we include invariants
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built solely out of the Riemann tensor and the metric, for which there are 14 independent
ones in the most general case One can see this by considering that the Riemann tensor
has 20 independent components in four dimensions, and the metric has 10, but 16 of the
30 independent functions can be removed by a coordinate transformation, see, e.g., [47]
for a discussion. Including invariants which contain the covariant derivative, additional
invariants are present at each order in an expansion in derivatives and curvature., but only
four independent non-vanishing ones for the case of an axisymmetric spacetime which is a
vacuum solution to the Einstein equations [47]. We neglect topological invariants like the
Gauss-Bonnet term and the Hirzebruch signature. Further, we neglect invariants which
contain either R or Rµν. It will become clear in our analysis that their inclusion would not
alter our main result.

At sixth order in derivatives, a complete set includes both local invariants, which are
built purely out of the Riemann tensor and its contractions, as well as derivative invariants
which are built out of the Riemann tensor and its derivatives. Following [48], there are
two such local invariants at order 6 which do not include either the Ricci scalar nor tensor
and one invariant including two covariant derivatives and two Riemann tensors. On
the black-hole spacetimes which are solutions to the vacuum Einstein equations, it holds
that K(4) = 2K(5). In the more general case, these two differ and we, therefore, include
both. Let us also highlight that K(5) is the Goroff-Sagnotti counterterm from the two-loop
perturbation theory of Einstein gravity [8].

At order four in the curvature, we only include two invariants in order to demonstrate
the salient features of this order in the curvature.

2.1. Singular Black-Hole Spacetimes

In the following, we will focus on three paradigmatic examples of singular black-hole
spacetimes, namely the Schwarzschild black hole, Kerr black hole, and Vaidya spacetime.
We will briefly comment on the case of the additional solutions that appear in classical
curvature-squared gravity [49,50] in Section 3.2. In the following, we provide the explicit
form of the various curvature invariants for these metrics.

The Schwarzschild spacetime describes a spherically symmetric, static and asymptoti-
cally flat black hole in the GR vacuum with line element

ds2 = − f (r)dt2 + f (r)−1 dr2 + r2(dθ2 + sin2 θ dφ2), (5)

and lapse function

f (r) = 1− 2GNM
r

. (6)

Here, GN is the classical Newton coupling and M the black-hole mass measured
by a distant observer. The existence of a coordinate singularity at r = 2GNM in these
coordinates is irrelevant for our analysis, as we focus on curvature invariants.

As the spacetime is a vacuum solution to the field equations, the Ricci scalar van-
ishes, R = K(1) = 0, as do contractions of the Ricci tensor, e.g., K(2) = RµνRµν = 0.
The lowest-order non-vanishing curvature invariant in a curvature expansion is the
Kretschmann scalar,

K(3) =
48G2

NM2

r6 , (7)

and its divergence at r = 0 indicates that there is a curvature singularity at the center. The
higher-order local curvature invariants can all be expressed in terms of K(3) following a
simple dimensional argument as a direct consequence of the high degree of symmetry of
the Schwarzschild spacetime. For instance, except for the numerical prefactor, the relation
between K(4) and K(3) follows from their mass dimensionality,

K(4) =
1√
48

(
K(3)

)3/2
. (8)
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Similarly,

K(5) =
1√
12

(
K(3)

)3/2
, (9)

and finally

K(7) =
1
4

(
K(3)

)2
. (10)

The situation is different for the derivative invariants. While they can still be expressed
as a function of K(3), the black-hole mass M provides an additional mass scale that enters
K(6), such that

K(6) =
720G2

N M2

r9 (r− 2GN M)

= 5 32/3

2 21/3

(
K(3)

)4/3
(GNM)−2/3 − 5

√
3

8

(
K(3)

)3/2
.

(11)

K(6) is actually the lowest-order horizon-detecting invariant for the Schwarzschild
spacetime,

(
K(6)|r=2GN M

)
= 0, see [51].

The Kerr black hole is non-static and only axially symmetric due to its nonzero
specific angular momentum a = J/M. It will be advantageous for the purpose of efficient
evaluation of the curvature invariants [52] to work in rational polynomial coordinates,
where cos(θ) = χ, such that the line element is given by

ds2 = −
(

1− 2GN Mr
ρ2

)
dt2 − 4GN M a r(1−χ2)

ρ2 dt dφ + ρ2

∆ dr2 + ρ2

1−χ2 dχ2

+
(
1− χ2)(r2 + a2 + 2GNMa2r (1−χ2)

ρ2

)
dφ2 ,

(12)

where
∆ = ∆(r) = r2 − 2GNMr + a2, (13)

and
ρ2 = ρ2(r, χ) = r2 + a2χ2. (14)

Just as in the Schwarzschild case, the first non-vanishing curvature invariant is the
Kretschmann scalar, given by

K(3) =
48GN

2M2

(r2 + a2χ2)
6

(
r6 − 15r4a2χ2 + 15r2a4χ4 − a6χ6

)
. (15)

The ring-singularity is located at r = 0 in the equatorial plane at χ = 0, see Figure 1.
In particular, there is a sequence of positive and negative curvature regions around the sin-
gularity. Taking the Schwarzschild limit a→ 0, the curvature becomes positive everywhere
and diverges strongly in the entire r = 0 surface.
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Figure 1. We show the Kretschmann scalar as a function of r and χ for the Kerr metric with spin
parameter a/rg = 0.8. Positive and negative values alternate as a function of χ.

