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Abstract: The vorticity of world-lines of observers associated with the rotation of a massive body
was reported by Lense and Thirring more than a century ago. In their example, the frame-dragging
effect induced by the vorticity is directly (explicitly) related to the rotation of the source. However,
in many other cases, it is not so, and the origin of vorticity remains obscure and difficult to identify.
Accordingly, in order to unravel this issue, and looking for the ultimate origin of vorticity associated
to frame-dragging, we analyze in this manuscript very different scenarios where the frame-dragging
effect is present. Specifically, we consider general vacuum stationary spacetimes, general electro-
vacuum spacetimes, radiating electro-vacuum spacetimes, and Bondi–Sachs radiating spacetimes.
We identify the physical quantities present in all these cases, which determine the vorticity and
may legitimately be considered as responsible for the frame-dragging. Doing so, we provide a
comprehensive, physical picture of frame-dragging. Some observational consequences of our results
are discussed.
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1. Introduction

The dragging of inertial frames produced by self–gravitating sources, whose existence
has been recently established by observations [1], is one of the most remarkable effect
predicted by the general theory of relativity (GR) (see [2,3]).

The term "frame-dragging" usually refers to the influence of a rotating massive body
on a gyroscope by producing vorticity in the congruence of world-lines of observers outside
the rotating object. Although the appropriateness of the term “frame-dragging” has been
questioned by Rindler [4], it nevertheless has been used regularly in the literature to this
day, and accordingly, we shall adopt such a term here (see also [5,6]).

The basic concept for the understanding of this effect is that of vorticity of a congruence,
which describes the rotation of a gyroscope attached to the congruence, with respect to
reference particles.

Two different effects may be detected by means of gyroscopes. One of these (the
Fokker de Sitter effect) refers to the precession of a gyroscope following a closed orbit
around a spherically symmetric mass distribution. It has been verified with a great degree
of accuracy by observing the rotation of the earth–moon system around the sun [7], but this
is not the frame-dragging effect we are interested in here. The other effect, the one we are
concerned with in this work, is the Lense–Thirring–Schiff precession, which refers to the
appearance of vorticity in the congruence of world-lines of observers in the gravitational
field of a massive rotating ball. It was reported for the first time by Lense and Thirring [8],
and is usually referred to as the Lense–Thirring effect (some authors suggest that it should
be named the Einstein–Thirring–Lense effect instead, see [9–11]). This result led Schiff [12]
to propose the use of gyroscopes to measure such an effect. Since then, this idea has been
developed extensively (see [4,13–21], and references cited therein).
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However, although the origin of vorticity may be easily identified in the Lense–
Thirring metric, as due to the rotation of a massive object, it is not always explicitly related
to the rotation of massive objects. In fact, in any vacuum stationary space time (besides
the Lense–Thirring metric), we can detect a frame-dragging effect, without specifying an
explicit link to the rotation of a massive body [22].

The situation is still more striking for the electro-vacuum space times. The point is
that the quantity responsible for the rotational (relativistic) multipole moments in these
spacetimes is affected by the mass rotations (angular momentum), as well as by the
electromagnetic field—that is, it contains contributions from both (angular momentum
and electromagnetic field). This explains why such a quantity does not necessarily vanish
in the case when the angular momentum of the source is zero but electromagnetic fields
are present.

The first known example of this kind of situation was brought out by Bonnor [23].
Thus, analyzing the gravitational field of a magnetic dipole plus an electric charge, he
showed that the corresponding spacetime is stationary and a frame-dragging effect appears.
As a matter of fact, all stationary electro-vacuum solutions exhibit frame-dragging [24],
even though in some cases, the angular momentum of the source is zero. In this latter
case, the rotational relativistic multipole moments, and thereby the vorticity, are generated
by the electromagnetic field. Furthermore, as we shall see, electrodynamic radiation also
produces vorticity.

Finally, it is worth recalling that vorticity is present in gravitationally radiating space-
times. The influence of gravitational radiation on a gyroscope through the vorticity associ-
ated with the emission of gravitational radiation was put forward for the first time in [25],
and has been discussed in detail since then in [26–33]. In this case too, the explicit rela-
tionship between the vorticity and the emission of gravitational radiation was established
without resorting to the rotation of the source itself.

Although in many of the scenarios described above, a rotating object is not explicitly
identified as the source of vorticity, the fact remains that at a purely intuitive level, one
always associates the vorticity of a congruence of world-lines, under any circumstance, to
the rotation of “something”.

The purpose of this work is twofold: on the one hand, we shall identify the physical
concept (the “something”) behind all cases where frame-dragging is observed, whether or
not the angular momentum of the source vanishes. On the other hand, we would like to
emphasize the possible observational consequences of our results.

As we shall see below, in all possible cases, the appearing vorticity is accounted for
by the existence of a flow of superenergy on the plane orthogonal to the vorticity vector,
plus (in the case of electro-vacuum spacetimes) a flow of electromagnetic energy on the
same plane.

Since superenergy plays a fundamental role in our approach, we shall start by provid-
ing a brief introduction of this concept in the next section.

2. Superenergy and the Super-Poynting Vector

The concept of energy is a fundamental tool in all branches of physics, allowing us
to approach and solve a vast number of problems under a variety of circumstances. This
explains the fact that since the early times of GR, many researchers have tried by means
of very different approaches to present a convincing definition of gravitational energy, in
terms of an invariant local quantity. All these attempts, as is well-known, have failed. The
reason for this failure is easy to understand.

Indeed, as we know, in classical field theory, energy is a quantity defined in terms
of potentials and their first derivatives. However, on the other hand, we also know that
in GR it is impossible to construct a tensor expressed only through the metric tensor
(the potentials) and their first derivatives (in accordance with the equivalence principle).
Therefore, a local description of gravitational energy in terms of true invariants (tensors of
any rank) is not possible within the context of the theory.
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Thus, the following alternatives remain:

• To define energy in terms of a non–local quantity;
• To resort to pseudo–tensors; and
• To introduce a succedaneous definition of energy.

