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Abstract: Superfluid neutron matter is a key ingredient in the composition of neutron stars. The
physics of the inner crust are largely dependent on those of its S-wave neutron superfluid, which has
made its presence known through pulsar glitches and modifications in neutron star cooling. Moreover,
with recent gravitational-wave observations of neutron star mergers, the need for an equation of
state for the matter of these compact stars is further accentuated and a model-independent treatment
of neutron superfluidity is important. Ab initio techniques developed for finite systems can be
guided to perform extrapolations to the thermodynamic limit and attain this model-independent
extraction of various quantities of infinite superfluid neutron matter. To inform such an extrapolation
scheme, we performed calculations of the neutron 1S0 pairing gap using model-independent odd–
even staggering in the context of the particle-conserving, projected Bardeen–Cooper–Schrieffer (BCS)
theory under twisted boundary conditions. While the practice of twisted boundary conditions is
standard in solid-state physics and has been used repeatedly in the past to reduce finite-size effects,
this is the first time that it has been employed in the context of pairing. We find that a twist-averaging
approach results in a substantial reduction of the finite-size effects, bringing systems with N ' 50
within a 2% error margin from the infinite system. This can significantly reduce extrapolation-related
errors in the extraction of superfluid neutron matter quantities.

Keywords: pairing; superfluidity; neutron matter; BCS theory; finite-size effects

1. Introduction

Historically, the idea of neutron stars (NSs), i.e., ultra-compact objects where “the
atomic nuclei come in close contact, forming a gigantic nucleus”, was first proposed by
L. Landau [1] shortly before [2] the discovery of the neutron [3]. This idea was further
explored by W. Baade and F. Zwicky [4,5] in two seminal publications where they identified
the birth of NSs with supernova explosions, a term also coined therein. These theoretical
ideas were substantiated by the observation of the first pulsar by J. Bell [6], which, inter-
preted by T. Gold [7] shortly after, marked the first observation of an NS. While the interest
in compact stars only grew after that, a parallel thread involved nuclear superfluidity,
which was first proposed by A. Bohr, B. R. Mottelson, and D. Pines [8] a year after the
microscopic theory of superfluidity was introduced (see Section 2.2) and a year before
A. B. Migdal [9] remarked that similar mechanisms could take place in the interior of NSs.
Today, the presence of superfluidity in NSs is a widely accepted fact (for a more detailed
account on the history of NSs, see Refs. [2,10], as well as other contributions to this special
issue [11–13]).

While the idea of compact stars was first discussed at the beginning of modern nuclear
theory, the details of the composition of these objects came with later advancements in
the physics of nuclei and the further understanding of the nuclear interaction [10]. The
current understanding of NSs separates the compact objects in layers of different density,
which also correspond to regions of different physical phenomena. The outer crust of an
NS is composed of a lattice of nuclei bathed in a sea of electrons and neutrons at densities
ρ ≈ 106 g cm−3. Starting from 56Fe, as one goes deeper, the neutron fraction in the nuclei
of the lattice increases as higher density imposes an increasing number of neutrons in

Universe 2021, 7, 24. https://dx.doi.org/10.3390/universe7020024 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-8543-6097
https://orcid.org/0000-0003-2232-2484
https://dx.doi.org/10.3390/universe7020024
https://dx.doi.org/10.3390/universe7020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/universe7020024
https://www.mdpi.com/journal/universe
https://www.mdpi.com/2218-1997/7/2/24?type=check_update&version=1


Universe 2021, 7, 24 2 of 23

each nucleus. Pairing correlations for the neutrons are already present at this point only
within the neutron-rich nuclei. The free neutrons permeating the lattice create a state
of matter similar to terrestrial binary alloys while also providing an effective attraction
between nuclei, resulting in clumps similar to those found in metallic alloys [14] (but
also see Ref. [15]). Reaching the innermost region of the outer crust, the composition of
matter becomes uncertain largely due to the uncertainties in measurements of nuclear
masses or the lack of relevant data [16]. The inner crust of the NS starts at densities where
the neutrons start dripping out of the nuclei (ρ ≈ 4× 1011 g cm−3), resulting in a state
of neutron-rich nuclei in a background of ultrarelativistic electrons and a dilute fluid of
neutrons [17]. The inner crust extends to densities up to half the nuclear saturation density,
ρ0 = 2.8× 1014 g cm−3. At these densities, the 1S0 channel of the neutron–neutron (NN)
interaction becomes attractive [18], ensuring superfluidity for the neutron fluid outside of
the neutron-rich nuclei as well. With the protons mainly confined in the nuclei, at this depth,
and far from the neutron-drip transition [19], one can approximate the neutron superfluid
as pure neutron matter (NM) coupled to the crustal phonons or band structure [20–22],
as far as static properties are concerned [23] (more generally, see Refs. [24–29]). At this
point, superfluidity exists both inside [19] and outside the neutron-rich nuclei, but this
boundary becomes increasingly vague as the density of the neutron fluid increases, i.e.,
as one reaches the bottom of the inner crust where the deformation of neutron-rich nuclei
marks the onset of the nuclear pasta. These extended clusters of neutrons and protons can
be shown to be the result of a balance between Coulomb and surface effects in the context
of a liquid drop model [30]. The first-order transition leads to an extended pasta phase,
beyond which lies the outer core of the star at a density close to nuclear saturation. Here,
the neutron density, while ensuring an S-wave repulsion between the neutrons, allows
for attractions through other channels of the NN interaction, creating PF-superfluidity,
while the proton density reaches that of the neutrons in the inner crust, turning the proton
fluid into an S-superconductor. With densities ranging from 2ρ0 to 10ρ0, the consistency
of the star in the core is largely uncertain. A popular conjecture is the appearance of
hyperons, such as Σ±, Λ, and Ξ±, when the Fermi energy of the neutron and electron gas
surpasses their corresponding rest masses. This can also lead to hyperon superfluidity if
their interaction is attractive. Another popular conjecture involves quark deconfinement,
which, due to the uncertainty in the density marking its onset, might come before or after
the formation of hyperons. As the quark degrees of freedom start becoming important,
one might also expect the appearance of quark–gluon superconductivity [31]. Finally,
Bose–Einstein condensation of pions and kaons has also been theorized to exist in the
core [32,33]. For a more detailed review of the current consensus on the composition of
NSs, see Ref. [16,20].

Nuclear superfluids (and superconductors), created by pairing of nucleons in various
channels, permeate most layers of an NS and are responsible for a variety of astrophysical
phenomena, such as impacts on the cooling of the star [34–36] and the anomalous glitches
observed in the rotation of pulsars [37]. The physics of the superfluids found in an NS
can also affect its seismic properties and, hence, the neutrino and gravitational radiation
emitted from it [38]. Furthermore, pairing has direct consequences on the Equation of State
(EoS) of NM [39], which, in turn, determines the mass–radius relation of NSs and their
maximum mass. Finally, the radiation from various superfluid phases in NSs can be used
for constraints on the coupling of exotic particles, proposed as extensions to the Standard
Model (e.g., axions [40]), with Standard Model matter. Thus, the correct description of
superfluid NM is an important step in the understanding of the physics of NSs and their
connection to the cosmos.