The values of the non-vanishing dimension-six operators are given by

K(4) =
48G3

NM3

(r2 + a2χ2)
9 r
(

r8 − 36r6a2χ2 + 126r4a4χ4 − 84r2a6χ6 + 9a8χ8θ
)

, (16)

K(5) = 2K(4), (17)

K(6) =
720G2

NM2

(r2 + a2χ2)
9

(
r8 − 28r6a2χ2 + 70r4a4χ4 − 28r2a6χ6 + a8χ8

)(
r(r− 2GNM) + a2χ2

)
. (18)

They all exhibit the divergence characteristic for the Kerr spacetime, K(i) → ∞ for
3 ≤ i ≤ 6 and r → 0 at χ = 0. In contrast to the Schwarzschild case, K(6) is no longer
horizon-detecting; instead, a particular combination of yet higher-order invariants plays
this role [51].

Finally, the dimension-six operator K(7) is given by

K(7) =
576G4

NM4

(r2 + a2χ2)12

(
r12 − 66a2r10χ2 + 495a4r8χ4 − 924a6r6χ6 + 495a8r4χ8 − 66a10r2χ10 + a12χ12

)
. (19)

Further, we consider the imploding Vaidya spacetime [53–56] as an example for a
singular non-vacuum spacetime. In Eddington–Finkelstein coordinates its line element can
be expressed as

ds2 = − f (r)dv2 + 2 dv dr + r2(dθ2 + sin2 θ dφ2), (20)

where

f (r, v) = 1− 2GNM(v)
r

. (21)

Here M(v) is the mass function depending on the advanced time v. In particular,
the spacetime is non-static and can be used to describe the formation of a black hole
during the gravitational collapse of a radiative source [55,56]. It represents an exact
solution to the Einstein equations with energy–momentum tensor Tµν = ρkµkν, where
ρ = (∂v M(v))/4πr2 is the energy density. The fluid’s four-velocity kµ is a null-vector
for radiation, thereby implying that the energy-momentum tensor has a vanishing trace.
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Therefore, taking the trace of the field equations with vanishing cosmological constant
shows that the Ricci scalar is zero,

K(1) = 0, (22)

and also
K(2) = 0. (23)

On the other hand, the Kretschmann scalar is given by

K(3) =
48GN

2M2(v)
r6 . (24)

Depending on the mass function, the spacetime may contain a singularity at the center.
The higher-order, local invariants are related to K(3) according to dimensional analysis,

K(4) = 48−1/2
(

K(3)
)3/2

, (25)

K(5) = 12−1/2
(

K(3)
)3/2

, (26)

K(7) =
1
4

(
K(3)

)2
. (27)

Finally, the derivative invariant K(6) is the first invariant that depends on the derivative
of the mass function,

K(6) = −144GNM(v)
r9

(
10GNM(v)2 − 5GNM(v)r + 2r2M′(v)

)
. (28)

2.2. Regular Black-Hole Spacetimes

Regular black-hole spacetimes are currently being explored in terms of particular
quantum-gravity approaches [57–64] as well as from a more agnostic point of view [65–69].
This interest is in part triggered by novel observational opportunities, most importantly,
gravitational wave observations from binary black-hole mergers [1], as well as imaging
with the Event Horizon Telescope [70]. Given that due to their curvature singularities the
observed black holes cannot be the Schwarzschild/Kerr solution from GR (even though
observationally, deviations have not been detected yet and are, in fact, expected to be
tiny outside the horizon based on a simple dimensional argument (see, however, [71] for
alternatives), it becomes key to understand the true nature of the observed objects. Here,
we are motivated by the possibility that they could be regular black-hole spacetimes. This
requires that these provide a potentially finite contribution to the Lorentzian gravitational
path integral and are not suppressed due to a divergent action.

As paradigmatic cases, we will focus on Hayward and Dymnikova spacetimes, as
well as the finite-spin counterpart of a Hayward black hole. Within General Relativity, the
stability of the inner horizons of such black-hole spacetimes has been discussed in [72,73];
we will ignore such dynamical questions here and only treat these spacetimes as some of
many that have to be included in the path integral.