One example of the last of the above alternatives is superenergy, which may be defined
either from the Bel or from the Bel–Robinson tensor [34–36] (they both coincide in vacuum),
and has been shown to be very useful when it comes to explaining a number of phenomena
in the context of GR.

Both the Bel and the Bel–Robinson tensors are obtained by invoking the “structural”
analogy between GR and the Maxwell theory of electromagnetism. More specifically,
exploiting the analogy between the Riemann tensor (Rαβγδ) and the Maxwell tensor (Fµν),
Bel introduced a four-index tensor defined in terms of the Riemann tensor in a way which
is reminiscent of the definition of the energy–momentum tensor of electromagnetism in
terms of the Maxwell tensor. This is the Bel tensor.

The Bel–Robinson tensor is defined as the Bel tensor, but with the Riemann tensor
replaced by the Weyl tensor (Cαβγδ) (see [37] for a comprehensive account and more recent
references on this issue).

Let us now introduce the electric and magnetic parts of the Riemann and the Weyl
tensors, as

Eαβ = C(R)αγβδuγuδ, (1)

Hαβ = C(R)∗αγβδuγuδ, (2)

where C(R)αγβδ is the Weyl (Riemann) tensor, the four-vector uγ in vacuum is the tan-
gent vector to the world-lines of observers, and C(R)∗αγβδ is the dual of the Weyl (Rie-
mann) tensor.

A third tensor may be defined from the double dual of the Riemann tensor as

Xαβ = ∗R∗αγβδuγuδ. (3)

The double dual of the Weyl tensor coincides with the electric part of the Weyl tensor (up
to a sign).

Next, from the analogy with electromagnetism, the super-energy and super-Poynting
vector are defined by

U(R) =
1
2
(XαβXαβ + EαβEαβ) + HαβHαβ; U(C) = EαβEαβ + HαβHαβ (4)

P(R)α = ηαβγδ(Eβ
ε Hγε − Xβ

ε Hεγ)uδ; P(C)α = 2ηαβγδEβ
ε Hγεuδ, (5)

where R(C) denotes whether the quantity is defined with a Riemann (Weyl) tensor, and
ηαβγδ is the Levi–Civita tensor.

In the next sections, we shall bring out the role played by the above-introduced
variables in the study of the frame-dragging effect.

3. Frame-Dragging in Vacuum Stationary Spacetimes

As we mentioned in the Introduction, the first case of frame-dragging analyzed in the
literature was the Lense–Thirring effect. For didactical reasons, we shall start by considering
first this case, and from there on, we shall consider examples of increasing complexity.
Thus, afterward, we shall consider the Kerr metric, an approximation of which is the
Lense–Thirring spacetime, and finally, we shall consider the general vacuum stationary
spacetime case.
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3.1. The Lense–Thirring Precession

The Lense–Thirring effect is based on an approximate solution to the Einstein equa-
tions, which reads [8]

ds2 = −
(

1− 2m
r

)
dt2 +

(
1 +

2m
r

)(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
+

4J sin2 θ

r
dφdt. (6)

The above metric corresponds to the gravitational field outside a spinning sphere
of constant density, which up to the first order in m/r and J/r2, with m and J denot-
ing the mass and the angular momentum respectively, coincides with the Kerr metric,
by identifying

ma = −J, (7)

where a is the Kerr parameter [38].
The time-like vector uα tangent to the world-lines of observers at rest in the frame of

(6) is given by

uα =

 1√
1− 2m

r

, 0, 0, 0

, (8)

and from the above expression, the vorticity vector, defined as usual by

ωα =
1
2

ηαηιλuηuι,λ, (9)

has, up to orders a/r and m/r, the following non-null components

ωr =
2ma cos θ

r3 , (10)

ωθ =
ma sin θ

r4 , (11)

or
Ω = (ωαωα)

1/2 =
ma
r3

√
1 + 3 cos2 θ, (12)

which at θ = π
2 reads

Ω =
ma
r3 . (13)

The above expression embodies the essence of the Lense–Thirring effect. It describes
the vorticity of the world-lines of observers, produced by the rotation (J) of the source. Such
vorticity, as correctly guessed by Schiff [12], could be detected by a gyroscope attached to
the world-lines of our observer.

Even though in this case, the vorticity is explicitly related to the rotation of the
spinning object which sources the gravitational field, the fact that this link, in many
other cases, is not so explicitly established leads us to the question: what is (are) the
physical mechanism(s), which explains the appearance of vorticity in the world-lines of
the observer? As we shall see in the next few sections, the answer to this question may be
given in terms of a flow of superenergy, plus (in the case of electro-vacuum spacetimes) a
flow of electromagnetic energy.

Thus, in order to approach this conclusion, let us calculate the leading term of the
super-Poynting gravitational vector at the equator. Using (5) and (6), we obtain for the
only non-vanishing component (remember that in vacuum, both expressions for the super-
Poynting vector coincide),

Pφ ≈ 9
m2

r2
a
r

1
r5 . (14)



Universe 2021, 7, 27 5 of 18

It describes a flux of super-energy on the plane orthogonal to the vorticity vector. On
the other hand, it follows at once from (14) that

Pφ = 0⇔ a = 0⇔ ωα = 0.

From the comments above, a hint about the link between superenergy and vorticity
(frame-dragging) begins to appear. In order to delve deeper on this issue, let us next
consider the Kerr metric.

3.2. Frame-Dragging in the Kerr Metric

The calculations performed in the previous subsection can be very easily repeated for
the Kerr metric.