Many models have been proposed for a concise description of superfluid NM, gener-
ating a polyphony of results and a landscape of pairing gaps [20,41]. This only underlines
the need for a model-independent extraction of the properties of superfluid NM. Promising
candidates for such an extraction are ab initio approaches that calculate quantum many-
body properties by attacking the problem from the first principles. With a sizable part of



Universe 2021, 7, 24 3 of 23

these being techniques developed for tackling finite systems, one is faced with the task
of creating a well-informed extrapolation scheme that is able to map the properties of the
finite system to the infinite one, where NS matter lies. The rest of this paper is organized as
follows. In Section 2.1, we present a brief overview of superfluidity in NM; in Section 2.2,
we discuss the fundamentals of the Bardeen–Cooper–Schrieffer (BCS) theory of supercon-
ductivity and its particle-conserving variation, projected BCS (PBCS), as well as how these
can form an extrapolation scheme to the thermodynamic limit (TL) for ab initio approaches.
Finally, in Section 3, we present a brief overview of the finite-size effects (FSEs) in superfluid
NM and we apply techniques of manipulating the periodic boundary conditions (PBCs)
of a finite system to decrease these FSEs and further improve the extrapolation schemes
already in use for NM. We present results demonstrating that approaches such as twisting
the boundary conditions (BCs) or averaging properties calculated with different twisted
boundary conditions (TBCs) can significantly improve the extrapolation to the TL.

2. Superfluid Neutron Matter: A Strongly Interacting Fermionic System
2.1. The Variety of Approaches in Superfluid Neutron Matter

Neutron matter is a strongly interacting Fermi gas, making for both intriguing physics
as well as a system where known weak-interaction approximations break down. Histori-
cally, the strongly interacting nature of neutron matter gave rise to the study of the unitarity
regime, which was conceptualized as a model for the dilute neutron gas by Bertsch [42]
and Baker [43]. This is the regime where a Fermi gas, while still dilute (the inter-particle
distance is much larger than the range of the interaction), is very strongly interacting (the
scattering length of the interaction diverges, kFa → ∞) [44]. This ensures that all length
scales associated with the interaction disappear, making the two-body problem scale invari-
ant and parameter-free. Today, unitarity is known to lie in the crossover separating the BCS
regime of a Fermi gas from the Bose–Einstein Condensate (BEC) regime, aptly named the
BCS–BEC crossover. For a vanishingly small effective range re, the BCS–BEC crossover can
be parametrized by the inverse of the coupling constant, 1/kFa. Starting on the BCS side
with 1/kFa < 0, one finds particles arranged in Cooper pairs bound with energy ∆, also
known as the pairing gap. Their binding increases with the coupling, reaching unitarity at
1/kFa = 0. Past unitarity lies in the BEC regime, with 1/kFa > 0, where the tightly bound
Cooper pairs have become bosonic diatomic molecules and are condensed in the familiar
BEC state. Neutron matter found in the inner crust of quiescent neutron stars, with its large
S-wave scattering length as ≈ −18.5 fm and relatively small effective range re ≈ 2.7 fm, is
situated close to unitarity on the BCS side—a proximity that has led to connections between
neutron matter and cold Fermi atoms [43,45–51] (for a generalization of the crossover for
finite re, see [52]). In the latter, the scattering length of the inter-atomic interaction and its
sign can be changed by tuning an external magnetic field (Feshbach resonances [53–56]),
allowing one to navigate the BCS–BEC crossover and perform experiments at unitarity,
where the details of the interaction are irrelevant and universal conclusions can be drawn.
At the same time, the proximity of neutron matter to the unitary Fermi gas makes it the
most strongly paired fermion superfluid system known in nature, with calculations and
experiments suggesting pairing gaps peaking at 30% of the Fermi energy [57]. The physics
of these strongly-interacting superfluids are not understood nearly as well as their weakly
interacting counterparts.

The superfluid neutron matter of the inner crust does not exhibit the universal behavior
expected from unitary gases entirely, despite its proximity to the unitarity regime. The
reason behind this is its finite effective range [58]. The low-energy phenomena of an
interacting gas depend only on the large-scale characteristics of the interaction, since higher
energy is needed to probe finer details in the potential. This is the essence of the effective
range expansion, where the physics of the two-body phase shift, namely δ0, are captured
by the scattering length a and the effective range re in

cot δ0 = −1
a
+

1
2

rek2 + . . . . (1)
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The pairing responsible for superfluidity happens predominantly in momenta lying
in a band centered at the Fermi level kF, whose width increases with the pairing strength,
as noted below. That allows us to investigate the range of validity of the effective range
expansion by considering only momenta k ≈ kF. Using this, one can see that, in NM
interacting through the S-channel, at kFa ≈ −5, the momentum-dependent terms become
of the order of 1/a, already setting it apart from a unitary gas. As kFa increases further,
the importance of the momentum-dependent terms becomes higher, reaching kFa ≈ −10,
where the presence of these terms becomes vital for the correct description of neutron
matter. This is not far from the interpretation of higher-energy phenomena as probes for
the finer-scale characteristics of the interaction. As the density increases, kF is pushed
to higher momenta, and so is the band of momentum states relevant to pairing. With
scattering in higher-momentum states present, finer details of the potential become relevant,
distinguishing neutron matter from unitary gases. This can be seen in Quantum Monte
Carlo (QMC) calculations of the pairing gap in neutron matter and cold atoms [49]. Another
feature of the effective range is the initiation of an effective repulsion at higher densities.
The positive second term in Equation (1) has a plus sign unlike the preceding negative
term, whose magnitude and sign are related to the “attractiveness” of the interaction. This
reduction of the attractive interaction leaves its footprint at higher densities, where the
gap of the superfluid state (as a fraction of the Fermi energy, EF) decreases after kFa & −5
(see Figure 1) instead of saturating as expected from unitary gases. Finally, the attractive
S-channel of the NN interaction turns repulsive at kF ∼ 1.5 fm−1 [18], instigating the
closure of the pairing gap in that channel at the corresponding densities [59].

0.452

0.358

0 0.2 0.4 0.6

k
F
 [fm

-1
]

0.2

0.3

0.4

0.5

∆
/E

F
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Figure 1. The pairing gap at the thermodynamic limit (TL) divided by the Fermi energy as a function
of the Fermi momentum kF. Additionally plotted are the pairing gaps for 〈N〉 = 66 at kFa = −10
and −5.

Having identified neutron matter’s place in the BCS side of the BCS–BEC crossover,
what follows will focus on that region. There, on the weak-coupling limit, 1/kFa→ −∞,
the (mean-field) BCS theory of superfluidity yields a correct qualitative and quantitative
description of pairing [60] with an analytic expression for the pairing gap:

∆BCS =
8
e2

h̄2k2
F

2m
exp

(
π

kFa

)
. (2)