The Hayward black-hole spacetimes [67] are given by the line element (5) with
lapse function

f (r) = 1− 2GNM
(

r2

r3 + 2g3

)
, (29)

where g is a positive parameter. It plays the role of a transition scale between the
Schwarzschild spacetime approximated at large radial distances and de Sitter space for
small radii, r � g. At the center of the spacetime, curvature invariants are regular. The
curvature invariants are given by
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K(1) =
24GNM

(r3 + 2g3)
3

(
−g3r3 + 4g6

)
, (30)

K(2) =
288G2

NM2g6

(r3 + 2g3)6

(
5r6 − 4r3g3 + 8g6

)
, (31)

K(3) =
48G2

N M2

(r3 + 2g3)6

(
r12 − 8r9g3 + 72r6γ6 − 16r3g9 + 32g12

)
, (32)

K(4) =
48G3

NM3

(r3 + 2g3)7

(
r3 − g3

)
·
(

r3 − 4g3
)3

, (33)

K(5) =
96G3

NM3

(r3 + 2g3)9

(
r3 − 4g3

)
·
(

r15 − 14g3r12 + 388r9g6 − 424r6g9 + 32r3g12 − 64g15
)

, (34)

K(6) =
144G2

NM2r4

(r3 + 2g3)9

(
r2(r− 2GNM) + 2g3

)(
5r12 − 80r9g3 + 1200r6g6 − 1856r3g9 + 2432g12

)
. (35)

Thus, the curvature remains finite at the center and assumes the de Sitter value

lim
r→0

K(3) =
24GN

2M2

g6 . (36)

As long as the de Sitter radius remains small enough, g/rg ≤
(

4/3
√

3
)2/3

, an outer
event horizon continues to exist. It is worth noting that arguments from quantum grav-
ity have been used to motivate Hayward black holes, see, e.g., [74–76]. For instance,
the asymptotic-safety-inspired approach to resolve singularities based on a Renormaliza-
tion Group improvement of classical line elements [57,61,62,77,78] results in an effective
Hayward spacetime.

Next, we consider the static and spherically symmetric Dymnikova spacetime with
the line element (5) and r-dependent mass function

M(r) = M

(
1− e

− r3

2g3

)
. (37)

Here, we only list two selected examples from the set of curvature invariants to
highlight the difference to the Schwarzschild spacetime. The Ricci and Kretschmann scalar
are non-zero but finite,

K(1) =
3GNM

2g6 e
− r2

2g3
(
−3r3 + 8g3

)
, (38)

K(3) =
3G2

N M2

4r6g12

27r12 − 48

(
−2 + e

r3

2g3

)
r6g6 − 64

(
−1 + e

r3

2g3

)
r3g9 + 64

(
−1 + e

r3

2g3

)2

g12

. (39)

At the center, the curvature reduces to that of de Sitter space, just as for the Hayward
spacetime (36), whereas it is asymptotically Schwarzschild at large r. The Dymnikova met-
ric has also been motivated as a model for black holes in asymptotically safe gravity [63].

Our final example for regular black holes is the finite-spin counterpart of a Hayward
black hole. It is obtained by the application of the Newman–Janis algorithm to the static
Hayward spacetime, see [79,80]. It results in a metric given by the Kerr-metric Equation (12)
with r-dependent mass function,

M(r) = M
(

r3

r3 + 2g3

)
. (40)
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The resulting spacetime is regular everywhere,

K(1) =
24GNM g3

(r2 + a2χ2)(r3 + 2g3)
3 r2
(
−r3 + 4g3

)
, (41)

K(2) =
288G2

N M2r4g6

(r3+2g3)6(2r2+a2χ2)4 ·
(

r4(8g6 − 4g3r3 + 5r6) + 4r2 a2 χ2(4g6 − 5g3r3 + r6)

+ a4χ4(r3 − 4g3)2
)

,
(42)

and

K(3) = 48GN
2 M2

(r2+a2χ2)
6
(r3+2g3)

6

(
32r12(r3 + 2g3)4 − 48r10(r2 + a2χ2)(r3 + 2g3)3(r3 + 4g3)

+ 12g6(r3 − 4g3)2r4(r2 + a2χ2)4
+ 2r8(r2 + a2χ2)2(r3 + 2g3)2(9r6 + 76g3r3 + 212g6)

− r6(r2 + a2χ2)3(r3 + 2g3)(r9 + 6g3r6 + 72g6r3 + 416g9)).

(43)

We do not provide explicit expressions for the higher-order invariants due to their
lengthiness.

At the spacetime points where the Kerr metric exhibits a singularity, (r, χ)→ (0, 0),
the curvature remains finite. However, the values of some of the curvature invariants at
(r = 0, χ = 0) depend on how this point is approached, see also [68],

lim
r→0

lim
χ→0

K(1) =
12GNM

g3 ,

lim
χ→0

lim
r→0

K(1) = 0.
(44)

A similar behavior can be observed for K(2), K(3), K(4) and K(5). On the other hand,
K(6) → 0 as r → 0, independent of whether one restricts to the equatorial plane first.