In Boyer–Linquist coordinates, the Kerr metric takes the form

ds2 =

(
−1 +

2mr
r2 + a2 cos2 θ

)
dt2 −

(
4mar sin2 θ

r2 + a2 cosθ

)
dtdφ +

(
r2 + a2 cos2 θ

r2 − 2mr + a2

)
dr2 + (r2 + a2 cos2 θ)dθ2

+

(
r2 sin2 θ + a2 sin2 θ +

2mra2 sin4 θ

r2 + a2 cos2 θ

)
dφ2. (15)

For this spacetime, the time-like vector uα tangent to the world-lines of observers at
rest in (15), reads

uα =

 1√
1− 2mr

r2+a2 cos2 θ

, 0, 0, 0

. (16)

The vorticity of the above-described congruence is characterized by a vorticity vector
ωα with components

ωr = 2mra cos θ(r2 − 2mr + a2)(r2 + a2 cos2 θ)−2(r2 − 2mr + a2 cos2 θ)−1, (17)

and
ωθ = ma sin θ(r2 − a2 cos2 θ)(r2 + a2 cos2 θ)−2(r2 − 2mr + a2 cos2 θ)−1. (18)

The above expressions coincide with (10) and (11) up to first order in m/r and a/r.
As a final step, we obtain for the super-Poynting vector (5)

Pµ = (Pt, 0, 0, Pφ), (19)

with

Pt = −18m3ra2 sin2 θ(r2 − 2mr + a2 sin2 θ + a2)(r2 + a2 cos2 θ)−4(r2 − 2mr + a2 cos2 θ)−2

×
(

r2 − 2mr + a2 cos2 θ

r2 + a2 cos2 θ

)−1/2

, (20)

Pφ = 9m2a(r2 − 2mr− a2 cos2 θ + 2a2)(r2 + a2 cos2 θ)−4(r2 − 2mr + a2 cos2 θ)−1

×
(

r2 − 2mr + a2 cos2 θ

r2 + a2 cos2 θ

)−1/2

, (21)

where the package GR-Tensor has been used (GRTensor III (https://github.com/grtensor/
grtensor)).

From the above expressions, it follows, as in the precedent case, that there is an
azimuthal flow of superenergy as long as a 6= 0, where inversely, the vanishing of such a

https://github.com/grtensor/grtensor
https://github.com/grtensor/grtensor
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flow implies a = 0. Once again, frame-dragging appears to be tightly related to a circular
flow of superenergy on the plane orthogonal to the vorticity vector.

In the present case, we can delve deeper in the relationship between the source of
the field and the vorticity, since a specific interior for the Kerr metric is available [39].
The remarkable fact is the presence of a non-vanishing Tφ

t component of the energy–
momentum tensor of the source, which, defining as usual an energy–momentum flux
vector as Fν = −VµTνµ (where Vµ denotes the four velocity of the fluid), implies that
in the equatorial plane of our system (within the source), energy flows around in circles
around the symmetry axis. This result, as we shall see in the next section, is reminiscent
of an effect appearing in stationary Einstein–Maxwell systems. Indeed, in all stationary
Einstein–Maxwell systems, there is a non-vanishing component of the Poynting vector
describing a similar phenomenon [23,24] (of electromagnetic nature, in this latter case).
Thus, the appearance of such a component seems to be a distinct physical property of
rotating fluids, which has been overlooked in previous studies of these sources, and that is
directly related to the vorticity (see Equations (8) and (18) in [39]).

3.3. Frame-Dragging in a General Stationary Vacuum Spacetime

Let us now consider the general stationary and axisymmetric vacuum case.
The line element for a general stationary and axisymmetric vacuum spacetime may be

written as [40,41]

ds2 = − f dt2 + 2 f ωdtdφ + f−1e2γ(dρ2 + dz2) + ( f−1ρ2 − f ω2)dφ2, (22)

where x0 = t; x1 = ρ; x2 = z and x3 = φ and metric functions depend only on ρ and z,
which must satisfy the vacuum field equations:

γρ =
1

4ρ f 2

[
ρ2
(

f 2
ρ − f 2

z

)
− f 4

(
ω2

ρ −ω2
z

)]
, (23)

γz =
1

2ρ f 2

(
ρ2 fρ fz − f 4ωρωz

)
, (24)

fρρ = − fzz −
fρ

ρ
− f 3

ρ2

(
ω2

ρ + ω2
z

)
+

1
f

(
f 2
ρ + f 2

z

)
, (25)

ωρρ = −ωzz +
ωρ

ρ
− 2

f
(

fρωρ + fzωz
)
, (26)

where subscripts denote partial derivatives.
Next, the four-velocity vector for an observer at rest in the frame of (22) reads

uα = ( f−1/2, 0, 0, 0). (27)

We may now proceed to calculate the super-Poynting vector for the general metric
(22), without making any assumption about the matter content of the source, and one gets
(using again GR–Tensor),

Pµ = (Pt, 0, 0, Pφ) with Pt = ωPφ, (28)

where Pφ is given by (again in the general case, i.e., without taking into account the
field equations)

Pφ = f 3/2e−4γρ−5{A11},

or using the field Equations (23)–(26) in the above expression
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Pφ = − 1
32

f−3/2e−4γρ−5{A12},

where A11 and A12 are given in the Appendix A.
From the analysis provided in [24], and from (5), we know that

Hαβ = 0⇔ ωα = 0⇔ ω = 0, (29)

and
Hαβ = 0⇒ Pµ = 0 . (30)

In order to establish a link between vorticity and the super-Poynting vector of the
kind already found for the Kerr (and Lense–Thirring) metric, we still need to prove that
the vanishing of the super-Poynting vector implies the vanishing of the vorticity—that is,
we have to prove that

Pµ = 0⇔ Hαβ = 0⇔ ωα = 0⇔ ω = 0 . (31)

Such a proof has been carried out in [22], but is quite cumbersome, and therefore, we
shall omit the details here.

Thus, based on (31), we conclude that for any stationary spacetime, irrespectively of
its source, there is a frame-dragging effect associated to a flux of superenergy on the plane
orthogonal to the vorticity vector.