Universe 2021, 7, 24 5 of 23

When including polarization effects, the above expression acquires an extra kFa-
dependent factor, which tends to (1/4e)1/3 ≈ 0.45 at the limit of 1/kFa → −∞ [61,62].
As one moves to strongly paired superfluids, such approaches, while still qualitatively
valid, fail to provide a quantitative description. The BCS description, while accurately
predicting the two-body bound states that lie on the BEC side of the crossover, does not
provide precise results in that regime. For these systems, one needs to turn to beyond-
mean-field approaches. These approaches are built by considering correlations neglected
by mean-field theories. The inclusion of short- and long-range correlations by a summation
of ladder diagrams in the context of the self-consistent Green function method results in
a ∼0.75 MeV reduction of the pairing gap compared to the BCS value, and in a closure
of the pairing gap at lower densities [63]. Similar results were found by replacing the
bare interaction with the G-matrix in the Bruckner theory to include screening effects [64].
In-medium corrections to the effective interaction can also be included “adiabatically” by
solving the Renormalization Group (RG) flow equations in an RG approach [65], where
polarization effects of the particle–hole kind result in a smaller gap compared to BCS.
Similarly, reduced gaps are found when the particle–particle and particle–hole polarization
effects are added by phenomenologically modifying the short-distance behavior of the bare
fermion interaction [66]. A significant quenching of the gap is also found when treating
short-range correlations by means of Correlated Basis Functions (CBF) [67]. The addition
of three-body forces has also been explored in the context of chiral effective interactions,
where a reduced 1S0 pairing gap and an increased 3PF2 pairing gap were reported [68].
Finally, the complete quantum many-body problem can be solved using the Quantum
Monte Carlo (QMC) family of stochastic approaches, where the ground-state of a many-
body Hamiltonian is identified given a suitable trial wavefunction [39,49]. Calculations of
the 1S0 pairing gap by the means of QMC simulations first resulted in such a reduction of
the gap as compared to the BCS value. An important distinction of the QMC methods is
that one is obliged to work with finite systems, and therefore, calculations of quantities
of infinite matter require the extra step of extrapolation, i.e., dealing with the FSEs (see
Section 3). These techniques use the Rayleigh–Ritz principle to find a state with minimum
energy combined with an imaginary-time propagation to purify that state of any excited-
state contributions. When fermionic, the imaginary-time evolution of such states contains
the additional complication of the fermion-sign problem arising from anti-symmetric states
losing their anti-symmetry due to the statistical sampling inherent in the stochastic method
(for a review of QMC methods, see Ref. [69]). With the advancements of the QMC approach
over the few past decades having rendered the fermion-sign problem under control, QMC
results can be treated as exact, yielding an error margin of, typically, ∼1% [58]. For a more
detailed review of the various approaches for the calculation of the pairing gap in neutron
matter, see Ref. [58].

2.2. The BCS and PBCS Theories for Neutron Matter

The BCS theory, introduced in 1957 by Bardeen, Cooper, and Schrieffer, describes
superfluid (or superconducting) states as a result of an instability of the normal state in
fermionic gases, with an attractive interaction at low temperatures. In BCS, this instability,
which is present below a transition temperature, instigates a formation of Cooper pairs.
The attractive interaction responsible for the instability of the normal state and the eventual
formation of the condensate of pairs as the temperature is further decreased can come from
various sources. In the original formulation of the theory, in the context of superconduc-
tivity in metals, the origin of the attractive interaction was the presence of an ionic lattice,
which allows for an effective interaction between electrons via the exchange of a phonon.
In NM, the nature of the attractive interaction is different, as it originates from the S-wave
component of the NN interaction, which is attractive at densities encountered in the inner
crust of cold NSs. As mentioned in Section 2.1, the strong nature of this interaction, which is
portrayed by its large scattering length as ≈ −18.5 fm, makes NM one of the most strongly
correlated superfluids encountered in nature.



Universe 2021, 7, 24 6 of 23

The BCS theory describes superfluidity on a mean-field level, so it is not expected
to give accurate quantitative results for strongly interacting superfluids, such as NM.
However, one can use the BCS theory and its straightforward treatment of pairing to
produce qualitative results and offer guidance to more accurate methods. Specifically, one
can use results from a BCS treatment to help ab initio techniques that are applied to finite
systems to extrapolate to the thermodynamic limit (TL). For more details on the assistance
that BCS theory can provide to these extrapolations, see Section 3. Here, we present a brief
introduction to the BCS theory and its particle-conserving variation, namely PBCS theory,
applied to NM.

One can use the BCS theory to describe a finite part of the bulk of a pure NM superfluid
by enclosing a system of N0 neutrons in a finite volume, e.g., a cubic box of length L, under
PBCs. The PBCs require that the modulus of the wavefunction be the same on opposite sides
of the box, allowing for a complex phase difference between the values of the wavefunction
on the same points: ∣∣ψ(r1 + Lx̂, r2, . . . , rN0

)∣∣2 =
∣∣ψ(r1, r2, . . . , rN0

)∣∣2 (3)

ψ
(
r1 + Lx̂, r2, . . . , rN0

)
= eiθx ψ

(
r1, r2, . . . , rN0

)
. (4)

Following the literature, we name this phase difference a “twist” to avoid the poly-
semous word “phase”. The choice of PBCs is mandated by the translational symmetry
that characterizes all quantities of infinite matter, and it gives rise to the familiar single-
particle spectrum

εk =
h̄2

2m
|k|2 , (5)

k =
2π

L

(
n +

θ

2π

)
, ni = 0, ±1, ±2, . . . . (6)

The twist angle θ is not an observable of the infinite system: At the limit of L → ∞,
it drops out of the problem. Therefore, it is typical to assume untwisted PBCs, i.e., θ = 0.
However, ways to manipulate this extra degree of freedom and bring finite systems closer
to TL have been developed. In Section 3, we will use special twist-angles as well as a
twist-averaging approach, where we average the quantities of a finite system over the twist
angle to make the finite system a better approximation of infinite matter. For the rest of
this section, we restrict our BCs to the untwisted θ = 0 case, i.e., PBCs.

When studying the effects of pairing in NM, it is customary to isolate only the interac-
tion responsible for the pairing and ignore normal state interactions, hence describing the
system using the so-called pairing Hamiltonian:

Ĥ = ∑
kσ

εk ĉ†
kσ ĉkσ + ∑

kl
〈k|V|l〉ĉ†

k↑ ĉ
†
−k↓ ĉ−l↓ ĉl↑ , (7)

where ĉ†
kσ, ĉkσ are fermionic creation and annihilation operators, respectively, creating or

annihilating free single-particle states with momentum k and spin σ in a cubic box under
PBCs. Many state-of-the-art potentials have been used to model the NN interaction, such
as the CD–Bonn potential [70], the Nijmegen I and II potentials [71], the Argonne family
of potentials (AV4, AV8, etc.) [39,60], and chiral potentials (NLO, N2LO, and N3LO) [72].
At low energies, where the details of the interaction do not matter, any potential that
reproduces the 1S0 scattering length and effective range of NM should produce identical
results, as discussed already in Section 2.1. In this light, we choose the simplest path and
we model the NN interaction using the purely attractive Pöschl–Teller (PT) potential,

V(r) = − h̄
mn

λ(λ− 1)β2

cosh2 (βr)
, (8)
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where the parameters λ and β are adjusted to reproduce the scattering length and effective
range of the S-wave of the NN interaction. The matrix element in Equation (7) is that of the
1S0 channel of this potential,

V0(k, k′) =
∫ ∞

0
drr2 j0(kr)V(r)j0(k′r) . (9)

It is worth noting that, assuming a purely attractive potential, such as the PT potential,
we ignore the repulsive core of the NN interaction, but again, consistently with the shape
independence outlined in Section 2.1, for low-density NM, the exact form of the potential
is irrelevant and the results produced by all the potentials mentioned above should be
identical [57,60].