Figure 2 shows the Kretschmann curvature for a finite choice of the rotation parameter
a and the Hayward parameter g. For smaller values of the spin, the contour areas of
constant curvature extend along with larger ranges of the angular coordinate. Thus,
spherical symmetry is approximated.

At finite values of the spin parameter, smaller values of the Hayward parameter lead
to a strong increase of the absolute value of the Kretschmann scalar along the radial and
angular direction towards the critical point (r, χ) = (0, 0). This is consistent with the Kerr
singularity occurring for g→ 0. At the same time, regions of negative Kretschmann scalar
move in towards (r, χ) = (0, 0), cf. Figure 3.
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Figure 2. We show the Kretschmann scalar as a function of r and χ for the rotating Hayward metric
in Equation (12) with mass function given by (40) with spin parameter a/rg = 0.5 and Hayward
parameter g/rg = 1.0.
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Figure 3. We show the Kretschmann scalar as a function of r and χ for the rotating Hayward metric in Equation (12) with
mass function given by (40) with spin parameter a/rg = 0.5 and Hayward parameter g/rg = 0.5 (upper panel), g/rg = 0.25
(central panel) and g/rg = 0.1 (lower panel). Decreasing values for the Hayward parameter lead to negative-curvature
regions approaching the point r = 0, χ = 0 from further outwards. Note the changing plot-ranges in the three panels.
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3. Singularity-Resolving Dynamics

In the following, we work with a gravitational action of the form

S[g] =
N

∑
i=1

gi

∫
V

d4x
√
−gK(i), (45)

where the gi denote the corresponding couplings. We will start with the simple choice
S = SEH, for which N = 1, and then include progressively higher invariants, until we find
that the spacetime integral results in a divergence. In other words, we will use the main
idea from [4] in a slightly different way: demanding that singular spacetimes exhibit a
divergence allows us to differentiate between different candidates for gravitational actions.

Here, we are not interested in divergences that arise from the infrared (IR), i.e., large
distances, such as one would encounter when integrating the spacetime volume for the
entire Minkowski spacetime. Instead, we will introduce an appropriate IR cutoff, indicated
by the subscript V in the spacetime integral in Equation (45). In the presence of symmetries,
an integration over a non-compact direction associated with a Killing vector trivially results
in a (potentially IR-divergent) prefactor, but carries no information on dynamical singularity
resolution. Therefore, we will leave out the corresponding integration. For instance, we
drop the time integration in the case of a static or stationary metric, since it can be split-
off trivially from the integral over curvature invariants, and leads to an IR divergence
unless a finite boundary is introduced. Any such constants and/or factors arising from
these integrations are omitted in the following. We only carry out the integration over the
coordinates the curvature invariant K depends on.

For the spherically symmetric case, all curvature invariants depend on the radial
distance to the origin only, i.e., in our choice of coordinates K(i) = K(i)(r). On this basis,
we define the functions

Ssph
(i)(rUV, rIR) =

∫ rIR

rUV

dr′ r′2K(i)(r′). (46)

The integral runs from a UV cutoff, denoted by rUV, to an IR cutoff, rIR. It will
turn out that the limit rIR → ∞ can be taken trivially, as all spacetimes we consider are
asymptotically flat and, therefore, the upper integration boundary does not contribute.
We are interested in the limit rUV → 0, where curvature singularities occur in classical
black-hole spacetimes which may lead to divergences in the corresponding actions.

For the axially symmetric case one has to be more careful, since the singularity in the
Kerr spacetime lies at r → 0 and χ→ 0, i.e., in the middle of the integration region for the
χ-integral. Accordingly, we define the action as

S(i)
ax (rUV, rIR, ε) =

∫ rIR

rUV

dr′
(∫ −ε

−1
dχ′(r′2 + a2χ2)K(i)(r′, χ′) +

∫ 1

ε
dχ′(r′2 + a2χ2)K(i)(r′, χ′)

)
. (47)

The limits rUV → 0 and ε → 0 have to be taken with some care, while the limit
rIR → ∞ is again trivial due to asymptotic flatness.

The values of the Functions (46) and (47) in general carry non-zero mass dimension,
since they only contain the salient part of the action integral and we do not account for
the dimensionful coupling constants in front of the curvature invariants in the Lagrangian.
The mass dimensions of our action functions depend on the curvature invariant K(i). In
the following, (46) and (47) are nevertheless referred to as the ’action functions’.

3.1. Einstein–Hilbert Dynamics

We first focus on the Einstein–Hilbert action, i.e., we set N = 1 and consider only
K(1) = R in the action (45).

