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Abstract: A process for using curvature invariants is applied to evaluate the metrics for the Alcu-
bierre and the Natário warp drives at a constant velocity. Curvature invariants are independent of
coordinate bases, so plotting these invariants will be free of coordinate mapping distortions. As
a consequence, they provide a novel perspective into complex spacetimes, such as warp drives.
Warp drives are the theoretical solutions to Einstein’s field equations that allow for the possibility
for faster-than-light (FTL) travel. While their mathematics is well established, the visualisation of
such spacetimes is unexplored. This paper uses the methods of computing and plotting the warp
drive curvature invariants to reveal these spacetimes. The warp drive parameters of velocity, skin
depth and radius are varied individually and then plotted to see each parameter’s unique effect on
the surrounding curvature. For each warp drive, this research shows a safe harbor and how the
shape function forms the warp bubble. The curvature plots for the constant velocity Natário warp
drive do not contain a wake or a constant curvature, indicating that these are unique features of the
accelerating Natário warp drive.

Keywords: warp drive; curvature invariant; general relativity

PACS: 04.20.-q; 04.20.Cv; 02.40.-k

1. Introduction

No particle may have a local velocity that exceeds the speed of light in vacuum, c,
in Newtonian mechanics and special relativity. However, general relativity (GR) allows
a particle’s global velocity to exceed c while its local velocity obeys the prior statement.
Alcubierre noticed that spacetime itself may expand and contract at arbitrary rates [1].
He proposed pairing a local contraction of spacetime in front of a spaceship with a local
expansion of spacetime behind it. While the spaceship remains within its own light cone
and its local velocity never exceeds c, the global velocity, which is defined as the proper
spatial distance divided by proper time, may be much greater than c due to the contraction
and expansion of spacetime. Distant observers will perceive the ship to be moving at a
global velocity greater than c, and the spaceship will be able to make a trip to a distant
star in an arbitrarily short proper time. He named the faster-than-light (FTL) propulsion
mechanism based on this principle a “warp drive.”
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A spaceship using an FTL warp drive must obey eight prerequisites to carry a human
to a distant star [2]. First, the rocket equation does not describe the portion of the flight
undergoing FTL travel. Second, the trip duration to a distant star may be reduced to be less
than one year, as seen by both observers inside of the warp, which are called passengers,
and by stationary observers outside of the warp. Third, the proper time measured by
any passenger should not be dilated by relativistic effects. Fourth, the magnitude of any
tidal-gravity accelerations acting on the passengers will be less than gC, which is the
acceleration of gravity near the Earth’s surface. Fifth, the local speed of any passengers
should be less than c. Sixth, the matter of the passengers must not couple with any material
used to generate the FTL space warp. Seventh, the FTL warp should not generate an event
horizon. Eighth, the passengers riding the FTL warp should not encounter a singularity
inside or out of it.

The two most well known superluminal solutions to Einstein’s equations that obey
these eight requirements are traversable wormholes and warp drives [1,3–13]. While
Einstein’s equations allow for their possibility, each solution remains at the theoretical
level. Furthermore, constructing either solution in a lab is not readily accessible due to
engineering constraints. Instead, these solutions provide a rich environment to test the
superluminal limits of GR. For example, superluminal spacetimes require exotic matter,
which is defined as matter that violates a null energy condition (NEC) and appear to
allow closed-timelike-curves (CTC). While exotic matter may appear problematic, certain
quantum fields, such as the fields giving rise to the Casimir effect and the cosmological
fluid appear to violate several NECs [12]. In this manner, these superluminal solutions
may probe the boundaries of physics.

Research into FTL warp drives has advanced tremendously since Alcubierre’s original
proposal. Krasnikov developed a non-tachyonic FTL warp bubble [4]. Van Den Broeck
reduced the amount of energy required by Alcubierre’s warp drive by positing a warp
bubble with a microscopic surface area and a macroscopic volume inside [5]. His modifica-
tion reduced the energy requirements to form the warp bubble to only a few solar masses
and his geometry has more lenient violation of the NEC. Later, Natário presented the
geodesic equations for the general warp drive spacetime, Equation (6) and his warp drive
spacetime, Equation (11), that required zero spacetime expansion to occur [3]. His warp
drive “slides” through the exterior spacetime at a constant global velocity by balancing a
contraction of the distance in front of it with an expansion of the distance behind it. His
proposal revealed the essential property of a warp drive to be the change in distances along
the direction of motion, and not the expansion/contraction of spacetime. Recently, Loup
expanded Natário’s work to encompass a changing global velocity that would accelerate
from rest to a multiple of c [9,10]. Finally, recent research computed the complete Einstein
tensor Gµν for the Alcubierre warp drive and derived a constraint on the trace of the energy
momentum tensor that satisfied the weak, strong, null and dominant energy conditions
from a dust matter distribution as its source [14].

While much progress has been made developing the physics of a warp drive spacetime,
visualizing the geometry of the spacetime is underdeveloped. The outside of the warp
bubble is causally disconnected from the interior [1,3,12,13]. As a consequence, computer
simulations of the spacetime surrounding the ship need to be developed to plot the flight
and steer the warp bubble. To date, the only method to plot the surrounding spacetime
is to compute the York time to map the surrounding volume expansion [1,12]. While
the York time is appropriate when the 3-geometry of the hypersurfaces is flat, it will
not contain all information about the surrounding spacetime in non-flat 3-geometries.
Alternatively, curvature invariants allow a manifestly coordinate invariant characterization
of certain geometrical properties of spacetime [15]. By calculating and plotting a warp
drive spacetime’s curvature invariants, a more complete understanding of their geometrical
properties may be obtained.