2.2.1. Even-Particle-Number Superfluid

The BCS theory describes the ground-state of a superfluid with an even number of
particles N0 as a coherent state of N0/2 pairs of time-reversed states:

|ψBCS〉 = ∏
k

(
uk + vk ĉ†

k↑ ĉ
†
−k↓

)
|0〉 . (10)

The state |0〉 stands for the vacuum, while the distributions vk and uk represent the
probability amplitude of finding or not finding, respectively, a pair of states k ↑, −k ↓, and
so, they are subject to the normalization

v2
k + u2

k = 1 . (11)

Furthermore, with v2
k representing the probability of finding a pair characterized by

momentum k, it is connected to the average number of particles,〈
N̂
〉
= ∑

k
2v2

k = N0 . (12)

This average is to be understood in the context of a grand canonical ensemble: We
enforce the particle-number conservation in the box only on average. In fact, the BCS
ground-state in Equation (10) is defined in a grand canonical ensemble, and so, it describes
a superfluid with an average particle number equal to N0. Therefore, the probability
distributions v2

k and u2
k, which characterize the pair occupation of the condensate in k-

space, should be such that they minimize the free energy of the BCS state,

FBCS = 〈ψBCS|Ĥ − µN̂|ψBCS〉 = ∑
k

2v2
kξk + ∑

kl
Vklvkukvlul , (13)

where ξk = (εk − µ) and µ is the chemical potential. This minimization yields the gap equa-
tion:

∆(k) = −2π

L3 ∑
k′

M(k′)V0(k, k′)
∆(k′)
E(k′)

, (14)

where every momentum-dependent quantity is replaced by an angle-averaged version.
This is because only the first term of the corresponding Laplace series of each quantity
couples with the S-wave of the potential, which reflects the fact that momentum states
scattered by an S-wave interaction can only change in magnitude and not in direction.
Thus, momentum shells can be defined, each containing momenta corresponding to the
same k-magnitude, which are treated as identical by the interaction. The population of the
shell corresponding to |k| = k is denoted by M(k) and is used in the discrete sums over
k-space to allow for a one-dimensional sum over the discrete k-magnitudes instead of the
entire three-dimensional momentum space. The populations of the different momentum
shells depend on the twist of the BCs as well, which we have taken to be the trivial θ = 0
in this section. See Section 3 for the dependence of M(k) on θ and how it affects the FSEs.
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Here the gap function ∆k is the binding energy of a pair with momentum k, and the energy
needed to break a pair and create an excitation is the quasi-particle excitation energy Ek. It
is defined as

Ek =
√

ξ2
k + ∆2

k , (15)

and it defines the occupation probability distributions,

v2
k =

1
2

(
1− ξk

Ek

)
, (16)

u2
k =

1
2

(
1 +

ξk
Ek

)
. (17)

Given these, Equation (12) becomes

〈
N̂
〉
= ∑

k
M(k)

(
1− ξ(k)

E(k)

)
, (18)

which again involves angle-averaged quantities and the population of the k-shells. Equa-
tions (14) and (18) are called the BCS gap equations and their solution defines the distribu-
tions vk and uk through Equations (16) and (17), which, in turn, will define the BCS energy
of the superfluid in terms of the angle-averaged distributions:

EBCS
even(N) = ∑

k
M(k)εk2v2(k) +

4π

L3 ∑
kk′

M(k)M(k′)V0(k, k′)u(k)v(k)u(k′)v(k′) . (19)

It is worth noting that the normal state can be written in the form of the BCS ground
state with vk = 1 for |k| ≤ kF and vk = 0 otherwise (this corresponds to the ∆k = 0 solu-
tion). This means that when minimizing the free energy of the BCS state, i.e., Equation (10),
with respect to the distribution vk, the normal state is a viable candidate. In other words, if
the solution of the BCS gap equations yields solutions other than the normal state solution,
then a pair condensate yields lower free energy than the normal state. This is an equivalent
statement of the pairing instability proposed in the initial BCS theory.

0 0.5 1 1.5 2 2.5 3
k/(2π/L)

0

0.2
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Figure 2. The occupation probability distribution and the condensation amplitude for 〈N〉 = 66 and
kFa = −10.

As seen in Figure 2, the distributions v2
k are smeared over k-space compared to the

Fermi distribution. This is a consequence of pairing: Taking ∆k → 0 in Equation (16),
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one can retrieve the Fermi distribution, i.e., a free Fermi gas. This is demonstrated by the
condensation amplitude

Fk = vkuk , (20)

which can also be seen in Figure 2. The product vkuk is non-zero only when vk and uk
are simultaneously non-zero. Hence, the spread of the condensation amplitude is strongly
related to pairing with a wide spread Fk characterizing a strongly paired superfluid and a
normal state, yielding an infinitely sharp Fk around |k| = kF.

A key property of superfluidity is the energy gap in the quasi-particle excitation
spectrum; e.g., see Figure 2. The minimum energy required to break a pair and create an
excitation is called the pairing gap, and it is defined as

∆BCS = minkEk . (21)

Figure 3 shows the pairing gap as a function of 〈N〉. Apart from the familiar oscilla-
tions seen in all intensive quantities of finite systems (see Section 3), the pairing gap suffers
from additional FSEs due to its definition as a minimum of the discrete spectrum Ek. In
more detail, the quantization of momenta, imposed on finite systems by their BCs, ensures
that all functions of momentum are a discrete version of their TL counterparts. Quantities
defined as the minima of such discrete functions, in the manner of Equation (21), will have
to compromise with the lowest available point. The position of this available minimum
might change to a neighboring k-state as 〈N〉 changes and thus make the 〈N〉-dependence
appear more random.
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Figure 3. The minimum of the quasi particle excitation energy and the odd–even staggering (OES) in
the projected Bardeen–Cooper–Schrieffer (PBCS) theory under periodic boundary conditions (PBCs)
for kFa = −10. The minimum of quasiparticle excitation energy under twist-averaged boundary
conditions (TABCs) is shown in red.

The definition of the pairing gap, namely Equation (21), makes it hard to compare the
BCS approach to superfluidity with other techniques. A prime example of this difficulty
is QMC simulations. Drawing from the odd–even mass staggering in nuclear physics,
one can define a quantity similar to the pairing gap, which, at the TL, is identical to the
pairing gap:

∆ = E(N)− 1
2
(E(N + 1) + E(N − 1)) , (22)

where N is an odd number of particles, since it provides better decoupling of the result
from the underlying mean-field theory [73], i.e., in this case, BCS. The odd–even staggering
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(OES) in neutron superfluidity has been demonstrated to reproduce the BCS pairing gap
for systems far from the TL as well [74]. The OES is a quantity that is readily available to a
variety of ab initio approaches to superfluidity; it can be used to compare them and quantify
differences between them. To have access to OES in the BCS theory via Equation (22), one
needs an expression for the energy of a system with N particles. As discussed above, the
BCS treatment breaks the particle conservation of the pairing Hamiltonian, resulting in
a state defined in a grand canonical ensemble with a constant average particle number.
Hence, the BCS state can be understood as a superposition of eigenstates of the number
operator, i.e., states describing superfluids with a fixed particle number:

|ψBCS〉 = ∑
N

λN |ψN〉 . (23)

The spectrum of eigenstates |λN |2 is sharply peaked around N = N0, as seen in
Figure 4, with a relative spread proportional to N−1/2

0 . In other words, the main contri-
bution in Equation (23) largely comes from the state

∣∣ψN0

〉
, and that leads to the idea of

the projected BCS (PBCS) theory, where the ground-state of a superfluid with an exact
(even) particle number N0 is described by

∣∣ψN0

〉
. The less sharp the peak of |λN |2, the

more particle-conserving the BCS ground-state |ψBCS〉 is, and the closer PBCS is to BCS.
It follows that for strongly interacting superfluids, of which NM is a perfect specimen,
the particle-conserving PBCS theory is expected to agree with the non-particle-conserving
BCS theory.