For a vacuum solution to the Einstein equations with vanishing cosmological constant,
the Ricci scalar vanishes, thus, Ricci flatness applies to the Schwarzschild and the Kerr
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black hole. For the imploding Vaidya spacetime, the four-velocity of the ingoing radiation
is a null-vector, such that the Ricci scalar also vanishes. Therefore an Einstein–Hilbert
dynamics is ruled out as a viable choice to enable the destructive interference of all singular
black-hole metrics in the path integral.

Instead, we are led to conclude that terms beyond the Ricci scalar should be added to
the microscopic gravitational action, in order to provide a potential mechanism for destruc-
tive interference of singular spacetimes. Thus, there are two independent lines of arguments
against the Einstein–Hilbert action as the microscopic action for gravity. First, it does not
give rise to an asymptotically free or safe theory, instead, requiring the introduction of a
finite new-physics scale, as also indicated by its perturbative non-renormalizability [7–9].
Second, it is insufficient to suppress singular cosmological spacetimes [4], and as argued
here, singular black-hole spacetimes.

3.2. Curvature-Squared Dynamics

Accordingly, higher-derivative terms should be included in the action. In this subsec-
tion, we study the impact of curvature-squared invariants on the behavior of the action
around the singularity. Due to the Gauss–Bonnet identity in four dimensions, the combina-
tion
√−g

(
RµνκλRµνκλ − 4RµνRµν + R2) forms a total derivative and can be integrated to

provide a topological invariant, which we do not consider in our action. Thus, we limit our-
selves to adding K(2) and K(3) to the Einstein–Hilbert action. Then the action (45) becomes

Squad[g]=
∫

d4x
√
−g

(
K(1)

16πGN
+ g2K(2) + g3K(3)

)
. (48)

For black-hole metrics which are solutions to the Einstein equations, all but the last
term in Equation (48) vanish; thus we focus on the Kretschmann scalar, K(3). For the
Schwarzschild black hole, the action Function (46) diverges in the vicinity of r = 0, since,

lim
rUV→0

Ssph
(3)(rUV, rIR → ∞) = lim

rUV→0

16GN
2M2

r3
UV

. (49)

For the Vaidya metric, the integral over the advanced time only contributes by an
overall prefactor to the spacetime integral. Therefore the dependence of the action on
the radial coordinate is the same as for the Schwarzschild spacetime, resulting in a UV
divergence and a corresponding suppression in the path-integral.

To highlight that there is indeed destructive interference based on this divergence, we
consider a particular class of deviations from Schwarzschild, which are parameterized by
an r-dependent mass function M(r). We assume that this function can be Taylor-expanded
around the origin,

M(r) = ∑
i=imin

ri m(i), (50)

with m(i) the corresponding Taylor coefficients. Herein, none of the coefficients of the
Taylor expansion is a priori related to the ADM mass, since the latter is measured at infinity,
and depends on M(r) away from the origin. Thus, various black-hole spacetimes (which
are off-shell in GR), could feature the same ADM mass, but be parameterized by varying
Taylor coefficients m(i). For such a parameterization, the corresponding path integral over
this restricted configuration space CM can be written as∫

Dgµν

∣∣∣
CM

=
∫

Πidm(i), (51)

with an appropriate constraint on the m(i) that we do not work out here since it does not

matter for our argument. The leading-order term in S(3)
sph for rUV → 0 is of the form
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S(3)
sph(rUV, rIR) ∼

G2
N

r3
UV

(
48m2

(0) + 32m(0)m(1)rUV + 16m2
(1)r

2
UV + 32m(1)m(2)rUV ln(rUV/rIR)

)
+O(rUV). (52)

Thus, for a large class of black-hole spacetimes, which are off-shell configurations
with respect to GR, a UV divergence in the action is present. Only such spacetimes,
in which imin = 2 in Equation (50), i.e., those for which curvature invariants are not
singular enough, display a finite action. The fact that the configuration parameterized
by M(r) are off-shell within GR is immaterial for our considerations. It highlights that
the divergence of S(3)

sph on the Schwarzschild spacetime is not an isolated divergence
in configuration space. Instead, a large family of metrics for which deviations from
Schwarzschild are encoded in M(r), feature the same divergence, such that destructive
interference between these configurations could happen in the path integral. In particular,
within the restricted configuration space given by Equation (51), we find an integral of the

form
∫

dm(1)dm(0)
ei (α0m(0)+α1m(1)), with α0,1 diverging factors following from Equation (52).

These rapidly varying phase factors lead to destructive interference between the spacetimes
in this restricted configuration space.

Alternatively, one may consider off-diagonal elements in the metric, encoding pertur-
bations in the spin-2-mode, i.e., gravitational waves. The result is analogous to the case of
M(r) that we just considered: As long as the perturbations do not lift the central curvature
singularity of the spacetime, it will result in a divergence of the higher-derivative action.
Therefore, the corresponding perturbed black-hole spacetimes may interfere destructively
in the path integral.

