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Abstract: We compute the effective potential for scalar fields in asymptotically safe quantum gravity.
A scaling potential and other scaling functions generalize the fixed point values of renormalizable
couplings. The scaling potential takes a non-polynomial form, approaching typically a constant for
large values of scalar fields. Spontaneous symmetry breaking may be induced by non-vanishing
gauge couplings. We strengthen the arguments for a prediction of the ratio between the masses of the
top quark and the Higgs boson. Higgs inflation in the standard model is unlikely to be compatible
with asymptotic safety. Scaling solutions with vanishing relevant parameters can be sufficient for
a realistic description of particle physics and cosmology, leading to an asymptotically vanishing
“cosmological constant” or dynamical dark energy.

Keywords: quantum gravity; asymptotic safety; effective scalar potential; inflation; Higgs inflation;
Higgs boson mass

1. Introduction

The effective potential for scalar fields is the key ingredient for spontaneous symmetry
breaking by the Higgs mechanism in the standard model or for grand unified theories.
It determines the properties of inflationary cosmology as well as dynamical dark energy.
We compute here the influence of quantum gravity on the shape of the potential, motivated
by the following issues:

Clash between mass of the Higgs boson and Higgs inflation. Within asymptotically safe
quantum gravity [1,2] the value of the Higgs boson mass has been predicted to be 126 GeV
with a few GeV uncertainty [3]. This prediction relies on two assumptions. The first is a
positive and substantial gravity-induced anomalous dimension A that renders the quartic
scalar coupling λH an irrelevant parameter. Then λH is predicted to have a very small
value at and near the ultraviolet (UV) fixed point. The second assumes that once the metric
fluctuations decouple at momenta sufficiently below the effective Planck mass the running
of λH is given by the standard model with, at most, small modifications. First indications
for a positive A have been seen in early investigations how matter couples to gravity in
asymptotic freedom [4]. Physical gauge fixing, or a gauge invariant flow equation for a
single metric [5], show a graviton domination of A [6] and establish a positive A [6–8],
substantiating the prediction of the mass of the Higgs boson.

The prediction of the Higgs boson mass concerns the properties of the effective scalar
potential at field values much smaller than the effective Planck mass M. In contrast,
models of Higgs inflation [9,10] explore instead properties of the potential at field values
somewhat below M, or even exceeding M. Usually only particle fluctuations are included
in the computation of the effective potential, while the contributions of metric fluctuations
are neglected. It has been argued [11] that asymptotically safe quantum gravity may
substantially influence the behavior of the Higgs potential at large fields. In this paper we
aim for a more global view of the effective scalar potential, ranging from small field values
to large ones exceeding M.
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A global view in field space is also necessary because of a potential clash between
Higgs inflation and the prediction for the mass of the Higgs boson. The prediction for the
mass of the Higgs boson is based on the quantum gravity prediction of a very small quartic
scalar coupling for a re-normalization scale near the Planck mass. It has been obtained
under the assumption of a minimal coupling of the Higgs boson to gravity.

In the presence of a non-minimal coupling of the type ξh†hR between the Higgs
doublet h and the curvature scalar R, the gravitational fluctuations contribute to the flow
of the quartic coupling:

k∂kλ ≈ Aλ + Bξ
k4ξ2

M4 , (1)

with k the re-normalization scale. The fixed point behavior of quantum gravity that is
responsible for the prediction of the mass of the Higgs boson, concerns a range where k2 &
M2, such that the effects of the metric fluctuations are relevant. These metric fluctuations are
the key for the prediction, since they are responsible for the substantial positive anomalous
dimension A. This anomalous dimension is universal in the sense that it does not depend on
the representation of the scalar field or on interactions beyond its gravitational interactions.

A modification of the gravitational contribution by the presence of the non-minimal
coupling ξ could lead to an important quantitative change for the prediction of the Higgs-
boson mass. Indeed, the fixed point for flow (1) occurs for:

λ∗ = −
Bξ k4

AM4 ξ2, (2)

and ceases to be very small for large ξ. In our approximation we find:

Bξ =
5v

12π2(1− v)3 , (3)

with v = 2U/(M2k2) involving the value of the scalar potential U (or cosmological con-
stant). In the relevant range of k one has for the standard model M2/k2 ≈ 0.01, v ≈ −10,
and A ≈ 0.05. Insertion into Equations (2) and (3) yields λ∗ ≈ 100ξ2. Due to the effects
of other couplings, the flow of the quartic coupling is slightly more complicated than
Equations (1) and (3). The detailed form of Bξ also depends on details for the setup of the
flow equations. Nevertheless, it is clear that a large value of ξ is not compatible with a fixed
point at a small value of λ. We will find that for ξ0 larger than about 0.01, asymptotic safety
still predicts the mass of the Higgs boson, but this prediction ends outside the observed
range.

For Higgs inflation, a rather large non-minimal coupling is usually assumed, say
ξ∞ & 10. This is several orders of magnitude larger than the value ξ0 allowed by the
observed mass of the Higgs boson. The non-minimal coupling ξ∞ for Higgs inflation
concerns large values of the Higgs field, while the vacuum mass of the Higgs boson
concerns values of h†h many orders of magnitude smaller than M2. Since ξ may be a
function of h†h, an overall view of a whole coupling function is needed, similar to the need
of an overall view of the effective scalar potential. We will find that ξ∞ is typically more
than a factor 10 smaller than ξ0, exacerbating the clash.

For asymptotically safe quantum gravity, the ultraviolet fixed point needs scaling
solutions both for the effective potential and the coupling of scalar fields to the curvature
scalar. It is on these scaling solutions that we concentrate in the present paper. For the
scaling solutions found, ξ turns out to be rather small over the whole range of the Higgs
doublet field. These solutions are compatible with a successful prediction of the mass of
the Higgs boson. On the other hand, for the pure standard model coupled to gravity Higgs
inflation with a large non-minimal coupling, ξ is not compatible with asymptotic safety. It
remains to be seen if Higgs inflation with small ξ is viable.
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Link between inflation and dynamical dark energy. For cosmology, a global view on
the effective potential for a scalar singlet field χ is also needed for models of cosmon
inflation [12–14] and dynamical dark energy or quintessence [15]. In these models the
scalar singlet plays the role of the inflation or the cosmon as a quintessence field, or both
simultaneously. It has been found [11] that the effective potential for a singlet χ shows a
rather rich structure, due to a crossover between different fixed points. While “gravity scale
symmetry” associated to the UV fixed point is responsible for the almost scale invariant
primordial fluctuation spectrum, an infrared (IR) fixed point [6,16–18] is reached for large
values of χ. The “cosmic scale symmetry” associated to the IR fixed point is spontaneously
broken by any nonzero χ. The associated pseudo-Goldstone boson (cosmon) has a very
small mass for large χ. It is responsible for dynamical dark energy [15].

The present paper addresses this issue as well. The parts concentrating on the fluctua-
tions of a scalar singlet and the metric, with all other particles treated as massless (sects
3, 6) can be seen as a computation of the effective potential U(χ) for the scalar singlet χ.
We reproduce features found earlier in the context of dilaton quantum gravity [11,17,18].
Our rather simple approach helps to understand these features. It also puts the candidate
scaling solutions found earlier in a wider context of possible scaling solutions.

Concerning the properties of the effective potential for non-singlet scalar fields as the
Higgs doublet, we do not distinguish here between quantum Einstein gravity [2], where
the Planck mass M̄ corresponds to a relevant parameter and constitutes an intrinsic mass
scale, breaking quantum scale symmetry explicitly, and dilaton quantum gravity [17,18],
where the effective Planck mass depends monotonically on χ, such that for a suitable
normalization of χ one has M = χ for large χ. In the latter case, quantum scale symmetry
can be preserved, being only spontaneously broken by χ 6= 0. Whenever we use M2, the
reader may substitute it by a function F(χ).

Regimes of the re-normalization flow and predictivity of quantum gravity. The re-normalization
flow describes the change of the effective scalar potential for increasing length scales, as
more and more fluctuation effects are included. It is characterized by different regimes.
The “quantum gravity regime” is associated to re-normalization scales exceeding M, corre-
sponding to length scales smaller than the Planck length. In this regime the fluctuations
of the metric play an important role. The quantum gravity regime is associated to the UV
fixed point defining quantum gravity as a non-perturbatively re-normalizable quantum
field theory (asymptotic safety). At the UV fixed point one has a scaling behavior;

M2(k) = 2w∗k2 , (4)

with w∗ the fixed point value of the dimensionless coupling w(k) = M2(k)/(2k2) (in case
of additional scalar fields χ we may replace w∗ by a scaling function depending also on
χ2/k2). In the quantum gravity regime, the effective scalar potential takes a scaling form
where the dimensionless potential u = U/k4 only depends on dimensionless field ratios
as ρ̃ = ρ/k2, with ρ a typical quadratic invariant formed from scalar fields (for the Higgs
doublet one has ρ = h†h, with h the re-normalized scalar doublet, while for a scalar singlet
χ we use ρ = χ2/2). The main emphasis of the present paper is the computation of the
“scaling potential” u∗(ρ̃).

A second “particle regime” concerns the flow for k � M. In this regime the metric
fluctuations decouple effectively, up to the flow of an overall constant in U, e.g. the
cosmological constant. The flow equation for the field dependence of U is governed by the
effective particle theory for momenta below the Planck mass. This flow can be computed
in perturbation theory. It obviously depends on the precise particle content of the the
effective low energy theory. The flow in the particle regime may again be characterized by
an approximate fixed point, and the associated “particle scale symmetry”. For a standard
model as effective low energy theory, this fixed point is associated to the (almost) second
order character of the vacuum electroweak phase transition. A similar fixed point may
exist for grand unified theories (GUT). The present paper will not deal with the flow in the
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particle regime which has to be added for k� M. The transition from the quantum gravity
regime to the particle regime is modeled by a simple behavior for the k-dependent Planck
mass,

M2(k) = M2 + 2w∗k2 , (5)

where M2 is associated to the observed Planck mass, either a constant or given by a scalar
field, M2 = χ2.

For extremely large field values, ρ/k2, one finally reaches the infrared regime. There
graviton fluctuations may become again important due to a potential instability in the
graviton propagator. A “graviton barrier” [6] prevents the potential to rise for large field
values stronger than the field dependent squared Planck mass. We will not be concerned
very much with the infrared regime in the present investigation.

The present paper concentrates on the quantum gravity regime. We are mainly
interested in general characteristics of the scaling form of the effective potential, as the
location of the minimum ρ̃0 at ρ̃0 = 0 or at ρ̃0 6= 0, and the general behavior as ρ̃ vanishes
or increases beyond ρ̃0. We put emphasis on the dependence on gauge couplings and
Yukawa couplings that we treat here as constants. This covers two scenarios. The first is
that the fixed point values of these couplings may be at nonzero values. In this case the
gauge couplings and Yukawa couplings typically correspond to irrelevant parameters that
can be predicted by quantum gravity [19]. Or, the second, the UV fixed point corresponds
to zero values of these couplings, which are relevant parameters. The flow away from the
fixed point is, however, very slow in the vicinity of the fixed point. For their observed small
values the gauge and Yukawa couplings only increase rather slowly with decreasing k. To
a good approximation they can be treated as constants in this regime. Our investigation of
scaling solutions for constant gauge and Yukawa couplings describes then approximate
scaling solutions in the vicinity of the UV fixed point.

Scaling solutions. The main emphasis of the present paper concerns scaling solutions, in
particular the scaling potential. We will briefly discuss some aspects of the flow away from
the scaling potential. For models with fundamental scale invariance, the scaling solutions
are all what is needed. For a computation of the scaling potential in asymptotically safe
quantum gravity, we first treat w∗ as an unknown parameter. Our computation needs
therefore to be supplemented by a computation of w∗. The latter depends on the precise
particle content of the model. In Section 6 we extend this to a fixed scaling function
w∗(ρ̃) = w0 + ξ ρ̃/2, with free parameters w0 and ξ. Finally, in Sections 7 and 8 we
extend the truncation to simultaneous solutions of flow equations for both u(ρ̃) and w(ρ̃).
This establishes a system of combined scaling functions u∗(ρ̃) and w∗(ρ̃). This stepwise
procedure helps to organize the rather complex issue in a way that important features can
be treated separately.

For vanishing gauge and Yukawa couplings there exists a “constant scaling solution"
for which u(ρ̃) and w(ρ̃) are independent of ρ̃. This is the extended Reuter fixed point.
We are interested in the possible existence of other fixed points, for which the scaling
functions u(ρ̃) and w(ρ̃) are independent of k, but show a non-trivial dependence, a ρ̃. This
is typically induced by non-zero gauge and Yukawa couplings, but it could also occur for
vanishing gauge and Yukawa couplings. We consider first the regime where non-minimal
couplings of the scalar field to gravity ∼ ξ ρ R can be neglected (here R is the curvature
scalar and ξ the non-minimal coupling). In this case our main findings for the global
scaling form for a possible non-constant dimensionless effective scalar potential u(ρ̃) are
the following. For zero gauge and Yukawa couplings, the potential interpolates between
two constants,

u(ρ̃→ 0) = u0 , u(ρ̃→ ∞) = u∞ , u∞ > u0 . (6)

The minimum is situated at the origin ρ̃ = 0.
This behavior occurs also for nonzero Yukawa couplings y and zero gauge couplings.

In contrast, nonzero gauge couplings g can induce a potential minimum at ρ̃0 6= 0. The
asymptotic behavior (6) remains valid. While for vanishing gauge and Yukawa cou-
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plings particular “constant scaling solutions” exist, with ρ̃-independent u∗(ρ̃) = u0 or
u∗(ρ̃) = u∞, this possibility is no longer given in our truncation for nonzero gauge or
Yukawa couplings.

For a non-vanishing non-minimal gravitational coupling, ξ 6= 0, the asymptotic
behavior of u for ρ̃ → ∞ can change. We still find scaling solutions with a constant u∞.
Alternatively, for asymptotically large ρ̃, the “IR-behavior” u(ρ̃→ ∞) = ξ ρ̃/2 is reached.
The intermediate behavior can be rather complex. In particular, we find for g = y = 0 that
the scaling potential can develop a minimum at ρ̃0 6= 0. For ξ 6= 0, no constant scaling
solution exists.

For scaling solutions of the combined flow equations for u(ρ̃) and w(ρ̃), we focus on a
family of candidate scaling solutions that depend on a continuous parameter ξ∞. For these
solutions one has the asymptotic behavior:

w(ρ̃→ ∞) =
1
2

ξ∞ρ̃, u(ρ̃→ ∞) = u∞. (7)

For the particle content of the standard model, the minimum of the scaling potential
occurs for ρ̃ = 0. As ξ∞ → 0, the constant scaling solution is approached smoothly. For
ξ∞ & 10−3 the existence of the solution becomes questionable since the ρ̃-dependence of
u/w becomes strong, with a rather irregular behavior of ∂u/∂ρ̃ and ∂v/∂ρ̃ in an intermedi-
ate region. For the solutions with ξ∞ < 10−3, more elaborate numerical solutions should
establish if these solutions exist for all ξ∞ in this range or not.

Breakdown of polynomial approximation. For perturbative computations in particle
physics, the effective scalar potential is usually well approximated by a polynomial. Quan-
tum gravity effects modify this property profoundly. As a general feature, the scaling
solutions for the effective scalar potential cannot be approximated by polynomials. There is
a basic reason why quantum gravity is rather different from perturbatively re-normalizable
quantum field theories as gauge theories or Yukawa-type theories. Small gauge and Yukawa
couplings are in the vicinity of a Gaussian fixed point for a non-interacting theory. In this
case, the re-normalizability of couplings is directly related to their canonical dimension.
Different powers of scalar fields in a polynomial expansion have a different canonical
dimension. Above critical power four, the higher powers in an expansion of U are typically
suppressed. This reasoning is no longer valid for asymptotic safety for which interactions
play a role at the fixed point.

For example, a crossover between two constants as for Equation (6) can well happen
with a positive mass term m̃2

0 at the origin, but a negative quartic coupling λ0. The negative
quartic coupling does not indicate any instability of the potential, but merely a decrease
of m̃2(ρ̃) as ρ̃ increases. This is rather typical for a crossover between constants for ρ̃→ 0
and ρ̃ → ∞. The perturbative experience that a negative quartic coupling λ indicates an
instability or the presence of another potential minimum for larger field values is misleading
in the context of quantum gravity.

Spontaneous symmetry breaking for scaling potentials. We observe that the interplay of
gravitational fluctuations with fluctuations of gauge fields often leads to a scaling potential
with a minimum at ρ̃ different from zero. This points to spontaneous symmetry breaking
around the Planck scale by a type of gravitational Coleman–Weinberg mechanism. The
symmetry breaking is induced by fluctuations.

The scaling potential u(ρ̃) is a function of the scale invariant variable ρ̃ = ρ/k2. In
particular, a minimum at ρ̃0 corresponds to a “sliding minimum” of the effective potential
U = uk4, at ρ0 = ρ̃0k2. The question arises as to which range of ρ̃ is relevant for observations.
For a rough estimate we make the simple ansatz that the scaling solution is valid for k > kt,
with transition scale kt determined by 2w(ρ̃) k2

t = M2 + ξρ and M the observed Planck
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mass. We further assume that for k < kt, the metric fluctuations decouple and the effective
low energy theory becomes valid. This approximation determines at kt the field ρ = ρ̃ k2

t as:

ρ

M2 =
ρ̃

2w0
. (8)

A minimum of the scaling potential at ρ̃0 corresponds at kt to ρ0 = M2ρ̃0/(2w0).
Typically, ρ0 continues to change in the low energy effective theory. Nevertheless, for
2w0 ≈ 0.1 a characteristic field ρ̃ can be associated with field values ρ ∼ 10ρ̃M2. A typical
GUT scale ρ ∼ (1016 GeV)2 corresponds to ρ̃ ≈ 10−5 or x = ln(ρ̃) ≈ −11.5. We often find
the location of a minimum at x around −2 which corresponds to ρ around M2.

For GUT models, an important part of the spontaneous symmetry breaking is due
to scalar fields in representations that do not allow for Yukawa couplings to the fermions.
For SU(5)-theories this could be the 24-representation, and for SO(10)-theories the 45
or 54 representations. In the presence of quantum gravity and for a non-zero gauge
coupling, we find that the candidate scaling solutions have a minimum at non-zero field
values, indicating indeed spontaneous breaking of the grand unified gauge group. For
the investigated examples, the scale of spontaneous symmetry breaking is typically found
close to the Planck mass. A more systematic investigation will be needed in order to see
under which circumstances the GUT-scale can be substantially below the Planck mass.

Overview. The present paper is organized such that the effects of different couplings
are described separately. In Section 2, we present the flow equation for the effective scalar
potential, following closely references [6,7,11]. The specific physical gauge fixing, equiva-
lent in our truncation to the gauge invariant flow equation [5], makes the structure very
apparent. The general features are similar to earlier investigations [4,20–36]. In Section 3 we
concentrate on the scaling solution for “matter freedom”, which describes a situation where
gauge and Yukawa couplings, as well as the non-minimal coupling ξ, can be neglected. In
this limit all particles are free except for their gravitational interactions. We find candidate
scaling solutions characterized by a crossover from a fixed point with constant u = u0 for
ρ̃ → 0 to another one with constant u = u∞ to ρ̃ → ∞. Improvement of the numerical
treatment would be needed in order to decide definitely if this truncation admits scaling
solutions different from the constant scaling solutions. Section 4 addresses the flow in
the vicinity of the scaling solution for matter freedom, supplemented in Appendix C by a
discussion of the scalar mass term and quartic coupling.

In Section 5, we take a first step beyond matter freedom by discussing non-vanishing
gauge couplings, still keeping an approximation with constant w∗. Typical scaling poten-
tials show a minimum near ρ̃ = 1. A similar discussion in Appendix D for non-vanishing
Yukawa couplings shows that in this case, the minimum of the scaling potential occurs for
ρ̃ = 0. For scalars with both gauge and Yukawa couplings, the competition between the
opposite tendencies for gauge and Yukawa couplings will be important. In Section 6 we
include a non-minimal coupling ξ of the scalar field to the curvature tensor. This changes
the behavior for ρ̃→ ∞.

In Sections 7 and 8 we extend the truncation by investigating solutions to the combined
flow equations for u(ρ̃) and w(ρ̃). For the derivation of the flow equations we will follow
reference [8]. In Section 7 we discuss general features and turn to the standard model
coupled to quantum gravity in Section 8. There we discuss in particular the issue of Higgs
inflation and the prediction for the Higgs boson or the top quark mass. Section 9 contains
our conclusions.

2. Flow Equation for Effective Potential

The present work is based on the flow equation for the effective average action [37–41].
Instead of a flow with a changing UV-cutoff in earlier formulations [42,43], the flow of the
effective average action considers the variation of an infrared cutoff. The effective average
action corresponds to the quantum effective action (generating functional of one-particle-
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irreducible correlation functions) in the presence of an infrared cutoff k which suppresses
the fluctuations with momenta q2 < k2. The quantum effective action is obtained in the
limit k→ 0. The flow equation involves only a momentum range q2 ≈ k2. It is ultraviolet
finite such that no ultraviolet cutoff needs to be introduced. The microscopic physics is
specified by the “initial values” of the flow for very large k. The simple one-loop form of
the exact flow equation permits for successful non-pertubative approximations. Reviews
on functional re-normalization are in [44–51], and for its applications to quantum gravity
see [52–59].

Let us consider scalar fields φa, belonging to various representations of some symmetry
group, and investigate the flow of the effective scalar potential U(φa). Our truncation for
the effective average action involves up to two derivatives:

L =
√

g

{
− F(φa)

2
R + U(φa) + ∑

a

Za

2
DµφaDµφa + . . .

}
, (9)

where the dots denote parts involving gauge fields and fermions. We are interested in the
“flow” or dependence on k of the functions U(φ) and F(φ), and work in an approximation
for which the flow of the wave functions Za(φ) is neglected, setting Za(φ) = 1. This
corresponds to an incomplete first order in a derivative expansion.

The flow equation for U has contributions from fluctuations of various fields,

∂tU = k∂kU = ζ = π̃grav + π̃s + π̃gauge + π̃f , (10)

namely metric fluctuations
(
π̃grav

)
, scalar fluctuations (π̃s), gauge boson fluctuations(

π̃gauge
)
, and fermion fluctuations (π̃f). We will specify the various contributions step by

step. The concrete form of Equation (10) is based on [6–8,11], with explicit form given in
[7].

For a physical gauge fixing or the gauge invariant flow equation, the gravitational
contribution takes a rather simple form [6,7]:

π̃grav =
k4

24π2

(
1−

ηg

8

)( 5
1− v

+
1

1− v/4

)
− k4

8π2 . (11)

The gravitational contribution depends on U and the coefficient F in front of the
curvature scalar via the combination:

v =
2U
Fk2 =

u
w

, (12)

with dimensionless functions u and w depending on the scalar fields φa,

u =
U
k4 , w =

F
2k2 . (13)

Equation (11) is a central equation for this work. It describes the universal contribution
of gravitational fluctuations to the flow of the scalar potential. It is the same for all scalar
fields, involving only the combined potential u for all scalar fields though Equation (12). The
second ingredient is the effective field-dependent strength of the gravitational interaction
encoded in w. The various factors in Equation (11) are rather easy to understand. The
overall scale is set by k4, as appropriate for the dimension of U, and 1/(32π2) is a typical
loop factor from the momentum integration. The first term in Equation (11) arises from
the fluctuations of the graviton (five components of the traceless transversal tensor), the
second from the physical scalar fluctuations contained in the metric. For a computation of
the flow of U, the effect of these fluctuations is evaluated in flat space. The minus sign in
the denominator (1− v)−1 reflects the negative mass-like term in the flat space graviton
propagator for a positive U. Indeed, the graviton propagator is proportional to (Fq2 + 2U),
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and the squared momentum q2 is replaced effectively by k2. This holds similarly for the
second term which is due to the fluctuations of the physical scalar mode in the metric.
The third “measure contribution” accounts for the gauge modes in the metric fluctuations
and ghosts. It is independent of the scalar fields. For the specific form of the “threshold
functions” appearing in Equation (11) we have employed a Litim cutoff function [60].

We neglect the mixing between the physical scalar mode in the metric and the scalars
φa, which only plays a very small role for our investigation. Finally, the gravitational
anomalous dimension:

ηg = −∂t ln(w) (14)

reflects the choice of the IR-cutoff function proportional to F. At the UV-fixed point, ηg
vanishes if w is field independent.

The contribution from scalar fluctuations π̃s reads: [61]

π̃s =
k4

32π2 ∑
A

(
1− ηA

6

)(
1 + m̃2

A

)−1
, (15)

where the sum runs over NS scalar fields. The index A labels the eigenvalues M2
A of the

(re-normalized) scalar mass matrix:

M2
ab = (ZaZb)

− 1
2

∂2U
∂φa∂φb

, m̃2
A =

M2
A

k2 . (16)

Here Za are the scalar wave functions, given by the coefficient of the kinetic term
for φa. The factor (1 + m̃2

A)
−1 is a threshold function that accounts for the suppression of

contributions of particles with mass terms larger than k2, ensuring decoupling automatically.
The anomalous dimension ηA = −∂t ln(ZA) reflects the choice of an IR-cutoff function for
the scalar proportional to ZA, with ZA connected suitably to Za (in the case of scalars in a
single representation, one uses the same Z for the cutoff function and the definition of all
re-normalized fields). Through the threshold function in the scalar contribution, the flow
equation for U involves field-derivatives of U.

The contributions from gauge bosons π̃gauge and the contributions from fermions π̃f
do not depend on the scalar fields in the limit of zero gauge couplings or Yukawa couplings,
respectively. They will be specified later. The flow of mass terms and quartic couplings
obtains by differentiating Equation (10) twice or four times with respect to φ.

The flow Equation (10) holds for fixed values of φa. For the investigation of the scaling
solution relevant for a fixed point one transforms this to a flow equation for u = U/k4 at
fixed dimensionless renormalized fields,

φ̃a =
Z

1
2
a φa

k
, (17)

where

∂tu = −4u + ∑
a

(
1 +

ηa

2

)
φ̃a

∂u
∂φ̃a

+
ζ

k4 . (18)

Derivatives of u with respect to φ̃a define dimensionless re-normalized couplings. For
the scaling solution characterizing a fixed point, the r.h.s. of Equation (18) has to vanish,
resulting in a system of differential equations for u.