Curvature invariants are scalar products of the Riemann, Ricci, Weyl tensors and/or
their covariant derivatives. They are functions of the metric itself, the Riemann tensor, and
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its covariant derivatives, as proven by Christoffel [16]. They are important for studying
several of a spacetime’s geometrical properties, such as curvature singularities, the Petrov
type of the Weyl tensor and the Segre type of the trace-free Ricci tensor, and the equiva-
lence problem [15]. A spacetime requires a set of up to seventeen curvature invariants to
completely describe its geometry once special non-degenerate cases are taken into account.
The set of invariants proposed by Carminati and McLenaghan (CM) have several attractive
properties, such as general independence, lowest possible degree, and a minimal indepen-
dent set for any Petrov type and choice of Ricci Tensor [17]. For Class B1 spacetimes, which
include all hyperbolic spacetimes, such as the general warp drive line element, only four
CM invariants, pR, r1, r2, and w2q, are necessary to form a complete set [18].

Henry et al. recently studied the hidden interiors of the Kerr–Newman black hole
by computing and plotting all seventeen of its curvature invariants [19]. They exposed
surprisingly complex structures inside the interior of the Kerr–Newman black hole, more
so than what is normally suggested by textbook depictions using coordinate-dependent
methods. In addition, curvature invariants have been calculated to study the event hori-
zons of other black hole metrics [20–22]. As another example, the curvature invariants
were calculated to find a naked curvature singularity for a spacetime that is cylindrically
symmetric, Petrov type D, and admits CTCs [23]. This body of work prompted the present
authors to calculate and plot the curvature invariants of several wormhole solutions and
the accelerating Natário warp drive [24,25]. The research in this paper continues the inves-
tigation of the curvature invariants of warp drive spacetimes by calculating and plotting
them for the Alcubierre and Natário warp drives at a constant velocity.

2. Method to Compute the Invariants

The calculation of the complete set of CM invariants requires a metric gij and a null
tetrad pli, ki, mi, m̄iq as its inputs [26,27]. The metric can be used to calculate the affine
connection Γi

jk, the Riemann tensor Ri
jkl , the Ricci tensor Rij, the Ricci scalar R, the trace

free Ricci tensor Sij and the Weyl tensor Cijkl . The indices ti, j, ...u range from t0, 3u in
p3` 1q dimensions. The Newman–Penrose (NP) curvature components specifically require
the null tetrad, the Ricci Tensor, and the Weyl Tensor. The NP components are presented
in [27]. The complete set of thirteen CM invariants are defined in [17]. Only four of these
invariants are required by the syzygies for Class B spacetimes: the Ricci Scalar, the first two
Ricci invariants, and the real component of the Weyl Invariant J [18]. In terms of the NP
curvature coordinates, they are:

R “ gijRij, (1)

r1 “
1
4

Sj
i S

i
j

“ 2Φ20Φ02 ` 2Φ22Φ00 ´ 4Φ12Φ10 ´ 4Φ21Φ01 ` 4Φ2
11, (2)

r2 “ ´
1
8

Sj
i S

i
kSk

j

“ 6Φ02Φ21Φ10 ´ 6Φ11Φ02Φ20 ` 6Φ01Φ12Φ20 ´ 6Φ12Φ00Φ21 ´ 6Φ22Φ01Φ10 ` 6Φ22Φ11Φ00, (3)

w2 “ ´
1
8

C̄ijklC̄ijmnC̄kl
mn

“ 6Ψ4Ψ0Ψ2 ´ 6Ψ3
2 ´ 6Ψ2

1Ψ4 ´ 6Ψ2
3Ψ0 ` 12Ψ2Ψ1Ψ3. (4)

The tetrad components of the traceless Ricci Tensor are Φ00 through Φ22 [27]. The
complex tetrad components Ψ0 to Ψ5 are the six complex coefficients of the Weyl Tensor,
due to its tracelessness.

3. Warp Drive Spacetimes

Alcubierre and Natário developed warp drive theory using p3 ` 1q ADM
formalism [1,3]. It decomposes spacetime into space-like hyper-surfaces, parameterized by
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the value of an arbitrary time coordinate dx0 [28,29]. The proper time dτ “ Npxα, x0q dx0

separates two nearby hypersurfaces, x0 and x0 ` dx0. The p3` 1q ADM metric is

gij “

ˆ

g00 g0β

gα0 gαβ

˙

“

ˆ

´N2 ` NαNα Nβ

Nα gαβ

˙

. (5)

N is the lapse function between the hypersurfaces. Nα is the shift vector for each of
the hypersurface’s internal 3-geometries denoted by the indices tα, β, ...u that range from
t1, 3u. gαβ is the 3D metric of the spatial geometry of each hypersurface. A spacetime that
moves at an arbitrary but constant velocity corresponds to a choice in the lapse function N,
equaling the identity and the shift vector Nα, being a time-dependent vector field. Specific
choices of Nα may result in global velocities of the spacetime exceeding c. This principle
prompted the development of warp drive spacetimes.

The definition of a warp drive spacetime moving at a constant velocity is a globally
hyperbolic spacetime pM, gq, where M “ R4 and g are given by the line element

ds2 “ ´dt2 `

3
ÿ

α“1

pdxα ´ Xαdtq2. (6)

for three unspecified bounded smooth functions pXαq “ pX, Y, Zq in Cartesian
coordinates [1,3]. As it is a globally hyperbolic spacetime, it is classified as a B1
spacetime [18]. Therefore, the invariants in Equations (1)–(4) are the complete set needed
to classify a warp drive spacetime. The shift vector is given by the equation

X “ Xα B

Bxα
“ X

B

Bx
`Y

B

By
` Z

B

Bz
, (7)

and it forms a time-dependent vector field in Euclidean 3-space [3]. Each warp drive
spacetime considered in this article corresponds to specific choices of (7). The future
pointing normal covector to its Cauchy surface is ni “ ´dt ô ni “ B

Bt ` Xα B
Bxα “

B
Bt ` X.