We shall next analyze the electro-vacuum stationary case.

4. Frame-Dragging in Electro-Vacuum Stationary Spacetimes

electro-vacuum solutions to the Einstein equations pose a challenge concerning the
frame-dragging effect. This was pointed out for the first time by Bonnor in [23] by analyzing
the gravitational field produced by a magnetic dipole with an electric charge in the center.
The surprising result is that, for this spacetime, the world-lines of observers at rest with
respect to the electromagnetic source are endowed of vorticity (i.e., the resulting spacetime
is not static, but stationary).

In order to explain the appearance of vorticity in the spacetime generated by a charged
magnetic dipole, Bonnor resorts to a result pointed out by Feynmann in his Lectures on
Physics [42], showing that for such a system (in the context of classical electrodynamics),
there exists a non-vanishing component of the Poynting vector describing a flow of electro-
magnetic energy round in circles. This strange result led Feynmann to write that “it shows
the theory of the Poynting vector is obviously nuts”. However, some pages ahead in the
same book, when discussing the “paradox” of the rotating disk with charges and a solenoid,
Feynmann shows that this “circular” flow of electromagnetic energy is absolutely necessary
in order to preserve the conservation of angular momentum. In other words, the theory of
the Poynting vector is not only “nuts”, but is necessary to reconcile the electrodynamics
with the conservation law of angular momentum.

Based on the above comments, Bonnor then suggests that, in the context of GR, such
a circular flow of energy affects inertial frames by producing vorticity of congruences
of particles, relative to the compass of inertia. In other words, Bonnor suggests that the
“something” which rotates, thereby generating the vorticity, is electromagnetic energy.

The interesting point is that this conjecture was shown to be valid for a general axially
symmetric stationary electro-vacuum metric [24].

Indeed, assuming the line element (22) for the spacetime admitting an electromagnetic
field, it can be shown that the variable responsible for the rotational multipole moments,
which in turn determines the vorticity of the congruence of world-lines of observers, is
affected by both the electromagnetic field and by the mass rotations (angular momen-
tum) [24]. This explains why the vorticity does not necessarily vanish in the case when the
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angular momentum of the source is zero but electromagnetic fields are present. At any rate,
it is important to stress that in such cases, the super-Poynting vector does not vanish either.

We shall next consider the presence of vorticity due to gravitational and electromag-
netic radiation.

5. Vorticity and Radiation

We shall now analyze the vorticity related to the emission of gravitational and/or
electromagnetic radiation. As we shall see, the emission of radiation is always accompanied
by the appearance of vorticity of world-lines of observers. Furthermore, the calculations
suggest that once the radiation process has stopped, there is still a remaining vorticity
associated with the tail of the wave, which allows, in principle, to prove (or disprove) the
violation of the Huyghens principle in a Riemannian spacetime (see [43–49] and references
therein for a discussion on this issue), by means of observations.

5.1. Gravitational Radiation and Vorticity

Since the early days of GR, starting with the works of Einstein and Weyl on the linear
approximation of the Einstein equations, a great deal of work has been done so far in order
to provide a consistent framework for the study of gravitational radiation. In addition,
important collaboration efforts have been carried out, and are now under consideration, to
put in evidence gravitational waves by means of laser interferometers [50].

However, it was necessary to wait for more than half a century, until Bondi and
coworkers [51] provided firm theoretical evidence of the existence of gravitational radiation
without resorting to the linear approximation.

The essential “philosophy” behind the Bondi formalism consists of interpreting gravi-
tational radiation as the physical process by means of which the source of the field “informs”
about any changes in its structure. Thus, the information required to forecast the evolution
of the system (besides the “initial” data) is thereby identified with radiation itself, and this
information is represented by the so-called “news function”. In other words, whatever
happens at the source, leading to changes in the field, it can only do so by affecting the
news function, and vice versa. Therefore, if the news function is zero over a time interval,
there is no gravitational radiation over that interval. Inversely, non-vanishing news on an
interval implies the emission of gravitational radiation during that interval. Thus, the main
virtue of this approach resides in providing a clear and precise criterion for the existence of
gravitational radiation.

The above-described picture is reinforced by the fact that the Bondi mass of a system
is constant if, and only if there is no news.

In order to facilitate discussion, let us briefly introduce the main aspects of the Bondi
approach. The starting point is the general form of the line element of an axially (and re-
flection) symmetric asymptotically flat spacetime, which in null (Bondi) coordinates, reads

ds2 =

(
V
r

e2β −U2r2e2γ

)
du2 + 2e2βdudr

+ 2Ur2e2γdudθ − r2
(

e2γdθ2 + e−2γ sin2 θdφ2
)

, (32)

where V, β, U, and γ are functions of u, r, and θ.
The coordinates are numbered x0,1,2,3 = u, r, θ, andφ, respectively. u is a time-like

coordinate, such that u = constant defines a null surface. In flat spacetime, this surface
coincides with the null light cone open to the future. r is a null coordinate (grr = 0), and θ
and φ are two angle coordinates.

Regularity conditions in the neighborhood of the polar axis (sin θ = 0) require that the
functions

V, β, U/ sin θ, γ/ sin2 θ, (33)

are regular on the polar axis.
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Then, the four metric functions are assumed to be expanded in series of 1/r, which
using field equations, produces

γ = c(u, θ)r−1 +

[
C(u, θ)− 1

6
c3
]

r−3 + ..., (34)

U = −(cθ + 2c cot θ)r−2 + ..., (35)

V = r− 2M(u, θ)

−
[

Nθ + N cot θ − c2
θ − 4ccθ cot θ − 1

2
c2(1 + 8 cot2 θ)

]
r−1 + ..., (36)

β = −1
4

c2r−2 + ..., (37)

where letters as subscripts denote derivatives, and

4Cu = 2c2cu + 2cM + N cot θ − Nθ . (38)

The three functions c, M, and N depend on u and θ, and are further related by the
supplementary conditions

Mu = −c2
u +

1
2
(cθθ + 3cθ cot θ − 2c)u, (39)

− 3Nu = Mθ + 3ccuθ + 4ccu cot θ + cucθ . (40)

In the static case, M equals the mass of the system, whereas N and C are closely related
to the dipole and quadrupole moments, respectively.