In Sections 3–5, we focus on an approximation for which w is taken as a constant,
independent of scalar fields and independent of k. In Section 6 we extend this to an ansatz
w = w0 + ξφ2/k2. In Sections 7 and 8 we discuss the full system of flow equations for u and
w. This supplements Equation (10) by a flow equation for F. In Appendix A we provide a
summary of the flow of the calculations which should help the reader to identify the most
important formula in a simple way.



Universe 2021, 7, 45 9 of 76

3. Scaling Solutions for Matter Freedom

We first discuss an approximation for which all matter interactions are neglected. This
approximation reveals some characteristic features of the effects of gravitational fluctuations
on the scalar effective potential. We approximate here F by a field-independent running
squared Planck mass. At the UV-fixed point it scales ∼ k2, with fixed dimensionless
parameter w0,

F = M2
p(k) = 2w0k2 . (19)

This basic result [2,4,62] of the use of functional re-normalization for asymptotically
safe quantum gravity reflects directly the dimension of F or the effective squared Planck
mass. At the UV-fixed point the dimensionless ratio w must be constant.

3.1. Flow Equation for Matter Freedom

Let us first consider a situation where the values of gauge couplings, Yukawa cou-
plings, dimensionless scalar mass terms, and quartic scalar couplings are sufficiently small
such that the contribution of these fluctuations only matters for the flow of the field-
independent part of u. We call this approximation “matter freedom” since the interactions
between matter components are neglected. Approximating further ηg = 0, as valid for the
scaling solution, and ηA = 0, corresponding to our neglection of the running of scalar wave
functions, one finds:

ζ̃ =
ζ

k4 =
1

24π2

(
5

1− v
+

1
1− v/4

)
+ 4bU (20)

with constant:
bU =

N − 4
128π2 . (21)

The contribution of gravitational fluctuations can be directly inferred from Equation
(11). The additional part ∼ N arises from matter fluctuations, with an effective number of
degrees of freedom given by:

N = NS + 2NV − 2NF . (22)

Here NS denotes the number of real scalars, NV the number of gauge bosons (NV = 45
for SO(10), NV = 24 for SU(5) and NV = 12 for the standard model), and NF the number
of Weyl fermions (NF = 48 for SO(10), NF = 45 for SU(5), and the standard model).
For the standard model one has NS = 4, with much larger numbers of scalars for GUT
models. For the standard model, N = −62 is negative, while GUT models typically have
positive N. In the counting-only particles with masses much smaller than k are included
and approximated by massless particles.

We concentrate on a particular N′S-dimensional scalar representation and a potential
u(ρ̃) depending only on the invariant:

ρ̃ =
1
2

N′S

∑
a=1

φ̃2
a . (23)

The other NS − N′S scalar fields may be set to zero (alternatively, one may consider
fixed values for the dimensionless ratio as χ2/k2 of some other scalar singlet field χ, and
consider u

(
ρ̃, χ2/k2) at fixed χ2/k2). Our interest is the ρ̃-dependence of the potential.

Neglecting the anomalous dimension ηa the flow equation for the potential reads:

∂tu = βu = −4u + 2ρ̃ ∂ρ̃u + 4cU(u), (24)

with

cU(u) =
1

96π2

(
5

1− v
+

1
1− v/4

)
+ bU (25)
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a non-linear function of u through the dependence on v = u/w.

3.2. Constant Scaling Solutions

We are interested in the scaling solution at the UV-fixed point for which ∂tu vanishes.
For any given w(ρ̃) this scaling solution for u(ρ̃) has to obey the nonlinear differential
equation:

2ρ̃
∂u
∂ρ̃

= 4u− 1
24π2

(
5

1− u/w
+

1
1− u/4w

)
− 4bU . (26)

In general, w depends on ρ̃. We first consider the case where the scaling form can be
approximated by a constant w = w0 and generalize this setting in Sections 6–8. A simple
scaling solution is a constant potential,

u∗(ρ̃) = u0 . (27)

For a given w0, the value of u0 obtains by setting the r.h.s. of Equation (26) to zero.
For more general scaling solutions we still may consider for ρ̃ → 0 the limit of u

approaching a constant,
u∗(ρ̃→ 0) = u0 . (28)

If ∂u/∂ρ̃ remains finite for ρ̃ → 0 (or does not diverge too strongly), the constant u0
obtains again by setting the r.h.s. of Equation (26) to zero. Simplifying by approximating
(1− v/4)−1 by (1− v)−1 yields a quadratic equation for v0 = u0/w0, namely:

(v0 + (N0 − 4)z)(1− v0) = 8z , z =
1

128π2w0
, (29)

with N0 the effective particle number for ρ̃ = 0.
Fixed point solutions for v0 obey:

v± =
1
2

{
1 + (N0 − 4)z±

√
(1− (N0 − 4)z)2 − 32z

}
. (30)

They exist provided z is in a range where the argument of the square root is positive.
For the special case N0 = −4, the argument of the square root is positive for all z. The two
solutions are v+ = 1− 8z, v− = 0. For N0 < −4, the argument of the square root is again
always positive and one finds v+ > 1− 8z, v− < 0. Restrictions on z can arise for N0 > −4.
In this case z has to be outside the interval [z−, z+], given for N0 6= 4 by:

z± =
N0 + 12± 4

√
2N0 + 8

(N0 − 4)2 . (31)

For N0 = 4, the condition reads z < 1/32. For N0 → 4, the lower boundary z−
approaches 1/32 while z+ diverges.

The precise relation between v0 and w0 or z according to the solution of Equation (24)
for ∂tu = 0, ρ̃ ∂ρ̃u = 0 is algebraically less simple, but qualitatively and quantitatively
similar [7]. We can infer it from Figure 1 which plots the relation between v and w in the
form of a function w(v). The latter follows from Equation (24),

w =
cU(v)

v
=

1
96π2v

(
5

1− v
+

1
1− v/4

)
+

bU

v
. (32)

Acceptable scaling solutions require v < 1, w > 0. For N > −4, the function w(v)
is positive for the interval 0 < v < 1, diverging at both ends of the interval. This is the
only allowed range. There is a minimum of w(v) at vc, with critical value wc = w(vc). For
N > −4, scaling solutions exist only for w > wc. For N < −4, one finds positive w for
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negative v, with w(v → −∞) → 0. A second solution with positive w corresponds to a
range of positive v sufficiently close, but still smaller than the pole at v = 1.

0.2 0.4 0.6 0.8
v

0.02

0.04

0.06

0.08

0.10

0.12

w

Figure 1. Relation between v and w for three values N = 12 (upper curve), N = 4 (middle curve),
and N = −4 (lower curve).

For an appropriate range of w one finds two solutions v+ and v−. They correspond
to the two solutions v± of the approximation (28), (29). For N > −4 this requires w > wc,
corresponding to the restriction on z given by Equation (31). We conclude that acceptable
scaling solutions exist in our truncation for matter freedom, except for very strong gravity
(w0 < wc) for N > −4.

We may interpret u0 and v0 as the limiting behavior of the scaling solution for ρ̃→ 0.
For any given allowed value of w0 or z, there are two possible values for v0 and therefore
two possible solutions for u0. For w(ρ̃) = w0 independent of ρ Equation (26) actually
admits a solution with constant u(ρ̃) = u0 for all values of ρ̃. For this simple solution the
effective potential is completely flat:

U(ρ) = u0k4 . (33)

Solutions with ρ̃-independent u are called “constant scaling solutions”. We will see in
Section 7 that one of these constant scaling solutions corresponds to the extended Reuter
fixed point.

3.3. Crossover Scaling Solutions

Since Equation (26) is a first order differential equation one may ask if there exist
other scaling solutions with ∂u/∂ρ̃ 6= 0. For these solutions, the boundary conditions
u(ρ̃ → 0) = u0 should be obeyed. A numerical solution of Equation (26) indeed finds a
family of scaling solutions that interpolate between the constant values v±, as shown in
Figures 2 and 3. For all values of w0 compatible with the presence of two fixed points v+
and v−, the generic scaling solution is a crossover from u(ρ̃→ 0) = v−w to u(ρ̃→ ∞) =
v+w. We show the numerical solutions of Equation (26) for different initial conditions
(chosen arbitrarily at ρ̃ = 1) in Figure 2. The different curves can be obtained by a shift
in x = ln(ρ̃). The crossover trajectory between the two fixed points is universal. The
initial conditions only specify at which ρ̃, a given value of u, on the crossover trajectory
is reached. The possible shifts in x = ln(ρ̃) are arbitrary. Limiting cases are the constant
scaling solutions u(ρ̃) = v−w or u(ρ̃) = v+w. For initial conditions with u(ρ̃in) outside the
interval [v−w, v+w], no scaling solution exists. Local solutions of the differential equation
do not reach finite values for ρ̃→ 0 and ρ̃→ ∞. They typically diverge at some finite ρ̃.
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Figure 2. Scaling potential u as a function of x = ln(ρ̃). The three curves correspond to different
initial conditions, which may be specified by u(x = 0). The parameters are N = 12 and w = 0.06.
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Figure 3. Scaling potential u as a function of x = ln(ρ̃) for different values of w = 0.06, w = 0.05, and
w = 0.045 (upper, middle, and lower curve for large x, respectively). We use N = 12.

As w is lowered, the interval [v−, v+] shrinks. This is reflected by a shrinking of the
distance between the boundary values u(ρ̃ → 0) and u(ρ̃ → ∞), as depicted in Figure 3.
This shrinking continues until one reaches wc where v−(wc) = v+(wc) = vc. For w = wc
the unique scaling solution is a constant u(ρ̃) = vcwc. For w < wc, the scaling solution
ceases to exist.

3.4. Scalar Anomalous Dimension

The gravity-induced scalar anomalous dimension A plays an important role for many
aspects of the effective potential. We encounter it here first by an investigation of scaling
solutions in the vicinity of the constant scaling solution. We will see later that it also governs
the gravity induced flow of the scalar mass term and quartic coupling. Let us therefore
investigate small deviations ∆u from the constant scaling solution. For the crossover
solutions shown in Figures 2 and 3 they describe the onset of the crossover region. A linear
approximation in ∆u will always become valid for ρ̃→ 0 and ρ̃→ ∞. In the vicinity of a
constant scaling solution we expand:

u(ρ̃) = u0 + ∆u(ρ̃) , (34)

where ∆u(ρ̃) obeys the linear differential equation:

2ρ̃
∂∆u
∂ρ̃

= (4− A)∆u , (35)
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with
A = 4

∂cU

∂u
=

4
w

∂cU

∂v
. (36)

From Equation (25) one infers:

A =
1

96π2w

(
20

(1− v)2 +
1

(1− v/4)2

)
. (37)

The gravity-induced anomalous dimension A is a key quantity for the discussion of the
gravitational effects on the scalar potential. For all v and positive w one finds A(v, w) ≥ 0.
The first term in Equation (37) is generated by the graviton fluctuations, while the second
term originates from the physical scalar fluctuations in the metric. For positive v, the
first term in Equation (37) dominates by more than a factor of 20, justifying the “graviton
approximation” which keeps only the transversal traceless metric fluctuations [6].

We plot A as a function of v in Figure 4. For this purpose we use w(v) according to
the constant scaling solution (32), as shown in Figure 1. Inversion leads to two values A±
for a given w0, corresponding to the solutions v±. For N = −4, one finds values A < 4
for negative v, not shown in Figure 4. For v → −∞, one reaches A = 0 (for N ≤ −4).
Generically, A increases for decreasing N and fixed v, and for increasing v for fixed N.
Away from the constant scaling, solution A(ρ̃) depends on the two functions w(ρ̃) and
v(ρ̃) separately. For the region of small ρ̃ we have to evaluate A(w, v) for ρ̃ → 0, i.e.
A0 = A(w0, v0).

What is apparent already for the simple case of a constant scaling solution in Figure 4
is that A is typically not a very small quantity. Generally, A is positive and not very small
as compared to one. It can exceed value one for a suitable range of w and v.

In Appendix B, we discuss the solution of Equation (35), as well as the general form
of candidate scaling solutions for matter freedom. We find that for A0 6= 2 higher order
derivatives of the effective potential, as the quartic scalar coupling, λ(ρ̃) = ∂2u/∂ρ̃2, diverge
for ρ̃→ 0 for the crossover scaling solution. The neglection of the scalar masses in the scalar
fluctuation contribution π̃s in Equation (15) is no longer satisfied in the region ρ̃→ 0.

3.5. Scalar Mass Term

In Appendix C, we discuss in detail the influence of the scalar mass terms which is
due to a more complete treatment of π̃s. The scalar mass term is typically found to be small
for many of our solutions, including the following sections. For the crossover solution of
matter freedom we show the scalar mass term m̃2(ρ̃) = ∂u/∂ρ̃ in Figure 5. As the location
of the crossover, which may be associated with the maximum of m̃2, moves to a larger x
the height of the maximum decreases. Matter domination could therefore provide for a
rather accurate picture for the sub-family of scaling solutions where the crossover happens
at large x = ln(ρ̃). Even for a crossover at somewhat negative x we find m̃2 � 1, such that
at first sight a neglection of the mass term m̃2 in π̃s, and therefore the approximation of
matter freedom, seem justified for large regions in ρ̃.

An exception is the region around the origin at ρ̃ = 0. Adding even a small mass
term will dominate the small deviations from the constant scaling solution. We present
in Appendix C a detailed discussion of the influence of the scalar mass term on the flow
equation and scaling solutions for the effective potential. For models of scalars coupled to
gravity we find that it matters in a region of very small ρ̃, typically ρ̃ . NS/(64π2). It cures
the otherwise divergent behavior of the quartic and higher order scalar couplings. This
will also become apparent in the next section.
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Figure 4. Dimensionless mass term m̃2 as a function of x = ln(ρ̃). The plot is for w = 0.06, using
the parameters of Figure 2. For a location of the crossover at larger x, the height of the maximum
decreases.
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Figure 5. Relation between A and v, for v being a fixed point solution for an appropriate w as given
by the relation (32). We show three values of N = 12 (lower curve), N = 4 (middle curve), and
N = −4 (upper curve).

In models of scalars coupled to gravity, with vanishing gauge and Yukawa couplings,
there still remain some unsettled issues in the transition region around ρ̃t = NS/(64π2).
Their resolution would require numerical solutions beyond the simplified approaches
employed in Appendix C. We will mainly be interested in the following in situations with
non-zero gauge couplings, Yukawa couplings, or non-minimal scalar-gravity couplings.
All these couplings generate non-zero mass terms and change the behavior for ρ̃ → 0,
removing potential singularities for ρ̃ → 0 even if the modifications of π̃s due to m̃2 6= 0
are omitted. In Sections 5–7, we will neglect the modifications of π̃s by non-zero scalar
mass terms. We may consider this approximation as justified whenever m̃2(ρ̃) < 0.1 for
the whole range of ρ̃. In other words, we approximate scalar fluctuation contributions as
arising from massless scalars. This procedure simplifies the discussion of scaling solutions
considerably, since the right-hand side of Equation (26) and its generalizations depend on ρ̃
and u(ρ̃), but no longer on derivatives of u(ρ̃) with respect to ρ̃. For the numerically found
solutions, caution is required. The numerical approach may be blind to spiky behavior of
u(ρ̃) in very small regions of ρ̃, which could lead to larger values of m̃2 in these regions.

4. Flow in the Vicinity of the Scaling Solution

We next turn to the flow with k at fixed ρ̃. This is an alternative way to discuss
properties of scaling solutions. For a scaling solution, the flow with k for constant ρ̃ has to



Universe 2021, 7, 45 15 of 76

stop. This also holds for all particular couplings that may be defined by some ρ̃-derivatives
of u at fixed ρ0. Examples are the scalar mass term or quartic coupling at the origin,

m̃2
0 =

∂u
∂ρ̃

∣∣∣∣
ρ̃=0

, λ0 =
∂2u
∂ρ̃2

∣∣∣∣
ρ̃=0

. (38)

Within suitable approximations one may obtain a closed system of flow equations for
a finite number of couplings. This may be solved without the need to solve a differential
equation for all values of ρ̃. One may then look for fixed points in a system of flow equations
for a finite number of couplings.

Beyond the fixed point solution, the flow with k also tells if a fixed point is approached
for decreasing k (irrelevant couplings) or if the flow trajectories move away from the fixed
points (irrelevant couplings). We discuss this issue in Appendix C.3.

Defining m̃2(ρ̃) and λ(ρ̃) by the first and second ρ̃-derivatives of u:

m̃2(ρ̃) =
∂u
∂ρ̃

, λ(ρ̃) =
∂2u
∂ρ̃2 , (39)

we first derive the flow equations in the limit of matter freedom where the contributions of
vector bosons, fermions, and scalars can be approximated by a constant bU. They follow
from Equation (24) by first and second differentiation with respect to ρ̃.

The flow of the mass term obeys:

∂tm̃2(ρ̃) = (A(ρ̃)− 2)m̃2(ρ̃) + 2ρ̃λ(ρ̃). (40)

We observe the appearance of the gravity-induced anomalous dimension A(ρ̃) given
by Equation (37) in terms of w0 and v(ρ̃) = u(ρ̃)/w0. The appearance of A both for small
deviations from a given scaling solutions and for the flow with k is no accident. Both
problems concern small changes of a given potential u(ρ̃). Taking a further ρ̃-derivative
yields:

∂tλ(ρ̃) = A(ρ̃)λ(ρ̃) + 2ρ̃
∂λ(ρ̃)

∂ρ̃
+

1
w

∂A
∂v

m̃4(ρ̃) . (41)

Here ∂A/∂v obtains from Equation (37), again evaluated for w = w0 and v = v(ρ̃) =
u(ρ̃)w0.

Consider first the limit where ρ̃ ∂λ/∂ρ̃ can be neglected. In this case the fixed point of
the flow occurs for:

m̃2
∗ = 0 , λ∗ = 0 . (42)

This is realized for the scaling solution for ρ̃→ ∞. Indeed, for an asymptotic behavior
of the scaling solution for ρ̃→ ∞,

u∗(ρ̃) = u∞ + c∞ρ̃
4−A∞

2 , (43)

and A∞ > 4 one finds that:

m̃2
∗(ρ̃) = c∞

(
2− A∞

2

)
ρ̃1− A∞

2 , (44)

and

λ∗(ρ̃) = c∞

(
2− A∞

2

)(
1− A∞

2

)
ρ̃−

A∞
2 . (45)

Both approach zero for ρ̃ → ∞ (in this section, and more generally if needed, we
denote by stars the scaling solutions or fixed points).
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Linearizing the flow in the vicinity of the fixed point (42) yields (in the approximation
∂λ/∂ρ̃ = 0):

∂tm̃2 = (A− 2)m̃2 + 2ρ̃λ ,

∂tλ = Aλ . (46)

These flow equations hold strictly for ρ̃ → ∞. Replacing m̃2 by ∆m̃2 = m̃2 − m̃2
∗(ρ̃),

and λ by ∆λ = λ− λ∗(ρ̃), they also hold for ∆m2 and ∆λ at finite large ρ̃ to a very good
approximation. The solution for ∆λ:

∆λ = c̃λkA (47)

drives ∆λ to its fixed point value ∆λ∗ = 0 as k is lowered. Thus λ is an irrelevant coupling
at the quantum gravity fixed point. For a complete theory that can be continued to arbitrary
large k according to the quantum gravity fixed point, one predicts λ(ρ̃) to be given by the
scaling solution λ∗(ρ̃). For ∆m̃2 one obtains the solution:

∆m̃2 = c̃mkA−2 + c̃λρ̃ kA . (48)

With A∞ > 4 also ∆m̃2 is irrelevant and m̃2(ρ̃) is predicted to be the scaling solution
m̃2
∗(ρ̃). These properties hold for the region of large ρ̃ for which A(ρ̃) exceeds 4.

The situation is more complicated for ρ̃ = 0. If ∂λ/∂ρ̃ remains finite or does not
increase too rapidly for ρ̃→ 0, one finds again a fixed point λ∗ = 0, m̃2

∗ = 0, and solutions
in the vicinity of the fixed point:

m̃2
0 = cmkA−2 , λ0 = cλkA . (49)

Now A is given by A0 and therefore smaller than four. Since A is positive, λ0 is an
irrelevant parameter and predicted to be at its fixed point value λ∗ = 0. The mass term
is irrelevant for A > 2, predicted to be m̃2

∗ = 0 in this case. For A < 2 it is a relevant
parameter. Its value cannot be predicted since it involves the free constant cm. We discuss
in Appendix C.2 under which circumstances the scaling solution indeed leads to m̃2

∗ = 0,
λ∗ = 0 if gauge and Yukawa couplings are neglected and w∗ is a constant.

In the approximation of matter freedom the solution (49) only holds for the constant
scaling solutions. In this case matter freedom is a self-consistent approximation for the
scaling solution. For the crossover scaling solutions we find in Appendix B that the
approximation of matter freedom leads to a divergence of λ(ρ̃) for ρ̃ → 0 such that the
fixed point m̃2

∗ = 0, λ∗ = 0 is not realized. This seems to contradict result (49). Taking into
account in Appendix C, the deviation of the scalar contributions π̃s from the matter-freedom
approximation yields for the flow of m̃2

0 an additional contribution,

∂tm̃2
0 = (A0 − 2)m̃2

0 −
3λ0

32π2(1 + m̃2
0)

2
. (50)

This allows for a fixed point with m̃2
0 6= 0, as characteristic for the crossover scaling

solutions, provided that λ0 6= 0. Now the first Equation (49) holds for m̃2
0(k)− m̃2

0. Similar
properties hold for λ0.

We observe a connection between the behavior of deviations from the scaling solution
and the asymptotic behavior of the scaling solution itself for ρ̃ → 0 and ρ̃ → ∞. Both
are given by the same anomalous dimension A. The root of this connection resides in the
general form of the flow equation for u at fixed ρ̃ that can be written in the form:(

∂t − 2ρ̃ ∂ρ̃

)
u = −4(u− cU) = β̃u . (51)
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A similar form holds for ρ̃-derivatives, as m̃2(ρ̃) = ∂ρ̃u(ρ̃),(
∂t − 2ρ̃ ∂ρ̃

)
m̃2 = −2m̃2 + 4 ∂ρ̃cU = β̃m̃2 . (52)

For the scaling solution one has:

2ρ̃ ∂ρ̃u = −β̃u . (53)

On the other hand, if ρ̃ ∂ρ̃u can be neglected for ρ̃→ 0 or ρ̃→ ∞, one finds for these
limits:

∂tu = β̃u . (54)

Both expressions (53) and (54) involve the same β-function β̃u, but with the opposite
sign. Thus k2 → 0 corresponds to increasing ρ̃.

So far we have obtained a consistent picture for both limiting regions ρ̃ → 0 and
ρ̃ → ∞. The difficult issue contains the matching of these regions in a transition region
around ρ̃s = 1/(64π2). We discuss this question in detail in Appendix C.5. So far the only
established scaling solutions are the constant scaling solutions. It may not be possible to
follow the crossover solutions through the transition region in a regular way. A definite
answer to the question if there exist global crossover scaling solutions would need a more
sophisticated numerical approach than the one employed in the present work.

5. Gauge Couplings

The presence of non-vanishing gauge couplings or Yukawa couplings leads to im-
portant qualitative changes for the scaling solution as compared to matter freedom or
scalars coupled only to gravity. The reason is that for non-vanishing gauge couplings,
constant scaling solutions with u(ρ̃) independent of ρ̃ are no longer possible. Gauge or
Yukawa couplings necessarily induce non-zero scalar mass terms ∂u/∂ρ̃ for all ρ̃ 6= 0. We
will consider here the case of constant couplings. This refers either to a fixed point with
non-zero gauge or Yukawa couplings, or to an approximation for a situation with slow
enough flow of these couplings. We concentrate first on vanishing Yukawa couplings.
This is directly relevant for the issue of spontaneous symmetry breaking in GUT-models,
where some of the relevant scalar fields are in representations that do not allow for Yukawa
couplings to the fermions of the known three generations.

5.1. Flow Equations

In this section we investigate the impact of non-vanishing gauge couplings on the flow
of the scalar effective potential. For nonzero values of scalar fields coupling to gauge bosons
with a gauge coupling g, the gauge bosons acquire a mass through the Higgs mechanism.
This mass suppresses the contribution of gauge bosons to the flow of the scalar potential. As
a result, for non-vanishing gauge couplings the flow generator ζ̄ in Equation (10) receives
an additional contribution ∆π̃gauge, given by:

∆π̃gauge

k4 =
3

32π2

NV

∑
i=1

(
1

1 + wi
− 1
)

. (55)

Here the sum is over all gauge bosons and wi = m2
i /k2 are the dimensionless squared

gauge boson masses for the corresponding values of the scalar field:

wi =
m2

i
k2 = g2ai(φa)/k2 . (56)

Typically, ai(φa) is a quadratic form in the scalar fields φa. The factor (1 + wi)
−1

is a threshold function that suppresses the contribution from massive gauge bosons as
compared to the massless ones.
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In order to keep the discussion of the structure of these modifications simple we
consider a toy flow equation where the squared mass of N̄V gauge bosons is cg g2ρ, while
the other gauge bosons remain massless for the particular configuration of scalar fields that
is used to define ρ. From the difference of the fluctuation contribution from massless and
massive fields one obtains the modification of π̃gauge,

∆π̃gauge

k4 = −
3cgN̄V g2ρ̃

32π2
(
1 + cgg2ρ̃

) . (57)

It vanishes for ρ̃ = 0. The contribution to the flow of the scalar mass term at the origin
ρ̃ = 0 reads:

∂tm̃2 = −
3cgN̄V g2

32π2 + . . . , (58)

while the contribution to the quartic coupling at ρ̃ = 0, λ = ∂2Ũ/∂ρ̃2|ρ̃=0, becomes:

∂tλ =
3c2

gN̄V g4

16π2 + . . . (59)

Equation (59) corresponds to the standard perturbative term ∼ g4 in the flow equation
for quartic scalar couplings.