In PBCS theory, one projects out of the sum in Equation (23) the state corresponding
to N0 = 〈N〉, namely

∣∣ψN0

〉
. To execute this projection, we need to allow vk and uk to take

complex values, and with the BCS ground-state being a coherent state of pairs, the complex
phase of vk and uk does not depend on k. Furthermore, having the freedom to define the
BCS ground-state up to an overall complex phase leads to∣∣∣ψBCSφ

〉
= ∏

k

(
uk + vkeiφ ĉ†

k↑ ĉ
†
−k↓

)
|0〉 . (24)

The infinite product in Equation (24) generates an infinite sum in which each term
comes with as many factors of eiφ as pair-creation operators ĉ†

k↑ ĉ
†
−k↓. Therefore, the term

creating N0/2 pairs can be projected out by integrating the rest of the terms over an integer
number of periods in φ:

|ψN〉 =
1

R0
0

∫ 2π

0

dφ

2π
e−i N

2 φ ∏
k

(
uk + eiφvk ĉ†

k↑ ĉ
†
−k↓

)
|0〉 , (25)

where the normalization R0
0 is one of the residuum integrals:

Rm
n (k1k2 . . . km; N) =

∫ 2π

0

dφ

2π
e−i( N

2 −n)φ ∏
k 6=k1,k2,...km

(
u2

k + eiφv2
k

)
. (26)

The residuum integrals are related to the probabilities of arrangements of pairs in
k-space. For example, R0

0 is the sum of the probabilities of all possible pair arrangements
in k-space, and as such, it is the probability of the realization of the state in Equation (25)
and, therefore, its normalization. This makes R0

0 equal to the |λN |2 presented in Figure 4. A
detailed derivation of the PBCS theory can be found in Ref. [74]. The energy corresponding
to the state in Equation (25) is

EPBCS
even (N) = ∑

k
M(k)εk2v2(k)

R1
1(k)
R0

0
+

4π

L3 ∑
kk′

M(k)M(k′)V0(k, k′)u(k)v(k)u(k′)v(k′)
R2

1(kl)
R0

0
, (27)

where we have again used the angle-averaged distributions. Owing to the projection,
EBCS

even describes systems with a fixed particle number and, therefore, it can be used to
calculate the gap using the OES. The vk and uk distributions in Equation (27) are the ones
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in Equations (16) and (17), respectively, since they originate from the already optimized
BCS ground-state in Equation (24). One could re-optimize the PBCS state and find the
distributions vk and uk that minimize the energy in Equation (27). This corresponds to
the full BCS (FBCS) approach [75], of which BCS is a saddle-point approximation valid

for 2
√

∑ F2
k � 1. Following the preceding discussion on the condensation amplitude Fk,

it is clear that the FBCS for NM should be qualitatively and quantitatively very close to
BCS and, a fortiori, to PBCS, allowing one to use the latter when probing quantities such as
the OES.

45 50 55 60 65 70 75 80 85 90
N

0

0.02

0.04

0.06

0.08

0.1

0.12

|λ
N

|2

TABC
PBC

Figure 4. The probability of finding a PBCS ground state with N particles projected out of a Bardeen–
Cooper–Schrieffer (BCS) ground state with 〈N〉 = 66 particles.

2.2.2. Odd-Particle-Number Systems

The BCS ground state describes a condensation of pairs, and as such, it is not suitable
for systems with an odd number of particles. With the energy of an odd-particle-numbered
system being central to the OES (cf. Equation (22)), a variation of the BCS ground state is
essential for the calculation of the gap. This is the blocked BCS state,∣∣∣ψbγ

BCS

〉
= ĉ†

bγ ∏
k 6=b

(
uk + vk ĉ†

k↑ ĉ
†
−k↓

)
|0〉 , (28)

where the extra unpaired particle occupies a momentum state b, blocking it from the rest
of the underlying condensate. The optimization of this state gives rise to its own blocked
BCS equations:

∆k = −1
2 ∑

k′ 6=b
V0(k, k′)

∆′k
E′k

, (29)

〈
N̂
〉
= ∑

k 6=b

(
1− ξk

Ek

)
, (30)

where the quantities ∆(k) and E(k) retain their definitions as the gap distribution and
quasi-particle excitation energy, respectively. The minimum of E(k) is defined as the
BCS pairing gap for the odd-particle-number systems. Following the same principles as
the ones used for the projection in the even-particle-number systems, one can define a
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fixed-particle-number state for odd N. This is done by projecting out of the underlying
condensate an N − 1 particle-conserving state,∣∣∣ψbγ

N

〉
=

1
R1

0(b)
ĉ†

bγ

∫ 2π

0

dφ

2π
e−i N−1

2 φ ∏
k 6=b

(
uk + eiφvk p̂†

k

)
|0〉 . (31)

Finally, the energy of an odd number of particles in PBCS is the energy that corre-
sponds to the state in Equation (31):

EPBCS
odd (b; N) = ∑

k 6=b
M(k)εk2v2(k)

R2
1(bk)

R1
0(b)

+ εb +
4π

L3 ∑
k,k′ 6=b

M(k)M(k′)V0(k, k′)u(k)v(k)u(k′)v(k′)
R3

1(bkl)
R1

0(b)
, (32)

where, similarly to Equation (27), we use the angle-averaged distributions along with a
slight abuse of notation: The blocking of the momentum state b does not block an entire
shell, but rather reduces its occupancy by 1. The unpaired particle’s contribution in EPBCS

odd
is that of a free particle, since all normal state interactions are excluded in the pairing
Hamiltonian (cf. Equation (7)). However, the presence of the extra particle is “felt” by
the condensate via the blocking of the momentum state occupied by the particle. The
energy in Equation (32) depends on the blocked state b, and so, when used in an OES
prescription, the right b should be chosen to minimize EPBCS

odd . This is because the odd-
particle-number system in OES is to be understood as the lowest quasi-particle excitation of
its even-particle-number vacuum. For the sake of completeness, the corresponding energy
of an odd-particle-numbered superfluid in BCS is:

EBCS
odd (b; N) = ∑

k 6=b
M(k)εk2v2(k) + εb +

4π

L3 ∑
kk′ 6=b

M(k)M(k′)V0(k, k′)u(k)v(k)u(k′)v(k′) . (33)

2.2.3. The Thermodynamic Limit

The treatment of the TL in BCS is straightforward. A system at the TL corresponds
to the limiting case L → ∞ of the periodic box used for finite systems. In that limit, the
discretization of the momenta becomes infinitely fine, turning all previously discretized
distributions into continuous functions of k and the sums in the corresponding equations
into integrals. Hence, the gap equations describing the system at the TL are:

∆(k) = − 1
π

∫ ∞

0
dk′(k′)2V0(k, k′)

∆(k′)
E(k′)

, (34)

〈N〉
L3 = n =

1
2π2

∫ ∞

0
dkk2

(
1− ξ(k)

E(k)

)
, (35)

where n is the number density, and ∆(k) and E(k) are the continuous version of the gap
distribution and quasi-particle excitation energy, respectively. Hence, a BCS pairing gap
can be again defined in an identical way to the even- and odd-particle-number systems:

∆BCS = minkE(k) . (36)

From the discussion on the spread around the peak of the eigenstate spectrum λ2
N , it

follows that for N → ∞, i.e., at the TL, the peak is infinitely sharp; the particle number
projection loses its meaning, and so does the distinction between even and odd parti-
cle numbers.