Next, Bondi defines the mass m(u) of the system as

m(u) =
1
2

∫ π

0
M(u, θ) sin θdθ, (41)

which by virtue of (39) and (33), yields

mu = −1
2

∫ π

0
c2

u sin θdθ. (42)

The two main conclusions emerging from Bondi’s approach are

• If γ, M and N are known for some u = a(constant), and cu (the news function) is
known for all u in the interval a ≤ u ≤ b, then the system is fully determined in that
interval.

• As it follows from (42), the mass of a system is constant if, and only if there are
no news.

In light of these comments, the relationship between news function and the occurrence
of radiation becomes clear.

Let us now calculate the vorticity of the world-lines of observers at rest in the frame of
(32). For such observers, the four-velocity vector has components

uα =

(
A,

e2β

A
,

Ur2e2γ

A
, 0
)

(43)

with

A ≡
(

V
r

e2β −U2r2e2γ

)1/2
. (44)

Using (9), we easily obtain
ωα =

(
0, 0, 0, ωφ

)
(45)
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with

ωφ = − e−2β

2r2 sin θ
{2βθe2β − 2e2β Aθ

A
−
(

Ur2e2γ
)

r

+
2Ur2e2γ

A
Ar +

e2β
(
Ur2e2γ

)
u

A2 − Ur2e2γ

A2 2βue2β} (46)

and for the absolute value of ωα, we get

Ω ≡ (−ωαωα)1/2 =
e−2β−γ

2r
{2βθe2β − 2e2β Aθ

A
−
(

Ur2e2γ
)

r

+ 2Ur2e2γ Ar

A
+

e2β

A2

(
Ur2e2γ

)
u
− 2βu

e2β

A2 Ur2e2γ.} (47)

Feeding back (34)–(37) into (47) and keeping only terms up to order 1
r2 , we obtain

Ω = − 1
2r

(cuθ + 2cu cot θ)

+
1
r2 [Mθ −M(cuθ + 2cu cot θ)− ccuθ + 6ccu cot θ + 2cucθ ]. (48)

Let us now analyze the expression above. First of all, observe that, up to order 1/r, a
gyroscope in the gravitational field given by (32) will precess as long as the system radiates
(cu 6= 0). Indeed, if we assume

cuθ + 2cu cot θ = 0 (49)

then

cu =
F(u)
sin2 θ

, (50)

which implies, due to the regularity conditions (33)

F(u) = 0 =⇒ cu = 0. (51)

In other words, the leading term in (48) will vanish if, and only if cu = 0.

Let us now analyze the term of order
1
r2 . It contains, besides the terms involving cu,

a term not involving news (Mθ). Let us now assume that initially (before some u = u0 =
constant), the system is static, in which case

cu = 0 (52)

which implies, because of (40)
Mθ = 0 (53)

and Ω = 0 (actually, in this case Ω = 0 at any order), as expected for a static field. Then, let
us suppose that at u = u0 the system starts to radiate (cu 6= 0) until u = u f , when the news
function vanishes again. For u > u f , the system is not radiating, although (in general)
Mθ 6= 0, implying time-dependence of metric functions. This class of spacetimes is referred
to as non-radiative motions [51].

Thus, in the interval u ∈ (u0,u f ), the leading term of vorticity is given by the term of
the order 1/r in (48). For u > u f , there is a vorticity term of order 1

r2 describing the effect
of the tail of the wave on the vorticity. This provides an “observational” possibility to find
evidence for the violation of Huygens’ principle.

Following the line of arguments of the preceding sections, we shall establish a link
between vorticity and a circular flow of superenergy on the plane orthogonal to the vorticity
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vector. For doing so, let us calculate the super-Poynting vector (Pµ), defined by (5). We
obtain that the leading terms for each super-Poynting component are

Pr = −
2
r2 c2

uu, (54)

Pθ = − 2
r2 sin θ

{[2c2
uuc + cuucu] cos θ +

[
cuucθu + c2

uucθ

]
sin θ}, (55)

Pφ = Pφ = 0. (56)

Due to the reflection symmetry of the Bondi metric, which prevents motions in the φ
direction, the azimuthal component (Pφ) should vanish. Thus, in this particular case, it is
the θ component of Pµ that is the physical factor to be associated to the vorticity.

In order to further strengthen the case for the super-Poynting vector as the physical
origin of the mentioned vorticity, we shall next consider the general radiative metric
without axial and reflection symmetry.

The Bondi formalism was later extended to a general spacetime (without any kind of
symmetries) by Sachs [52]. In this case, the line element reads (where we use the notation
given in [53], which is slightly different from the original Sachs paper):

ds2 = (Vr−1e2β − r2e2γU2 cosh 2δ− r2e−2γW2 cosh 2δ− 2r2UW sinh 2δ)du2

+2e2βdudr + 2r2(e2γU cosh 2δ + W sinh 2δ)dudθ + 2r2(e−2γW cosh 2δ (57)

+U sinh 2δ) sin θdudφ− r2(e2γ cosh 2δdθ2 + e−2γ cosh 2δ sin2 θdφ2

+2 sinh 2δ sin θdθdφ), ,

where β, γ, δ, U, W, V are functions of x0 = u, x1 = r, x2 = θ, x3 = φ.
The formalism then proceeds exactly as in [51], but taking into account the additional

degrees of freedom (see [52,53] for details). It is worth stressing that now there are two
news functions.