Any observer that travels along this covector is an Eulerian and a free-fall observer. Finally,
a warp bubble with a constant velocity of vsptq along the positive x-axis results from a
vector field with X “ 0 in the interior and X “ ´vsptq in the exterior regions. The warp
drive line elements considered in this paper fulfill these conditions.

3.1. Alcubierre’s Warp Drive with a Constant Velocity

The line element for the Alcubierre warp drive in parallel covariant p3` 1q ADM and
in natural units (G “ c “ 1) is [1]

ds2 “ ´dt2 ` pdx´ vs f prsqdtq2 ` dy2 ` dz2. (8)

This is one of the simplest choices for a warp drive, and it describes a warp bubble
shaped by the function f prsq and traveling along the x-axis of a Cartesian coordinate
system at an arbitrary velocity vs. The range of its coordinates is p´8 ă px, y, zq ă 8q
with an origin at the beginning of the flight. The ship is assumed to move along the x-axis
of a Cartesian coordinate system. As a consequence, the shift vector Equation (7) will
only have an x-component, i.e., pX, Y, Zq “ p´vsptq f prsptqq, 0, 0q. The internal 3-geometry
of the hypersurfaces is flat, so gαβ “ δαβ in Equation (5). The velocity vector is given

by vsptq “
dxsptq

dt , where the subscript “s” denotes the position of the spaceship. vsptq is
the arbitrary speed with which the Eulerian observers inside the warp bubble move in
relation to Eulerian observers outside the warp bubble. The radial distance is rsptq “
a

px´ xsptqq2 ` y2 ` z2. This is the path an Eulerian observer takes starting inside the warp
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bubble and traveling to the outside of the bubble. The Alcubierre warp drive continuous
shape function, f prsq, defines the shape of the warp bubble. It is

f prsq “
tanh σprs ` ρq ´ tanh σprs ´ ρq

2 tanh σρ
. (9)

where σ is the skin depth of the warp bubble with units of inverse length and ρ is the
radius of the warp bubble. The parameters, σ ą 0 and ρ ą 0, are arbitrary apart from
being positive. Appendix A describes how to find the comoving null tetrads for both
the Alcubierre and Natário line elements. The comoving null tetrad describes light rays
traveling parallel with the warp bubble. For Equation (8), it is

li “ 1?
2

¨

˚

˚

˝

1` f prsqvs
´1
0
0

˛

‹

‹

‚

, ki “ 1?
2

¨

˚

˚

˝

1´ f prsqvs
1
0
0

˛

‹

‹

‚

,

mi “ 1?
2

¨

˚

˚

˝

0
0
1
i

˛

‹

‹

‚

, m̄i “ 1?
2

¨

˚

˚

˝

0
0
1
´i

˛

‹

‹

‚

.

(10)

This choice for the null tetrad will position the origin of the invariants at the start of the
flight. Any other appropriate choice will be related to what is derived in
Section 5 by polynomial functions. Applying Equations (8) and (10) to the complete
set of CM invariants, Equations (1)–(4), gives the four CM invariants for the Alcubierre
warp drive.

3.2. Natário Warp Drive at a Constant Velocity

Natário improved upon Alcubierre’s work by constructing a warp drive spacetime
such that no net expansion occurs [3]. His warp drive spacetime chose a shift vector rotated
around the x´axis in spherical polar coordinates. In natural units, its line element is

ds2 “ p1´ Xrs Xrs ´ XθXθqdt2 ` 2pXrs drs ` Xθrsdθqdt´ dr2
s ´ r2

s dθ2 ´ r2
s sin2 θdφ2. (11)

The line element uses the standard spherical coordinates of p0 ď rs ă 8; 0 ď θ ď
π; 0 ď ϕ ď 2πq, and p´8 ă t ă 8q [3].

The analysis in Section 5 relies on the following choices from Natário’s original paper.
The vector field in (7) is set to

X „ ´vsptqdrnprsqr2
s sin2 θdφs „ ´2vsnprsq cos θ ers ` vsp2nprsq ` rsn1prsqq sin θ eθ . (12)

Natário applied exterior derivatives and the Hodge Star ‹ product to the coordinates
of Equation (5) to transform them into spherical. A detailed outline of the derivation of
Equation (12) may be found in the appendices of [9,10].

The internal 3-geometry is set to be flat, so gαβ “ δαβ in Equation (5). As in the previous
section, vsptq is the constant speed for the Eulerian observers and nprsq is the shape function
of the warp bubble. The shape function is arbitrary, other than the conditions nprsq “

1
2 for

large r and nprsq “ 0 for small r. Natário’s chosen shape function is

nprsq “
1
2

«

1´
1
2

´

1´ tanhrσprs ´ ρqs
¯

ff

, (13)

where σ is the skin depth of the bubble with units of inverse length and ρ is the radius of
the bubble [10]. The front of the warp bubble corresponds to cos θ ą 0, and a compression
occurs there, centered at a distance of ρ along the radial direction. The back of the warp
bubble corresponds to cos θ ă 0, and an expansion occurs there, centered at a distance of ρ
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along the perpendicular direction. The comoving null tetrad describes geodesics traveling
parallel to the warp bubble. It is

li “ 1?
2

¨

˚

˚

˝

1` Xrs

´1
0
0

˛

‹

‹

‚

, ki “ 1?
2

¨

˚

˚

˝

1´ Xrs

1
0
0

˛

‹

‹

‚

,

mi “ 1?
2

¨

˚

˚

˝

Xθ

0
´r

ir sin θ

˛

‹

‹

‚

, m̄i “ 1?
2

¨

˚

˚

˝

Xθ

0
´r

´ir sin θ

˛

‹

‹

‚

.