5.2. Spontaneous Symmetry Breaking

Due to the negative sign in Equation (57) a non-vanishing gauge coupling lowers the
scaling solution for the effective potential for large ρ̃ as compared to ρ̃ = 0. Indeed, the dif-
ferential equation (26) for the scaling solution receives an additional positive contribution:

2ρ̃
∂u
∂ρ̃

= 4(u− cU)−
∆π̃gauge

k4 , (60)

enhancing the increase of u with ρ̃. Initial conditions near ρ̃ = 0 that would lead to a
decrease of u with increasing ρ̃ may be turned to an increase with ρ̃ for larger ρ̃. As a
result, the effective potential can develop a minimum for ρ̃ 6= 0. This is clearly seen for
a numerical solution of Equation (60) in Figure 6, shown in more detail in Figure 7. We
employ N = 10, N̄V = 3, cg = 1, and α = g2/4π = 1/40, and set the initial condition by
u(ln(ρ̃) = 1) = 0.02. The three values of w0 = 0.06, 0.05, 0.042 used in Figures 6 and 7
correspond to A0 = A(ρ̃ = 0) = 0.68, 1.0, and 1.64, and therefore all have A0 < 2.

-10 -5 5
x
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0.04

0.05

u

Figure 6. Effective potential u(x) as function of x = ln(ρ̃) for three values of w0. The highest curve
on the right (green) is for w0 = 0.06, the middle curve (orange) for w0 = 0.05, and the lowest curve
(blue) for w0 = 0.042. Initial values are set by U(x = 1) = 0.02. Parameters are N = 10, N̄V = 3, and
α = g2/4π = 1/40.



Universe 2021, 7, 45 19 of 76

-3 -2 -1 1
x

0.015

0.016

0.017

0.018

0.019

0.020

u

Figure 7. Minimum of effective potential u(x). Parameters are the same as for Figure 6. The lowest
green curve is for w0 = 0.06, the middle orange curve for w0 = 0.05, and the highest blue curve for
w0 = 0.042.

The minimum of u(ρ̃) at ρ̃0 6= 0 indicates spontaneous symmetry breaking already for
the scaling solution. In this case the flow below the Planck mass away from the fixed point
is not needed in order to induce spontaneous symmetry breaking. In most circumstances it
will only have a sizable effect on small values of ρ, with U(ρ) for large ρ frozen at the value
it has reached for k ≈ M, or more precisely k ≈ kt. The minimum of the scaling potential
will not be erased in this way. For our set of parameters it corresponds to ρ ≈ ρ̃M2/(2w0)
according to Equation (8). With ρ̃ near one in Figure 5, one obtains for the parameters
chosen a potential with a minimum at ρ0 somewhat larger than M2.

For realistic GUT models, the numbers NV and N̄V are typically larger than the ones
considered here. In addition, the influence of non-minimal couplings becomes important,
see Section 7.6. We will not discuss in this paper the interesting question under which
circumstances values of ρ0 substantially smaller than M2 are reached. We rather concentrate
on general features of the scaling potential.

For a more detailed understanding we first consider the region of small ρ̃. The flow
equation for the mass term at the origin, m̃2

0 = m̃2(ρ̃ = 0) reads, with λ0 = λ(ρ̃ = 0),

∂tm̃2
0 = (A0 − 2)m̃2

0 −
3λ0

32π2
(
1 + m̃2

0
) − 3cgN̄V g2

32π2 . (61)

The fixed point occurs for (A0 6= 2):

m̃2
0,∗ =

3
32π2(A0 − 2)

cgN̄V g2 +
λ0(

1 + m̃2
0,∗

)2

 . (62)

For small λ0,∗ and A0 < 2 the mass term is negative,

m̃2
0,∗ = −

3cgN̄V g2

32π2(2− A0)
, (63)

such that the origin at ρ̃ = 0 is a local maximum of the effective potential. This is seen for
the curves in Figures 6 and 7 which indeed have all A0 < 2. We show in Figure 8 the mass
term m̃2(ρ̃) for the scaling solutions for the three sets of parameters used in Figures 6 and 7.
For ρ̃→ 0 the result for m̃2(ρ̃→ 0) comes indeed very close to value (63).
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Figure 8. Mass term m̃2(x) as function of x = ln(ρ̃) for w0 = 0.06 (upper green curve), w0 = 0.05
(middle orange curve), and w0 = 0.042 (lower blue curve). Parameters are the same as for Figure 6.

For A0 > 2, a negative value of m̃2
0,∗ remains possible if λ0,∗ < 0. Indeed, the potential

may have at the origin a local minimum or a maximum, depending on the relative size of
the two terms on the r.h.s. of Equation (62). The fixed point value for λ0,∗ is negative, given
for a single scalar by:

λ0,∗ = −
1

A0

(3c2
gN̄V g4

16π2 +
9λ0,∗

16π2(1 + m̃2
0,∗)

3

−
5u(3)

0,∗
32π2(1 + m̃2

0,∗)
2
+

1
w0

∂A
∂v

m̃2
0,∗

)
. (64)

The size of a negative λ0,∗ and its influence is increased as m̃2
0,∗ comes close to −1. We

show in Figure 9 the numerical scaling solutions for the effective potential with parameters
N = 20, N̄V = 3, cg = 1, w0 = 0.05, and α = 1/40. For these parameters one has A0 = 2.91,
and therefore A0 > 2. The mass term is an irrelevant coupling in this case. Depending on
the initial conditions we found solutions with a minimum at the origin or a minimum at
ρ̃0 6= 0.
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Figure 9. Effective potential u(x) as function of x = ln(ρ̃). Parameters are N = 20, N̄V = 3, cg = 1,
w0 = 0.05, and α = g2/4π = 1/40. The initial conditions for the four curves from up to down are
u(x = 0) = 0.037923, u(x = 0) = 0.0335, u(x = 0) = 0.25, and u(x = 0) = 0.24447. The initial values
for the upper and lower curves limit the interval for which a scaling solution is found. For these
solutions one has A0 = 2.91.
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5.3. Asymptotic Behavior

Consider next the limit ρ̃→ ∞. In this limit the correction (57) approaches a constant:

lim
ρ̃→∞

(
∆π̃gauge

k4

)
= − 3N̄V

32π2 . (65)

This simply reflects that in the range of large ρ̃ only a reduced number of gauge bosons
contributes to the number of “active degrees of freedom” N in Equations (21)and (22). The
gauge boson contribution to the running of m̃2(ρ̃) and λ(ρ̃) is suppressed for large ρ̃ by
threshold functions:

∂tm̃2(ρ̃) = −
3cgN̄V g2

32π2
(
1 + cgg2ρ̃

)2 + . . . ,

∂tλ(ρ̃) =
3c2

gN̄V g4

16π2
(
1 + cgg2ρ̃

)3 + . . . (66)

that account for the decoupling of heavy degrees of freedom. As a consequence, the scaling
solution for the effective potential reaches for ρ̃ → ∞, again a constant value, but with a
different number of degrees of freedom N∞. Denoting by N0 the number of light degrees
of freedom for ρ̃→ 0, and N∞ the corresponding one for ρ̃→ ∞, one has:

N∞ = N0 − 3N̄V . (67)

In contrast, the constant value u0 = u(ρ̃→ 0) is only indirectly influenced by g2 6= 0
due to nonzero m̃2

0.
We can formulate this issue more generally. Applying the defining differential Equa-

tion (26) for the scaling form of the potential to a situation where u(ρ̃) is approximated by
a constant both for ρ̃→ 0 and for ρ̃→ ∞ we obtain for u0 and u∞ = u(ρ̃→ ∞):

u0 =
1

96π2 C0 , u∞ =
1

96π2 C∞ , (68)

with

C0 =
5

1− v0
+

1
1− v0/4

+
3(N0 − 4)

4
,

C∞ =
5

1− v∞
+

1
1− v∞/4

+
3(N∞ − 4)

4
. (69)

Here v0 = u0/w0, v∞ = u∞/w∞ with w0 and w∞ the dimensionless coefficients of
the curvature scalar for ρ̃→ 0 and ρ̃→ ∞, respectively. Similarly, N0 and N∞ denote the
number of effective matter degrees of freedom in the two limits. The potential difference:

∆u∞ = u∞ − u0 =
1

96π2 (C∞ − C0) (70)

is positive if C∞ is larger than C0. If the scalar field represented by ρ̃ does not couple to
fermions one has N∞ < N0 if some of the bosons decouple effectively for ρ̃→ ∞, as in the
case of gauge bosons discussed above. If also v∞ < v0 one concludes u∞ < u0. In this case
one typically encounters a minimum of the effective potential for ρ̃→ ∞. In contrast, for
v∞ > v0 one may find u0 < u∞. This is the case for the examples shown in Figures 6–9.
The minimum of u(ρ̃) occurs now for ρ̃ = 0 or for finite ρ̃. For both cases the potential is
flat for ρ̃→ ∞.
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5.4. Crossover Region

For g 6= 0, constant scaling solutions are no longer possible. Every scaling solution
has to make a crossover from u0 for ρ̃ → 0 to u∞ for ρ̃ → ∞. The gauge coupling also
changes the dynamics in the transition region as compared to scalars which have only
gravitational interactions. In Figures 6–9, no apparent problem is visible in the transition
region and it seems that a whole family of scaling solutions exists. We also observe that for
all parameters and initial conditions investigated here the scalar mass term remains much
smaller than one.

For a more quantitative understanding of the flow of the potential we may neglect
the effect of the scalar mass term and quartic coupling in the contribution from the scalar
fluctuations, e.g. setting ∆π̃s = 0. This approximation is always valid for large ρ̃. In the
presence of gauge couplings, the validity may in certain cases extend to the whole range
of ρ̃. In this approximation one finds for m̃2(ρ̃) = ∂u/∂ρ̃ in case of a single gauge field,
N̄V = 1, cg = 1,

∂tm̃2(ρ̃) = (A− 2)m̃2(ρ̃) + 2ρ̃
∂m̃2

∂ρ̃
− 3g2

32π2

(
1 + g2ρ̃

)−2
, (71)

where
∂m̃2

∂ρ̃
= λ(ρ̃) . (72)

The scaling solution is defined by ∂tm̃2(ρ̃) = 0 and therefore obeys the differential
equation:

2ρ̃
∂m̃2

∂ρ̃
= (2− A)m̃2 +

3g2

32π2

(
1 + g2ρ̃

)−2
. (73)

The solution for small ρ̃→ 0 is given by Equation (62). For a given λ0,∗ this boundary
condition fixes the integration constant of the general solution of Equation (73). On the
other hand, fixing the integration constant by an initial value m̃2

0,∗ at ρ̃ = 0, the fixed point
value λ0,∗ follows from the solution of Equation (73).

For ρ̃→ ∞ the scaling solution for the potential becomes flat, namely:

m̃2(ρ̃→ ∞) = 0 , (74)

implying also:

λ(ρ̃→ ∞) =
∂m̃2

∂ρ̃
(ρ̃→ ∞) = 0 . (75)

For finite large ρ̃ we can approximate Equation (73) by:

∂m̃2

∂ρ
=

3g2

16(6− A∞)π2ρ̃(1 + g2ρ̃)
2

≈ 3
16(6− A∞)π2g2ρ̃3 . (76)

Here, we employ m̃2 ∼ ρ̃−2 ∼ −
(
ρ̃ ∂ρ̃m̃2)/2. The asymptotic scaling solution for

ρ̃→ ∞ is:

m̃2 =
3

32(A∞ − 6)π2g2ρ̃2 . (77)

One typically has A∞ > 6, m̃2 > 0, such that u∞ is approached from below.
The differential equations for the scaling solution for the potential (60) or for a scalar

mass term (73) do not show any problematic region. It seems likely that many initial
conditions chosen at some intermediate ρ̃ can be continued both to ρ̃ → 0 and ρ̃ → ∞,
establishing corresponding crossover scaling solutions.
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5.5. Gravitational Coleman–Weinberg Mechanism

For the quartic coupling the flow equation reads:

∂tλ = Aλ + Bm̃4 + 2ρ̃
∂λ

∂ρ̃
+

3g4

16π2

(
1 + g2ρ̃

)−3
, (78)

with

B =
∂A
∂u

=
5

12π2w2

(
1

(1− v)3 +
1
8

1
(1− v/4)3

)
. (79)

The scaling solution for λ(ρ̃) therefore obeys:

2ρ̃
∂λ

∂ρ̃
= −Aλ− Bm̃4 − 3g4

16π2

(
1 + g2ρ̃

)−3
. (80)

We can interpret the running of the quartic coupling with ρ̃ as a type of gravitational
Coleman–Weinberg mechanism. Starting from ρ̃→ ∞ with λ(ρ̃→ ∞) = 0 and lowering ρ̃,
the quartic coupling first is negative. Indeed, with λ ∼ ρ̃−3 , m̃−4 ∼ ρ̃−4 we can neglect the
term Bm̃4 for large ρ̃ and employ λ = −(ρ̃ ∂ρ̃ λ)/3, such that:

λ = − 3
16(A∞ − 6)π2g2ρ̃3 . (81)

This coincides with the ρ̃-derivative of Equation (77), as it should be. As ρ̃ decreases,
λ(ρ̃) first becomes increasingly negative, such that m̃2 increases to larger positive values. As
A(ρ̃) decreases for decreasing ρ̃, the influence of the first positive term−Aλ in Equation (80)
becomes less important and λ(ρ̃) starts to increase due to the other negative terms. Once
λ becomes positive, m̃2(ρ̃) starts to decrease until it reaches zero at some local minimum
of the potential. For a rough qualitative estimate we replace A∞ by A(ρ̃) in Equations (77)
and (81). The minimum occurs in a region where A(ρ̃min) < 6, with positive λ(ρ̃min). This
qualitative behavior is well visible by taking the ρ̃-derivative of m̃2(ρ̃) in Figure 8 or the
second ρ̃-derivative of u(ρ̃) in Figures 6 and 7. The upper curve in Figure 9 shows that the
appearance of a minimum of u(ρ̃) is not the only possibility.

The range of minimum values ρ̃min is restricted, as seen from the lowest curve in Figure
9 which corresponds to a boundary curve for this type of scaling solutions. The question
arises if ρ̃min can be arbitrarily small. For ρ̃min → 0+ one needs m̃2

0,∗ = m̃2(ρ̃ = 0) = 0.
From Equation (62) we conclude that this requires negative λ0,

λ0 = −cgN̄V g2 . (82)

At least for small g2 and not too large u(3)
0,∗ , there seems to be a discrepancy with

Equation (64). More generally, it is not clear if all solutions shown in Figures 6–9 can be
extended to ρ̃→ 0 once the effects of nonzero m̃2 and λ in Equation (A13) are included.

5.6. Yukawa Couplings

For non-zero Yukawa couplings and vanishing gauge couplings, the structure of the
flow equations is very similar to the case of non-zero gauge couplings and zero Yukawa cou-
plings. The key difference is a change of the overall sign, due to the fermionic statistics. As
a consequence, a non-zero Yukawa coupling favors a minimum at the origin. The fermion
fluctuations yield a positive contribution to m̃2

0 for the scaling solution. In Appendix D we
describe the effects of non-zero Yukawa couplings in more detail.
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6. Nonminimal Gravitational Coupling

The effective Planck mass may depend on the scalar field due to a nonminimal cou-
pling ξ,

L = −1
2
√

g ξρ R , (83)

with R the curvature scalar and ρ a suitable scalar bilinear, as ρ = h†h for the Higgs doublet.
Any non-zero ξ has a strong influence on the flow equations and the behavior of the scaling
solutions for large values of ρ̃. In this limit the term (83) dominates the effective Planck
mass and therefore the effective strength of the gravitational interaction. We typically find
that non-zero ξ induces spontaneous symmetry breaking for the scaling solution, with a
minimum at ρ̃0 somewhat below one.

6.1. Flow Equation with Non-Minimal Gravitational Coupling

As a consequence of the term (83), one has a field-dependent shift in the squared
Planck mass M2 → M2 + ξρ, or an additional field dependence in the dimensionless
quantity w(ρ̃),

w(ρ̃) = w0 +
ξ

2
ρ̃ . (84)

Here w0 is the dimensionless squared Planck mass discussed in the previous sections.
We assume in this section that both w0 and ξ are given by k-independent fixed point values
and take them as undetermined parameters (these quantities may also depend on a further
scalar singlet field χ). In Section 7 we will extend this setting by treating both the effective
potential u(ρ̃) and the coefficient function of the curvature scalar w(ρ̃) as k-dependent
“flowing functions”.

The non-minimal coupling ξ does not affect the contribution from fermions and gauge
bosons. Its main effect is a modification of the contribution from the metric fluctuations by
replacing in Equation (20):

v(ρ̃) =
u(ρ̃)
w(ρ̃)

=
u(ρ̃)

w0 + ξρ̃/2
. (85)

The coupling ξ further influences the mixing between the physical scalar fluctuations
in the metric and other scalars. We neglect this mixing in the present paper such that ξ does
not change the flow contribution from scalar fields. Then the replacement (85) is the only
modification for nonzero ξ. Similar to our treatment of w before, we do not compute here
the flow equation for ξ.

The ρ̃-dependence of v(ρ̃) obeys [7]:

∂v
∂ρ̃

=
m̃2

w
− ξv

2w
. (86)

As a result, the flow equation for m̃2 = ∂u/∂ρ̃ receives an additional contribution:

∂tm̃2 = 2ρ̃
∂m̃2

∂ρ̃
+ (A− 2)m̃2 − ξ Av

2
+ . . . (87)

where A is given by Equation (37) with v(ρ̃) and w(ρ̃). The dots denote contributions from
scalars, fermions, and gauge bosons that are not modified for ξ 6= 0. As a consequence of
the contribution ∼ ξ constant scaling solutions with m̃2(ρ̃) = 0 are no longer possible.
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In particular, one finds for m̃2
0 = m̃2(ρ̃ = 0):

∂tm̃2
0 = (A0 − 2) m̃2

0 −
ξA0v0

2
−

(
N′S + 2

)
λ0

32π2
(
1 + m̃2

0
)2

− 3N̄V g2

32π2 +
N̄F y2

16π2 . (88)

where we have taken N′S scalars with O(N′S)-symmetric potential and assumed that λρ̃
and ρ̃ ∂λ/∂ρ̃ remain finite for ρ̃ → 0, as well as cg = 1, c f = 1. For ξ 6= 0, a flat potential
at the origin (m̃2

0 = λ0 = 0) is no longer a scaling solution even for vanishing gauge and
Yukawa couplings g2 = y2 = 0. The issue of spontaneous symmetry breaking of the scaling
solution is directly linked to the sign of m̃2

0 for the scaling solution. Equation (88) shows
that this sign depends on the relative size of the various couplings. For A0 < 2, positive
ξv0, g2, and λ0 favor spontaneous symmetry breaking (m̃2

0 < 0), while for A0 > 2 the same
couplings favor a minimum of u at the origin.

6.2. Scaling Solution

In Figure 10 we show a numerical scaling solution of Equation (26), with w(ρ̃) given
by Equation (84) and g2 = y2 = 0. We take ξ = 0.1 and plot four different values of
w0 = 0.038, 0.042, 0.05, and 0.06. The corresponding values of A0 are A0 = 2.74, 1.64, 1.0,
and 0.68, such that the highest curve corresponds to A0 > 2. For all curves, u(ρ̃) reaches
a constant for ρ̃ → 0 and increases as w(ρ̃) ∼ ξ ρ̃/2 for ρ̃ → ∞. A minimum at ρ̃0 6= 0 is
clearly visible. The precise value of the minimum depends on the initial condition for the
first order differential equation that we choose for Figure 10 as u(ρ̃ = 1). We find indeed a
whole family of scaling solutions that may be parameterized by u(ρ̃ = 1). As discussed in
Appendix C, it is so far not known if all scaling solutions can consistently be continued to
ρ̃ = 0 once the contribution from scalar fluctuations is included.

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0
x

0.0165

0.0170

0.0175

0.0180

0.0185

0.0190

u

Figure 10. Effective potential u in presence of a nonminimal coupling ξ to gravity, in function of
x = ln(ρ̃). Parameters are ξ = 0.1, Neff = 10. Different curves correspond to different values of
w0 = 0.038, 0.042, 0.05, and 0.06, with corresponding A0 given by 2.74, 1.64, 1.0, and 0.68, from top to
bottom. We choose as initial condition u(x = 0) = 0.03. A local minimum occurs near x = −2.

We plot in Figure 11 the value v(ρ̃) = u(ρ̃)/w(ρ̃) for the same set of parameters. All
curves approach for ρ̃ → ∞ the asymptotic behavior v(ρ̃ → ∞) → 1. This is consistent
with the graviton barrier discussed in ref. [6,16]. Correspondingly, the increase of u(ρ̃) for
ρ̃→ ∞ is bounded to be linear in ρ̃. This can be seen in Figure 12 for m̃2(ρ̃) = ∂ρ̃u(ρ̃). For
large ρ̃, one finds the asymptotic value m̃2(ρ̃→ ∞) = ξ/2. In the next two sections we will
discuss an alternative asymptotic behavior for ρ̃→ ∞ with w→ ξρ̃/2 and u→ u∞.
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Figure 11. Ratio v = u/w as function of x = ln(ρ̃) for ξ = 0.1. Other parameters are as in Figure 10,
with w0 between 0.038 and 0.06 from top to bottom. One observes the common approach to the
asymptotic value v = 1 for x → ∞.
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Figure 12. Mass term m̃2(x) with parameters as in Figure 10, with w0 between 0.038 and 0.06 from
bottom to top on the left side of the figure.

The mass term found in Figure 12 remains small for all w0 and ξ chosen, and for the
whole range in ρ̃. This justifies the approximation of massless scalar field fluctuations. A
whole family of scaling solutions seems to exist.

A non-minimal scalar-curvature coupling ξ strongly influences the asymptotic behav-
ior for ρ̃→ ∞. As a consequence, the discussion in Sections 3–6 can be relevant only for a
restricted range of ρ̃, i.e.,

ρ̃ <
2w0

ξ
. (89)

For small enough ξ this range may be rather large. What we have called the asymptotic
behavior in Sections 3–6 becomes in the presence of a small non-minimal coupling the range
of large ρ̃ that still obeys Equation (89). In this range only, small corrections to the results
of Sections 3–6 are expected from the non-minimal coupling ξ.

7. Scaling Solution with Field-Dependent Planck Mass

In this section we extend the truncation of the effective average action to two k-
dependent functions u(ρ̃) and w(ρ̃). For vanishing gauge and Yukawa couplings, we
recover the constant scaling solution which corresponds to the extension of the Reuter fixed
point [2,62–64] of pure gravity to the presence of matter [4]. Our investigation is based on
the gauge invariant flow equation [5] and the flow equations for u(ρ̃) and w(ρ̃) derived
in [8]. In particular, we compute the flow equation for the non-minimal coupling ξ. We
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discuss the vicinity of the constant scaling solutions as well as the behavior for large ρ̃ and
possible crossover scaling solutions. We include the case of nonzero gauge and Yukawa
couplings.

7.1. Flowing Planck Mass

So far we have made an ansatz for the function F(ρ), or the associated dimensionless
quantity w(ρ̃) = F/(2k2). In this section we investigate the combined system of flow
equations for u(ρ̃) and w(ρ̃). For the truncation (9) with Za = 1, the flow equations have
been computed from the gauge invariant flow equation in [8],

∂tu = 2ρ̃ ∂ρ̃u− 4u +
5

24π2

(
1− u

w

)−1
+
ÑU

32π2 , (90)

and

∂tw = 2ρ̃ ∂ρ̃ w− 2w +
25

64π2

(
1− u

w

)−1
+
ÑM

96π2 , (91)

with

ÑU = NS + 2NV − 2NF −
8
3

,

ÑM = −NS + 4NV − NF +
43
6
− 3 ξ̃

2
Nξ . (92)

The new flow equation for w involves the contributions of matter fluctuations ∼
NS, NV , or NF. There is also a contribution proportional to ξ̃, i.e. the non-minimal scalar
coupling to the curvature scalar. The other contributions arise from the graviton fluctu-
ations, with fluctuations of the physical scalar in the metric, gauge modes in the metric,
and ghosts summarized in the term 43/6 in ÑM. Equations (90)–(92) employ the Litim
cutoff and simplify the subdominant sector of scalar metric fluctuations by neglecting the
mixing with other scalar fields and omitting a factor (1− u/(4w))−1 in the scalar metric
contribution.

For vanishing gauge and Yukawa couplings and massless fields, one has constant NS,
NV , and NF, which count the number of real scalars, gauge bosons, and Weyl fermions,
respectively. For g or y different from zero, one has the effective ρ̃-dependent particle
numbers that obtain by multiplication with “threshold functions” (1 + m̃2

i )
−1. The field-

dependent mass terms m̃2
i are of the type m̃2 = g2ρ̃ for gauge bosons, m̃2 = y2ρ̃ for fermions,

and m̃2 = u′ + 2ρ̃u′′ or m̃2 = u′ for scalars in the radial or Goldstone directions. Different
species may have different effective couplings. In practice, we will use the following:

2NV =

(
3

1 + g2ρ̃
− 1
)

N̄V ,

NF =
N̄F

1 + y2ρ̃
, NS =

N̄S

1 + u′
, Nξ = N̄S , (93)

with constant particle numbers N̄V , N̄F, and N̄S. For the gauge bosons the contribution of
the three physical transversal gauge bosons and the measure contribution (longitudinal
gauge bosons and Faddeev–Popov determinant or ghosts) have the opposite sign.