Let us first calculate the vorticity for the congruence of observers at rest in (58), whose
four-velocity vector is given by

uα = A−1δα
u, (58)

where now, A is given by

A = (Vr−1e2β − r2e2γU2 cosh 2δ− r2e−2γW2 cosh 2δ− 2r2UW sinh 2δ)1/2. (59)

Thus, (9) lead us to
ωα = (ωu, ωr, ωθ , ωφ), (60)

where

ωu = − 1
2A2 sin θ

{r2e−2β(WUr −UWr) +[
2r2 sinh 2δ cosh 2δ(U2e2γ + W2e−2γ) + 4UWr2 cosh2 2δ

]
e−2βγr + (61)

2r2e−2β(W2e−2γ −U2e2γ)δr + e2β[e−2β(U sinh 2δ + e−2γW cosh 2δ)]θ −
e2β[e−2β(W sinh 2δ + e−2γU cosh 2δ]φ},
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ωr =
1

e2β sin θ
{2r2 A−2[((U2e2γ + W2e−2γ) sinh 2δ cosh 2δ +

UW cosh2 2δ)γu + (W2e−2γ −U2e2γ)δu +
1
2
(WUu −UWu)] + (62)

A2[A−2(We−2γ cosh 2δ + U sinh 2δ)]θ −
A2[A−2(W sinh 2δ + Ue2γ cosh 2δ)]φ},

ωθ =
1

2r2 sin θ
{A2e−2β[r2 A−2(U sinh 2δ + We−2γ cosh 2δ)]r

−e2β A−2[e−2βr2(U sinh 2δ + e−2γW cosh 2δ)]u + e2β A−2(e−2β A2)φ}, (63)

and

ωφ =
1

2r2 sin θ
{A2e−2β[r2 A−2(W sinh 2δ + Ue2γ cosh 2δ)]r −

e2β A−2[r2e−2β(W sinh 2δ + Ue2γ cosh 2δ)]u + A−2e2β(A2e−2β)θ}. (64)

Using the same scheme employed for the Bondi metric, we get, for the leading term of
the absolute value of ωµ,

Ω = − 1
2r

[(cθu + 2cu cot θ + dφu csc θ)2 + (dθu + 2du cot θ − cφu csc θ)2]1/2, (65)

which, as expected, coincides with (48) in the Bondi (axially and reflection symmetric) case
(d = cφ = 0). It is worth stressing the fact that now we have two news functions (cu, du).

In the same way, for the super-Poynting vector, we obtain in this case,

Pµ = (0, Pr, Pθ , Pφ). (66)

Since the explicit expressions are too long (see [28] for details), we shall just present
the leading terms for each super-Poynting component, and they read

Pr = −
2
r2 (d

2
uu + c2

uu), (67)

Pθ = − 2
r2 sin θ

{[2(d2
uu + c2

uu)c + cuucu + duudu] cos θ +

+
[
cuucθu + duudθu + (c2

uu + d2
uu)cθ

]
sin θ + (68)

+cuudφu − duucφu + (d2
uu + c2

uu)dφ},

Pφ =
2
r2 {2[c

2
uudu − duucu − (d2

uu + c2
uu)d] cos θ +

+
[
cuudθu − duucθu − (c2

uu + d2
uu)dθ

]
sin θ + (69)

+(d2
uu + c2

uu)cφ − (cuucφu + duudφu)},

from which it follows,

Pφ = − 2
r4 sin2 θ

{sin θ[duθcuu − duucuθ ] + 2 cos θ[cuudu − duucu]−

− [cuucuφ + duuduφ]}. (70)

This component of course vanishes in the Bondi case.
From the expressions above, we see that the main conclusion established for the Bondi

metric is also valid in the most general case—namely, there is always a non-vanishing
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component of Pµ on the plane orthogonal to a unit vector along which there is a non-
vanishing component of vorticity, and inversely, Pµ vanishes on a plane orthogonal to a
unit vector along which the component of vorticity vector vanishes. The link between the
super-Poynting vector and vorticity is thereby firmly established.

So far, we have shown the appearance of vorticity in stationary vacuum spacetimes,
stationary electro-vacuum spacetimes, and in radiative vacuum spacetimes (Bondi–Sachs),
and have succeeded in exhibiting the link between this vorticity and a circular flow of
electromagnetic and/or super-energy on the plane orthogonal to the vorticity vector. It
remains for us to analyze the possible role of electromagnetic radiation in the appearance
of vorticity. The next section is devoted to this issue.

5.2. Electromagnetic Radiation and Vorticity

The relationship between electromagnetic radiation and vorticity has been unambigu-
ously established in [54]. The corresponding calculations are quite cumbersome, and we
shall not reproduce them here. Instead, we shall highlight the most important results
emerging from such calculations.

The formalism used to study the general electro-vacuum case (including electromag-
netic radiation) was developed by van der Burg in [55]. It represents a generalization of the
Bondi–Sachs formalism for the Einstein–Maxwell system.

Thus, the starting point is the Einstein–Maxwell system of equations, which reads

Rµγ + Tµγ = 0, (71)

F[µν,δ] = 0, (72)

Fµν
;ν = 0, (73)

where Rµγ is the Ricci tensor, and the energy momentum tensor Tµγ of the electromagnetic
field is given, as usual, by

Tµν =
1
4

gµνFγδFγδ − gγδFµγFνδ. (74)

Then, following the script indicated in [51], that is, expanding the physical and metric
variables in power series of 1/r and using the Einstein–Maxwell equations, one arrives at
the conclusion that if a specific set of functions is prescribed on a given initial hypersurface
u = constant, the evolution of the system is fully determined, provided the four functions,
cu, du, X, Y are given for all u. These four functions are the news functions of the system.
The first two (cu, du ) are the gravitational news functions already mentioned before for
the purely gravitational case, whereas X and Y are the two news functions corresponding
to the electromagnetic field, and these appear in the series expansion of F12, F13. Thus,
whatever happens at the source leading to changes in the field, it can only do so by affecting
the four news functions, and vice versa.