(14)

It is emphasized at this moment that this choice for the null tetrad will center the
invariants on the harbor, which is defined as the flat portion of spacetime inside of the
warp bubble, as it travels. Any other appropriate choice will be related to what is derived
in Section 5 by polynomial functions. Plugging Equations (11) and (14) into the complete
set of CM invariants, Equations (1)–(4), the four CM invariants can be derived.

4. Invariants for the Alcubierre Warp Drive

The four curvature invariants in Equations (1)–(4) were computed and plotted in
Mathematica® for the Alcubierre line element Equation (8). Its invariant functions are

R “
1
2

σ2v2
s cothpρσq

ˆ

˜

4 tanh
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

sech2
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

´ 4 tanh
´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

sech2
´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

(15)

´ 2 sinhpρσq cosh3
pρσqsech4

´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

sech4
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

ˆ

ˆ

cosh
´

2σ
`

b

px´ tvsq2 ´ ρ
˘

¯

` cosh
´

2σ
`

ρ`
b

px´ tvsq2
˘

¯

´ 2 cosh
´

4σ
b

px´ tvsq2
¯

` 4
˙

¸

,

r1 “
1

16
σ4v4

s

˜

cosh4
pρσqsech4

´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

sech4
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

ˆ

ˆ

cosh
´

2σ
`

b

px´ tvsq2 ´ ρ
˘

¯

` cosh
´

2σ
`

ρ`
b

px´ tvsq2
˘

¯

´ 2 cosh
´

4σ
b

px´ tvsq2
¯

` 4
˙

` 2 cothpρσq

ˆ

tanh
´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

sech2
´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

(16)

´ tanh
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

sech2
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

˙

¸2

,

r2 “ 0, (17)

w2 “´
1

288
σ6v6

s

ˆ

˜

2 cothpρσq

ˆ

tanh
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

sech2
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

´ tanh
´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

sech2
´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

˙

(18)

´ cosh4
pρσqsech4

´

σ
`

b

px´ tvsq2 ´ ρ
˘

¯

sech4
´

σ
`

ρ`
b

px´ tvsq2
˘

¯

ˆ

ˆ

cosh
´

2σ
`

b

px´ tvsq2 ´ ρ
˘

¯

` cosh
´

2σ
`

ρ`
b

px´ tvsq2
˘

¯

´ 2 cosh
`

4σ
b

px´ tvsq2
˘

` 4
˙

¸3

.

While Equations (15)–(18) are very complicated functions, several features are appar-
ent from inspecting them directly. First, r2 is zero. It will not be plotted in Appendix C as
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its plots will all be of a single smooth disc and reveal no curvature. Next, each non-zero
invariant depends only on the tetrad elements t and x. The axes of all plots are chosen to
be these tetrad components. In addition, each of the non-zero invariants is proportional to
both the skin depth σn and the velocity, vn

s . It should be expected that the magnitude of
the invariants will then increase as these two parameters increase, with w2 increasing the
most. Finally, each invariant does not have any curvature singularities inside the spacetime
manifold. In the next subsections, the non-zero CM invariants will be analyzed to see any
individual effects of the parameters vs, ρ and σ.

The invariant plots for the Alcubierre warp drive may be found in the following
subsections and in Appendix C. They were plotted in Mathematica® using the Plot3D
function. The x´coordinate, t´coordinate, and the magnitude of the invariants are along
each axis. Since natural units were selected, the plots were normalized, such that c “ 1
and a slope of 1 in the x vs. t plane corresponds with the warp bubble traveling at light
speed. The presence of spacetime curvature may be detected on the plots by locating where
the invariant functions have a non-zero magnitude. When the invariant functions have a
positive magnitude, the spacetime has a positive curvature and vice versa.

The plots show a small range over the possible values of the parameters to demonstrate
many of the basic features of each invariant. First, the shape of each invariant resembles
the “top hat” function along each time slice [1]. However, there are some minor variations
between each invariant. The Ricci scalar R oscillates from a trough, to a peak, to a flat area,
to a peak and back to a trough. The r1 invariant simply has a peak with a flat area followed
by another peak. The w2 follows the reverse pattern, such as the R wavering from a peak,
into a trough, into a flat area, into a trough and returning back to a peak. In each invariant,
a ship could safely surf along the harbor. The central harbor disappears in Figure 1d–f
because the plots lack precision. By plotting more points and consequently taking longer
computational time, the central features will be recovered. The harbor’s width is less than
the precision computed in these later plots. Inspecting the functions, the harbor remains,
and choosing smaller time intervals allows it to reappear in the plots.

4.1. Invariant Plots of the Velocity for the Alcubierre Warp Drive

The plots for variable velocities are Figure 1 in this subsection and Figures A1 and A2
in Appendix C. Varying the velocity has several effects. First, it linearly increases the slope
of the peaks and troughs of the warp bubble in the x vs. t plane. This increase corresponds
with a constant Newtonian velocity for the warp bubble, and it may be observed that the
warp bubble’s velocity acts exactly like v “ x{t for an Eulerian observer. This observation
is a consistency check that the program has encoded the invariants correctly. Second, the
velocity causes the magnitude of the invariants to decrease exponentially. This observation
is in contrast to what was predicted by inspecting the leading terms of the invariants. It can
be concluded that the additional terms overpower the leading term. Next, the shape of the
warp bubble remains constant throughout the flight and the only effect of time is to increase
the slope in the x vs. t plane. Finally, the plots have no discontinuities, agreeing with the
previous statement that no singularities exist in the invariant functions. The invariant plots
reveal nothing that will affect a spaceship inside the harbor.
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(a) Plot of Alcubierre R with vs “ 0 c