The function ξ̃ is defined by:

ξ̃ =
∂2F
∂ϕ2 , (94)
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and may again be different for different scalar fields. It generalizes the nonminimal
gravitational coupling ξ of Section 6, with Nξ the number of states with this coupling. For
ρ̃ = ϕ2/(2k2) it reads:

ξ̃ = ξ + 4 w2ρ̃ , ξ = 2
∂w
∂ρ̃

, w2 =
∂2w
∂ρ̃2 . (95)

In case of O(N)-symmetry, ρ̃ = ϕa ϕa/(2k2), there are in addition N − 1-contributions
from the Goldstone directions,

ξ̃ = Nξ + 4w2ρ̃, (96)

such that for the Higgs-doublet with N = 4 one has:

Nξ ξ̃ = 4(ξ + ρ̃w2). (97)

Equation (95) defines the non-minimal coupling ξ(ρ̃) as a field-dependent function,
given by the first ρ̃-derivative of w(ρ̃). As we have mentioned in the introduction, ξ can
take different values for large ρ̃ and for ρ̃→ 0. The flow equation for ξ(ρ̃) obtains by taking
a ρ̃-derivative of the flow Equation (91) for w(ρ̃).

The system of differential Equations (90)–(92) is closed for fixed gauge couplings g
and Yukawa couplings y. With our approximation, it has a rather simple structure. It can
be considered as the central equation for the investigations of the present paper.

7.2. Scaling Solutions

For a given model the system of Equations (90) and (91) is closed. We are interested in
the scaling solution with ∂tu = ∂tw = 0. We discuss here a single representation of scalars
with N̄S components, coupling with a unique gauge coupling g to N̄V vector bosons and a
unique Yukawa coupling y to N̄F fermions. We also assume Nξ = N̄S and neglect u′′ and
w′′ on the r.h.s. of the flow equations. We omit the bars on N̄S, N̄V , and N̄F in the following
for the sake of simplicity of the formulae.

In this approximation, the two differential equations for the scaling solution can be
inferred directly from Equations (90) and (91) by setting ∂tu = 0, ∂tw = 0. They read:

2ρ̃ ∂ρ̃u = 4 (u− cU) , 2ρ̃ ∂ρ̃w = 2 (w− cM) , (98)

with

cU =
5

96π2

(
1− u

w

)−1

+
1

128π2

[
NS

1 + u′
+

(
3

1 + g2ρ̃
− 1
)

NV −
2NF

1 + y2ρ̃
− 8

3

]
, (99)

and

cM =
25

128π2

(
1− u

w

)−1

+
1

192π2

[
− NS

(
1

1 + u′
+

3w′

(1 + u′)2

)

+ 2NV

(
3

1 + g2ρ̃
− 1
)
− NF

1 + y2ρ̃
+

43
6

]
. (100)

In the following, we discuss the solutions of these central equations.
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We are interested in solutions for which u′ and w′ remain finite for ρ̃ → 0. This
condition relates u(0), w(0) to u′(0), w′(0) according to:

u(0) = cU(0) =
5

96π2 (1− v0)

+
1

128π2

[
NS

1 + u′(0)
+ 2NV − 2NF −

8
3

]
, (101)

and

w(0) = cM(0) =
25

128π2 (1− v0)

+
1

192π2

[
− NS

(
1

1 + u′(0)
+

3w′(0)
(1 + u′(0))2

)

+ 4NV − NF +
43
6

]
, (102)

with

v0 =
u(0)
w(0)

. (103)

Equations (98)–(100) are a system of non-linear first order differential equations for
two functions u(ρ̃) and w(ρ̃). The general local solution has therefore two free integration
constants that one could associate with u′(0) and w′(0). The question that arises is of which
one of the local solutions can extend to global solutions valid for the whole range of ρ̃. In
practice, we will often choose the free integration constants in a different way.

7.3. Constant Scaling Solution

For vanishing gauge and Yukawa couplings, g = y = 0, the system of differential
Equations (99) and (100) admits a constant scaling solution, u′(ρ̃) = 0, w′(ρ̃) = 0, which
has been discussed extensively in [8]. It is given by:

v∗ = 1− 1
4 ÑM

(
b +

√
b2 + 440 ÑM

)
,

b = 2 ÑM − 3NU − 75 , (104)

ÑU,∗ = NS + 2NV − 2NF −
8
3

,

ÑM,∗ = −NS + 4NV − NF +
43
6

. (105)

The corresponding dimensionless potential and squared Planck mass are independent
of ρ̃,

u∗ =
1

128π2

(
ÑU,∗ +

20
3 (1− v∗)

)
,

w∗ =
1

192π2

(
ÑM,∗ +

75
2 (1− v∗)

)
. (106)

A second constant scaling solution exists only in a small regime of ÑU and ÑM and
will not be discussed here explicitly.

For the major part of the model space (ÑU , ÑM), we conclude that out of the two
constant scaling solutions for u for a fixed constant w = w0 that we have discussed
in Section 3.2, only one is compatible with a simultaneous scaling solution for w. It
corresponds to the extended Reuter fixed point [4]. As a consequence, the crossover scaling
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solution for ũ∗(ρ̃) discussed in Section 3.3 is not a valid scaling solution for the combined
system of flow equations for u(ρ̃) and w(ρ̃). It could only be an approximation for a region
of a scaling solution in which w∗(ρ̃) does not change much with ρ̃. Generic crossover
scaling solutions can still exist for ranges in the field content and parameters for which
two different constant scaling solutions exist. We learn even very rough features of scaling
solutions as the number of possible solutions can depend on the truncation in an important
way.

7.4. Scaling Solutions Close to a Constant Scaling Solution

We next address the question of if the constant scaling solution is isolated or part of
a continuous family of scaling solutions. For this purpose we first discuss the possible
scaling solutions in the vicinity of the constant scaling solution. These neighboring scaling
solutions may only remain in the vicinity of the constant scaling solution in the range of
small ρ̃. For any non-zero ξ, one expects a strong deviation for ρ̃→ ∞.

We perform in Appendix E, a detailed investigation of the system of linear differential
equations for small deviations from the constant scaling solution. The overall picture
emerging is that scaling solutions that are close to the constant scaling solution for ρ̃→ 0
diverge away from the constant scaling solution as ρ̃ increases. In the other direction, a
large class of potential scaling solutions approaches the vicinity of the constant scaling
solution for ρ̃→ 0. In the absence of gauge and Yukawa couplings, we find a problematic
transition region where the linear approximation leads to strong variations, casting doubt
on the existence of global scaling solutions with these properties.

One possibility to avoiding such strong variations is that valid scaling solutions reach
the transition region in a range where they still differ sufficiently from the constant scaling
solution such that a linear treatment is not valid. We will observe below that the problem
of strong variations seems not to be present for non-zero gauge or Yukawa couplings.

7.5. Asymptotic Scaling for Large Fields and the Cosmon Potential

Interesting candidate scaling solutions reach for large ρ̃ a constant value for u, while
w is dominated by a linear increase with ρ̃,

u(ρ̃→ ∞) = u∞, w(ρ̃→ ∞) =
ξ∞

2
ρ̃. (107)

Such behavior leads to cosmologies with a light scalar field—the cosmon [65]—that
could account for dynamical dark energy or quintessence [15]. The quantity relevant for
cosmology is the dimensionless ratio:

u
4w2 =

U(ρ)

M4(ρ)
=

u∞

ξ2
∞ρ̃2 =

u∞k4

ξ2
∞ρ2 . (108)

It is the same in all metric frames and related to the scalar potential in the Einstein
frame VE by:

VE =
uM4

E
4w2 =

u∞k4M4
E

ξ2
∞ρ2 , (109)

with ME the fixed Planck mass in the Einstein frame. The potential VE constitutes the dark
energy density in the universe, supplemented by a smaller contribution from the kinetic
energy of the scalar field. It decreases towards zero for ρ → ∞. “Runaway cosmological
solutions” lead indeed to an unbounded increase of ρ for increasing time. A potential of
the type (107) therefore solves the cosmological constant problem dynamically by dark
energy decreasing to zero in the infinite future. Details of the translation to cosmology and
corrections for realistic cosmologies can be found in [11]. We mention that the factor k4 is
absorbed by a proper normalization of the kinetic term for the scalar field, which turns VE
into an exponentially decreasing potential.
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Scaling solutions with asymptotic behavior (107) have already been investigated in
the context of “dilaton quantum gravity” [17,18]. Interesting candidate scaling solutions
have been found numerically. We employ here a simpler system of flow equations which
may help towards partial analytical understanding of the main features of possible scaling
solutions. We also extend the scope, including additional fields and possible non-zero
gauge and Yukawa couplings.

For scaling solutions with an asymptotic behavior (107) we expand:

u(ρ̃) = u∞ +
u(1)

ρ̃
+

u(2)

ρ̃2 + . . .

w(ρ̃) =
1
2

ξ∞ρ̃ + w(0) +
w(1)

ρ̃
+

w(2)

ρ̃2 + . . . , (110)

where dots denote higher-order terms in an expansion in ρ̃−1. This expansion has been
investigated to much higher orders for dilaton quantum gravity [17,18]. We also expand:

cU = cU,∞ +
c(1)U
ρ̃

+
c(2)U
ρ̃2 + . . .

cM = cM,∞ +
c(1)M
ρ̃

+
c(2)M
ρ̃2 + . . . , (111)

such that the differential Equation (98) for the scaling solution takes the form:

2 (u∞ − cU,∞) +
3u(1) − 2c(1)U

ρ̃
+

4u(2) − 2c(2)U
ρ̃2 + · · · = 0 , (112)

and

w(0) − cM,∞ +
2w(1) − c(1)M

ρ̃
+

2w(2) − c(2)M
ρ̃2 + · · · = 0 . (113)

The solution expresses the coefficients u(i), w(i) in terms of c(i)U , c(i)M , with ξ∞ a free
integration constant. We therefore have a one-parameter family of asymptotic scaling
solutions, parameterized by ξ∞.

For g = y = 0 one has:

cU =
5

96π2 (1− v)
+

1
128π2

[
ÑU + NS

(
1

1 + u′
− 1
)]

,

cM =
25

128π2 (1− v)

+
1

192π2

[
ÑM,∗ − NS

(
1

1 + u′
− 1
)
− 3NS w′

(1 + u′)2

]
. (114)

With,

(1− v)−1 = 1 +
2u∞

ξ∞ρ̃
+

2
ξ∞ρ̃2

(
u(1) +

2u∞

ξ∞
(u∞ − w(0))

)
, (115)
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one obtains:

u∞ = cU,∞ =
5

96π2 +
ÑU,∗

128π2 ,

w(0) = cM,∞ =
25

128π2 +
1

192π2

(
ÑM,∗ −

3NS ξ∞

2

)
. (116)

In the next order one finds:

u(1) =
2
3

c(1)U =
5 u∞

72π2 ξ∞
(117)

and
w(1) =

1
2

c(1)M =
25 u∞

128π2 ξ∞
. (118)

Continuation to the terms ∼ ρ̃−2 yields:

u(2) =
1
2

c(2)U =
u(1)

768π2

(
3NS +

40
ξ∞

)
+

5 u∞

48π2 ξ2
∞
(u∞ − w(0)) , (119)

and

w(2) =
1
3

c(2)M =
u(1)

192π2

(
25
ξ∞
− NS

3
− NS ξ∞

)
+

25 u∞

96π2 ξ2
∞
(u∞ − w(0)) +

NS w(1)

192π2 . (120)

This can be continued to higher orders [17,18] and yields an accurate description of
possible scaling solutions with behavior (107). For a given particle content the family of
these candidate scaling solutions is parameterized by the free constant ξ∞.

The question arises as to which of these asymptotic solutions correspond to true
scaling solutions for the whole range of ρ̃. For a numerical investigation we employ initial
conditions for large ρ̃, ρ̃ = ρ̃as, say ρ̃as = 1000, or even larger. The initial conditions for
u(ρ̃as), w(ρ̃as) are taken from the asymptotic solution (110), with ξ∞ a free parameter. For
these large values of ρ̃as, the asymptotic solution (110) obeys the full differential Equations
(98) and (99) with an accuracy of 10−13 or better. We then solve the differential Equations
(98) and (99) numerically towards smaller ρ̃ and ask for which values of ξ∞ the solution
extends to ρ̃ → 0. For g2 = y2 = 0 and NS = 1, NV = 0, and NF = 0 we plot the solution
for different values of ξ∞ in Figures 13 and 14. This could be a typical setting for a scalar
singlet associated to the inflation of the cosmon, the scalar field mediating dynamical dark
energy as χ moves to infinity.
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Figure 13. Effective potential u as function of x = ln ρ̃. We display curves for four different values
ξ∞ = 0.405 (blue), ξ∞ = 0.7 (orange), ξ∞ = 1.0 (green), and ξ∞ = 1.5 (red), from top to bottom. Initial
values as set at ρ̃as = 1000 and the particle content is given by NS = 1, NV = NF = 0.
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Figure 14. Mass term u′ as function of x = ln ρ̃. Parameters and color coding is the same as for
Figures 13 and 15. We observe strong variations in the transition region of x between −7 and −5.
The negative u′(ρ → 0) corresponds to a maximum of the potential at the origin. The small local
minimum of u at x ≈ −6.5 may be an artifact of the truncation.

In Figure 13 we show u(x) for ξ∞ = 0.405, 0.7, 1.0, and 1.5. For smaller or larger ξ∞
outside the range of the plotted values, the solutions typically diverge within the interval
of x = ln ρ̃ shown. Only the solutions for ξ∞ within the restricted interval are candidates
for valid scaling solutions. Compared to [17,18], this seems to restrict the parameter range
for possible scaling solutions. In Figure 15 we display w′(x) for the same values of ξ∞. One
observes a switch from positive w = ξ∞/2 for large ρ̃ to negative w′ for ρ̃→ 0. The mass
term m̃2 = u′ is displayed in Figure 14. While it remains small everywhere, including the
transition region, it shows substantial variation in the transition region. It remains open if
this variation is damped by including the neglected terms ∼ u′′, w′′ in the flow equation,
or not.
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Figure 15. Nonminimal scalar coupling w′ as function of x = ln ρ̃. Parameters and color coding are
the same as for Figure 13. The value ξ∞ = 2 w′(x → ∞) can be read off directly.

In view of this open question it is not yet possible to decide if the asymptotic solutions
can be extended to ρ̃ = 0 or not. Better numerical precision, and possibly the inclusion
of non-zero u′′, w′′ in the flow equations would be needed to decide if all parameters
in the range of ξ∞ between 0.405 and 1.5 correspond to global scaling solutions, if only
particularly tuned solutions can make a smooth transition, or if none of the candidate
scaling solutions is globally viable. We will next see that the transition region is strongly
influenced by the particle content and the possible presence of gauge or Yukawa couplings.
Some of the examples below will show a much smoother behavior in the transition region.

7.6. Scaling Solutions with Gauge and Yukawa Couplings

The cosmon has to be a singlet with respect to the SU(3) × SU(2) × U(1)-gauge
symmetry of the standard model. A very light non-singlet scalar would have been found
by present experiments. It may, nevertheless, belong to a non-trivial representation of
some grand unified gauge group, as the 24 of SU(5) or the 45 or 54 of SO(10). Its non-
zero cosmological value χ would account for the spontaneous breaking of the GUT-gauge
symmetry. This is phenomenologically without problems since scale symmetry implies
that the Fermi scale and the confinement scale of QCD (quantum chromodynamics) are
also proportional to χ [11,15]. The observable ratios of scales would remain invariant even
for cosmologies where χ increases with t.

The important new ingredient for the scaling solutions in this type of scenario are
the gauge couplings of χ to the heavy gauge bosons of the grand unified gauge symmetry.
Since these gauge bosons have masses ∼ gχ, they are effectively massless at scales k� gχ,
corresponding to small values of ρ̃. The massive gauge bosons decouple for k � gχ, or
large values of ρ̃. Nevertheless, their presence will influence the non-leading terms in
the expansions (110) and (111). Non-zero gauge couplings play an important role for the
smoothness of the transition region.

With a standard normalization of the kinetic term for χ, the scale of grand unification
MGUT is set by the mass of the heavy gauge bosons, while the effective Planck mass in the
range of large ξ is given by:

M2
GUT = g2ρ, M2 = ξ∞ρ,

MGUT

M
=

g√
ξ∞

. (121)

Small values of MGUT/M correspond to large values of ξ∞. We may also have a
situation where χ is dominantly a singlet with respect to the GUT-symmetry. The scalar field
responsible for GUT-symmetry breaking may take a smaller value χGUT. Scale symmetry
requires χGUT/χ to be a constant rGUT. With:

M2
GUT = g2ρGUT = g2r2

GUTρ, (122)
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one finds an effective gauge coupling of the singlet χ given by:

geff = rGUTg. (123)

Employing geff, our discussion of non-zero gauge couplings also applies to the case
of a scalar singlet with respect to the GUT-symmetry. The ratio rGUT can suppress the
coefficient cg in Equation (57). Equation (121) remains valid if g is replaced by geff. Even
small values of ξ∞ are compatible with a small ratio MGUT/M.

Nonvanishing gauge couplings change the character of the scaling solution. We
discuss here the approximation that the gauge coupling g is independent of ρ̃, and make
the simplification that all NV vector bosons have the same mass term g2 ρ̃. Constant scaling
solutions no longer exist for the whole range of ρ̃ if g2 > 0. This is connected to the simple
property that the effective number of gauge bosons is not the same for ρ̃→ 0 and ρ̃→ ∞.
For small ρ̃, g2 ρ̃� 1, the effective number of gauge bosons is NV . On the other hand, for
large ρ̃, the mass term suppresses effectively the number of gauge bosons. Only the gauge
modes are massless, replacing effectively NV by NV,∞ = −NV/2. As a consequence, the
effective numbers ÑU and ÑM for ρ̃→ 0 are replaced for ρ̃→ ∞ by:

ÑU,∞ = NS − NV − 2NF −
8
3

,

ÑM,∞ = −NS − 2NV − NF +
43
6
− 3 ξ̃

2
Nξ . (124)

One may still have an almost flat potential for ρ̃→ ∞ as well as for ρ̃→ 0. The values
of the flat potentials in the two limits will be different, however. Scaling solutions have
then to describe a crossover between the two flat solutions, similar to Section 5, see Figures
6 and 9.

The situation is similar for nonzero Yukawa couplings. For ρ̃→ ∞ the effective number
of fermions reduces to zero if we assume that all fermions have nonvanishing Yukawa
couplings. We will consider a setting where all fermions have the same ρ̃-independent
Yukawa coupling y. Taking further Nξ = NS, the effective particle numbers become for
ρ̃→ ∞:

ÑU,∞ = NS − NV −
8
3

,

ÑM,∞ = −NS − 2NV +
43
6
− 3 ξ∞

2
NS . (125)

We may again explore the asymptotic scaling solutions of the type (110). The coeffi-
cients u∞, w(0) are now given by:

u∞ = cU,∞ =
5

96π2 +
ÑU,∞

128π2 ,

w(0) = cM,∞ =
25

128π2 +
1

192π2 ÑM,∞ . (126)

For the coefficients of the terms ∼ ρ̃−1 one obtains:

u(1) =
2
3

c(1)U =
5 u∞

72π2 ξ∞
+

1
64π2

(
NV

g2 −
2 NF

3y2

)
,

w(1) =
1
2

c(1)M =
25 u∞

128π2 ξ∞
+

1
384π2

(
6 NV

g2 −
NF

y2

)
. (127)

Finally, the coefficients u(2), w(2) acquire additional contributions as well,

u(2) = u(2)
0 + ∆u(2) , w(2) = w(2)

0 + ∆w(2) , (128)
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where u(2) and w(2)
0 are given by Equations (119) and (120), respectively, and:

∆u(2) =
1
2

∆c(2)U = − 1
256π2

(
3 NV

g4 −
2 NF

g4

)
,

∆w(2) =
1
3

∆c(2)M = − 1
192π2

(
2 NV

g4 −
NF

3y2

)
. (129)

In Figures 16 and 17 we plot the scaling solutions that connect to the asymptotic
scaling solutions for constant g2/4π = y2/4π = 1/40. We choose the particle content
of the standard model, NS = 4, NV = 12, and NF = 45 and set the asymptotic initial
conditions at ρ̃as = 5000. We choose two values ξ∞ = 0.1 and 1.0 and compare the solutions
with the corresponding solutions for g2 = y2 = 0. For ξ∞ & 1.5 (g2 > 0) or ξ∞ & 2 (g2 = 0),
the coefficient w turns negative inside the interval of x shown. These solutions are not
acceptable scaling solutions, such that the allowed range of scaling solutions does not admit
large scalar-curvature couplings ξ∞.
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Figure 16. Nonminimal scalar coupling w′(ρ̃) as function of x = ln ρ̃. Parameters and color coding
are the same as for Figures 17 and 18. The value ξ∞ = 2w′(x → ∞) can be read easily.

In Figure 17 we plot the dimensionless effective potential u(x), x = ln ρ̃. The upper
two curves for large x correspond to g2/4π = 1/40, and the two lower ones to g2 = 0. We
observe indeed a crossover between two regions of almost constant potential for ρ̃ → 0
and ρ̃→ ∞. The potential is higher for ρ̃→ ∞. For g2 > 0, this corresponds to the effective
particle numbers ÑU,∞ and ÑM,∞. The dependence on ξ∞ is small except for the transition
region. For the curves with g2 ≈ 0.3 the transition occurs for ρ̃ ≈ 3, according to g2 ρ̃ ≈ 1.
The behavior of the two curves with g2 > 0 is clearly dominated by the effect of the gauge
and Yukawa couplings that result in the variation of the effective degrees of freedom. For
the two curves with g2 = 0 the crossover occurs for smaller ρ̃ as compared to the curves
with g2 > 0. For all curves, the potential u(ρ̃→ 0) is close to the constant scaling solution
u∗.

In Figure 18 we display the dimensionless mass term m̃2(ρ̃) = u′(ρ̃). The parameters
are the same as for Figure 17. For all curves, the mass term vanishes for ρ̃→ ∞, as expected
for the asymptotic scaling solution. For ρ̃→ 0, the mass term switches to positive values,
indicating that for all curves the minimum of the effective potential is situated at ρ̃ = 0.
The two upper curves on the left hand side correspond to the value ξ∞ = 1.0, the lower
ones to ξ∞ = 0.05. For ξ∞ = 1 the mass term at ρ̃ = 0 is substantial. It depends only mildly
on the value of g2. For small ξ∞ = 0.05 (two lower curves on the left), the mass term at
ρ̃ = 0 is much smaller. We observe that none of the curves show strong variations in the
transition region that were found for NS = 1, NV = NF = 0 near ρ̃ = 1/(64π2). There
seems to be no obstacle to continue the solutions to ρ̃→ 0. The small variations observed
for large negative x are presumably numerical errors, which blow up if the region is further
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extended towards x → −∞. The observed mass terms are compatible with the difference
u(ρ̃ = 0)− u∗ according to Equation (101).
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Figure 17. Effective potential u as function of x = ln ρ̃. The two upper curves are for g2/4π =

y2/4π = 1/40. The red curve corresponds to ξ∞ = 1.0, the green curve to ξ∞ = 0.05. The two lower
curves are for g2 = y2 = 0, with the orange curve for ξ∞ = 1.0 and the blue curve for ξ∞ = 0.05.
Particle numbers are NS = 4, NV = 12, and NF = 45 and initial conditions are set at ρ̃as = 5000.
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Figure 18. Mass term u′(ρ̃) as function of x = ln ρ̃. Values of parameters and color coding are the
same as in Figure 17. The two upper curves on the left (red and orange) correspond to ξ∞ = 1.0, the
two lower ones (blue and green) to ξ∞ = 0.05.

Figure 16 displays w′(ρ). For large ρ̃, it approaches the asymptotic value ξ∞/2, and
it makes a crossover to larger values at ρ̃ = 0. For large ξ∞ (two upper curves), the
dependence on the value of g2 is very small. The dependence on g2 is more pronounced for
the two lower curves with ξ∞ = 0.05. The green curve for g2 > 0 seems to show a somewhat
sharper transition than the blue curve for g2 = 0. Both for u′(ρ̃) and w′(ρ), the transition
between the constant values for ρ̃ → ∞ and ρ̃ → 0 occurs for x ≈ −5, corresponding to
ρ̃ ≈ 1/(64π2). It is related to the scalar sector, since the gauge boson masses ∼ g2 ρ̃ are
already very small in the transition region. The caveats about the neglection of u′′, w′′ in
this region remain valid.

We conclude that interesting crossover scaling solutions for the potential between
two constant values for ρ̃→ 0 and ρ̃→ ∞ seem possible for an effective Planck mass that
increases∼ ρ̃ due to a non-minimal coupling ξ∞. The region where the existence of a global
solution is decided is the transition region around ρ̃ = 1/(64π2). The smoothness in this
transition region depends substantially on the particle content. It seems not unlikely that
the number of global scaling solutions also depends on the particle content in a critical way.
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8. Scaling Solutions for the Standard Model

The standard model of particle physics coupled to quantum gravity may be a consistent
quantum field theory. This requires the presence of an UV fixed point, rendering the model
asymptotically safe. The fixed point does not only concern a small number of couplings.
It requires the existence of a scaling solution for functions as u(ρ̃) and w(ρ̃). Within our
approximation, such scaling solutions indeed exist. For the standard model coupled to
gravity, the gauge and Yukawa couplings can be asymptotically free. This is necessary
for the non-abelian couplings, while for the abelian coupling g1 another fixed point with
g1∗ 6= 0 may exist [66–71]. For the scaling solution we take here g2 = y2 = 0.

8.1. Constant Scaling Solution

The constant scaling solution with ρ̃-independent u and w is a viable scaling solution.
This scaling solution predicts a vanishing quartic scalar coupling at the fixed point. Close to
the fixed point, the quartic scalar coupling is an irrelevant parameter with critical exponent
given by −A. In a complete theory it can therefore be predicted to take its fixed point value.
The gauge and Yukawa couplings are relevant parameters at the fixed point. They will
increase as the flow moves away from the fixed point towards the infrared. The flowing
gauge and Yukawa couplings generate, in turn, a nonzero value for the quartic scalar
coupling. As long as the graviton fluctuations remain important this value remains very
small. A more substantial increase happens only for scales below the Planck mass. This
simple picture has successfully predicted [3] the mass of the Higgs boson in the range that
has later been observed [72–74].