The energy of the infinite system diverges, as it is an extensive quantity. The rele-
vant intensive quantities are the energy density and the energy per particle, which are
connected through

ETL

V
= n

ETL

N
, (37)
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where the energy density is calculated as the TL limit of Equations (19) or (33):

ETL

V
=

1
2π2

∫ ∞

0
dkk22v2(k)ε(k) + +

1
π3

∫ ∞

0
dkdk′k2k′2V0(k, k′)u(k)v(k)u(k′)v(k′) . (38)

It should be noted that both the BCS and PBCS ground-states converge to the same
state at TL [74]. The difference lies in that BCS approaches the infinite system through a
grand canonical ensemble, while PBCS does so in a canonical ensemble. This means that
Equation (38) could be calculated as the TL limit of Equation (27) or (32), equivalently.

2.2.4. The Solution of the BCS Gap Equations

The gap equations of BCS come from minimizing the free energy of the BCS ground-
state with respect to the pair occupation distributions. As mentioned above, the normal
state corresponds to ∆(k) = 0, and so when solving the gap equations, for a given interac-
tion, one is inquiring about the existence of pairing correlations and gets an answer in the
form of the gap distribution: The trivial solution represents the absence of pairing. The gap
equations for a finite system with an even number of particles are Equations (14) and (18);
for a system with an odd number of particles, they are are Equations (29) and (30), and
for an infinite superfluid, they turn into Equations (34) and (35). Regardless of the nature
of the superfluid system (even, odd, or infinite), the gap equations are a set of non-linear
coupled equations, and so, they have to be solved self-consistently. We will describe only
the method used for the even particle numbers, since it is identical to the ones used for odd
particle numbers and the TL. With the solutions of the equations being ∆(k) and µ, one
can solve the first gap equation, Equation (14), iteratively for a given µ, and can use the
resulting ∆(K) in the second gap equation, Equation (18), and calculate 〈N〉, thus reducing
the problem to the solution of the equation:

〈N〉(µ) = N0 . (39)

The root of Equation (39) can be found numerically, concluding the solution of the
BCS gap equations.

While it is straightforward to apply identical schemes to the gap equations for odd
particle numbers as well as at the TL, when it comes to blocking, an additional step is
needed to properly describe the ground-state of an odd-particle-numbered system. As
mentioned above, the blocked state b that appears in Equations (29) and (30) should be
chosen so that it minimizes the energy of the system. For PBCS, this energy corresponds to
the energy in Equation (32). This minimization entails the computationally expensive task
of solving the blocked gap equations multiple times to acquire the vk and uk distributions
needed for the blocked PBCS energy. An alternative route that is suitable for strongly
correlated systems is a perturbative scheme. That is, one can attain an approximation
of the pair probability distributions for an odd system by solving the gap equations that
correspond to a fully paired system with an odd number of particles. Consequently, these
distributions can be used repeatedly in Equation (32) for a range of momentum states b to
identify the state that yields the minimum energy. The error introduced in the distributions
vk and uk through this perturbative approach is inversely proportional to the number of
pairs N0/2, and so, one can expect that it will not alter the structure of the excitations of
the state [74,76]. With the gap equations solved only once, the use of this perturbative
scheme allows for the identification of the proper blocked state in a computationally
inexpensive way.

3. Finite-Size Effects and Twisted Boundary Conditions

As a finite system approaches its TL, all intensive quantities of the system approach
their TL values, and the random trends that they follow are called the finite-size effects
(FSEs). These effects can be seen in quantities like the energy per particle [74] or the pairing
gap in Figure 3. One can typically attribute this systematic error to the quantization of
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k-space induced by the BCs: The distributions describing an infinite system are defined on
a continuous phase-space, and so, any approximation that uses distributions defined on a
discrete phase-space comes with an error. The origin of one such error can be seen in the
FSEs observed in the pairing gap in Figure 3, where the curve drawn by the values of E(k)
over the grid had a minimum at a momentum that did not coincide with any point on the
grid. That resulted in compromising with the closest “available” minimum that can jump
to the next or the previous k-magnitude with a change in 〈N〉. This is not the only source
of FSEs in the pairing gap, but it is responsible for an additional “jiggle” seen in the pairing
gap compared to other quantities.

From the perspective of the OES, these additional FSEs have a similar origin: The
energy of the odd-particle-numbered system is the minimum with respect to the blocked
state b, which, in finite systems, increases discontinuously with the particle number N. In
fact, in systems with odd particle numbers, we observe that the location of the minimum
of the quasi-particle energy almost always coincides with the momentum state b that
yields the minimum energy EPBCS

odd (b; N), thus synchronizing the additional FSEs seen in the
pairing gap and the OES. Quantities like the energy per particle experience less-pronounced
FSEs due to their nature as sums of distributions over the discrete k-space, which makes
them less sensitive to small changes in the grid size as the particle number increases.

The systematic errors that are the FSEs have to be dealt with when a formulation of
the TL is not available and one has to extrapolate from studies of finite-size systems. In
the case of NM, such difficulties are faced by the QMC family of approaches. Quantum
Monte Carlo deals with finite systems performing, for the case of NM, computationally
expensive simulations, whose time complexity scales unfavorably with the particle number.
That allows for tackling systems up to particle numbers of the order of ∼100, and so, when
studying infinite matter, one needs to extrapolate to the TL from—oftentimes limited—data
of finite systems. This has motivated studies of the FSE using theories that, although not
quantitatively accurate, are qualitatively reliable and can identify a successful extrapolation
scheme. For superfluid NM, such studies have been carried out both in the BCS [60] and the
PBCS [74] theories, and QMC calculations have been conducted using guidance from such
studies [49] with great precision. These studies use systems of N = 66 particles to simulate
a system at the TL, an assumption justified by results similar to Figure 3 in the context
of BCS, and extract the pairing gap using the model-independent OES. With the studies
of the FSEs rendering them under control for NM, one might wonder whether we can
improve the extrapolations employed and actively reduce the observed FSEs. The answer
lies in the very source of the error: the BCs. Indeed, techniques have been developed,
initially in the context of solid-state physics, that allow for active reduction of the FSEs by
manipulating the twist θ introduced in Equation (5). In a band structure, calculations of
properties of infinite periodic solids integrate over the first Brillouin zone, an integration
that, in insulators, has been replaced by the choice of a “special k-point” [77] or a grid of
k-points [78].

The integration of the results over the twist is called twist-averaged boundary condi-
tion (TABC), and it has been proven that it will produce exact results in the Hubbard model
in a grand canonical ensemble, as well as for non-interacting systems [79], and that it will
make certain lattice models converge faster to the TL [80]. In the context of nuclear matter,
TABC has been used for the reduction of FSEs in QMC calculations regarding the EoS of
nucleonic matter [81] and in Skyrme–Hartree–Fock calculations of the energy in various
nuclear pasta phases [82]. To date, there have been no systematic TABC extrapolations for
superfluid NM (see, however, Ref. [23]).