(b) Plot of Alcubierre R with vs “ 1 c

(c) Plot of Alcubierre R with vs “ 2 c

(d) Plot of Alcubierre R with vs “ 3 c

(e) Plot of Alcubierre R with vs “ 4 c (f) Plot of Alcubierre R with vs “ 5 c

Figure 1. Plots of the R invariants for the Alcubierre warp drive while varying its velocity. σ = 8 m´1 and ρ “ 1 m as
Alcubierre originally suggested in his paper [1]. Equation (8) is in natural units, so the speed of light was normalized out of
the equation. The factor of c was included in these captions to stress that the plots are of multiples of the speed of light.
Their units are m s´1.

4.2. Invariant Plots as a Function of the Skin Depth for the Alcubierre Warp Drive

The plots for varying skin depth are included in Figure 2 in this subsection and
Figures A3 and A4 in Appendix C. Repeating the method of Section 4.1, the parameter σ has
been varied between values of 1 m´1 and 10 m´1 while maintaining the other parameters
at the constant values of ρ “ 1 m and σ “ 8 m´1. Many of the features in these plots are
the same as those discussed at the beginning of Section 4.1; thus, the skin depth variation
reveals two additional features. First, the plots advance towards the “top hat” function
by slowly straightening out any dips. This feature is most notable in the plots of r1 in
Figures 2a and A3a. Multiple ripples occur in these two plots initially, but then gradually
smooth out as σ increases. These unforeseen ripples could be the source of a rich internal
structure inside the warp bubble similar to what was observed in the accelerating Natário
warp drive [25]. Second, the relative magnitude of the Ricci scalar and r1 is several orders
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of magnitude greater than that of w2. This can be seen as σ Ñ 8 m´1, as the Ricci scalar
goes to 10´9, r1 goes to 10´11, and w2 goes to the order of 10´28. Consequently, the trace
terms of the Riemann tensor that will have the greatest effect on the curvature are the Ricci
scalar and r1, which are members of the Ricci invariants in Equations (1) and (4). The terms
of the Weyl tensor will have negligible effects, since w2 is a member of the Weyl tensor
in Equation (4). The main effects of varying the skin depth is to decrease the magnitude
of the warp bubble’s curvature exponentially. This can be seen in each of the invariants
as the magnitude decreases from being on the order of 10´3 to 10´28. The exponential
decrease implies that thinner values for the warp bubble’s skin depth σ would propel itself
at greater velocities due to the greater amount of curvature.

(a) Plot of Alcubierre R with σ “ 1 m´1 (b) Plot of Alcubierre R with σ “ 2 m´1

(c) Plot of Alcubierre R with σ “ 4 m´1
(d) Plot of Alcubierre R with σ “ 6 m´1

(e) Plot of Alcubierre R with σ “ 8 m´1
(f) Plot of Alcubierre R with σ “ 10 m´1

Figure 2. Plots of the R invariant for the Alcubierre warp drive while varying skin depth. The
parameters were chosen as vs “ 1 c and ρ “ 1 m to match the parameters Alcubierre originally
suggested in his paper [1].

4.3. Invariant Plots as a Function of the Radius for the Alcubierre Warp Drive

The plots for varying the radius ρ of the Alcubierre warp bubble are included in
Figure 3 in this subsection and Figures A5 and A6 in Appendix C. Following the method
in Section 4.1, the parameter ρ has been varied between values of 0.1 m and 5 m, while



Universe 2021, 7, 21 10 of 33

maintaining the other parameters at the constant values of σ “ 8 m´1 and vs “ 1c.
Many of the features in these plots are the same as those discussed at the beginning of
Section 4.1, but the variation of the radius does reveal an additional feature. The spatial size
of the harbor inside the warp bubble is directly affected by the value of ρ. By inspecting
the x-axis of each plot, the size of the harbor is of the same value as that of ρ. This behavior
is as expected of the radius ρ, which confirms that the program is encoded correctly. Of
greater interest, the magnitude of the invariants does not have a clear correlation with
ρ. As an example, consider the r1 plots in Figure A5. When ρ = 0 m, the r1 invariant has
its lowest magnitude of the order of 10´13. As the radius increases in the next four plots,
the invariant increases to an order of 10´8. At the largest value ρ = 5 m, the invariant
decreases to an order of 10´9. Inspecting the invariant function itself in Equation (16), ρ
does not seem to have a noticeable relationship that explains this behavior. In conclusion,
the radius ρ defines the size of the harbor and the warp bubble. It must always be chosen
large enough for the ship to be unaffected by the curvature of the warp bubble itself.

(a) Plot of Alcubierre R with ρ “ 0.1 m (b) Plot of Alcubierre R with ρ “ 1 m

(c) Plot of Alcubierre R with ρ “ 2 m (d) Plot of Alcubierre R with ρ “ 3 m

(e) Plot of Alcubierre R with ρ “ 4 m (f) Plot of Alcubierre R with ρ “ 5 m

Figure 3. Plots of the R invariant for the Alcubierre warp drive while varying radius. The other
parameters were chosen as σ “ 8 m´1 and vs “ 1 c to match the parameters Alcubierre originally
suggested in his paper [1].
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5. Invariants for the Natário Warp Drive

The four curvature invariants in Equations (1)–(4) were computed and plotted in
Mathematica® for the Natário line element Equation (11). Its Ricci scalar is

R “´
1
8

σ2v2
s sech4`σpr´ ρq

˘

(19)

ˆ

´

cosp2θq ` r2σ2 sin2pθq tanh2 `σpr´ ρ
˘

´ 2rσ sin2pθq tanhpσpr´ ρqq ` 2
¯

.