For the constant scaling solution, the effective potential is flat and corresponds to a
cosmological constant:

U(ρ) = U0 = u∗ k4 . (130)

The cosmological constant is negative, u∗ < 0, and vanishes for k→ 0. The cosmologi-
cal constant is a relevant parameter. Its flow away from the fixed point leads to a value of
U(ρ = 0) different from the one for the scaling solution (130). It is a free parameter and
can be chosen arbitrarily, for example to coincide with the present observed dark energy
density. The mass term for the Higgs potential is also a relevant parameter at the fixed
point. Its value at k = 0 can be chosen such that the expectation value of the Higgs scalar
coincides with the observed Fermi scale.

The constant scaling solution cannot account for Higgs inflation, however. The relevant
coupling corresponding to the cosmological constant has to be chosen such that for k→ 0,
the cosmological constant is very small. This implies that for k larger than the Fermi
scale, U(k) is given by the scaling solution. Even if we could somehow identify U(k) with
the cosmological constant for a scale k corresponding to the Hubble parameter H, (such
an identification is far from obvious,) the value of U(k) is negative and cannot describe
cosmology close to de Sitter space. We extend the discussion of this issue to other candidate
scaling solutions in Section 8.3, with a similar negative outcome. A possible alternative for
inflation for the pure standard model coupled to gravity could be a large coefficient of the
term ∼ R2 in the effective action, leading to Starobinsky inflation [75].

8.2. Crossover Potential

A possible realization of Higgs inflation, ref. [9] for the standard model coupled to
quantum gravity needs a scaling solution different from the constant scaling solution. The
non-minimal coupling ξ should not vanish. We therefore explore the possible existence of
other scaling solutions beyond the constant scaling solution. For large ρ̃, scaling solutions
different from the constant scaling solution can take the form of the asymptotic scaling
solution (110). A numerical investigation shows that such scaling solutions indeed seem to
exist. As before, we fix initial conditions at some large ρ̃as as a function of the free parameter
ξ∞. We find two ranges of solutions, one for small ξ∞ in the range 0 ≤ ξ∞ . 1.5, the other
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for large ξ∞ & 1000. In the range 1.5 . ξ∞ . 1000, the coupling w turns negative, not
consistent with stable gravity.

For this type of solution, shown in Figure 19, the potential is a crossover potential,
as shown in Figure 20 for low values of ξ∞ = 0.1, 1, 103, and 104. All curves show a
crossover from larger values of u for ρ̃ → ∞ (x → ∞) than for ρ̃ = 0 (x → −∞). The
minimum of the effective potential is at the origin, ρ̃ = 0. For ρ̃→ ∞, all crossover scaling
solutions approach a common constant, given by u∞ < 0 according to Equation (116),
with ÑU,∗ = NS + 2NV − 2NF − 8/3. This crossover behavior continues for smaller values
ξ∞ < 0.1, with a location of the crossover shifted further to the right. The parameter
determining the location of the crossover is given by ρ̃/ξ∞. We show u(x) in Figure 21
in a smaller range around x = ln(1/(16π2)) for ξ∞ = 2 · 10−5, 10−4, 10−3, 0.03. As ξ∞
approaches zero, the curves approach the constant scaling solution which is also shown as
the horizontal straight line. Simultaneously, the location of the crossover to larger values
moves to ρ̃cross → ∞ as ξ∞ → 0, realizing a smooth limit for the approach to the constant
scaling solution. We show the corresponding scaling solutions w(x) for the same small
values of ξ∞ in Figure 19, with constant scaling solution w∗ given by the horizontal line.
We observe that the scaling solutions for small ξ∞ all meet in a common point ln ρ̃ ≈ −5.05,
both for u and for w. Around this point, the linearized differential Equation (A100) is valid.

-9 -8 -7 -6 -5 -4
x

0.0049

0.0050

0.0051

0.0052

w

Figure 19. Dimensionless squared Planck mass w as function of x = ln ρ̃ for ξ∞ = 2 · 10−5 (blue),
10−4 (orange), 10−3 (green), and 0.003 (red), from top to bottom on the left. The horizontal line
denotes the scaling solution which is approached for ξ∞ → 0. All curves meet in a common point at
x ≈ −5.05.
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Figure 20. Effective potential u as function of x = ln ρ̃ for ξ∞ = 0.1 (blue), 1.0 (orange), 103 (green),
and 104 (red), from right to left in the right part and from top to bottom in the left part. The horizontal
line indicates the scaling solution. The particle content is the one of the standard model, NS = 4,
NV = 12, and NF = 45.
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u

Figure 21. Effective potential u as function of x = ln ρ̃ for ξ∞ = 2 · 10−5 (blue), 10−4 (orange), 10−3

(green), and 0.003 (red), from bottom to top on the right side. The constant scaling solution, given by
the horizontal line, is approached for ξ∞ → 0. All curves meet in a common point at x ≈ −5.05.

For all solutions the mass term u′(ρ̃) increases as ρ̃ decreases, as shown in Figure 22 for
ξ∞ = 0.01, 1.0, 103, and 104 from bottom to top. We display m̃2

0 = u′(ρ̃ = 0), corresponding
to the asymptotic limit x → −∞, in Table 1 (for very small ρ̃ our numerical solution starts to
be unstable, and we take in practice u′(ρ̃ = 10−11)). In addition, ξ(ρ̃) = 2 w′(ρ̃) increases as
ρ̃ decreases. The values ξ0 for ρ̃→ 0 are shown as well in Table 1. The numerical solutions
for ξ∞ in the range between 10−3 and 1 show a very narrow spike for a value of x smaller
than the point where all curves for u and w meet. So far we have not attempted for a better
resolution of the spike. It is doubtful that the solutions in this range are acceptable scaling
solutions. This would leave for ξ∞ only two windows, either ξ∞ < 10−3 or ξ∞ > 103.
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Figure 22. Dimensionless mass term m̃2 = u′ as function of x = ln ρ̃, for ξ∞ = 0.1 (blue), 1 (orange),
103 (green), and 104 (red), from bottom to top.
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Table 1. Values of parameters at ρ̃ = 0 for asymptotic scaling solutions with different parameters
ξ∞. We show the dimensionless mass term m̃2

0, the nonminimal scalar-gravity coupling ξ0, and the
quartic scalar coupling λH0. For ξ∞ ≥ 0.01, the quartic scalar coupling gets very large and is not
displayed here.

ξ∞ m̃2
0 ξ0 λH0

2 · 10−5 8.6 · 10−4 1.6 · 10−3 1.3 · 10−3

10−4 1.6 · 10−3 2.5 · 10−3 3.2 · 10−3

10−3 0.019 0.035 0.63
0.003 0.034 0.065 2.28
0.01 0.073 0.156
1.0 0.43 2.4
103 3.29 28.8
104 4.4 40.5

8.3. Higgs Inflation

Higgs inflation [9,10] has been proposed as a possibility to accommodate the inflation-
ary universe within the standard model. The original proposal has employed rather large
values of the nonminimal scalar-gravity coupling ξ. Smaller values seem also possible,
while generally values ξ & 10 are assumed. In the presence of quantum gravity effects,
even small ξ � 1 could be compatible with realistic inflation [11]. The reason is the generic
flattening of the scalar potential for large field values due to the fluctuations of the metric
field.

Discussing these proposals in the light of the scaling solutions for quantum gravity,
one encounters a major problem: The scaling potential remains negative for the whole
range of ρ̃, while a positive potential would be required for inflation. The relevant quantity
for inflation is actually the potential in the Einstein frame (with M̄ the observed fixed
Planck mass).

VE =
M̄4 U

F2 =
M̄4 u
4 w2 . (131)

We display VE in Figure 23 for ξ∞ = 2 · 10−5, 10−4, 10−3 and 0.003 from right to left. It
has a flat tail for ρ→ ∞, as suitable for inflation,

VE(ρ→ ∞) =
M̄4 u∞

ξ2
∞ ρ̃2 =

u∞ M̄4 k4

ξ2
∞ ρ2 . (132)

Successful inflation would need, however, a shift to positive values. A positive scaling
potential could be achieved by adding additional bosonic particles, as in GUT models, but
it is not possible for the particle content of the standard model alone.
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Figure 23. Potential in the Einstein frame VE as function of x = ln ρ̃, for ξ∞ = 2 · 10−5 (blue), 10−4

(orange), 10−3 (green), and 0.003 (red), from right to left.
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8.4. Standard Model in the Einstein Frame

For a connection to observable quantities it is useful to transform all quantities to the
Einstein frame with a constant Planck mass M̄. The ratio:

V̂ =
U
F2 =

VE

M̄4 =
u

4 w2 (133)

is a frame-invariant quantity. It does not change under a Weyl transformation of the metric,
i.e.,

(gE)µν =
F

M̄2 gµν . (134)

With K the prefactor of the kinetic term, (K = 1 in our truncation,) the frame-invariant
expression for the kinetic term is [17,76]:

K̂ =
K k2

F
+

6ρ k2

F2

(
∂F
∂ρ

)2

=
1

2w
+

6
ρ̃

(
∂ ln w
∂ ln ρ̃

)2

. (135)

In the Einstein frame, the kinetic term for the Higgs doublet h reads (ρ = h†h):

Lkin =
M̄2 K̂

k2 ∂µh† ∂µh = ∂µh†
E ∂µhE , (136)

with hE the canonically normalized field in the Einstein frame, related to h by:

∂hE
∂h

=
M̄
k

√
K̂ . (137)

For the Einstein frame we define the dimensionless invariant:

ρ̃E =
ρE

M̄2 =
h†

EhE

M̄2 . (138)

For a formulation with canonical kinetic terms we need to express VE/M̄4 in terms of
ρ̃E.

For the relation between ρ̃ and ρ̃E, we integrate Equation (137),

ρ̃E =
1
4

( ∫ ρ̃

0
dρ̃′

√
K̂
ρ̃′

)2

. (139)

The dimensionless invariant ρ̃E only depends on the dimensionless variable ρ̃, without
any explicit dependence on k. For the scaling solution, V̂ and K̂ are functions of ρ̃ without
explicit dependence on k. Thus k completely disappears in the Einstein frame. If a model
is defined precisely on the fixed point, exact quantum scale symmetry is realized [11]. In
this case the relevant cosmological field equations in the Einstein frame can be directly
extracted from the field equation derived from the action:

S =
∫

x

√
gE

{
− M̄2

2
RE +

1
2

∂µh†
E ∂µhE + M̄4 V̂(hE)

}
. (140)

They do not involve the scale k, which therefore does not need to be specified.
The possible absorption of the re-normalization scale k into a suitable normalization

of fields is an important general property of scaling solutions. For scaling solutions k
constitutes the only field-independent mass scale. It can be interpreted as the scale at which
an observer looks, such that fluctuations with wavelength larger than k−1 do not influence
the observation effectively. Since k is the only scale, its value is arbitrary. It is therefore not
surprising that it can be absorbed into a suitable field definition. Nevertheless, since some
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scale must be present in order to provide for mass units of the fields, a scale will also be
present if k is absorbed in the field normalization. For the Einstein frame, this is the fixed
Planck mass M̄ in Equation (140). As an important consequence of this setting there is
actually no need for a flow away from the scaling solution in order to make contact with
observation.

For our scaling solutions, Equation (139) can be solved easily for limiting cases. For
ρ̃→ 0 one has w = w0 + ξ0 ρ̃/2 and therefore:

K̂ =
1

2 w0
+ (6 ξ0 − 1)

ξ0

4w2
0

ρ̃ . (141)

In leading order this yields:
ρ̃ = 2 w0 ρ̃E . (142)

In the limit of large ρ̃ we use w = ξ∞ ρ̃/2 and

K̂ =
(

6 +
1

ξ∞

)
ρ̃−1 . (143)

This implies for ρ̃→ ∞:

ρ̃E =
1
4

(
6 +

1
ξ∞

)
ln2 ρ̃

ρ̃0
=

1
4

(
6 +

1
ξ∞

)
(x− x0)

2 . (144)

Up to a constant factor the variable x used in our figures can be associated directly
with |hE| in the region of large x.

In the large-field region ρE � M̄2 the potential in the Einstein frame approaches
exponentially zero,

VE =
u∞ M̄4

ξ2
∞

exp(−2x0) exp

{
− 4

√
ξ∞

6ξ∞ + 1

√
h†

EhE

M̄

}
. (145)

If one could shift VE by a positive constant this would be a flat region suitable for
inflation. No such shift is possible, however, since V̂ has to go to zero for ρ̃ → ∞. Since
u∞ < 0, the potential in the Einstein frame approaches zero from below. The scaling
potential for the standard model is not compatible with Higgs inflation.

This issue extends to the scaling solution for many other models. Whenever ξ∞ > 0,
the potential in the Einstein frame has to approach zero for large field values. This results
from the boundedness of U by the graviton barrier [6]—namely u cannot increase faster
than ρ̃—combined with the increase w ∼ ρ̃. The large field region is interesting for late
cosmology since it leads to an asymptotic approach of VE, and therefore the dark energy
density, to zero. This property excludes, on the other hand, the use of the large field region
for inflation. What could still be possible is a role of intermediate regions where ρ̃ has not
yet reached the asymptotic regime. This is particularly relevant for small values of ξ∞, since
even for rather large ρ̃ the function w(ρ̃) may not be dominated yet by the increase in ∼ ρ̃.

8.5. Flow Away from the Scaling Solution

The use of the scaling solution for all aspects of observation is possible, but not
compulsory. The quantum field theory for the standard model and gravity may be defined
only by an asymptotic approach to the fixed point in the ultraviolet. Then the values of
relevant parameters play a role. The Planck mass and cosmological constant are relevant
parameters. They can deviate from the scaling solution for small k. The leading relevant
parameter is the Planck mass, typically in the form:

F = M̄2 + 2 w∗
( ρ

k2

)
k2 , (146)
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with w∗(ρ̃) given by the scaling solution. For k→ 0, it assumes the form:

F = M̄2 + ξ∞ ρ , (147)

and we associate the integration constant M̄ with the observed Planck mass (note that the
constant M̄ has the same value, but a different role as compared to the scaling solution in
Equation (140)). The transition scale kt for the crossover from the scaling solution to the
solution (147) for k→ 0 depends on ρ according to:

M̄2

k2
t

= 2 w(0) + ξ∞
ρ

k2
t

, (148)

which yields:

k2
t (ρ) =

M̄− ξ∞ ρ

2 w0
θ
(

M̄2 − ξ∞ ρ
)

. (149)

For large ρ� M̄2/ξ∞, the integration constant M̄2 plays no role and we can employ
the scaling solution, e.g. kt(ρ) = 0. In particular, there cannot be any constant shift in the
behavior of u(ρ̃→ ∞). As a consequence, the asymptotic behavior for ρ̃→ ∞ of u(ρ̃), w(ρ̃),
and therefore also VE in Equation (145) is not affected. Modifications arise only for small
enough ρ̃.

For w the flow away from the scaling solution implies a strong increase of w for k→ 0:

w = w∗(ρ̃) +
M̄2

2k2 ≈ w0∗ +
ξ∞ρ + M̄2

2k2 , (150)

where we have parameterized an approximate form of w∗(ρ̃) ≈ w0∗ + ξ∞ρ̃/2. This increase
is responsible for the decoupling of gravity for low k.

For the scalar potential in the Einstein frame VE away from the scaling solution we
may use the ansatz:

U = u∗(ρ̃)k4 + V(ρ), (151)

with V = 0 for the scaling solution. This results in:

VE =
V + u∗k4(

1 + ξ∞ρ/M̄2 + 2w∗0k2/M2
)2 . (152)

If we assume that for the relevant epochs in cosmology we can take k→ 0, we remain
with a potential that vanishes for ρ→ ∞, provided V(ρ) does not increase too rapidly with
ρ,

VE =
V(ρ)

(1 + ξ∞ρ/M̄2)
2 . (153)

What is needed is an understanding of V(ρ). This function corresponds to a solution
of the flow equation for U as k→ 0. At fixed ρ one has:

∂tU = 4cU(ρ̃)k4. (154)

With the ansatz (151) one finds:

∂tU = 4u∗k4 − 2ρ̃∂ρ̃u∗k4 + ∂tV = 4cU∗(ρ̃)k4 + ∂tV, (155)

where we have inserted the equation for the scaling solution u∗(ρ̃). A comparison with
Equation (154) yields:

∂tV = 4(cU(ρ̃)− cU∗(ρ̃))k4. (156)

We recover the scaling solution for V = 0 and cU(ρ̃) = cU∗(ρ̃). For small deviations
from the scaling solution one can linearize the flow equation. In this regime, ∂tV is
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characterized by a critical exponent. Typically V corresponds to a relevant coupling which
implies at least one free parameter for the general solution for V.

For k2 � M̄2, the deviations from the scaling solution are not small. Understanding
the ρ-dependencies of V will require a numerical solution of the flow equation, which
also takes into account the flow of other couplings, as gauge and Yukawa couplings, away
from their fixed points. This is outside the scope of this paper. For ρ � M̄2, one expects
that V approaches the perturbative, almost quartic potential of the standard model. It is,
however, the behavior of the potential at a much higher ρ, typically in the order k2

t , that is
relevant for Higgs inflation. For this region not much can be said at the present level of
our investigation. The only direct consequence of the scaling solution remains the value of
ξ∞. Given the restrictions on the asymptotic behavior for ρ̃→ ∞, however, compatibility
with Higgs inflation seems unlikely. In particular, large values of ξ∞ are disfavored since ρ
enters the regime of the scaling solution already for values much smaller than M̄2.

8.6. Non-Minimal Higgs-Curvature Coupling and Prediction for the Mass of the Higgs Boson

The existence of scaling solutions places important constraints on the value of the non-
minimal coupling. For the allowed branch of small values one typically needs ξ∞ . 10−3.
There seems to exist another branch of high ξ∞ & 103, but it is not clear if scaling solutions
with these rather extreme values survive a more extended truncation. From the point of
view of observation only the branch with low ξ∞ is allowed. This is connected with the
influence of the non-minimal coupling ξ on the predicted mass of the Higgs boson. As a
result of its relevance to particle physics, we discuss here this connection in detail.

The quartic coupling λ of the Higgs self-interaction corresponds to an irrelevant
parameter at the fixed point. It can therefore be predicted to take at short distances its fixed
point value. The corresponding prediction for the mass of the Higgs boson to be 126 GeV
with a few GeV uncertainty [3] agrees well with the experimental value of 125 GeV found
later. The central value of the prediction depends on the pole mass of the top quark mt. For
mt = 171 GeV, the prediction for the central value is lowered to 125 GeV.

The fixed point value of λ is influenced by the non-minimal Higgs-curvature coupling
ξ0 = ξ(ρ̃ → 0) [11]. This was assumed to be negligible for the prediction in [3] Since the
scaling solutions restrict the possible values of ξ0, we investigate here the influence of ξ0 on
the prediction of the mass of the Higgs boson. More generally, we investigate the influence
of metric fluctuations on the position of the fixed point value λ∗.

The couplings λ and ξ0 are defined by:

λ =
∂2u
∂ρ̃2

∣∣∣
ρ̃=0

, ξ0 = 2
∂w
∂ρ̃

∣∣∣
ρ̃=0

. (157)

The flow equations for λ and ξ0 can be obtained by taking suitable ρ̃-derivatives of
Equations (90) and (91), evaluated at ρ̃ = 0. For the flow of the quartic coupling one finds
[7,11]:

∂tλ = Aλ + β
(p)
λ − Cg, (158)

with β
(p)
λ the part induced by fluctuations of gauge bosons, fermions, and scalars, and

Cg a gravitational contribution. For β
(p)
λ we may employ here the approximate one-loop

expression:

β
(p)
λ = − 3y4

t
4π2 +

171α2

50
, (159)

that is the same as in standard perturbation theory. Here yt is the Yukawa coupling of
the top quark and α = g2

2/(4π), with g2 the SU(2)-gauge coupling of the standard model
(we have taken for the hypercharge coupling g1 the approximation g1 = g2, neglected all
Yukawa couplings to fermions except for the top quark, as well as small contributions
∼ λα, λy2

t , λ2).
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For Cg one finds [7,11]:

Cg =
Aξ0

w

(
m̃2 − ξ0v

2

)
− 2A

(1− v)w

(
m̃2 − ξ0v

2

)2
+ Avw2. (160)

Here all quantities have to be evaluated at ρ̃ = 0 and

w2 =
∂2w
∂ρ̃2

∣∣
ρ̃=0. (161)

With,

v1 =
∂v
∂ρ̃

∣∣
ρ̃=0 =

(
m̃2 − ξ0v

2

)
/w, (162)

we observe that Cg vanishes if v is independent of ρ̃ and w2 = 0,

Cg = A
(

ξ0 −
2w

1− v
v1

)
v1 + Avw2. (163)

We may neglect w2 and investigate the flow equations for m̃2, ξ0, and v1. For the
crossover scaling solutions one observes a very rapid increase of v1 from v1(ξ∞ = 10−4) ≈ 3
to v1(ξ∞ = 10−3) ≈ 40. We doubt that a strong increase of ∂v/∂ρ & 3 is compatible with a
consistent scaling solution. The variation of v(ρ̃) becomes even more dramatic for larger
values of ξ∞. We take as a rather conservative bound ξ∞ < 10−4, restricting further the
allowed range of small ξ∞ for which global scaling solutions could become possible.

It turns out that the value of m̃2
0 for the scaling solution of the standard model is

actually rather small. If we neglect it, one has:

v1 = − ξ0u
2w2 . (164)

This approximation yields the simplified flow Equation (1), which permits a qualitative
view on the influence of the non-minimal coupling. For quantitative computations we
include the effect of m̃2.

In the gravity-dominated regime for k2 � M̄2 and for small β
(p)
λ , the flow of λ(k) is

characterized by an approximate partial fixed point:

λ∗ =
3y4

t
4π2 A

− 171α2

50A
+

Cg

A
. (165)

This partial fixed point is valid for k > kt and constitutes the "initial value" for the
flow in the low-energy regime k < kt, for which gravitational effects vanish rapidly due to
decreasing A, and only β

(p)
λ survives effectively. For v and w we can take the values for the

scaling solution at the UV-fixed point, while yt and α can be found from extrapolating the
observed low energy couplings to kt by use of the perturbative re-normalization group.

8.7. Prediction for the Mass of the Top Quark

It is our aim to investigate the effect of the non-vanishing Higgs-curvature coupling
ξ0 on the prediction of the mass of the Higgs boson. Since the prediction of λ(kt) actually
results in a prediction of the ratio of the mass of the Higgs boson compared to the mass of
the top quark [11], and the mass of the Higgs boson is accurately measured, we may turn
this to an investigation of the effect of:

∆λg =
Cg

A
(166)
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on the prediction for the mass of the top quark mt. For a quantitative analysis we employ
the estimate [11] that a value ∆λ = 0.014 decreases mt by 1 GeV,

mt −mt,0

GeV
= −71.4∆λ, (167)

with mt,0 the prediction for Cg = 0.
The values of v and w at the fixed point are given for the standard model as:

u∗ = −0.0507 (−0.0508),

v∗ = −10.05 (−10.27),

w∗ = 0.00505 (0.00495). (168)

Here the first value corresponds to the constant scaling solution, as computed in [8],
while the value in brackets corresponds to a typical crossover scaling solution as described
in this section. Since the two values are rather similar, only a modest uncertainty is related
to the difference of these values. The gravity induced anomalous dimension reads:

A =
5

24π2w(1− v)2 +
1

96π2w(1 + v/4)2 ≈ 0.051, (169)

where the second term arises from the physical scalar fluctuation in the metric. Due to the
large negative value of v for the standard model, one finds that A is substantially smaller
than one, and the second term contributes of similar size as the first tern, in contrast to
v > 0.

Let us first discuss the value of ∆λ for the scaling solution with vanishing gauge and
Yukawa couplings. For the constant scaling solution one has ∆λ = 0. This solution has
a vanishing Higgs-curvature coupling, ξ0 = ξ∞ = 0. For the possible crossover scaling
solutions, ∆λ corresponds to λH0 in Table 1. There is a one-parameter family of crossover
solutions parameterized by ξ∞. Only a range of very small ξ∞ of the order of a few times
10−4 or less is consistent with the observed mass ratio between Higgs boson and top quark
mass, even if we admit an uncertainty in the present experimental determination of the pole
mass for the top quark of one or two GeV and theoretical uncertainties of a similar order. In
particular, large values of ξ∞ � 1, as often used for Higgs inflation, are not compatible with
asymptotic safety for quantum gravity coupled to the standard model. This points towards
the constant scaling solution, which is the only one that is firmly established within our
truncation.

The constant scaling solution for the standard model predicts λ∗ = 0. This is compati-
ble with the observed value of the mass of the Higgs boson and top quark. Since the scaling
solution has a vanishing gauge and Yukawa couplings, and these couplings are non-zero
at the transition scale kt where the metric fluctuations decouple, the gauge and Yukawa
couplings have to flow away from the fixed point before kt is reached. We next estimate the
quantitative effect of this “flow away” for the prediction of the top quark mass.

8.8. Influence of Gauge and Yukawa Couplings

For the constant scaling solution (or crossover scaling solutions with small ξ∞), the
flow away from the fixed point could induce a more sizable ∆λ due to the effects of gauge
and Yukawa couplings. We therefore include next the effect of gauge and Yukawa couplings
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to the flow of ξ0. They may lead to a value of ξ0(kt) that differs from the fixed point value
given in Table 1. The ρ̃- derivative of Equation (91) at ρ̃ = 0, yields:

∂tξ =
25
(

m̃2 − ξv
2

)
128π2w(1− v)2

−
m̃2 − ξv

2
1152π2w

∂

∂v

(
8 + v− 9

16 v2(
1− v

4
)2

)
− 3w2

32π2

+
1

192π2

{
4∂ρ̃NV − ∂ρ̃NS − ∂ρ̃NF

}
. (170)

Here the first term arises from graviton (transverse traceless tensor) fluctuations, the
second term from the physical scalar in the metric in the approximation of neglected mixing
with other scalars, and the third accounts for the non-minimal coupling to gravity for the
scalar fluctuations. The remaining parts reflect the contribution from gauge couplings,
Yukawa couplings and scalar mass terms and self interactions.