Let us also add that for the additional singular black-hole metrics that appear as the so-
lution to the classical equations of motions in curvature-squared gravity, the Kretschmann
scalar scales like r−6 (for the so-called (1,-1)-family ) and like r−8 (for the so-called (2,2)
family) near the origin, respectively [49,50], while the volume element scales like r2. Ac-
cordingly, an action containing K(3) will feature a UV divergence on these solutions.

Next, we consider the Kerr metric. Let us first show the result of integrating
√

gK(3)

in the equatorial plane, where

∫ rIR→∞

rUV

dr
√
−g K(3)

∣∣∣
χ=0

=
16G2

NM2

r3
UV

, (53)

which diverges as rUV → 0. We expect to rediscover this divergence once we also integrate
over χ, where all angular directions except χ = 0 are expected to provide a non-singular
contribution to the action function. Due to the singularity in the equatorial plane, we have
to split the integral over the Kretschmann scalar as in Equation (47) and obtain:

lim
rUV→0

lim
ε→0

S(3)
ax (rUV, ∞, ε) = 16 G2

N M2 lim
rUV→0

lim
ε→0

(
r3

UV−rUVa2

(r2
UV+a2)3 − ε rUV

r2
UV−a2ε2

(r2
UV+a2ε2)3

+
r3

UV−rUVa2

(r2
UV+a2)3 − ε rUV

r2
UV−a2ε2

(r2
UV+a2ε2)3

)
,

(54)

where the contributions vanish in the limit rUV → 0 except for parts of the contri-
butions from the boundary that approaches the ring-singularity. The vanishing of the
remaining contributions is due to the fact that the Kretschmann scalar changes sign be-
tween χ = −1 and χ = 1 several times, cf. Figure 1. In the above expressions, taking the
naive limits rUV → 0 at finite ε or ε → 0 at finite rUV results in a vanishing result. To
properly account for the effects of the ring singularity, the limits ε→ 0 and rUV → 0 should
be taken concertedly, i.e., we define rUV = γ ε with some finite γ, such that taking ε→ 0
allows us to approach the ring-singularity. As a result, we obtain
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lim
ε→0

S(3)
ax (γε, ∞, ε) = lim

ε→0
32 γ G2

N M2 γ2 − a2

(γ2 − a2)3
1
ε2 . (55)

Therefore, we conclude that the inclusion of the Kretschmann scalar in the Lorentzian
action very likely provides a mechanism to dynamically suppress curvature singularities.
To confirm that this is indeed the case in the axisymmetric case, deviations from Kerr may
be explored, in a similar way to our study of deviations from Schwarzschild. As we do not
expect that the change in Killing vectors changes the general mechanism, but simply makes
the calculation more lengthy, we do not explicitly show that deviations from Kerr (some of
which can be parameterized by considering M→ M(r, θ)) also result in a divergent action.

Conversely, regular black-hole spacetimes should not be ruled out from the path inte-
gral. In the following, we therefore verify the finiteness of the integral over the curvature
of the regular black-hole spacetimes. This must be independent of the chosen boundary
conditions. In particular, the action function for regular black holes must be regular at the
point where the Schwarzschild and Kerr spacetimes are singular.

The action Function (46) with the Kretschmann scalar of the static Hayward black hole
assumes the form

Ssph
(3)(rUV) =

16GN
2M2

5
(
r3

UV + 2g3
)5

(
5r12

UV + 120g6r6
UV + 100g9r3

UV + 72g12
)

. (56)

It is evident that a non-zero Hayward parameter g ensures a finite and non-zero value
of the action function when evaluated over the entire r-range,

lim
rUV→0

Ssph
(3)(rUV) =

36GN
2M2

5g3 . (57)

For the Dymnikova-spacetime, we obtain a similar result,

lim
rUV→0

Ssph
(3)(rUV) =

27GN
2M2

2g3 . (58)

Let us now go beyond the highly symmetry-restricted case and consider axisymmetric,
regular spacetimes. By considering S(3)

ax for the rotating Hayward black hole, we can
confirm its finiteness and check the Kerr and Schwarzschild results by investigating the
appropriate limits of the parameters a and g, cf. Figure 4. There, the expected finiteness of
S(3)

ax (0, ∞, 0) is confirmed numerically for finite g.
These results confirm that including additional terms quadratic in the curvature tensor

does not affect the finiteness of the action for regular spacetimes, as expected.
An action that is divergent on a given configuration is expected to result in destructive

interference in the path integral, suppressing the contribution of that field configuration.
Thus, the results of this subsection show that a curvature-squared action could suppress
axi-symmetric and spherically symmetric, singular black-hole spacetimes. At the same
time, such an action remains finite for regular black-hole spacetimes, ensuring that they
could contribute to the path integral. Here, we do not investigate whether such spacetimes
correspond to a saddle-point of the path integral. In particular, such a question can only be
meaningfully investigated within a matter-gravity path integral, going beyond the scope
of this work.
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Figure 4. We show the value of the logarithm of the numerical integral for the action function (in
appropriate units) as a function of Hayward parameter g and specific angular momentum a. The
expected strong increase of the action function for a→ 0 and g→ 0 is clearly visible. Note that the
smallest Hayward parameter and smallest spin parameter we consider are g = 0.05 and a = 0.01,
respectively, such that the action function is always finite.