The Ricci scalar is included alone in this section as a demonstrative example due to
its simplicity. The remaining three are significantly more complicated and are included in
Appendix B.

As with the Alcubierre invariants, the Natário invariants are exceptionally compli-
cated, but some features may be observed by inspecting their functions. The first significant
difference between the two line elements is that the Natário invariants do not depend
on time, but instead on the parameters r and θ. As a consequence, the coordinates for
the plots are chosen to be r and θ. Since the warp bubble skims along the comoving null
tetrad in Equation (14), they will show the shape of the bubble around the ship during
flight. Similar to the Alcubierre invariants, each invariant is proportional to both vn

s and
σn. The magnitude of the bubble’s curvature will then increase exponentially with both
velocity and skin depth. In addition, the Natário invariants are proportional to cosnp θ

2 q and
sechn

pσpr´ ρqq. The warp bubble is shaped such that the curvature is at a maximum in
front of the ship around θ

2 “ 0 and a minimum behind the ship around θ
2 “

π
2 . It is at a

maximum for r “ ρ along the center of the warp bubble, since there sechp0q “ 1. Outside
these values, the curvature should then fall off and go asymptotically to 0. These features
show that the Natário warp bubble also uses a “top-hat” function described in [1]. Finally,
there are no curvature singularities. The manifold is asymptotically flat and completely
connected. The flight of such a warp bubble should be significantly less affected by any
gravitational tidal forces, as compared to the Alcubierre metric in the previous section. The
CM curvature invariants confirm that the Natário warp drive is a more realistic alternative
to Alcubierre’s.

The invariant plots for the Natário warp drive may be found in the following subsec-
tions and in Appendix D. They were plotted in Mathematica® using the RevolutionPlot3D
function. The r´coordinate, θ´coordinate, and the magnitude of the invariants are along
each axis. The presence of spacetime curvature may be detected in a similar manner to the
Alcubierre plots. When the invariant functions have a positive magnitude, the spacetime
has a positive curvature and vice versa. For the Natário invariants, the spacetime curvature
lies in the area around r “ ρ.

Despite the complexity of the invariants, the shape of the invariant plots is simple.
It forms a very narrow and jagged ring, as in Figure 4. Precisely at the warp bubble’s
boundary located at r “ ρ, the CM curvature invariants spike to non-zero magnitudes
depending on the invariant. The Ricci scalar R takes the form of a smooth disc outside
the warp bubble. The shape of the r1 invariant is that of a jagged disc at r “ ρ. The disc
has jagged edges in the negative direction, with sharp spikes at radial values r “ ρ and
at polar angle values of θ “ 0 and θ “ π. The shape of the r2 invariant is that of a jagged
disc at r “ ρ. Its edges vary between positive and negative values depending on the polar
angle θ. Similarly, the shape of the w2 invariant is that of a jagged disc at r “ ρ. In front of
the harbor (θ ą 0), the invariant has rapidly changing negative values between ´1 and 0.
Behind the harbor (θ ă 0), the invariant has rapidly changing positive values between 0
and 1. The jagged edges of the plots must mean that the r1, r2 and w2 invariants oscillate
rapidly between values of ´1 and 1 along the circumference of the warp bubble. These
oscillations must be occurring more rapidly than the program can plot. Outside of the
warp bubble, the spacetime is more well behaved. For values of r " ρ, the magnitude of
each invariant is zero and the spacetime is asymptotically flat. For values of r ă ρ inside
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the warp bubble, the invariants’ magnitude is also zero. As with the Alcubierre warp drive,
this implies that there is a harbor unaffected by the curvature of the warp bubble.

In contrast to the accelerating Natário warp drive, the constant velocity Natário warp
drive does not feature either a wake or a constant non-zero curvature outside of the warp
bubble for the Ricci Scalar [25]. It can be concluded that these features are due to the
acceleration of the warp drive. On the other hand, the invariant plots for the accelerating
Natário line element contain features of the constant velocity plots. Since the constant
velocity plots are zero everywhere except at r “ ρ, their impact is along the warp bubble’s
edge for the accelerating invariants. In the remainder of this section, the effect of each of
the parameters: velocity vs, skin depth σ, and radius ρ is analyzed individually.

5.1. Invariant Plots of the Velocity for the Natário Warp Drive

Figure 4 in this subsection and Figures A7–A9 in Appendix D plot the Natário in-
variants while varying the velocity. The plots reveal several new aspects of the invariant
functions. First, the manifold is completely flat when vs “ 0 ms´1 for each invariant, as
expected. For the Ricci scalar, a non-zero velocity causes the invariant’s magnitude to
jump to a small negative value along the warp bubble’s circumference at r “ ρ. For r1, an
increase in velocity causes the magnitude of the invariant to swap from negative values
to positive values as the velocity increases along the circumference of the warp bubble.
For r2, an increase in velocity causes the magnitude of the invariant to swap from positive
values to negative values along the circumference of the warp bubble. For w2, an increase
in velocity changes the magnitude of the invariant between positive values to negative
values as the velocity increases along the semicircle of the warp bubble behind the harbor.
In front of the harbor, the w2 invariant function remains negative regardless of the velocity
along the warp bubble’s circumference.

The prediction of an exponential increase in the magnitude of the invariants due to the
velocity is not consistent with the invariants’ plots. A potential reason for this discrepancy
is a dominant term inside each of the invariants that overcomes the exponential increase in
the velocity. The dominant term in the invariant functions must either not depend on vs
or the values for σ are the dominant factor. The research in this paper may be extended
to include either greater values of vs or lower values of the other parameters to further
investigate this discrepancy.