Motivated by their success in other nuclear systems, we applied the TBCs and TABC
in superfluid NM, aiming for a reduction of the FSEs and further improvement of the
extrapolation schemes. In 3D systems under TBCs, the twist is a vector with three compo-
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nents, each restricted to a 2π circle. All identical particles are characterized by the same
twist, and all quantities are triply periodic [83] in the twist, so that:

F(θi + 2π) = F(θi) , (40)

−π < θi ≤ π , i = 1, 2, 3 . (41)

When applying the BCS or PBCS theory in the way described in Section 2.2, TBCs
would give rise to a different k-grid through Equation (6), i.e., a grid translated by θi/L
in the i axis. This is depicted in Figure 5a, where the k-grid of a 2D system of 26 free
neutrons has shifted after twisting the BCs by θ = 2π(1, 2)/7. This does not only shift the
momentum states available to the different distributions describing the condensate, but it
also decreases the population M(k) of each k-magnitude. The reason behind this becomes
clear if we view the shift of the grid as a shift of the origin in k-space, the reference point
of the momentum magnitudes. By shifting the origin, one destroys the symmetry once
present in k-space, making it less likely for momentum states to fall on the same circle with
radius k. With the momentum cut-off remaining the same, the number of points on the
grid is the same, and so, a smaller population on the different k-magnitudes translates to a
larger and denser set of momentum values. This is demonstrated by Figure 5b, where the
ordinal number of the k-magnitude is plotted versus the k-magnitude that it corresponds
to, showing the increase in the number of distinct k-magnitudes in TBCs.
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Figure 5. The twisted k-space. Panel (a) shows the k-grid of a 2D system with N = 26 free neutrons under PBCs (squares)
and twisted boundary conditions (TBCs) (circles) with θ = 2π(1, 2)/7. The closed symbols represent the filled momentum
states, and the closed curve shows the boundary of the filled k-states of the infinite system. Panel (b) shows the number of
distinct k-magnitudes generated by different twisted BCs.

Not all twist vectors with components in the (−π, π] range are independent: The
set of twists generated by symmetries of the cubic lattice (i.e., the k-grid) will give rise to
identical k-spaces, i.e., identical sets of k-magnitudes and populations. This can be seen
directly from Equation (6), where, if we let R be a representation of the symmetry group of
a cubic lattice, R maps k to a site of a differently twisted lattice:

Rkθ =
2π

L
Rn +

Rθ

L
=

2π

L
n′ +

θ′

L
= k′

θ′ , (42)

where θ′ = Rθ. With the translations being taken care of by restricting θ in [0, π], the only
symmetry left to exploit is rotations of π/2 around each axis.

Therefore, one twist can be taken to represent all eight rotated twists that would
generate the same k-space. Such transformations conserve length, further justifying why
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twists connected through them generate momentum spaces that yield the same populations
M(k). These arguments can be used to significantly decrease the number of distinct θ-points
needed for a twist integration.

With different TBCs giving rise to differently shifted k-spaces, they also generate
different FSEs, since a shifted k-space gives access to different k magnitudes for the
discrete distributions describing the condensate. In principle, as noted above, the resulting
k-magnitude structure will be denser, and so, the FSEs for a finite system under TBCs are
expected to be smaller than those under PBCs. Under this light, we performed calculations
of various BCS and PBCS quantities under TBCs for twist angles on a grid defined as

θ =
2π

7
(l, m, n) , l, m, n = 0, 1, . . . , 6 . (43)

As noted above, twists connected through permutations of l, m, n in Equation (43)
yield k-spaces connected through a rotation of π/2, and so, they can be considered identical.
Thus, the values of l, m, n (without an ordering) can uniquely define a set of TBCs. For a
given vector θ, we have solved the BCS gap equations using the iterative scheme described
in Section 2.2.4 for a range of particle numbers. The twisted BCs shift the momentum grid,
changing the k-magnitudes that go into Equations (14) and (18), and consequently, they
modify the shell populations M(k). These solutions are then used to obtain quantities like
the energy in Equation (19).

In the spirit of Ref. [77], we have identified a special twist angle that yields minimum
FSEs in the OES, as seen in Figure 6. This specific twist does not only significantly decrease
the overall FSEs observed, but it also decreases the minimum of FSEs seen in the low-N
region. These particle numbers can be used to simulate infinite systems. From the grid in
Equation (43), we have also identified the twist angle that minimizes the FSEs at N = 67.
This particle number is commonly used in QMC calculations under PBCs [39,49] to simulate
infinite superfluid NM, owing to its very low FSEs [49,74], ∆/∆TL ≈ 0.997. We have found
that a twist angle of θ = 2π(0, 1, 0)/7 reduces these FSEs by ∼ 85% and allows for a more
accurate extrapolation to the TL.

0 20 40 60 80 100 120 140 160 180 200
N

0.85

0.9

0.95

1

1.05

1.1

∆/
∆ T

L

θ=2π(0,1,0)/7
θ=2π(2,2,1)/7

0.9328

0.9996
1.025

50 60 70 80
0.9

0.95

1

1.05

1.1

Figure 6. The odd–even scattering (OES) for different twist angles θ. The angle θ = 2π(2, 2, 1)/7
yields minimum finite-size effects (FSEs) in the OES across all N. The angle θ = 2π(0, 1, 0)/7
yields minimum FSEs for N = 67, a particle number routinely used in Quantum Monte Carlo
(QMC) calculations for neutron matter (NM), as it has been demonstrated to yield minimum FSEs
under PBCs.
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It is noteworthy that the altered k-magnitude structure created by twisting the BCs
can give rise to tricky edge cases. For instance, the twists that come closest to the edges
of the first Brillouin zone create k-magnitudes with large discontinuities at low k. This
proves problematic for the iterative solution of the gap equations outlined in Section 2.2.
The large discontinuities at low momenta in the gap equations mean that a large part of
the non-trivial region of the potential stays unexplored, as seen in Figure 7, where the
kernel of the gap equation in Equation (14) is plotted for an edge case together with that
of a normal one. Even though this does not impact the solution of the fully paired gap
equation, i.e., Equation (14), when used for even systems or for odd systems (in the context
of a perturbative scheme), it can hinder the convergence of the iterative scheme for the
blocked gap equation, Equation (29). There, blocking the k-state that yields the lowest
blocked energy results in decreasing the k-magnitude’s population, which is very likely
to be 1 for the reasons discussed above, thus removing one more probing point from the
non-zero region of the potential, making the situation worse.
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Figure 7. The kernel of the gap equation for edge and non-edge cases.

Effectively, this translates to a non-convergence of the iterative scheme for the blocked
gap equation for a range of values of the chemical potential, wherein the function 〈N〉(µ)
in Equation (39) becomes ill defined. In these cases, one is forced to use the solution of
the perturbative scheme described in Section 2.2. Even though this introduces a small
systematic error, this error can be quantified by comparing perturbative solutions to exact
ones in normal cases, which indicates a maximum error of ∼2.2% in the OES encountered
at low N. With these edge cases making up about 2% of the total number of twist angles
considered in the grid of Equation (43), this error is irrelevant for approaches like the TABC
applied below.

While twisting the BC can significantly reduce FSEs, the averaging of the various
twist-dependent quantities over a grid of twist angles, such as the one in Equation (43), has
been shown to be even more promising in reducing the amplitude of the FSEs and flattening
the otherwise semi-random trend towards the TL [84]. These are the twist-averaged BCs,
where one creates twist averages of properties of the system:

〈
F̂
〉
=
∫ d3θ

(2π)3 〈ψ|F̂|ψ〉 . (44)

This is done by studying the system under TBCs and calculating twist-dependent
properties, which are then integrated over the twist angle. Therefore, one can create a
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twist-averaged OES by calculating the OES under TBCs and subsequently integrating
Equation (22) over the twist space.