3.3. Beyond Four-Derivative Dynamics

In the previous section, we found that the inclusion of the Kretschmann scalar in the
action is sufficient to exclude singular black-hole spacetimes from the path-integral based
on the requirement of a finite action for non-zero contributions. Following a principle of
canonical power counting, this would be the first term expected to occur in the dynamics
when going beyond the Einstein–Hilbert action. Yet, the microscopic gravitational action
is not bound to follow canonical power counting, and the coupling of the Kretschmann
scalar might vanish in a given quantum gravity setting. This motivates us to go beyond
the four-derivative terms in the dynamics.

Interestingly, within the asymptotic-safety program, there are indications that the
coupling associated to the invariant K(5), the Goroff–Sagnotti term, is irrelevant [81], while
there might be a gravitational universality class at which other curvature-cubed terms
might come with relevant couplings [82].

We expect that an action built from any higher-order curvature invariant that does nei-
ther contain R nor Rµν will exhibit an ultraviolet divergence, when evaluated on a singular
black-hole spacetime. To provide some evidence for this expectation, we consider a com-
plete basis at order 6 in derivatives and highlight the behavior of two order-8 invariants.

For the Schwarzschild black hole, the integrals over K(4,5,7,8) all exhibit a divergence
in the limit rUV → 0 which follows their dimensionality:

S(4,5)
sph (rUV, ∞) ∼

G3
NM3

r6
UV

, (59)

S(7,8)
sph (rUV, ∞) ∼

G4
NM4

r9
UV

. (60)

The horizon-detecting invariant K(6) features a leading divergence S(6)
sph(rUV, ∞) ∼ r−6

UV

and a subleading r−5
UV term.

For the Vaidya spacetime, the action function S(4,5,7,8)
sph follows from the Schwarzschild

results Equation (59) and Equation (60) with the substitution M→ M(v). As the invariant
K(6) is a horizon-detecting one in the Schwarzschild limit, it depends on M′(v) for the
Vaidya case, and the corresponding action function reads

S(6)
sph(rUV, ∞) =

24GNM(v)
r6

UV

(
6rUVM(v)− 10M(v)2 − 3r2

UVM′(v)
)

. (61)
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To calculate the action function Sax(rUV, rIR, ε) for the Kerr spacetime, one should
again be careful how to take the limits ε → 0 and rUV → 0 in order to account for the
presence of the ring singularity. Thus, we set rUV = γε for some constant γ > 0, and then
take ε→ 0. In this way, we obtain

S(4)
ax (γε, ∞, ε) =

16
7

G3
NM3

(
a6 − 21a4γ2 + 35a2γ4 − 7γ6

(a2 + γ2)6ε5 − 1
a6

)
+O(ε), (62)

S(5)
ax (γε, ∞, ε) = 2S(4)

ax , (63)

S(6)
ax (γε, ∞, ε) = 96

7 G2
NM2

(
GN M(a6+21a4γ2−105a2γ4+35γ6)

(a2+γ2)6ε5

− 7γ(3a6−7a4γ2−7a2γ4+3γ6)
(a2+γ2)6ε4 − GN M

a6

)
+O(ε).

(64)

Finally, constructing action functions from the two dimension-eight operators we
consider, we do not obtain a finite part in the action function:

S(7)
ax (γε, ∞, ε) = −128

5
G4

NM4γ

(
5a4 − 10a2γ2 + γ4)(a4 − 10a2γ2 + 5γ4)

(a2 + γ2ε2)9ε8 , (65)

S(8)
ax (γε, ∞, ε) = 1

20 G4
NM4 1

a9γ8ε8

(
− 1

(a2+γ2)9

(
1575a25γ + 13, 650a23γ3 + 52, 290a21γ5

+ 116010a19γ7 + 172, 505a17γ9 + 116, 100a15γ11 + 300, 924a13γ13 + 166, 100a11γ15

+ 172, 505a9γ17 + 116, 010a7γ19 + 52, 290a5γ21 + 13, 650a3γ23 + 1575aγ25
)

+ 1575(a8 − γ8ε8)arccot
( γε

a
)
− 1575(a8 − γ8)arctan

(
a
γ

))
.