5.2. Invariant Plots as a Function of the Skin Depth for the Natário Warp Drive

Figure A10 plots the Natário invariants while changing the skin depth from σ =
500,000 m´1 to σ = 100,000 m´1. Notably, the shape of the invariants remains the same.
Since sechpr´ ρq Ñ 1 as pr´ ρq Ñ 0, the spike in the invariant functions match the limiting
values of the sech function and Equation (13). The dominant term(s) in the invariant
function must then be proportional to sechpr´ ρq. The σ plots add further evidence that the
shape of the CM invariants is a consequence of the “top-hat” function selected for the shape
function in Equation (13). This conclusion indicates that the selection of the shape function
will control the shape of the warp bubble. This analysis of the Natário skin depth reaches
the same conclusion as discussed for the constant acceleration Natário invariants [25].



Universe 2021, 7, 21 13 of 33

(a) Plot of Natário R with v “ 0.0 c (b) Plot of Natário R with v “ 0.01 c

(c) Plot of Natário R with v “ 0.1 c (d) Plot of Natário R with v “ 1 c

(e) Plot of Natário R with v “ 10 c (f) Plot of Natário R with v “ 100 c

Figure 4. Velocity evolution of R, the Ricci scalar for the Natário warp drive at a constant velocity. The other parameters are
set to σ = 50,000 1

m and ρ = 100 m. Equation (11) is in natural units, so the speed of light was normalized out of the equation.
The factor of c was included in these captions to stress that the plots are of multiples of the speed of light. Their units are
ms´1.

5.3. Invariant Plots as a Function of the Radius for the Natário Warp Drive

As with the Alcubierre plots in Section 4.3, the main effect of changing ρ is that it
increases the size of both the warp bubble and the Natário safe harbor. As ρ increases
from ρ “ 50 m to ρ “ 100 m in Figure A11, the sizes of the safe harbor and the bubble
double. The spacing between the fringes in r1, r2, and w2 is not affected by changing ρ, nor
is the shape of the bubble. The plots confirm that the parameter ρ moderates the size of
the Natário warp bubble in the same fashion as Section 4.3 and the constant acceleration
Natário warp drive [25].
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6. Conclusions

This paper demonstrates how computing and plotting the curvature invariants for
various parameters of the Alcubierre and Natário warp drive spacetimes can reveal geo-
metrical features of the underlying curvature. The invariant functions contain no curvature
singularities in either warp drive spacetime manifold. As a consequence of the warp drive
spacetimes being able to being fully characterized by their invariants, they are I-non-
degenerate, and a horizon would be detected by a curvature singularity [20,22]. Since no
curvature singularities exist, the inside and outside of the warp drive must be connected. A
potential coordinate transformation may be discovered that will remove the known causal
discontinuity from them [12,13].

While the individual invariant functions are complex and require significant com-
putational time, their plots can be quickly scanned and understood. The plots give the
magnitude of curvature at each point around the ship. Where the plots’ magnitudes are
large, space is greatly curved and vice versa. For example, the curvature invariants’ plots
reveal a safe harbor for a ship to travel inside the warp bubble and an asymptotically flat
space outside the bubble in all cases. Additionally, by observing the changes in slopes of the
plots, the rate at which spacetime is being folded may be approximated. This information
will help in mapping the spacetime around the ship and aid potential navigation.

Next, the effect of the free parameters of the warp drive spacetimes were analyzed for
the curvature invariant functions and plots. The free parameters were varied individually
to see each invariant. At the radial position r “ ρ of the warp bubble(s), the curvature
invariants have local maxima or minima identifying that the location of the warp bubble is
at a radial distance of ρ from the harbor. The sharp peaks around the radial position are
due to the shape function converging to the “top-hat” function described by Alcubierre.
For the Alcubierre warp drive, the warp bubbles resemble two troughs with simple internal
structures. For the constant velocity Natário warp drive, the warp bubbles peak around
r “ ρ while displaying rich internal structures. The internal structures of these warp
bubbles are novel and require more diligent research to discover their effects on a warp
drive’s flight. With this knowledge, a computer will be able to calculate the needed values
of each free parameter to control the size, shape, and flight of a warp bubble.

Of particular interest is how the invariants of the constant velocity Natário warp drive
compare to the invariants of the Natário warp drive at a constant acceleration [25]. The
main difference between the two is the lack of a wake for each invariant and a constant
non-zero curvature outside of the warp bubble for the Ricci scalar. The other parameters
of skin depth σ and radius ρ behave similarly for both warp drives. It can be concluded
that the wake and constant non-zero curvature will appear as the warp drive undergoes
an acceleration to reach a velocity greater than c. Potentially, the wake produced by the
constant acceleration of spacetime may produce high frequency gravitational waves. As a
physical consequence, these waves would only be detectable during the accelerating phase
of a warp drive’s flight, not during the constant velocity phase. More research is needed
to explore these features and their impact on a warp drive, its flight and its surrounding
spacetime.