It has been shown [84] that a grand canonical ensemble under TABC produces exact
single-particle properties for non-interacting systems, which is because each momentum
state of the infinite system occurs precisely once over the range of the twist angles. This
guarantees that the non-interacting kinetic energy in the grand canonical ensemble under
TABC is exactly equal to its TL value. With Fermi liquid theory guaranteeing a one-to-one
mapping between the low-lying excited states of an interacting system and those of a
non-interacting one, we can expect a substantial reduction of FSEs for interacting systems
in a grand canonical ensemble; this has been argued before in the case of non-superfluid
systems [79,80,84]. Furthermore, since the projection described in Section 2.2 does commute
with the twist averaging, we anticipate the nice qualities of the TABC in a grand canonical
ensemble to be present here as well: One can imagine a process where the integration of the
twist averaging seen in Equation (45) is carried out before the integration of the projection
seen in Equation (26), while still employing the grand canonical ensemble. Indeed, as
shown in Figure 8, the BCS energy under TABC has almost no FSEs, even in the low-N
region. The slightly more intense FSEs seen in the BCS potential energy can be traced back
to the pronounced FSEs that were seen in the minimum of the quasiparticle excitation
energy and were discussed in the beginning of this section. That is because the potential
energy is proportional to ∑kl Fk∆kl, as can be seen from Equations (19) and (20). With
the condensation amplitude Fk peaking at momenta in the region where the minimum
of the quasiparticle excitation energy is found, the potential energy is closely related to
the pairing gap, and as such, it inherits some of its FSEs. Similar effects are seen in the
PBCS energies: The twist averaging has eliminated almost all of the FSEs seen in the
calculation under PBCs. The remaining difference between the PBCS energy and the TL is
the projection-related difference between that and BCS, which, under the TABC, is at the TL
for nearly all N. This discrepancy is inherent to the symmetry restoration, and it is present
even at the non-averaged energies. It cannot be corrected by twist averaging, as clearly
seen in Figure 4, where the distribution λ2

N retains its finite spread around N∗ = 〈N〉 under
the TABC, since this spread is proportional to

√
N∗.
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Figure 8. The BCS and PBCS energies under PBC and the twist-averaged boundary condition (TABC).

Regarding the pairing gap probed by the model-independent OES, the averaging over
the twist angles achieves substantially reduced FSEs, as seen in Figure 9. Similarly to the
energies, this was calculated by numerically integrating the OES in Equation (22) over the
twist angle, which, under TBCs, has a θ dependence inherited by the energy. The TABC not
only reduces the amplitude of the oscillations observed in the untwisted case, but it also
brings the gap to its TL value faster. We observe that for N ' 50, the OES is in a 2% error
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margin. To achieve similar accuracy over a range of N values under PBCs, one has to look
at systems well beyond N = 200. This result is specifically useful to ab initio approaches,
where the study of arbitrarily high particle numbers is not an option. For instance, as noted
above, in QMC approaches to NM, it is customary to use systems of N = 67 to extract
the TL value of the pairing gap, as per Figure 3. However, under the TABC, a slightly
better approximation of the TL is provided by N = 79 neutrons—a system well within
reach of modern QMC simulations. This delineates a program of accurately extracting
the pairing gap of pure NM in a model-independent fashion via a twist averaging of the
model-independent OES, a quantity accessible by a wide range of ab initio techniques.

0 20 40 60 80 100 120 140 160 180 200

N

0.85

0.9

0.95

1

1.05

1.1

∆
/∆

T
L

OES under PBC

min
k
E

k
 under TABC

OES under TABC

Figure 9. The twist-averaged OES for kFa = −10. The twist-averaged minimum of the quasiparticle
excitation energy from Figure 3 is also shown for comparison.

The use of the TABC largely eliminated the FSEs in the pairing gaps as well. The
minimum of the quasiparticle excitation energy under the TABC, which is presented in
Figures 3 and 9, is essentially flat compared to the the one calculated under PBCs. This
is also the case for the OES under the TABC presented in Figure 9. It is noteworthy that,
with the twist averaging illuminating the effects of the projection by reducing the FSEs
from other sources, the minimums of the quasiparticle excitation energy and the OES differ
slightly at low N under the TABC.

The use of the extraction scheme described above in ab initio approaches that can
handle the complicated correlations present in superfluid NM can provide valuable input
for the studies of NS matter. For instance, an ab initio study of the static response of a
strongly paired NM, which has been done before for non-superfluid neutrons [85,86], can
use the TABC to efficiently eliminate FSEs. Furthermore, accurately extracted 1S0 pairing
gaps of pure NM can construct effective interactions for energy-density functionals that
aim to describe all regions of NSs in a unified way [87,88]. Such connections highlight the
significance of accurately calculated pure NM pairing gaps.

Finally, in Figure 10, we present the variance of the set of pairing gaps generated by
twisting the BCs according to Equation (43):

σ2 =
∫ d3θ

(2π)3 [〈∆〉 − ∆(θ)]2 , (45)

where the average pairing gap is a twist average of the kind introduced in Equation (45).
Different ab initio approaches would be affected differently by the added complexity of
the twist averaging, and so, one could opt for simple TBCs instead of the generally more
expensive TABC. Thus, for a given particle number, one can compare the FSEs of the
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twist-averaged pairing gap to the variation of the set of pairing gaps to determine whether
a few selected twist angles could be found and used in an extrapolation scheme instead
of a full TABC approach. In other words, Figure 10 can be used as a guide to inform
the choice of TBC or TABC when extracting the pairing gap of infinite NM from a given
particle number.
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Figure 10. The variation σ of the OES across the twist angles compared to the FSEs of the twist-
averaged OES.

4. Summary and Conclusions

We have performed the first study of superfluid NM under the TBC and TABC,
techniques used widely in the field of solid-state physics, in an effort to prescribe a well-
informed extrapolation scheme for ab initio approaches that do not have direct access to
the infinite system. We applied the TABC by averaging calculations of the energy and
the pairing gap under TBCs in a range of twist angles. Our results demonstrate that a
twist-averaging approach, compared to PBCs, substantially reduces the FSEs of the energy
and the pairing gap in both amplitude and variation. With the pairing gap being a quantity
distinctively sensitive to finite-size, this reduction of the FSEs can significantly improve the
existent extrapolation schemes in ab initio methods, like the QMC family of approaches,
where similar studies have dictated that systems of N = 67 neutrons are optimal for
extrapolation to the TL under PBCs. Given our results, studies with N = 79 neutrons under
the TABC would further eliminate the FSEs. We also identified special twist angles that can
be used to reduce the FSEs under TBCs when a TABC study is not within reach. In general,
our work provides a more precise extrapolation scheme to the TL for ab initio approaches
to superfluid NM.
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Abbreviations
The following abbreviations are used in this manuscript:

NS Neutron star
NN Neutron–neutron
NM Neutron matter
BCS Bardeen–Cooper–Schrieffer
OES Odd–even staggering
PBCS Projected BCS
FBCS Full BCS
RG Renormalization group
QMC Quantum Monte Carlo
TL Thermodynamic Limit
PT Pöschl–Teller
CBF Correlated basis functions
FSE Finite-size effect
BC Boundary condition
TBC Twisted boundary condition
TABC Twist-averaged boundary condition
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