The particle contributions result from the reduction of effective particle numbers due
to mass terms. For gauge bosons with squared masses m2

i = g2
i ρ one has:

∂ρ̃NV =
3
2 ∑

i
∂ρ̃

1
1 + g2

i ρ̃
= −3

2 ∑
i

g2
i

(1 + g2
i ρ̃)2

. (171)

For the standard model this results in a contribution:

∂tξ
(g) = − 1

32π2 (2g2
w + g2

z) = −
3

64π2

(
g2

2 +
g2

1
5

)
, (172)

where we use g2
w = g2

2/2 = 2πα and g2
z = g2

2/2 + 3g2
1/10. For the top quark with m2

t = h2
t ρ

one has:

∂ρ̃NF = 6∂ρ̃
1

1 + y2
t ρ̃

= − 6y2
t

(1 + y2
t ρ̃)2

, (173)

resulting in:

∂tξ
(t) =

y2
t

32π2 . (174)

Finally, for the scalar fluctuations one has:

∂ρ̃NS = ∂ρ̃

(
3

1 + m̃2 +
1

1 + m̃2 + 2ρ̃λ

)
= − 3λ

(1 + m̃)2 −
3λ

(1 + m̃2 + 2ρ̃λ)2 , (175)

and therefore:

∂tξ
(s) =

λ

32π2(1 + m̃)2 . (176)

The results (172), (174), and (176) for m̃2 = 0 and ρ̃ = 0 can also be obtained from
one-loop perturbation theory.

We will neglect the scalar contribution (176) as compared to the much larger top-quark
contribution (174). Furthermore, the physical scalar metric fluctuations contribute to a large
negative v similar to the graviton fluctuations with 25/128 replaced by −7/144. Neglecting
w2 we obtain the approximate flow equation for ξ0,
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∂tξ0 =
19v1

128π2(1− v)2 +
y2

t
32π2 −

9α

40π
. (177)

With yt(1018GeV) ≈ 0.38, y2
t /(32π2) ≈ 4.6 · 10−4, 9α/(40π) ≈ 1.8 · 10−3, the gauge

boson fluctuations tend to induce for v1 = 0 a small positive ξ0 as k flows towards the IR.
We further need the flow equation for v1:

∂tv1 =
1
w

{
∂tm̃2 − ξ0

2w
∂tu−

v
2

∂tξ0 +

(
ξ0v
2w
− v1

)
∂tw
}

. (178)

The flow of u and w at ρ̃ = 0 does not depend directly on the gauge and Yukawa
couplings. It vanishes for the fixed point until the transition region near kt is reached. We
may neglect ∂tu and ∂tw in Equation (178), such that the influence of the gauge and Yukawa
couplings arises from the flow of m̃2 and ξ0. We can employ:

∂tm̃2 = (A− 2)m̃2 − 1
2

Aξ0v

+
1

32π2 (∂ρ̃NS + 2∂ρ̃NV − 2∂ρ̃NF)

≈ −2m̃2 + Awv1 +
3y2

t
8π2 −

9
64π2

(
g2

2 +
g2

1
5

)
. (179)

The constant scaling solution has m̃2 = ξ0 = v1 = 0. If we assume a bound for the
effective contribution of gauge and Yukawa couplings as:

|v1| <
3c1y2

t
8π2w

, |ξ0| <
y2

t c2

32π2 , (180)

we conclude that the contribution of flowing gauge and Yukawa couplings to ∆λ is bounded
by:

|∆λ|g,h <
3c1c2y4

t
256π4w

, (181)

which is of the order of a few times c1c210−6. Given that c1 and c2 are typically smaller
than one due to cancellations between Yukawa and gauge couplings, and the flow of g2
and yt deviating substantially from zero only in vicinity of kt, we conclude that the effect of
the flowing gauge and Yukawa couplings is too small for influencing the prediction of the
top quark mass.

For the flow away from the constant scaling solution of the standard model coupled
to gravity, the dominant contribution to ∆λ seems to arise from the particle fluctuations,

∆λ =
Cp

A
=

1
A

(
3y4

t
4π2 −

171α2

50

)
= − βλ

A
. (182)

Typically, βλ(kt) is slightly positive, with details depending on mt [77,78]. With
the unusually small value of A for the standard model, 1/A ≈ 20, value βλ ≈ 10−3

enhances the central value of the prediction for the top quark mass by around 1.5 GeV. This
comparatively large effect is due to the exceptionally small value of A for the standard
model. It remains, nevertheless, within the uncertainty quoted in [3]. If the theoretical
uncertainties can be reduced below this level, a precision measurement of the pole mass for
the top quark could distinguish between the asymptotically safe standard model coupled
to gravity with its small value of A, and other models as grand unification which typically
have A of the order one or even larger. A dedicated solution of the combined set of flow
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equations in the threshold region around kt, together with a matching to three-loop running
for k� kt, should improve our rough estimates in this case.

For the standard model, coupled to quantum gravity, a rather consistent picture
emerges. The scaling solution is the constant scaling solution. The ratio between Higgs
boson mass and top quark mass is predicted in the range where it is observed. This
prediction is rather robust even for a rather extended truncation in the gravitational sector.
Higgs inflation is unlikely to be realized. Inflation will then require a scalar degree of
freedom beyond the Higgs doublet. This may either be an explicit additional singlet field
as the cosmon, or an effective scalar field arising from terms ∼ R2 in the effective action
which could realize Starobinsky inflation.

8.9. Simultaneous Prediction of Top Quark Mass and Higgs Boson Mass

Let us look at Equation (158) from a different perspective. For a scaling solution, the
r. h. s. of Equation (158) has to vanish,

β
(p)
λ = Cg − Aλ. (183)

We can write this in the form:

y4
t −

114π2

25
α2 =

4π2 A
3

X, (184)

with

X = λ−
(

ξ0 −
2w

1− v
v1

)
v1 − vw2. (185)

If a scaling solution fixes X, or implies a bound limiting X to sufficiently small values,
the Yukawa coupling can be related to the gauge coupling. This fixes the ratio between the
top quark mass and the mass of the W-boson. The precise relation, taking into account the
difference between g1 and g2 and the running of all couplings, can easily be worked out.
The outcome is that for vanishing X, the prediction of mt agrees well with observation. If
the properties of the scaling solution imply a small enough X independently of the precise
value of λ, both mt/mW and mH/mt are predicted simultaneously. The question we raise
here concerns possible restrictions on X that do no depend (or only very mildly depend)
on λ.

A first simple case concerns constant scaling solutions which predict λ = 0, ξ0 = 0,
v1 = 0, w2 = 0, and X = 0. It is an interesting question if a constant scaling solution is also
possible for non-zero fixed point values of gauge and Yukawa couplings, g2

∗ > 0, y2
∗ > 0.

This concerns GUT models [19] as well as the standard model if the hypercharge coupling
g1 takes a value g1∗ 6= 0 [66–71]. If such a fixed point exists, the contributions of particle
fluctuations to the scaling form of ∂ρ̃u∗(ρ̃) and ∂ρ̃w∗(ρ̃) have to vanish. For the Higgs

potential this implies that β
(p)
λ in Equations (158) and (159) has to vanish, since a constant

scaling solution has λ∗ = 0, Cg = 0. As a direct consequence, the Yukawa coupling of
the top quark and therefore mt can be predicted as a function of the gauge coupling. In
this case not only the ratio mh/mt, but mt and mH separately are indeed predicted. The
extrapolation of the running Yukawa and gauge couplings to the vicinity of the Planck
mass yields indeed a very small value of βλ. For mt near 171 GeV, both λ and βλ vanish in
this region. Keeping in mind small corrections from the flow away from the fixed point the
prediction agrees with the observation. For this type of prediction, it is actually sufficient
that the scaling solution is constant in the region near ρ̃ ≈ 1.

Such a scenario seems not to be compatible with a minimal standard model since
the weak and strong gauge couplings have to flow away from their vanishing fixed point
values substantially before kt is reached (this concerns either the flow with k or the flow
with ρ̃). It could be realized in GUT models however, where all gauge couplings of the
standard model take a common fixed point value α ≈ 1/40. A realization of this scenario
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needs a truncation beyond the present one. Within our truncation one has for a constant
scaling solution:

∂u∗
∂ρ̃

= 0⇔ ∂ρ̃NV = ∂ρ̃NF (186)

and

∂w∗
∂ρ̃

= 0⇔ 4∂ρ̃NV = ∂ρ̃NF. (187)

This implies that ∂ρ̃NV and ∂ρ̃NF both have to vanish, and therefore zero gauge and
Yukawa couplings. In an extended truncation, other couplings may contribute to ∂ρ̃w∗ and
a constant scaling solution could become possible with ∂ρ̃NV 6= 0, ∂ρ̃NF 6= 0.

A possible criterion selecting for ρ̃ ≈ 1 local scaling solutions u(ρ̃), w(ρ̃), which are
very close to the constant solution (i.e., both λ and X very small), could be that a stronger
dependence of the local scaling functions on ρ̃ could lead to problems in the transition
region ρ̃t ≈ 1/(64π2). In this case, smooth global scaling solutions would only be possible
if g and y are related, thus leading to the prediction of mt/mW .

9. Conclusions

Gravitational effects have a profound impact on the effective potential for scalar fields.
They largely determine the shape of the potential at re-normalization scales close to the
Planck mass. This constitutes the initial conditions for the flow towards smaller scales
where comparison with observation becomes possible.

9.1. Summary

The consistency conditions for asymptotically safe quantum field theories require the
existence of scaling solutions for functions of fields. They extend the re-normalizability
conditions for a finite number of couplings in asymptotically free theories. We investigated
the shape of the effective potential for scalar fields at and near the ultraviolet fixed point
of asymptotically safe quantum gravity. We found constant scaling solutions with a com-
pletely flat potential and vanishing gauge and Yukawa couplings. More general scaling
potentials do not have a polynomial form. Often they are characterized by a crossover
between two constants for small and large fields. Nonvanishing gauge couplings can
induce spontaneous symmetry breaking due to a potential minimum at nonzero field
values. In contrast, Yukawa couplings to fermions tend to stabilize a minimum at zero
field values. A nonminimal coupling between the scalar field and gravity is associated to a
field-dependent effective Planck mass. It can induce spontaneous symmetry breaking. In
general, nonzero gauge, Yukawa, or nonminimal couplings prevent the scaling potential
to be completely flat. We discussed scaling solutions with a constant effective potential
for large fields and a non-zero nonminimal scalar coupling to gravity. They solve the
cosmological constant problem asymptotically for the large field values that are reached
for large cosmic times. For the standard model coupled to asymptotically safe quantum
gravity, the non-minimal Higgs-curvature coupling is bound to be small, ξ∞ . 10−4, in
contrast to large values ξ∞ > 1 often assumed for Higgs inflation. For the pure standard
model coupled to quantum gravity, it seems unlikely that Higgs inflation is compatible with
asymptotic safety. We have discussed small modifications of asymptotic safety prediction
for the ratio of top quark and Higgs boson mass due to nonzero gauge, Yukawa, and
non-minimal couplings.

9.2. Ultraviolet Fixed Point

An ultraviolet fixed point defines a consistent quantum field theory for gravity coupled
to particle physics. In this asymptotic safety scenario, not only a few couplings as the
dimensionless Planck mass or cosmological constant take fixed values at the fixed point.
Whole functions, as the dimensionless effective potential u = U/k4, take a fixed form as
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functions of dimensionless invariants formed from scalar fields. Typical invariants are
ρ̃ = χ2/(2k2) for a singlet field χ or ρ̃ = h†h/k2 for the Higgs doublet h. This fixed form
is the scaling potential u∗(ρ̃) which does not depend on k. Another important scaling
function is w∗(ρ̃) = F/(2k2), with F the field-dependent coefficient of the curvature scalar
in the effective action, corresponding to a field- and scale-dependent squared Planck mass.
A fixed point is characterized by infinitely many such scaling functions that constitute the
scaling functional, corresponding to a k-independent effective average action expressed in
terms of dimensionless variables.

The fixed point is characterized by a powerful symmetry, namely quantum scale sym-
metry. It is realized if the flow generators or β-functions for whole functions vanish. The
differential equations corresponding to this condition may be called the “scaling equations”.
Solutions of these scaling equations are the “scaling solutions”. The requirement of exis-
tence of global scaling solutions for the whole range of ρ̃ from zero to infinity imposes new,
very strong constraints on the short distance behavior of a given model. These conditions
are conceptually similar to the condition of re-normalizability in quantum field theories in
flat space. Concerning whole functions, which correspond to infinitely many couplings,
the scaling conditions are stronger than the usual conditions for re-normalizability. They
constrain the allowed microscopic values of many re-normalizable parameters and lead
to an enhanced predictivity of a theory. In short, they are the new consistency criteria
for models that remain valid to infinitely short distances and need no further ultraviolet
completion.

In this paper we investigated the form of the scaling potential u∗(ρ̃), together with
w∗(ρ̃). We also discuss the flow of u(ρ̃) and w(ρ̃) away from the ultraviolet fixed point. In
the vicinity of the fixed point, one can linearize the flow of small deviations of couplings
from their fixed point values, encoded in δu(ρ̃) = u(ρ̃)− u∗(ρ̃) and δw(ρ̃) = w(ρ̃)−w∗(ρ̃).
A few relevant parameters, that describe deviations that increase for the flow away from the
fixed point towards the infrared, determine all observable quantities of a given model. If
there are less relevant parameters as compared to the number of re-normalizable couplings
in the standard model, relations between the standard model couplings become predictable.

Due to the presence of relevant parameters, the observable effective potential U(ρ) =
k4u(ρ/k2) for k→ 0, evaluated in units of the Planck mass, U/F2 = u/(4w2), differs from
the scaling potential u∗/(4w2

∗). Nevertheless the scaling form determines many properties
of the observable effective potential in the Einstein frame, VE = M̄4U/F2, for k→ 0. The
scaling form is the boundary value or "initial value" of the flow for k→ ∞. For example, it
determines the UV-value of all quartic scalar couplings in GUT models which therefore
become predictable for a given model [79].

We find that there is actually no need for deviations from the scaling potential. Certain
scaling solutions may be compatible with observation. If all relevant parameters for
deviations from the fixed point vanish, the model exhibits "fundamental scale invariance"
(see below). The predictivity of a theory with fundamental scale invariance is enhanced
even further, and no free relevant parameters are available anymore.

9.3. Scaling Solutions

A particular scaling solution is the constant scaling solution for which u∗(ρ̃) and
w∗(ρ̃) are independent of ρ̃, while gauge and Yukawa couplings vanish. This constant
scaling solution is the simplest extension of the Gaussian fixed point in particle physics, for
which all particles are massless free particles, to quantum gravity where the gravitational
couplings do not vanish. If there is a unique constant scaling solution it corresponds to
the extended Reuter fixed point [4]. For a truncation with two scale dependent functions
u(ρ̃; k), w(ρ̃; k), this fixed point has been studied in detail for many particle physics models
in [8].

In the present paper, we ask if there could be other fixed points distinct from the
extended Reuter fixed point with constant scaling solutions. Non-trivial scaling functions
u∗(ρ̃), w∗(ρ̃) may be induced by non-vanishing gauge or Yukawa couplings. In our trun-
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cation with two functions u(ρ̃) and w(ρ̃), plus constant gauge couplings g and Yukawa
couplings y, any nonzero g or y necessarily induces a non-trivial ρ̃-dependence of u∗(ρ̃)
and w∗(ρ̃). Thus any fixed point that is not asymptotically free (g∗ = y∗ = 0) in the particle
sector leads to nonzero ∂ρ̃u∗(ρ̃) and ∂ρ̃w∗(ρ̃) in this truncation.

One possibility that we have not yet investigated in the present paper is a field-
dependence of gauge and Yukawa couplings, e. g. replacing constant g and y by functions
g(ρ̃) and y(ρ̃). A dependence on the dimensionless combination ρ̃ is consistent with a
scaling solution and does not introduce any intrinsic mass or length scale. For an interesting
scenario, a scaling solution may approach for ρ̃ → 0 the Reuter fixed point of a constant
scaling solution with g(ρ̃ = 0) = 0, y(ρ̃ = 0) = 0. In contrast, for large ρ̃ a different
scaling behavior may be approached, with g(ρ̃ → ∞) = g∗ 6= 0, y(ρ̃ → ∞) = y∗ 6= 0.
For the flow with k, it was observed that certain GUT models admitted two fixed points
with g = 0 and g = g∗, flowing from the first to the second as k decreased [19,79]. This is
expected to translate to the ρ̃-flow for scaling solutions, with decreasing k corresponding
to increasing ρ̃. In models where w(ρ̃ → ∞) = ξ∞ρ̃/2, the values of gauge and Yukawa
couplings near the Planck scale correspond to the fixed point values g∗ and y∗ for ρ̃→ ∞.
They will be predicted for a given particle content of a model with nonzero g∗ and y∗.
We expect that many features of the scaling solutions with constant g and y carry over to
the scenario with field dependent g(ρ̃) and y(ρ̃). Even if the fixed point is the extended
Reuter fixed point, the flow away from the fixed point will involve nonzero g and y. If
the flow of g and y is slow, the flowing functions u(ρ̃) and w(ρ̃) will still be characterized
by partial fixed points that are close to the scaling functions for nonzero constant g and
y. Understanding the ρ̃-dependence of possible scaling functions or approximate scaling
functions for non-vanishing particle couplings is crucial for a connection to the observable
quantities for k→ 0.

9.4. Properties of the Scaling Potential

A complete answer to the question of the possible shapes of u(ρ̃) and w(ρ̃) in the
presence of gauge and Yukawa couplings is rather complex. At the present stage of the
investigation, we found several important general features of candidate scaling functions
u∗(ρ̃), w∗(ρ̃) which have a non-trivial ρ̃-dependence:

1. The scaling functions u∗(ρ̃) and w∗(ρ̃) do not have a polynomial form;
2. The scaling potential u∗(ρ̃) is often characterized by a crossover between a constant

u0 for ρ̃→ 0 to a different constant u∞, for ρ̃→ ∞;
3. A negative quartic coupling λ = ∂2u/∂ρ̃2 at ρ̃ = 0 is not a sign of instability. It only

characterizes the Taylor expansion around ρ̃ = 0, which does not describe the overall
potential if the scaling potential does not have a polynomial form. An example is the
crossover of a potential with a minimum at ρ̃ = 0 and m̃2

0 = ∂u/∂ρ̃ at ρ̃ = 0 being
positive, to a constant value u∞ > u0 for ρ̃→ ∞. A negative value of λ only implies
that m̃2(ρ̃) decreases for increasing ρ̃, which is typical for a crossover;

4. It is possible that families of scaling solutions exist, characterized by one or even
several continuous parameters. This would be in contrast to a single UV-fixed point or
a discrete set of such fixed points. We found candidates for one-parameter families of
crossover scaling solutions within our truncation. The present numerical approxima-
tion to the flow equations for u and w is, however, not sufficient for the clarification if
all candidates are really overall solutions of the corresponding system of differential
equations for the scaling functions. Furthermore, it is not guaranteed that all members
of such families "survive" extended truncations. This is demonstrated by a family of
crossover solutions for u∗(ρ̃) obtained at constant w (truncation 1), for which only
particular members solved the combined system of differential equations for u∗(ρ̃)
and w∗(ρ̃) (truncation 2);

5. Non-vanishing gauge couplings g2 > 0 have the tendency to create a minimum of
u∗(ρ̃) at ρ̃0 6= 0. This implies spontaneous symmetry breaking for the scaling solution.
This tendency dominates if the non-minimal scalar-curvature coupling ξ is small
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enough. This observation is relevant for GUT models where certain scalar fields
couple to the gauge bosons while no Yukawa couplings to the fermions are allowed.
In particular, for a fixed point with g2

∗ > 0 [19,79] this could account for the partial
symmetry breaking of the GUT-symmetry close to the Planck mass;

6. Non-zero Yukawa couplings y2 > 0 have the opposite tendency of generating a
minimum of u∗(ρ̃) at ρ̃ = 0. The competition between gauge and Yukawa couplings
is relevant both for the standard model and GUT models;

7. A non-minimal scalar-curvature coupling ξ > 0 favors a minimum of u∗(ρ̃) at ρ̃ = 0
or at ρ̃→ ∞, depending on the particle content, see Figures 13, 17 and 20;

8. All scaling solutions or candidate scaling solutions that we have found so far for non-
vanishing matter couplings lead in the Einstein frame to an effective scalar potential
that vanishes precisely for large field values. This amounts to a dynamical solution
of the cosmological constant problem via “runaway solutions” of the cosmological
field equations for which scalar fields increase without bounds towards the infinite
future. In particular, we found candidate scaling potentials with constant asymptotic
behavior, u∗(ρ̃→ ∞) = u∞. Together with w∗(ρ̃→ ∞) = ξ∞ρ̃/2, this implies for the
potential in the Einstein frame:

VE(ρ̃→ ∞)

M̄4 =
u∞

ξ2
∞ρ̃2 =

u∞k4

ξ2
∞ρ2 . (188)

Standard normalization of the scalar kinetic term in the Einstein frame replaces
k4/ρ2 → exp(−αϕ/M̄) [15];

9. A dynamical solution of the cosmological constant problem by the decrease of VE to
zero for ρ → ∞ within a “runaway cosmology” leads to dynamical dark energy or
quintessence [15].
The runaway solution for the cosmological constant problem is a rather generic feature
of scaling solutions, involving only that for ρ̃ → ∞, the coefficient w2

∗(ρ̃) increases
faster than u∗(ρ̃). We have not investigated here another possible asymptotic behavior
allowed by the graviton barrier [6], namely u(ρ̃ → ∞) ∼ ρ̃, v(ρ̃ → ∞) = u(ρ̃ →
∞)/w(ρ̃ → ∞) ≤ 1. We refer to [6,16] for a detailed discussion. Again, VE vanishes
for ρ→ ∞.

9.5. Consequences for Particle Physics

Already at the present stage of the investigation it is apparent that the understanding
of the scaling form of the effective potential has important consequences for particle physics
and cosmology. The effective potential is the central ingredient for the phenomenon of
spontaneous symmetry breaking as well as for inflation and dynamical dark energy. We
highlight here three important consequences for the standard model coupled to quantum
gravity:

1. For a minimal model of the standard model coupled to quantum gravity, the non-
minimal Higgs-curvature coupling has to be small, ξ∞ < 10−4. Higgs inflation with a
large coupling ξ∞ > 1, as usually assumed, is not possible. The scaling potential u∗(ρ̃)
and associated Einstein frame potential VE(h†h) does not allow for Higgs inflation. A
positive VE for large h†h could only be generated by the flow away from the scaling
solution. Higgs inflation with very small ξ∞ [11] may not seem likely, but a detailed
study of the flow away from the fixed point is necessary in order to settle this question.
The minimal model may still permit Starobinsky inflation [75] if the coefficient of the
squared curvature scalar R2 if the effective action is large enough;

2. The ratio between the Higgs scalar mass mH and the top quark mass mt can be
predicted [3]. The investigations of the present paper provide further evidence for the
robustness and precision of this successful prediction. For the extended Reuter fixed
point with constant scaling solution, the flow away from the fixed point affects the
prediction of mH/mt only very mildly. The non-minimal Higgs-curvature coupling ξ



Universe 2021, 7, 45 55 of 76

generated by the flow due to non-zero gauge and Yukawa couplings is too small to
affect the predicted value. Possible crossover scaling solutions , if established, could
lead to somewhat larger ξ. In the parameter region, where such crossover solutions
are reasonable candidates for scaling solutions, the small value of ξ seems to have
only a small effect on the ratio mH/mt. These findings reduce possible errors for the
prediction arising from uncertainties in the physics near the Planck scale. With future
possible precision measurements of the pole mass for the top quark it will become
important to settle even the size of small effects for the predicted value mH/mt;

3. Certain models could lead to a simultaneous prediction of the two ratios mH/mt and
mt/mW . This could be realized for scaling solutions for which both gauge and Yukawa
couplings take non-zero values. The conditions for the existence of global scaling
solutions may be strong enough to enforce for ρ̃ ≈ 1 both u(ρ̃) and w(ρ̃) to be very
close to the constant scaling solution. In this case the ratio of the top quark mass to the
W-boson mass would be an independent prediction.

9.6. Implications for Cosmology

Concerning cosmology, our approach offers new perspectives for the understanding
of the very early and present epochs, and their possible connection. Typical cosmological
solutions of the field equations derived from the effective action show a crossover between
the region near the ultraviolet fixed point in the past, and the infrared region in the future
[14]. This is realized by the cosmic evolution of scalar fields, which is associated to an
increase of the dimensionless ration ρ̃ = χ2/(2k2) from zero in the past to infinity in the
future. The effective scalar potential u(ρ̃), or the associated potential in the Einstein frame
VE(χ), is the key quantity for the understanding of the cosmic evolution. The present work
computes the scaling form u∗(ρ̃) of this effective potential for arbitrary ρ̃. This connects the
region of small ρ̃ for very early cosmology to the region of large ρ̃ for the present cosmology.

The inflationary epoch in very early cosmology is related to the limit ρ̃→ 0. For fixed
χ, this corresponds to the ultraviolet limit k → ∞. We find that for ρ̃ → 0 both u(ρ̃) and
w(ρ̃) typically approach constant values u0 and w0. The indirect dependence on the scale k
through the dependence on ρ̃ disappears, expressing the ultraviolet fixed point behavior.
Inflation corresponds to the vicinity of this fixed point, which is the origin of the almost
scale invariant primordial fluctuation spectrum [11]. The potential in the Einstein frame
approaches a constant for ρ̃→ 0, VE → M̄4u0/(4w2

0). In the vicinity of the fixed point for
small ρ̃, the potential VE is almost flat, leading to slow roll inflation. In contrast to the usual
approach of simply assuming a form of the potential, the present work computes the form
of the effective potential as a result of the fluctuation effects in quantum gravity.

The present cosmological epoch is dominated by dark energy. Its dynamics is de-
termined by the effective scalar potential for large ρ̃. For fixed χ this corresponds to the
infrared limit k → 0. All scaling solutions found so far lead for χ → ∞ to a potential in
the Einstein frame which decreases to zero. No tuning of parameters is necessary for this
property. This behavior of VE(χ) solves the cosmological constant problem asymptotically,
since VE vanishes in the infinite future for χ(t → ∞) → ∞. At present, the universe is
old, but not infinitely old. The potential VE has not yet reached zero and constitutes the
dark energy density of the universe. The detailed dynamics of dark energy will become
accessible once in addition to u(ρ̃) and w(ρ̃), as well as the ρ̃-dependent coefficient of the
scalar kinetic term is computed.