Following the same line of arguments, an equation for the decreasing of the mass
function due to the radiation (gravitational and electromagnetic) similar to (42) can be
obtained, and it reads

mu = −
∫ 2π

0

∫ π

0
(c∗u c̄∗u +

1
2

X∗X̄∗) sin θdθdφ, (75)

where
c∗ = c + id, X∗ = X + iY, (76)

and the bar denotes a complex conjugate.
Having arrived at this point, we can now proceed to calculate the vorticity, the super-

Poynting vector, and the electromagnetic Poynting vector. The resulting expressions are
available in [54], and since they are extremely long here, we shall focus on the main
conclusions emerging from them.
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First, the vorticity vector (9) is calculated for the four-vector uα given by (58). The
important point to stress here is that the absolute value of ωµ can be written generically as

Ω = ΩGr−1 + · · ·+ ΩGEMr−3 + · · · , (77)

where subscripts G, GEM, and EM stand for gravitational, gravito-electromagnetic, and
electromagnetic. The “gravitational” subscript refers to those terms exclusively containing
functions appearing in the purely gravitational case and their derivatives. “Electromagnetic”
terms are those exclusively containing functions appearing in Fµν and their derivatives,
whereas the “gravito-electromagnetic” subscript refers to those terms containing functions
of either kind and/or a combination of both.

Finally, we calculate the electromagnetic Poynting vector defined by

Sα = Tαβuβ, (78)

and the super-Poynting vector defined by (5). Since we are not operating in vacuum, P(C)α

and P(R)α are different, and we shall use P(C)α for the discussion.
The resulting expressions are deployed in [54]. Let us summarize the main information

contained in such expressions.
First, we notice that the leading terms for each super-Poynting (contravariant) compo-

nent are

Pu = Pu
Gr−4 + · · · ,

Pr = Pr
Gr−4 + · · · , (79)

Pθ = Pθ
Gr−4 + · · ·+ Pθ

GEMr−6 + · · · ,

Pφ = Pφ
G r−4 + · · ·+ Pφ

GEMr−6 + · · · , ,

whereas for the electromagnetic Poynting vector, we can write

Su = Su
EMr−4 + Su

GEMr−5 · · · , (80)

Sr = Sr
EMr−2 + Sr

GEMr−3 + · · · , (81)

Sθ = Sθ
EMr−4 + Sθ

GEMr−5 + · · · , and (82)

Sφ = Sφ
EMr−4 + Sφ

GEMr−5 + · · · . (83)

Next, there are explicit contributions from the electromagnetic news functions in
ΩGEM, as well as in Pφ

GEM and Pθ
GEM. More so, the vanishing of these contributions

in Pφ
GEM and Pθ

GEM implies the vanishing of the corresponding contribution in ΩGEM,
and vice versa.

From the above, it is clear that electromagnetic radiation, as described by electromag-
netic news functions, does produce vorticity. Furthermore, we have identified the presence
of electromagnetic news, both in the Poynting and the super-Poynting components orthog-
onal to the vorticity vector. Doing so, we have proved that a Bonnor-like mechanism for
generating vorticity is at work in this case too, but with the important difference that now
vorticity is generated by the contributions of both the Poynting and the super-Poynting
vectors, on the planes orthogonal to the vorticity vector.

6. Discussion

We started this manuscript with two goals in mind. On the one hand, we wanted
to identify the fundamental physical phenomenon which, being present in all scenarios
exhibiting frame-dragging, could be considered as that responsible for the frame-dragging
effect. In other words, we wanted to identify the factor that mediates between the source
of the gravitational field and the appearance of vorticity, in any scenario.
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On the other hand, we wanted to explore the observational consequences that could
be derived from our analysis.

To meet our first goal, we have “deconstructed” the frame-dragging effect in several
different scenarios, in order to identify a basic physical phenomenon inherent to all those
situations. Doing so, it has been clearly established that in vacuum, the appearance of
vorticity is always related to the existence of circular flow of super-energy in the plane
orthogonal to the vorticity vector. This is true for all stationary vacuum spacetimes, as well
as for general Bondi–Sachs radiative spacetimes.

In the case of electro-vacuum spacetimes, we have circular flows of super-energy, as
well as circular flows of electromagnetic energy in the plane orthogonal to the vorticity
vector. This is true in stationary electro-vacuum spacetimes, as well as in spacetimes
admitting both gravitational and electromagnetic radiation. Particularly remarkable is the
fact that electromagnetic radiation does produce vorticity.

All this having been said, a natural question arises concerning our second goal, namely,
what observational consequences could be derived from the analysis presented so far?

First of all, it should be clear that the established fact that the emission of gravitational
radiation always entails the appearance of vorticity in the congruence of the world-lines of
observers, provides a mechanism for detecting gravitational radiation. Thus, any experi-
mental device intended to measure rotations could be a potential detector of gravitational
radiation as well. We are well-aware of the fact that extremely high sensitivities have to be
reached for these detectors to be operational. Thus, from the estimates displayed in [25],
we see that for a large class of possible events leading to the emission of gravitational
radiation, the expected values of Ω range from Ω ≈ 10−15s−1 to Ω ≈ 10−19s−1. Although
these estimates are 20 years old and deserve to be updated, we believe that probably the
sensitivity of the actual technology is still below the range of expected values of vorticity.
Nevertheless, the intense activity deployed in recent years in this field, invoking ring
lasers, atom interferometers, atom lasers, anomalous spin-precession, trapped atoms, and
quantum interference (see References [56–68] and references therein), besides the incredible
sensitivities obtained so far in gyroscope technology and exhibited in the Gravity Probe B
experiment [1], make us optimistic in that these kinds of detectors may be operating in the
foreseeable future.