(66)

As we expected, the inclusion of any of these curvature invariants suffices to ren-
der the action divergent and thus provides a dynamical mechanism to resolve black-
hole singularities.

4. Conclusions and Outlook

In this paper, we have used a mechanism of dynamical singularity-resolution in
black-hole spacetimes to motivate the inclusion of higher-order curvature invariants in
the microscopic gravitational action in the Lorentzian path integral. Specifically, we have
shown that the inclusion of a complete basis of invariants constructed from the Riemann
tensor of mass dimension four leads to a divergent action for the Schwarzschild, Kerr and
Vaidya spacetimes. These divergences are associated with large values of the curvature,
i.e., to the central curvature singularity. In turn, a divergent action in the Lorentzian path
integral corresponds to an infinitely fast oscillation of the quantum-mechanical phase
factor and is hence expected to result in a dynamical suppression of the corresponding
field configurations through destructive interference. Thus, the presence of higher-order
curvature invariants constructed from the Riemann tensor, which reflect the curvature
singularities of various black-hole spacetimes, providing a dynamical mechanism to resolve
those singularities. Thereby, they fulfill a key requirement for a viable quantum theory of
gravity. This is in contrast to the Einstein–Hilbert action, which vanishes when evaluated
on these spacetimes, as these are vacuum solutions of GR. In addition to its perturbative
renormalizability, its failure to provide a mechanism for dynamical singularity-resolution
is a second reason to discard the Einstein–Hilbert action as a candidate for a fundamental
action for gravity. Beyond GR, either Stelle’s higher-derivative gravity [15] or asymptoti-
cally safe gravity, both of which contain appropriate higher-curvature terms, could fulfill
our criterion.

Let us make several comments regarding our results:
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(i) To dynamically suppress singular black-hole spacetimes that are vacuum solutions of
Einstein equations, a local action constructed from higher powers of R or Rµν alone
is insufficient and invariants built out of the Riemann tensor are required. In turn,
a local action containing these further invariants may feature ghosts These could
be avoided by including appropriate functions of the curvature invariants [83,84]
or might be present, but not result in a physical inconsistency of the theory [18,19].
which would be absent if one would restrict to higher powers in R, only. The latter
could be taken as a motivation to focus on f (R)-type of actions for gravity. Here, we
provide evidence that f (R) actions, while potentially providing physically interesting
effective descriptions of gravity, fail at a key requirement of quantum gravity, namely
dynamical singularity-resolution. In some sense, therefore, the challenge of potential
ghosts and the dynamical resolution of singularities appear to be two sides of the
same coin.

(ii) The contribution of black-hole spacetimes to the gravitational path integral has
been used to argue that quantum gravity should result in the violation of global
symmetries [85–87]. The argument hinges on the presence of black-hole spacetimes
in the gravitational path integral. As we have argued, this depends on the choice of
dynamics. The latter is also key to understand the final state of black-hole evaporation.
Our study motivates that under certain circumstances, at least the contribution of
certain singular black-hole spacetimes to the gravitational path integral could van-
ish. This could in turn imply that quantum-gravity approaches which feature such
higher-order terms in the action might not generically violate global symmetries.
This might for instance include asymptotically safe gravity, where indeed results in
Euclidean studies of truncated dynamics for gravity-matter systems do not provide
any indications for the violation of global symmetries [88,89].

Our work motivates several potential extensions:
First, our study can be extended to include additional singular black-hole spacetimes,

in particular additional models of spherical and non-spherical collapse, in order to investi-
gate whether our proposed mechanism for dynamical singularity-resolution also removes
those spacetimes from the path integral. Since perturbations of black-hole spacetimes, i.e.,
quasinormal modes, do not affect the presence of the singularity, our present study already
extends directly to perturbed Kerr and Schwarzschild spacetimes

Second, there is an interesting question to explore in a semi-classical framework:
By requiring that regular black-hole spacetimes correspond to a saddle-point of the ac-
tion, one might find a principle that further distinguishes between the various possible
curvature terms.

Third, given a candidate for the microscopic action S in the Lorentzian path integral,
motivated by singularity-resolution, one may next ask whether this action provides a dif-
ferent conclusion to the viability of the Hartle-Hawking wavefunction, using the methods
in [13,90].

Fourth, changing the underlying symmetries in the path integral, e.g., to foliation-
preserving diffeomorphisms, as, e.g., in Horava-Lifshitz gravity [91] (see [92] for a recent
review), could require different invariants to be included for singularity-resolution. In this
spirit, a comparison of diverse quantum-field-theoretic proposals for gravity which differ
in (a) the underlying (gauge) symmetries and/or (b) the choice of fields, see, e.g., [93–96]
for proposals which are classically equivalent to GR, could be illuminating. In particular,
demanding destructive interference between singular field configurations could provide a
principle to distinguish between different candidate theories.
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