By computing the effective scalar potential for all values of ρ̃ we connect inflation
and quintessence. Both may be due to the same scalar field, the cosmon. The different
characteristics of very early and very late cosmology simply correspond to different regions
in the potential u(ρ̃)

9.7. Fundamental Scale Invariance

On the conceptual side, an important finding of the present work is the observation that
there is no need for a flow away from the scaling solution in order to obtain agreement with
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observations. For functions depending only on dimensionless ratios as ρ̃, the limit k→ 0
can equivalently be obtained by χ → ∞. For all χ 6= 0, scale symmetry is spontaneously
broken, resulting in massive particles. For scaling solutions describing a crossover between
an ultraviolet and an infrared fixpoint, a given model has only to specify which value of ρ̃
corresponds to the present cosmological time.

One may entertain the hypothesis that our world is precisely described by a scaling
solution. No parameter the dimension of length or mass that enters the effective action in
this case – this is fundamental scale invariance. As a consequence, the relevant parameters
for the flow away from the scaling solution play no role. This scenario is very predictive,
since relevant parameters are no longer available as undetermined quantities. They are all
set to zero. If the scaling solution is unique, this scenario contains no free dimensionless
parameters. Free parameters are only possible if families of scaling solutions exist.

The present investigation of a fixed point with non-constant scaling functions and/or
non-zero gauge and Yukawa couplings leaves many questions open. Already now it
shows that simple extrapolations of perturbative features, as approximately polynomial
potentials, to the quantum gravity regime are not correct. It will be necessary to gain further
understanding and intuition for central quantities as the effective potential in the quantum
gravity regime. Features that seem “unnatural” from a perturbative point of view, as the
gauge hierarchy or the tiny value of dark energy, may find explanations in the genuinely
non-perturbative setting of quantum gravity.
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Appendix A. Calculation Flow

Since the content of this work is rather extended, it may be convenient for the reader
to find a short summary of the flow of the calculations. The basic ansatz (9) for the effective
action contains up to two derivatives. Correspondingly, we evaluate the flow equations in
a derivative expansion with up to two derivatives.

The central flow equation for the potential U is Equation (10), which is supplemented
by the flow equation for the coefficient of the curvature scalar F in Section 7. We do not
include a computation of the flow of the wave function re-normalization factors Za in
the present paper. We concentrate on the flow equations for the dimensionless ratios (13)
u = U/k4 and w = F/2k2. A summary of approximated flow equations for u and w
is given by Equations (90)–(92). The effective particle numbers in Equation (92) contain
treshold functions which account for the effective decoupling of massive particles, as given
by Equation (93). The effective non-minimal scalar coupling ξ̃ is defined in Equations (95)
and (96). For given fixed gauge couplings g and Yukawa couplings y, the flow equations for
u and w are self-contained. The corresponding differential equations defining the scaling
solutions are Equations (98)–(100).

Several approximations are made in order to arrive at the rather simple system of
Equations (90)–(92) and (98)–(100). They are discussed in more detail in the text, but their
precise understanding is not crucial for the main outcomes of the present paper.

For a better understanding of the main mechanisms, the present paper proceeds by
approximations that are extended step by step. In Sections 2–5 we consider constant w,
while in Section 6 we investigate a two-parameter approximation w = w0 + ξρ̃/2. The full
coupled flow equations for u and w are discussed in Sections 7 and 8.
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Appendix B. General Scaling Solutions for Matter Freedom

In this appendix we investigate general properties of scaling solutions for matter
freedom. We start by solving Equation (35) in the vicinity of the constant scaling solution.
We consider here for the constant solution the vicinity of ρ̃ = 0, such that A corresponds to
A0, as given by Equation (37) for the values v0, w0 of the constant scaling solution. The
general solution of Equation (35) reads:

∆u(ρ̃) = c0ρ̃
4−A0

2 , (A1)

involving c0 as a free integration constant. For all A0 < 4 the general scaling solution
indeed obeys ∆u(ρ̃→ 0)→ 0, such that u(ρ̃→ 0)→ u0. The quartic coupling, defined by:

λ(ρ̃) =
∂2u
∂ρ̃2 , (A2)

diverges, however, for c0 6= 0 according to:

λ = c0

(
2− A0

2

)(
1− A0

2

)
ρ̃−A0 . (A3)

This holds except for the special case A0 = 2. For a diverging λ our approximation
of neglecting the quartic scalar coupling and mass term, which leads to constant bU in
Equation (26), no longer holds. The dimensionless scalar mass term:

m̃2 =
∂u
∂ρ̃

(A4)

behaves for ρ̃→ 0 as:

m̃2 = c0

(
2− A0

2

)
ρ̃1− A0

2 . (A5)

For c0 6= 0 it diverges for A0 > 2, and vanishes for A0 < 2. In Appendix C.2 we
include effects of nonzero m̃2 and λ in the flow equations. This cures the divergence of λ̃
(and possibly m̃2) for ρ̃→ 0.

There is a particular situation for which the whole crossover can be described within
the validity of the matter freedom approximation. In our truncation this occurs for the
choice w0 = w(2)

0 for which A(w(2)
0 ) = 2. Then:

∆u = c0ρ̃ (A6)

leads for ρ̃ → 0 to m̃2
0 = c0 and λ0 = 0. For small c0 matter freedom remains valid for

arbitrarily small ρ̃.
There is a critical value wc for which the two constant solutions with v+ and v− merge.

For N > −4, it corresponds to the minimum of the curves in Figure 1. For approximation
(30), this happens if the square root vanishes:

(1− (N0 − 4)zc)
2 = 32zc . (A7)

For an appropriate range of w0 the generic flow equation (24) has for ρ̃-independent
u two fixed points where βu = 0. They merge at the critical wc for which ∂βu/∂u and βu
vanish simultaneously. At this merging point one has ∂cU/∂u = 4 and therefore:

A(wc) = 4 . (A8)

This can be seen in Figure 4. At vc = v(wc), one finds indeed A(vc) = 4.
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For w < wc no fixed point remains. For w > wc, the solution v+ has A > 4, while
for the solution v− one finds A < 4. This follows directly from the monotonic behavior
of A(v). From Equation (A1) we conclude that the fixed point v− is attractive for ρ̃ → 0,
while v+ is repulsive.

Consider next the behavior of the scaling solution for ρ̃ → ∞. For a valid scaling
solution one needs v(ρ̃) < 1 for all ρ̃, since the pole of βu for v = 1 should not be crossed.
In addition, negative v cannot diverge for ρ̃ → ∞ – such a behavior would lead to an
unbounded effective potential which is not compatible with a stable theory. For all scaling
solutions one requires a finite constant v∞:

lim
ρ̃→∞

v(ρ̃) = v∞ . (A9)

In turn, this enforces:

lim
ρ̃→∞

(
ρ̃

∂v
∂ρ̃

)
= 0 , (A10)

since otherwise v(ρ̃) would diverge for ρ̃→ ∞. With Equation (A10) the computation of v∞
is the same as for v0, with possible solutions v+ and v− given by Equation (30). In addition,
the discussion of solutions that approach u∞ for ρ̃→ ∞ remains unchanged, with A0 and
c0 in Equation (A1) replaced by A∞ and c∞. The constant u∞ is approached by neighboring
solutions for ρ̃→ ∞ if A∞ > 4. While v− is attractive for ρ̃→ 0, v+ is attractive for ρ̃→ ∞.
Taking things together, the general scaling solution for matter freedom is a crossover from
the fixed point v− for ρ̃→ 0 to the fixed point v+ for ρ̃→ ∞.

Appendix C. Scalar Mass Term and Quartic Coupling

The crossover solution for matter freedom discussed in Section 3 is not self-consistent
except for A0 = 2. The approximation to the scalar fluctuation contribution π̃s, which
neglects in Equation (15) the scalar mass term m̃2, breaks down for ρ̃ → 0. For A0 > 2,
the mass term diverges for ρ̃ → 0, see Equation (A5). On the other hand, for A0 < 2 the
potential according to matter domination decreases faster than ρ̃ for ρ̃ → 0. In this case,
the role of a neglected non-zero mass term would dominate. Furthermore, according to
Equation (A3) both ρ̃ ∂λ/∂ρ̃ and λ would diverge for ρ̃→ 0. We conclude that in the region
ρ̃ → 0, matter freedom or the approximation of the flow contribution from scalars by a
constant is no longer valid. We can no longer neglect m̃2

A in Equation (15). Taking the
effects of m̃2 6= 0 into account will lead to corrections for a small range of ρ̃ near zero. In
this appendix we will keep the approximation of constant w(ρ̃) = w0 and vanishing gauge
and Yukawa couplings. We include now on the r. h. s. of the flow equation the effects of
ρ̃-derivatives of u(ρ̃).

Appendix C.1. Flow Equation

Let us consider a single real scalar field with discrete symmetry φ→ −φ and ρ = φ2/2.
Neglecting in Equations (15) and (18) the anomalous dimension, ηA = 0, it contributes to
the flow of u by a term:

(∂tu)s =
1

32π2

(
1 + m̃2 + 2ρ̃λ

)−1
. (A11)

Here we employ for the squared scalar mass term:

m̃A(ρ̃) =
∂u
∂ρ̃

+ 2ρ̃
∂2u
∂ρ̃2 = m̃2(ρ) + 2ρ̃λ(ρ̃) . (A12)
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The difference between the expression (A11) and the value for m̃2 = 0, λ = 0, which is
already incorporated in bU, yields to the flow equation for u an additional contribution:

∆s∂tu =
∆πs

k4 = 4cU,s =
1

32π2

[
1

1 + m̃2 + 2ρ̃λ
− 1
]

= − 1
32π2

m̃2 + 2ρ̃λ

1 + m̃2 + 2ρ̃λ
. (A13)

The particular fixed point solution u(ρ̃) = u0 = v−w corresponds to m̃2 = 0, λ = 0. It
is not changed by the additional term (A13). While the particular constant scaling solutions
remain valid in the presence of ∆πs, this does not hold for the generic crossover scaling
solutions for matter freedom. For the latter, ∆πs will induce substantial corrections for
ρ̃-derivatives of u in the region of small ρ̃.

The correction to the flow of the mass term is given by the ρ̃-derivative of Equa-
tion (A13). Combining with Equation (40) one has:

∂tm̃2 = (A− 2)m̃2 + 2ρ̃λ− 3λ + 2ρ̃ ∂λ/∂ρ̃

32π2(1 + m̃2 + 2ρ̃λ)
2 . (A14)

Possible scaling solutions for m̃2 obtain if the r.h.s. of Equation (A14) vanishes. With
λ = ∂m̃2/∂ρ̃ this condition amounts to a differential equation involving up to two ρ̃-
derivatives of m̃2.

In the presence of ∆πs, the structure of the differential equation for the scaling solutions
for u gets more complicated since it involves up to two ρ̃-derivatives of u. Denoting by
u′ = ∂ρ̃u, u′′ = ∂2

ρ̃u the scaling solutions have to obey the differential equation:

2ρ̃u′ = 4u− 1
24π2

(
5

1− u/w
+

1
1− u/4w

)
− N − 5

32π2 −
1

32π2(1 + u′ + 2ρ̃u′′)
. (A15)

For constant w = w0, this is a nonlinear second order differential equation. The
general solution involves two free integration constants, say u(ρ̃0) and u′(ρ̃0) at some
suitably chosen ρ̃0. The question is which one of the local solutions remains valid for the
whole range of ρ̃ without encountering a singularity. Finding the valid scaling solutions
is not a simple task since the generic local solutions become singular at some ρ̃. The two
constant scaling solutions are regular solutions of Equation (A15) for the whole range of ρ̃.
One would like to know if a one-parameter family of regular solutions can be found that
replaces the one-parameter family of crossover solutions for the approximation of matter
freedom.

A similar question arises for extensions to nonvanishing gauge couplings, Yukawa
couplings or nonminimal scalar-gravity couplings that we will discuss in the following
sections. Omitting ∆πs we will find one-parameter families of scaling solutions, similar
to the crossover scaling solutions for matter freedom. Again the question will arise if a
one-parameter family of regular solutions persists in the presence of ∆πs. It is therefore
worthwhile to discuss this question in some detail.

At this point we should emphasize that even for the existence of a one-parameter
family of regular scaling solutions for u(ρ̃) for a given w(ρ̃), there is no guarantee that full
quantum gravity admits a one-parameter family of scaling solutions. It is possible that
the flow equations of w(ρ̃) (and other invariants not considered here) are compatible only
with a subclass of the regular scaling solutions for u(ρ̃). It is well conceivable that the fixed
point for quantum gravity only admits a single solution. The present investigation should
therefore be seen as an exploration of possibilities rather than a definite determination of
the scaling solution. On the other hand, any overall scaling solution of quantum gravity
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has to result in a regular scaling solution for u(ρ̃) for all other couplings taking their values
for the scaling solution. The general properties of u(ρ̃) found in this paper therefore apply
to any overall scaling solution for quantum gravity.

Appendix C.2. Scaling Solution Near the Origin

If ρ̃ ∂λ/∂ρ̃ vanishes for ρ̃ → 0, e.g., for finite λ(ρ̃ = 0), the fixed point value of the
mass term at ρ̃ = 0, m̃2

0 = m̃2(ρ̃ = 0), obeys for A0 6= 2:

m̃2
0 =

3λ0

32π2(A0 − 2)
(
1 + m̃2

0
) . (A16)

It vanishes only for λ0 = λ(ρ̃ = 0) = 0. We may use m̃2
0 as a parameter to characterize

a possible family of scaling solutions. For a given m̃2
0, the quartic coupling λ0 is fixed and

computable. This continues to higher order couplings. The scaling solution for λ0 fixes
∂λ/∂ρ(ρ̃ = 0) and so on. The particular solution m̃2

0 = 0 is the flat scaling solution.
For a non-zero scalar mass term the approach of a general scaling solution to u(ρ̃ =

0) = u0 gets an additional contribution, modifying Equation (35) to:

2ρ̃
∂∆u
∂ρ̃

= (4− A)∆u− 4 cU,s . (A17)

Let us consider the vicinity of the constant scaling solution. Employing:

m̃2 =
∂∆u
∂ρ̃

, (A18)

we may linearize in m̃2 and λ:(
2ρ̃− 1

32π2

)
∂∆u
∂ρ̃

= (4− A)∆u +
λρ̃

16π2 . (A19)

We first consider the limit ρ̃→ 0 where we neglect the last term∼ λρ̃ in Equation (A19).
The solution,

∆u = c̃0

(
1

64π2 − ρ̃

)2− A0
2

, (A20)

deviates substantially from Equation (A1) in the range of small ρ̃. Derivatives no longer
diverge. For ρ̃→ 0 one finds finite m̃2,

m̃2 = −c̃0

(
2− A0

2

)(
1

64π2 − ρ̃

)1− A0
2

. (A21)

The constant c̃0 is related to m̃2
0 = m̃2(ρ̃ = 0) in Equation (A16) in the limit of small

m̃2
0.

For higher derivatives we have to take the term ∼ λρ̃ in Equation (A19) into account.
We make the ansatz:

λ

32π2 = f m̃2 . (A22)

The resulting differential equation:(
ρ̃ (1− f )− 1

64π2

)
∂∆u
∂ρ̃

=

(
2− A0

2

)
∆u (A23)

has the solution:

∆u = c0

(
1

64π2 − (1− f )ρ̃
) 4−A0

2(1− f )
. (A24)
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Identification with Equation (A20) for ρ̃ = 0 relates c0 and c̃0:

c0 = c̃0

(
1

64π2

)− f (4−A0)
2(1− f )

. (A25)

Taking a derivative of Equation (A24),

m̃2 =
∂∆u
∂ρ̃

= −c0
4− A0

2

(
1

64π2 − (1− f )ρ̃
) 4−A0

2(1− f )−1
, (A26)

one observes that m̃2(ρ̃ = 0) indeed coincides with the value (A21). Taking a further
ρ̃-derivative of Equation (A26) and evaluating it at ρ̃ = 0, one finds for ρ̃→ 0 the relation:

λ

m̃2 = 32π2(A0 − 2− 2 f ) . (A27)

Comparison with Equation (A22) leads to a self-consistent determination of f ,

f =
A0 − 2

3
. (A28)

This corresponds to Equation (A16) for small m̃2. We infer for the limiting behavior of
u for ρ̃→ 0, u0 = v−w:

u(ρ̃→ 0) = u0 + c0

(
1

64π2 −
5− A0

3
ρ̃

)α

(A29)

with

α =
3(4− A0)

2(5− A0)
. (A30)

We conclude that for ρ̃→ 0 the inclusion of the correction term ∆πs cures the diver-
gence of derivatives of the crossover scaling solution. We will next establish that the fixed
point solution is now compatible with the flow of couplings at fixed ρ̃.

Appendix C.3. Relevant and Irrelevant Couplings

For the flow of m̃2 and λ away from the fixed point we employ the ρ̃-derivative of
Equation (A13):

∂tm̃2 = (A− 2) m̃2 + 2ρ̃λ− 3λ + 2ρ̃ u(3)

32π2 (1 + m̃2 + 2ρ̃λ)
2 , (A31)

with

u(3)(ρ̃) =
∂λ(ρ̃)

∂ρ̃
. (A32)

For ρ̃→ 0, we take advantage of the finiteness of m̃2, λ and u(3) and evaluate the flow
of m̃2

0 = m̃2(ρ̃ = 0), λ0 = λ(ρ̃ = 0),

∂tm̃2
0 = (A0 − 2)m̃2

0 −
3λ0

32π2
(
1 + m2

0
)2 . (A33)

For the fixed point we find the relation:

λ0,∗ =
32π2(A0 − 2)

3
m̃2

0,∗

(
1 + m̃2

0,∗

)2
. (A34)
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Linearizing for small λ and m̃2 this fixed point for the ratio λ/m̃2 is indeed consistent
with Equations (A22) and (A26). Taking a ρ̃-derivative of Equation (A31) and evaluating it
at ρ̃ = 0 yields u(3)

0,∗ in terms of m̃2
0,∗ and λ0,∗.

Deviations from m̃2
0 from the fixed point value m̃2

0,∗ are denoted by

γ = m̃2
0 − m̃2

0,∗ . (A35)

For small γ the flow equations read,

∂tγ = (A0 − 2)γ +
3λ0,∗γ

32π2
(

1 + m̃2
0,∗

)2

− 3 δλ

32π2
(

1 + m̃2
0,∗

)2 +
m̃2

0,∗
w0

∂A
∂v

δu , (A36)

with
δλ = λ0 − λ0,∗ , δu = u0 − u0,∗ . (A37)

Neglecting first δλ and δu, the insertion of Equation (A34) yields:

∂tγ = (A0 − 2)

1 +
m̃2

0,∗(
1 + m̃2

0,∗

)2

γ = −θγγ . (A38)

For a second order phase transition the flow of γ must vanish for γ = 0 [80–86]. This
ensures naturalness of very small γ due to the enhanced quantum scale symmetry for γ = 0.
This generalizes to more complex settings. The vacuum electroweak phase transition is
almost of second order.

For A0 < 2 the deviation from the scaling solution γ is a relevant parameter. The
critical exponent θγ is positive. For constant θγ the flow of γ obeys:

γ = γΛ

(
k
Λ

)−θγ

. (A39)

The initial value γΛ = γ(k = Λ) specified at some arbitrary chosen scale Λ determines
the particular flow trajectory. Restoring dimensions, the renormalized scalar mass term at
ρ = 0 behaves as:

m2(k) = m̃2
0,∗k

2 + γΛΛθγ k2−θγ . (A40)

For γΛ > 0, the mass term is positive for all k. The origin ρ = 0 is a local minimum of
the effective potential. The model is typically in the “symmetric phase” with unbroken Z2
symmetry φ→ −φ. In contrast, for γΛ < 0 the mass term turns negative for k smaller than
some critical kc:

kc = Λ

(
− γΛ

m̃2
0,∗

) 1
θγ

. (A41)

The origin at ρ = 0 becomes a local maximum for small enough k. This indicates a
minimum of U for ρ = ρ0 > 0, and therefore a spontaneous breaking of the Z2-symmetry.
The phase transition at the boundary between the symmetric phase and the phase with
spontaneous symmetry breaking is given by γΛ = 0. This is the scaling solution. The
existence of a scaling solution is a general feature of a second order phase transition.

We observe that the critical trajectory γΛ = 0 is never crossed by any flow trajec-
tory. This generalizes to the critical surface of a second order phase transition. It follows
generally from the existence of a scaling solution and continuity. For the scaling solution,
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corresponding to the critical surface, the flow vanishes. For neighboring solutions the
flow is very small by continuity, as exemplified by the flow of m̃2

0 in the region where γ
remains small. Since the flow becomes arbitrarily slow if the scaling solution is approached
arbitrarily close by, no flow trajectory can cross the critical surface.

For θγ < 0, typically requiring A0 > 2, the deviation γ from the critical surface
becomes an irrelevant parameter. One observes self-tuned criticality. For the electroweak
phase transition this can explain the gauge hierarchy [87,88].

These general statements apply to the flow according to Equation (A36) for nonvan-
ishing δu and δλ as well. The critical surface is now a two-dimensional hypersurface in the
three-dimensional space of couplings u0, m̃2

0, and λ0. On the critical surface, the couplings
follow scaling solutions u0,∗, m̃2

0,∗, and λ0,∗ . Deviations from the scaling solution may be
denoted by αi = (δu, γ, δλ). For the scaling solution the flow of δu, γ, and δλ vanishes.
Critical exponents are the eigenvalues of the stability matrix T which characterizes the
linearized flow in the vicinity of the scaling solution:

∂tαi = −Tijαj . (A42)

For a computation of the stability matrix we need the flow of δu and δλ. For δu one
finds from Equations (24) and (A11):

∂tδu = (A− 4)δu + 2ρ̃γ− 1
32π2

(
1 + m̃2 + 2ρ̃λ

)−2
(γ + 2ρ̃δλ) . (A43)

For the flow of the quartic coupling we first take a ρ̃-derivative of Equation (A31):

∂tλ = Aλ + 2ρ̃u(3) +
1
w

∂A
∂v

m̃4 +
1

16π2

(
3λ + 2ρ̃u(3)

)2

(1 + m̃2 + 2ρ̃λ)
3

− 1
32π2

5u(3) + 2ρ̃u(4)

(1 + m̃2 + 2ρ̃λ)
2 . (A44)

Neglecting u(3) and u(4) the linearized flow equation for δλ becomes:

∂tδλ = Aδλ +
1
w

∂A
∂v

(
λ∗δu + 2m̃2

∗γ
)

+
1

w2
∂2 A
∂v2 m̃4

∗δu +
9λ∗δλ

8π2(1 + m̃2∗ + 2ρ̃λ∗)
3

− 27λ∗(γ + 2ρ̃δλ)

16π2(1 + m̃2∗ + 2ρ̃λ∗)
4 . (A45)

The stability matrix for ρ̃ = 0 reads:

− T =


A− 4 −d 0
Bm̃2
∗ A− 2 + 3dλ∗ −3d

Bλ∗ + Cm̃4
∗ 2Bm̃2

∗ −
54dλ2

∗

(1+m̃2∗)
2 A + 36dλ∗

1+m̃2∗

 , (A46)

with

B =
1
w

∂A
∂v

, C =
1

w2
∂2 A
∂v2 , d =

1

32π2(1 + m̃2∗)
2 . (A47)

For A of the order one and 3d smaller than 0.01, the off-diagonal elements in the upper
right corner are small. For d = 0, the eigenvalues of T are given by the diagonal elements.
In addition, for small m̃2

∗, λ∗ the off-diagonal elements in the lower left corner are all small.
Neglecting them, the eigenvalues are given by the diagonal elements even for d 6= 0. We
conclude that to a very good approximation the critical exponents are given by the diagonal



Universe 2021, 7, 45 64 of 76

elements of T. Since A0 < 4, there is always one relevant coupling, which is dominantly
given by δu. A second coupling, dominantly γ, occurs for A0 < 2− 3d λ∗. This coupling
becomes irrelevant for A0 > 2− 3d λ∗. The third coupling, dominantly δλ, is irrelevant.

If we keep also ∆u(3) etc., the flow for a finite number of couplings will not be closed.
In principle, the number of couplings is infinite, such that the stability matrix T is infinite
dimensional. The almost diagonal structure of T continues if we extend it to higher
order couplings. The critical exponent for δu(3) is approximately A + 2, while for ∆u(4) it
amounts to A + 4. Higher order couplings are all irrelevant parameters. In the absence of
off-diagonal elements they would be predicted to take exactly the values for the scaling
solution. In the presence of the off-diagonal elements the values of δλ, δu(3) etc. remain
predictable as a function of the relevant couplings that we may parameterize by δu (and γ
if this is also relevant).

The flow away from the critical surface is determined by the relevant couplings.
These are linear combinations of αi that are eigenvectors to positive eigenvalues of T. The
irrelevant couplings correspond to negative eigenvalues of T. They can be set to zero.
In consequence, δλ can always be expressed as a linear combination of γ and δu. As an
example, we take the flat scaling solution for which m̃2

0,∗ = 0, and therefore also λ0,∗ = 0,

as well as u(3)
0,∗ = 0 and similar for higher order couplings.

From,
∂tδλ = A0δλ (A48)

we conclude that δλ is an irrelevant coupling. This coincides with the findings of some of
the early investigations [22,27,28,32,89,90]. Setting δλ = 0 in the flow equation for γ and
δu results in:

∂tγ = (A0 − 2)γ , ∂tδu0 = (A0 − 4)δu0 −
1

32π2 γ . (A49)

The eigenvectors of T are γ and δu0 + γ/(64π2), with eigenvalues 2− A0 and 4− A0.