In the same order of ideas, the established link between vorticity and electromagnetic
radiation has potential observational consequences which should not be overlooked. In-
deed, intense electromagnetic outbursts are expected from hyperenergetic phenomena,
such as collapsing hypermassive neutron stars and Gamma Ray Bursts (see [69] and refer-
ences therein). Therefore, although the contributions of the GEM terms in (77) are of order
1/r3, in contrast with the G terms which are of order 1/r, the coefficient of the former terms
usually exceeds the latter by many orders of magnitude, which opens up the possibility to
detect them more easily.

Finally, the association of the sources of electromagnetic fields (charges and currents)
with vorticity suggests the possibility to extract information about the former, by measuring
the latter. Thus, in [23], using the data corresponding to the earth, Bonnor estimates that the
vorticity would be of the order of Ω ≈ 4× 10−33s−1. Although this figure is so small that
we do not expect to be able to measure it in the near future, the strength of electromagnetic
sources in very compact objects could produce vorticity many orders of magnitude larger.

To summarize, if we adopt the usual meaning of the verb “to explain” (a phenomenon),
as referred to the action of expressing such a phenomenon in terms of fundamental concepts,
then we can say that we have succeeded in explaining the frame-dragging effect as due to
circular flows of super-energy and electromagnetic energy (whenever present) in planes
orthogonal to vorticity vector. This result, in turn, creates huge opportunities to obtain
information from self-gravitating systems by measuring the vorticity of the congruence of
world-lines of observers.
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Appendix A

A11 =
[
−2ρωρ(ω

2
ρ + ω2

z)γρ − 2ρωz(ω
2
ρ + ω2

z)γz −ω2
z ωρρρ

+ω2
z ωzzρ + 4ωzωρωρzρ−ω2

ρωzzρ−ω3
ρ + ω2

ρωρρρ
]

f 4

+3ρ(ω2
ρ + ω2

z)(ωz fz + ωρ fρ) f 3 − 2ρ(−2ργzωρz + 2γ2
z ωρρ

+2ργ2
ρωρ + γzωz + γρωρ + ργρωzz − ργρωρρ) f 2

+
[
4ρ3( fzωz + fρωρ)γ

2
ρ + 2ρ2(ρ fzzωρ − 2ρ fρzωz − 2 fzωz

+4 fρωρ − 2ρ fzωρz − ρ fρρωρ − ρ fρωρρ + ρ fρωzz)γρ (A1)

+4ρ3( fzωz + fρωρ)γ
2
z + 2ρ2(4 fρωz + ρ fzωρρ − 2ρ fρzωρ

+ρ fρρωz − 2ρ fρωρz − ρ fzzωz − ρ fzωzz + 2ωρ fz)γz

+4ρ3 fρzωρz − ρ3 fzzωρρ − ρ3 fρρωzz + ρ2 fzzωρ − 2ρ2 fρzωz

−ρ2 fρρωρ + ρ3 fzzωzz + ρ3 fρρωρρ

]
f − 6ρ3( f 2

ρ + f 2
z )ωργρ

−6ρ3( f 2
ρ + f 2

z )ωzγz + 3ρ3( fρρ fρωρ + fzz fzωz + 2 fρz fzωρ

− fρρ fzωz + 2 fρz fρωz − fzz fρωρ)

A12 = ωρ(−7ω4
z − 6ω2

ρω2
z + ω4

ρ) f 9

+
[
−ρωρ fρ(ω

4
z + ω4

ρ + 2ω2
ρω2

z )− ρ fzωz(ω
4
ρ + 2ω2

z ω2
ρ + ω4

z )
]

f 8

+
[
−4ρωzz(ω

2
ρ + 3ω2

z ) + 4ωρ(−2ρωzωρz + ω2
z )
]

f 7

+
[
4ρωz(−8ω2

z fz + ρω2
z fρz − 3ρωρωz fzz − 3ρω2

ρ fρz − ρ fρωzωzz

−5ω2
ρ fz − 2ρ fρωρωρz − 2ωzωρ fρ − 2ρ fzωρωzz + ρ fzωzωρz)

+4ρωρ(−ρωρ fzωρz + ρωρ fρωzz + ω2
ρ fρ + ρω2

ρ fzz)
]

f 6

+
[
−6ρ2ω3

ρ( f 2
z + f 2

ρ )− 2ρ2 fzωρωz(2ωρ fρ + 5ωz fz)

+2ρ2 fρω2
z (2ωz fz −ωρ fρ)

]
f 5 +

[
8ρ2( fρzωz − fρωzz)

−16ρ3( fρzωρz + fzzωzz) + 10ρ3 fzωz fρωρ( fzωz + fρωρ)

−2ρ3 fz( fρ fzω3
ρ + f 2

ρ ω3
z ) + 2ρ3 f 3

ρ (ω
3
ρ −ωρω2

z ) (A2)

+2ρ3 f 3
z (ω

3
z −ωzω2
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]

f 4 +
[
−24ρ3 fρz(ωρ fz + ωz fρ)

+4ρ2 fρ( fρωρ − 4 fzωz) + 4ρ3(3 f 2
ρ ωzz + 2 fzz fρωρ − 2ωρz fρ fz
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z ωzz − 10 fzzωz fz)
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f 3 +
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z ωz + 2ωρ fρ fz)
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z ωρ − f 2

ρ ωρ + 2ωz fρ fz) + 4ρ4ωρz(− f 3
z + 3 fz f 2

ρ )

+4ρ4ωzz(− f 3
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z ) + 4ρ3(4 f 2
ρ fzωz − 3 f 2

z fρωρ

−2 f 3
ρ ωρ + 3 f 3

z ωz)
]

f 2 +
[
ρ4ωρ(14 f 2

z f 2
ρ − 7 f 4
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ρ )

+4ρ4ωz( f 3
ρ fz + 5 f 3

z fρ)
]

f − ρ5ωz(2 f 3
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ρ )
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ρ f 2

z + f 5
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