Appendix C.4. Asymptotic Behavior for Large Scalar Fields

For large values ρ̃ → ∞ the ρ̃-dependence of the scaling effective potential is given
by Equations (43)–(45). With A∞ > 4 both m̃2(ρ̃) and λ(ρ̃) vanish for ρ̃→ ∞. We conclude
that the contribution (A13) becomes negligible for large ρ̃ for the scaling solution and the
vicinity of it. The scalar field is free and massless in the range of very large ρ̃. For deviations
from the scaling solution, the stability matrix has vanishing off-diagonal elements in the
lower left corner. The eigenvalues are the diagonal elements, with A∞ − 4, A∞ − 2, A∞, . . .
all positive for A∞ > 4. There are no relevant couplings in the scalar sector. As long as the
dimensionless Planck mass w can be approximated by a constant, the scalar potential for
large ρ̃ is predicted to be given precisely by the scaling solution.

The family of possible scaling solutions can be parameterized by the coefficient c∞ in
Equations (43)–(45). It specifies at which ρ̃t the crossover from the vicinity of the constant
fixed point potential for ρ̃ → ∞ to the fixed point potential for ρ̃ → 0 takes place, see
Figures 2 and 3. In the large ρ̃-region where m̃2 and λ can be neglected the differential
Equation (26) for the scaling solution for u does not involve x = ln(ρ̃) explicitly:

∂u
∂x

= 2(u− cU(u)) . (A50)

In this range the family of scaling solutions can be obtained by constant shifts in x or
multiplicative rescalings of ρ̃. The family of possible scaling solutions is characterized by
a single parameter c∞. This extends to the full characterization of scaling solutions in the
whole range of ρ̃, provided that for each c∞ the solution can be continued to ρ̃ → 0. If a
certain range of c∞ cannot be continued, the allowed family of scaling solutions will be
restricted to a range in c∞.
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Appendix C.5. Transition Region

So far we have found a family of local scaling solutions in the region ρ̃→ 0, parametrized
by m̃2

0, as well as a family of local scaling solutions in the range ρ̃→ ∞, parametrized by
c∞. The question arises which ones of this solutions can be combined into a global solution
for the whole range of ρ̃. This will decide if the differential Equation (A15) has a whole
family of global crossover solutions, only a discrete number of crossover solutions, or no
crossover solution. In the last case only the constant solutions remain as global scaling
solutions. The matching between the two limiting regions occurs in a transition region near
ρ̃s = 1/(64π2).

One could attempt a numerical solution of the second order differential Equation (
A15). This is intricate due to the appearance of the highest derivative in the denominator of
a rather small correction term. The situation becomes numerically rather unstable, as can
be understood from the analytical approaches that we follow here.

The approximations employed for the derivation of the scaling solution near ρ̃ = 0
break down if ρ̃ comes close to the value ρ̃s = 1/(64π2). The region of ρ̃ around ρ̃s
describes the transition from the UV-region near ρ̃ = 0, where the details of the scalar
fluctuations may matter, to the region of larger ρ̃ where m̃2 and λ can be neglected. For
small ∆u, m̃2 = ∂(∆u)/∂ρ̃ and λ = ∂2(∆u)/∂ρ̃2, we can use Equation (A19) as a second
order differential equation:(

ρ̃− 1
64π2

)
∂∆u
∂ρ̃

=
4− A

2
∆u +

ρ̃

32π2
∂2∆u
∂ρ̃2 . (A51)

In terms of the variable:
s = 64π2ρ̃ (A52)

this reads:

(s− 1)
∂∆u
∂s

+
A− 4

2
∆u− 2s

∂2∆u
∂s2 = 0 . (A53)

Except for the constant scaling solution ∆u = 0, the function ∆u grows outside the
range of this linear approximation as s increases. We also investigated numerically the
nonlinear second order differential equation:

ρ̃
∂u
∂ρ̃

= 2(u− cU − cU,s) , (A54)

with m̃2 = ∂u/∂ρ̃, λ = ∂2u/∂ρ̃2 in Equation (A13) which yields Equation (A15). The only
scaling solutions extending for the whole range 0 ≤ ρ̃ < ∞ that we have found so far are
the constant scaling solutions. The failure to find other solutions may, however, be due to
numerical instabilities which could prevent the detection of global crossover solutions.

The issues of finding scaling solutions for scalars coupled to gravity can be understood
by neglecting the term 2λ ρ in Equations (26) and (A13). In this approximation the scaling
solution has to obey the differential equation:

2ρ̃
∂u
∂ρ̃

= 4(u− cU) +
NS

32π2

(
1− 1

1 + ∂u
∂ρ̃

)
. (A55)

Here we consider NS scalars with mass term m2 = ∂u/∂ρ̃, while N − NS accounts for
additional massless particles as fermions, gauge bosons or further scalars. Equation (A55)
can be written as a quadratic equation in ρ̃ ∂u/∂ρ̃ and therefore can be transformed to:

ρ̃
∂u
∂ρ̃

=
1
2

{
2u− 2cU +

NS

64π2 − ρ̃±
√

W
}

, (A56)



Universe 2021, 7, 45 66 of 76

with

W =

(
2u− 2cU +

NS

64π2 + ρ̃

)2
− NSρ̃

16π2 . (A57)

Let us first consider the limit ρ̃→ ∞ where:

√
W = ρ̃ + 2u− 2cU −

NS

64π2 +
NS(u− cU)

4π2ρ̃
+ . . . (A58)

Employing the solution with the plus sign in Equation (A56) one finds:

ρ̃
∂u
∂ρ̃

= (2u− 2cU)

(
1 +

NS

64π2ρ̃

)
. (A59)

One sees again that the scaling solution approaches for ρ̃ → ∞ the constant u = cU
discussed in Section 3.

For the opposite limit for ρ̃→ 0 one has:

√
W = 2u− 2cU +

NS

64π2 +
u− cU − NS

128π2

u− cU + NS
128π2

ρ̃ . (A60)

If ∂u/∂ρ̃ remains finite for ρ̃→ 0 the relative minus sign in Equation (A56) is appro-
priate, yielding:

∂u
∂ρ̃

= − u− cU

u− cU + NS
128π2

. (A61)

The particular asymptotic behavior u = cU for ρ̃ = 0 implies a vanishing mass
term m̃2 = ∂u/∂ρ̃ → 0. With u0 given by the solution u0 = cU(u0) as in Section 3, and
u = u0 + ∆u, the linear expansion of Equation (A56) in ∆u becomes:

∂∆u
∂ρ̃

= − (4− A)∆u

(4− A)∆u + NS
32π2

≈ −32π2(4− A)

NS
∆u , (A62)

in accordance with Equation (A19) for ρ̃→ 0 for NS = 1. The sign of the mass term at the
origin is opposite to the sign of ∆u.

For the differential Equation (A56), the relative plus sign for the square root applies
for ρ̃→ ∞, while for ρ̃→ 0 one needs the relative minus sign. There has to be a matching,
which must occur for W = 0 for reasons of continuity. The value of ρ̃t where W(ρ̃t) = 0
obeys:

ρ̃t = 2

(
√

cU − u±
√

NS

128π2

)2

. (A63)

A switch of sign of the
√

W-term is only possible in a region where u ≤ cU. Continuity
of the quartic coupling λ at ρ̃t requires further:

∂W
∂ρ̃

(ρ̃t) = 0 . (A64)

Combining Equation (A64) with W(ρ̃t) = 0 yields the condition"

ρ̃t =
NS

64π2 . (A65)

Comparing further Equations (A65) and (A63) requires at ρ̃t:

cU − u =

{
0,

NS

32π2

}
, (A66)
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corresponding to:
m̃2(ρ̃t) = {0,−2} . (A67)

The second value violates the condition m̃2 > −1 needed for a stable scalar propagator,
and we conclude that scaling solutions with a change of the sign of the term ±

√
W in

Equation (A56) require:

m̃2
(

ρ̃ =
NS

64π2

)
= 0 . (A68)

Generic local scaling solutions with arbitrary m̃2
0 do not obey Equation (A68), as we

have checked by a numerical solution of Equation (A56).
The two flat scaling solutions discussed in Section 3,

u(ρ̃) = cU(v±) , (A69)

with v± given by Equation (30), obey Equation (A68). For these particular solutions there
is actually a change of sign in the term ±

√
W in Equation (A56) at ρ̃t = NS/(64π2), since√

W = ρ̃− ρ̃t for ρ̃ > ρ̃t and
√

W = ρ̃t − ρ̃ for ρ̃ < ρ̃t. It is not obvious if there exist other
scaling solutions obeying the condition (A68). If not, and if the inclusion of nonzero λ does
not change in an important way the possible scaling solutions, the inclusion of the scalar
mass term reduces the family of scaling solution for matter freedom discussed in Section 3
to only two scaling solutions, both with a flat potential.

If we do not impose the condition (A64), the matching of solutions with different signs
±
√

W at ρ̃t typically induces a discontinuity of ∂m̃2/∂ρ̃ at ρ̃t. Higher order couplings will
then diverge and the approximation of neglecting them remains no longer valid. So far, it
is not known if the inclusion of λ (and higher order couplings as u(3)) can smoothen the
discontinuity or not. At the present stage it is therefore not known if a continuous family of
scaling solutions exists, or if this is reduced to a discrete subset.

As a general lesson, we conclude that the issue of the existence of a whole family of
scaling solutions, or only a discrete subset, is typically decided in the transition region.
Both limiting cases ρ̃→ 0 and ρ̃→ ∞ admit families of scaling solutions characterized by a
continuous parameter. The question is if the families of scaling solutions in the two limiting
cases can be matched to each other continuously in the transition region. For pure scalar
models coupled to gravity with constant w, it seems most likely that only a discrete subset
of overall scaling solutions remains. We will see that non-vanishing gauge or Yukawa
couplings, as well as non-trivial couplings to gravity encoded in the ρ̃-dependence of w(ρ̃),
modify the properties of the transition region considerably.

Appendix D. Yukawa Couplings

In this appendix we discuss the influence of a non-zero Yukawa coupling of the scalar
to fermions. In this case the fermion fluctuations stabilize a minimum of the potential at
ρ = 0, preventing spontaneous symmetry breaking in the scaling solution.

Appendix D.1. Flow Equations with Yukawa Coupling

A fermion with a Yukawa coupling y to a scalar field φ acquires a mass m = y φ.
Similar to massive gauge bosons, the mass suppresses its contribution to the flow of u. This
induces a modification of the flow generator:

∆π̃ f

k4 = − 1
16π2

NF

∑
j=1

(
1

1 + wj
− 1

)
. (A70)

Here j labels the mass eigenstates with mass mj, and

wj =
m2

j

k2 = y2a(F)
j (φa)/k2 (A71)



Universe 2021, 7, 45 68 of 76

is the dimensionless squared mass of the fermion j. The sum is over Majorana fermions,
with Dirac fermions counting as two Majorana fermions with equal m2

j . The minus sign
reflects Fermi statistics and is the main difference as compared to the gauge boson contri-
bution. In case of several independent Yukawa couplings, the mass eigenvalues mj depend
on a linear combination of Yukawa couplings and fields.

We may again investigate a simple scenario where N̄F fermions have an equal mass,

m2
j = c f y2ρ . (A72)

Similar to Equation (57) this results in:

∆π̃ f

k4 =
c f N̄F y2ρ̃

16π2
(

1 + c f y2ρ̃
) . (A73)

We can therefore take over the computations for gauge couplings with the replace-
ments:

cg g2 → c f y2 , N̄V → −
2
3

N̄F . (A74)

Appendix D.2. Flow Away from the Scaling Solution

The essential new feature is the overall change of sign of the fermion contribution as
compared to the gauge boson contribution. Combining with the gravitational contribution
and contributions from other massless fields one obtains:

∂tu = −4u + 2ρ̃
∂u
∂ρ̃

+ 4cU + 4cU, f , (A75)

with

cU, f =
∆π̃ f

4k4 = − N̄F

64π2

(
1

1 + y2ρ̃
− 1
)
=

N̄F y2ρ̃

64π2(1 + y2ρ̃)
. (A76)

Here we take c f = 1. We observe that cU, f adds a positive contribution to cU.
The flow of the mass term m̃2 = ∂u/∂ρ̃ is found by taking a ρ̃-derivative of Equa-

tion (A75),

∂tm̃2 = −2m̃2 + 2ρ̃
∂m̃2

∂ρ̃
+ Am̃2 +

N̄Fy2

16π2(1 + y2ρ̃)
2 , (A77)

where we have omitted contributions from ∆π̃s and possible contributions from ∆π̃gauge.
If λ(ρ̃) = ∂m̃2/∂ρ̃ remains finite for ρ̃ → 0 the flow of the scalar mass term at the origin
reads:

∂tm̃2
0 = (A0 − 2)m̃2

0 +
N̄F y2

16π2 . (A78)

For A0 < 2 the fixed point occurs for positive m̃2
0,∗, such that the origin is a local

minimum for the scaling solution:

m̃2
0,∗ =

N̄Fy2

16π2(2− A0)
. (A79)

In contrast, for A0 > 2 one has m̃2
0,∗ < 0 and a local maximum at the origin for the

scaling solution (this holds provided the term ∼ λ0 from ∆π̃s is small).
The flow of the quartic coupling λ(ρ̃) is obtained by taking a further ρ̃-derivative of

Equation (A77):

∂tλ = Aλ + 2ρ̃
∂λ

∂ρ̃
− N̄Fy4

8π2(1 + y2ρ̃)
3 + Bm̃4 . (A80)
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For ρ̃ → 0 one recognizes the well known negative contribution from the Yukawa
coupling ∼ y4. The fixed point for λ0 = λ(ρ̃ = 0) occurs for:

λ0,∗ =
N̄F y4

8π2 A0
− B0

A0
m̃4

0,∗

=
N̄F y4

8π2 A0

(
1− N̄FB0

32π2(2− A0)
2

)
. (A81)

The relative size of the second contribution ∼ B0 is typically small, such that λ0,∗ > 0.
For the flow away from the fixed point we can keep λ close to the fixed point value:

λ0,∗ ≈
N̄Fy4

8π2 A0
, (A82)

since it is an irrelevant parameter. For A0 < 2 the mass term is relevant, however, and the
deviation from the critical surface γ = m̃2

0 − m̃2
0,∗ increases according to Equation (A36).

Indeed, the last term in Equation (A78) shifts the value of m̃2
0,∗, but does not contribute to

the flow of γ. The same holds for the flow of δu. The only difference to the discussion in
Appendix C.3 are the different fixed point values for m̃2

0,∗ and λ0,∗. Omitting the irrelevant
coupling δλ the stability matrix for αi = (δu, γ) reads, see Equation (A46),

− T =

(
A− 4 −d
Bm̃2

0,∗ A− 2 + 3dλ0,∗

)
. (A83)

Neglecting the small off-diagonal elements we can follow the discussion of Equa-
tions (A38)–(A40), resulting in:

m̃2(k) =
N̄F y2k2

16π2(2− A0)
+ γΛΛθγ k2−θγ , (A84)

with

θγ = 2− A0 −
3N̄F y4

(16π2)
2 A0

(
1 + m̃2

0,∗

)2 . (A85)

The last term in Equation (A85) is small and may be neglected, such that:

m2(k) =
N̄F y2k2

16π2(2− A0)
+ γΛΛ2−A0 kA0 . (A86)

The scaling solution with constant A0 holds only as long as the gravitational fluctua-
tions are effective. The running coupling w0(k) corresponds to a relevant parameter, with
qualitative behavior:

w0(k) = w0,∗ +
M2

2k2 , (A87)

where M is the observed reduced Planck mass. Once k2 drops below k2
c = M2/(2w0,∗), the

function w0(k) starts to increase rapidly. As a consequence, A0(k) decreases rapidly to zero
for k� kc. For k2 � k2

c one has approximately:

m2
0(k) = m2

0(kc)−
N̄F y2(k2

c − k2)
32π2 . (A88)

For a suitable value of γΛ, one can obtain m0(kc) = N̄F y2 k2
c /(32π2), such that m2

0(k =
0) = 0. More generally, by suitable initial conditions for the relevant parameter γ one
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can achieve arbitrary values of m2
0(k = 0). In turn, one can realize an arbitrary value of

spontaneous symmetry breaking, e.g. an arbitrary location of the minimum of U at k = 0,

ρ0(k) = −
m2

0(k)
λ0(k)

. (A89)

If ρ0(0) 6= 0 is associated with a spontaneous breaking of a symmetry, the scale of this
symmetry breaking is a free parameter. What is predicted, however, is the value of the
quartic coupling, since it is associated to an irrelevant parameter. With “initial values”:

λ0(kc) = λ0,∗ , y(kc) = y , (A90)

one can follow for k < kc the “low energy flow” of λ and y to k = 0. The gravitational
degrees of freedom do not contribute to the low energy flow.

Appendix D.3. Global Scaling Solution

So far we only have discussed the vicinity of ρ̃ = 0. As long as the minimum ρ0(k)/k2

stays small, this is a reasonable local approximation. In order to be sure that no other
minimum of u occurs for large ρ̃ one needs the global solution for the whole range of ρ̃. We
have numerically solved the differential equation for the scaling solution:

2ρ̃
∂u
∂ρ̃

= 4
(

u− cU − cU, f

)
. (A91)

The result is shown in Figure A1 for different values of w0. The only minimum occurs
for ρ̃ = 0. The mass term m̃2(ρ̃) is positive and small for the whole range of ρ̃, as can
be seen from Figure A2. This justifies the omission of cU,s for the whole range of ρ̃, in
contrast to the situation with vanishing Yukawa coupling. The qualitative situation does
not depend sensitively on the initial conditions, as demonstrated in Figure A3. It seems that
the differential Equation (A91) admits a whole family of scaling solutions extended over
the whole range of ρ̃. In view of the small value of m̃2 we do not expect that this changes if
cU,s is included.

-4 -2 2 4 6
x

0.02

0.03

0.04

0.05

u

Figure A1. Effective potential u(x) as function of x = ln(ρ̃) in presence of a Yukawa coupling,
y2/4π = 1/40. The curves (from bottom to top on the right part) for w0 = 0.042, 0.046, 0.052, and
0.06. Other parameters are N = 10, N̄ f = 1, and initial values are set as u(x = 0) = 0.02.
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Figure A2. Mass term m̃2 as function of x = ln(ρ̃) for nonvanishing Yukawa couplings. Parameters
are as for Figure 9, with largest value at x = 0 for w0 = 0.06 and smallest for w0 = 0.042.
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Figure A3. Effective potential u(x) as function of x = ln(ρ̃) for a Yukawa coupling y2/4π = 1/40.
Parameters are N = 10, N̄ f = 1, w0 = 0.05 and we show different initial conditions at x = 0, namely
u(x = 0) = 0.018, 0.02, 0.03, and 0.0415 from right to left.

Appendix E. Vicinity of the Constant Scaling Solution

In this appendix we investigate possible scaling solutions that remain in the vicinity of
the constant scaling for a certain range in ρ̃. We work in the truncation of two free functions
u(ρ̃) and w(ρ̃).

In the vicinity of the constant scaling solution we may linearize the differential Equa-
tion (98) for small:

∆u(ρ̃) = u(ρ̃)− u∗ , ∆w(ρ̃) = w(ρ̃)− w∗ , (A92)

with u∗, w∗ the constant scaling solutions according to Equation (106). The linearized
equations read:

2ρ̃ ∂ρ̃∆u = 4∆u− 4∆cU , 2ρ̃ ∂ρ̃∆w = 2∆w− 2∆cM , (A93)

with:

∆cU = cU(u∗ + ∆u, w∗ + ∆w)− cU(u∗, w∗) ,

∆cM = cM(u + ∆u, w∗ + ∆w)− cM(u∗, w∗) . (A94)
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For g2 = y2 = 0 one finds:

∆cU =
5

96π2 ∆̃− NS

128π2 ∆u′ ,

∆cM =
25

128π2 ∆̃ +
NS

192π2 ∆u′ − NS

64π2 ∆w′ , (A95)

where
∆̃ =

1
1− v

− 1
1− v∗

=
1

(1− v∗)2
w∗∆u− u∗∆w

w2∗
. (A96)

Equation (A95) is a coupled system of two linear differential equations,(
2ρ̃− NS

32π2

)
∆u′ = 4∆u− 5

24π2 ∆̃ ,(
2ρ̃− NS

32π2

)
∆w′ +

NS

96π2 ∆u′ = 2∆w− 25
64π2 ∆̃ . (A97)

We can write ∆̃ in terms of the graviton-induced anomalous dimension A for which
the second term in Equation (37) is neglected and v, w taken as v∗, w∗,

A =
5

24π2w∗ (1− v∗)2 , (A98)

namely,
5

24π2 ∆̃ = A (∆u− v∗∆w) . (A99)

This yields:(
2ρ̃− NS

32π2

)
∆u′ = (4− A)∆u + A v∗∆w ,(

2ρ̃− NS

32π2

)
∆w′ +

NS

96π2 ∆u′ = 2∆w +
15A

8
(∆u− v∗∆w) , (A100)

to be compared with Equation (A19) for λ = 0.
We may discuss separately three characteristic regions in ρ̃. For ρ̃� NS/(64π2) one

has the approximate equations:

∆y′ = −M0∆y , ∆y =

(
∆u
∆w

)
, (A101)

with

M0 =
32π2

NS

(
4− A A v∗

4
3 + 37

24 A 2− 37
24 A v∗

)
. (A102)

The two eigenvalues λ± of M0 are the solutions of the quadratic equation:

λ2 − λ

(
6− A

(
1 +

37
24

v∗

))
+ 8− A

(
2 +

15
2

v∗

)
= 0 . (A103)

For A = 0, one finds two possible eigenvalues λ+ = 4, λ− = 2. With respect to the
flow with increasing ρ̃ both ∆u and ∆w are relevant parameters. This extends to a range
A > 0 with eigenvalues depending continuously on A. The solution approaches for ρ̃→ 0
constant values, ∆u(ρ̃ = 0) = ∆u0, ∆w(ρ̃ = 0) = ∆w0. They are related to the derivatives
by Equations (101) and (102). This behavior is similar to the discussion in Appendix C.2.

A second region for ρ̃� NS/(64π2) obeys the approximate equations:

ρ̃ ∂ρ̃ ∆y = M∞∆y (A104)
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with

M∞ =
1
2

(
4− A A v∗
15A/8 2− 15 A v∗

8

)
. (A105)

If the largest eigenvalue λ+ of M∞ is positive, the solution diverges for ρ̃→ ∞ as:

∆y∗ = c+ ρ̃λ+ + c−ρ̃λ− (A106)

with c± eigenvectors of λ± specifying the particular solutions. We conclude that the
constant scaling solution is “unstable” in the sense that generic local solutions do not
approach the scaling solutions for ρ̃→ ∞. If a whole family of scaling solutions exists, the
constant scaling solution does not correspond to the generic solution of this family. In the
other direction, many possible scaling solutions may be attracted towards the vicinity of
the constant scaling solution for ρ̃ → 0. This holds, in particular, if both λ+ and λ− are
positive.

The third region is the “transition region” for ρ̃ ≈ NS/(64π2). One expects that the
neglection of second derivatives u′′ and w′′ may be no longer justified. The situation is
similar to the discussion in Appendix C.5. If we continue to neglect u′′ and w′′, the scaling
solution can cross the transition region only at the price of strong variations of u′ and w′.
In the close vicinity of ρ̃ = NS/(64π2) Equation (A100) is approximated by:

∆w = −4− A
A v∗

∆u , (A107)

and

∆u′ =
48π2

NS

(
15− 4 (4− A)

A v∗

)
∆u . (A108)

We could specify the initial conditions for the solution of the linear differential equa-
tions by specifying ∆u and ∆w at ρ̃ = NS/(64π2). The condition (A107) implies that only
a one-parameter family of scaling solutions in the close vicinity of the constant scaling
solutions is possible.

For any smooth scaling solution we can write:

∆u = a ∆w , ∆u′ = a ∆w′ + a′ ∆w , (A109)

with a(ρ) a function without very rapid variation with ρ̃. The second Equation (A100)
becomes: [

2ρ̃− NS

32π2

(
1− a

3

)]
∆w′ = B ∆w , (A110)

with

B = 2 +
15 A

8
(a− v∗)−

NS

96π2 f a , f =
a′

a
. (A111)

The coefficient of ∆w′ vanishes for:

ρ̃w =
NS

64π2

(
1− a

3

)
, (A112)

which is for a < 0 somewhat smaller than the location of the vanishing coefficient of ∆u′ in
the first Equation (A100) at ρ̃u = NS/(64π2). This is compatible with a smooth behavior
only if B(ρ̃w) = 0. For a smooth solution the term ∼ f is typically small as compared to
other terms in B. One infers different values of a at ρ̃w and ρ̃u,

a(ρ̃w) = v∗ −
16

15A
, a(ρ̃u) = −

A v∗
4− A

. (A113)
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In turn, the first Equation (A100) yields at ρ̃w:

∆u′(ρ̃w) = −
96π2

NS

(
4− A +

A v∗
a(ρ̃w)

)
∆w

≈ −384π2

NS

(
1 +

4A
15A v∗ − 16

)
∆w . (A114)

The value ∆u′/∆w becomes typically very large at ρ̃w, contradicting the assumption
of slow variation of the scaling solution.

Numerical solutions in the transition region are indeed characterized by strong varia-
tions of ∆u′ and ∆w′ in the transition region. Those solutions typically diverge outside the
transition region before ρ̃ = 0 and ρ̃→ ∞ are reached, such that the linear approximation
does not remain valid. Similarly to Appendix C.5 we remain with two possibilities. Either
the inclusion of ∆u′′ and ∆w′′ changes the strong variations such that a family of slowly
varying scaling solutions exists in the vicinity of the constant scaling solution. Or only a
discrete number of scaling solutions remains close to the scaling solution over the whole
range of ρ̃. It could turn out that the constant scaling solution is the only possible scaling
solution for g2 = y2 = 0.

A possible scenario for a continuous family of solutions could be that all solutions
that are close to the constant scaling solution for ρ̃→ 0 always deviate substantially from
the scaling solution for large enough ρ̃, such that the linear approximation no longer holds.
This happens, in particular, if the asymptotic behavior of w(ρ̃→ ∞) is not a constant, but
rather involves the non-minimal coupling ξ. This type of scaling solution is discussed in
Section 7.5.
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