Computing and plotting the invariant functions has significant advantages for the
inspection and potential navigation of warp drives. However, further investigation re-
mains for warp drive curvature invariants. Those presented in this paper may be used to
determine each warp drive spacetime’s Petrov type of its Weyl tensor and Segre type of its
Ricci tensor. As mentioned previously, plotting the invariants has the advantages that they
are free from coordinate mapping distortions, divergences, discontinuities or other artifacts
of the chosen coordinates. Once the invariant plots reveal the location of any artifacts,
their position can be related mathematically to the standard tensors, and their effect(s)
on an object’s motion can be analyzed. The invariant plots properly illustrate the entire
underlying spacetime, independent of a chosen coordinate system. A second advantage
is the relative ease with which the invariants can be plotted. Software packages exist or
can be developed to calculate the standard tensors. The aforementioned tensors lead to a
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chosen basis of invariants. While the CM invariants were chosen in this paper, other sets of
invariants exist, such as the Cartan invariants and the Witten and Petrov invariants [22,30].
It is an open challenge to inspect the curvature of the warp drive spacetimes in these
invariant sets. For example, the Cartan invariants may be computed for the Alcubierre
and Natário warp drives. Then, their invariants may be compared with the invariants of
other spacetimes, such as wormholes for equivalence. It is expected that the main features
identified in this paper will also hold in these different bases.

In addition to inspecting different invariant bases, further work can be done in map-
ping warp drive spacetimes, such as Alcubierre’s at a constant acceleration, Krasnikov’s
at either constant velocity or constant acceleration, or Van Den Broeck’s at either constant
velocity or constant acceleration [4,5,10]. In addition, the lapse functions for the Krasnikov
and Van Den Broeck’s warp drives would need to be identified and then their accelerating
line elements could be derived. After plotting their line elements for the invariants, the
equivalence problem may be considered for all warp drive spacetimes. After their calcula-
tion, each proposed warp drive’s curvature invariants may be compared and contrasted
to their corresponding invariants at a constant velocity, as discussed in this paper. In this
manner, any equivalent spacetime may be identified and any additional subclasses of warp
drive spacetimes will be revealed.

Another potential application of this research is in solving the geodesic equation for
the warp drive spacetimes [3]. The affine connection, Riemann tensor, Ricci tensor, Weyl
tensor, and Ricci scalar were all calculated in the process of finding the curvature invariants
for the Alcubierre and Natário warp drives. Simple modifications of the Mathematica®

program would allow the geodesic structure and deviation to be found for these warp
drives. In many ways, the work considered in this paper is just the beginning to using
curvature invariants to analyze warp drive spacetimes.
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Appendix A. Null Vectors of the Alcubierre and Natário Line Elements

A null tetrad contains two real null vectors, k and l, and two complex conjugate null
vectors, m and m̄ that satisfy the following algebraic relationships [27]:

ei “ pm, m̄, l, kq, (A1)

gij “ 2mpim̄jq ´ 2kpiljq “

¨

˚

˚

˝

0 1 0 0
1 0 0 0
0 0 0 ´1
0 0 ´1 0

˛

‹

‹

‚

. (A2)
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If an orthonormal tetrad, Ea, exists for a given metric, it can be related to a complex
null tetrad (A1) by:

li “
1
?

2
pE1 ` E2q, ki “

1
?

2
pE1 ´ E2q,

(A3)

mi “
1
?

2
pE1 ` iE2q, m̄i “

1
?

2
pE1 ´ iE2q.

The orthonormal tetrad for the Alcubierre line element in (8) is:

E1 “
`

1 0 0 0
˘

, E2 “
`

vs f prsq ´ 1 0 0
˘

,

(A4)

E3 “
`

0 0 1 0
˘

, E4 “
`

0 0 0 1
˘

.

The Natário line element in (11) has an orthonormal tetrad:

E1 “
`

1 0 0 0
˘

, E2 “
`

Xrs ´ 1 0 0
˘

,

(A5)

E3 “
`

Xθ 0 ´ r 0
˘

, E4 “
`

0 0 0 r sin θ
˘

.

Using Mathematica®, it can be verified that

gij “ Ei ¨ Ej, (A6)

and by applying the Equations (A3) to (A5) and (A6) the null vectors in (10) and (14)
result, respectively.

Appendix B. Invariants for the Natário Line Element at Constant Velocity

The four curvature invariants in Equations (1)–(4) were computed and plotted in
Mathematica® for the Natário line element Equation (11). The Ricci scalar is included
alone in the main body of text in Equation (19). The remaining three are significantly
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more complicated and are included in herein. They share the features of the Ricci Scalar
identified in Section 5.

r1 “
1

1024r2 v2
s σ2 cos8p

θ

2
qsech4

ppr´ ρqσq

˜

p32r4v2
s σ4psinp

θ

2
q

´ sinp
3θ

2
qq2 tanh6

ppr´ ρqσq ` 64r3v2
s σ3prσ´ 1qpsinp

θ

2
q

´ sinp
3θ

2
qq2 tanh5

ppr´ ρqσq

´ 4r2σ2p´r2σ2v2
s ` 4rσv2

s ` pr
2σ2 ´ 4rσ´ 4q cosp4θqv2

s ´ 12v2
s ` 16r2σ2

´ 8pv2
s ` 2r2σ2q cosp2θqq sec2p

θ

2
q tanh4

ppr´ ρqσq ` 2rσp´4r2σ2v2
s ` 48rσv2

s

` p4r2σ2 ` 16rσ` 3q cosp4θqv2
s ´ 7v2

s ` 192r2σ2

` 4pv2
s p8rσ` 1q ´ 48r2σ2q cosp2θqq sec2p

θ

2
q tanh3

ppr´ ρqσq

` p48r2σ2v2
s ´ 28rσv2

s ` p16r2σ2 ` 12rσ´ 3q cosp4θqv2
s ` 7v2

s ´ 768r2σ2

` 4pp8r2σ2 ` 4rσ´ 1qv2
s ` 160r2σ2q cosp2θqq sec2p

θ

2
q tanh2

ppr´ ρqσq

` 2p´7rσv2
s ` 3prσ´ 1q cosp4θqv2

s ` 7v2
s ` 320rσ

` 4pv2
s prσ´ 1q ´ 16rσq cosp2θqq sec2p

θ

2
q tanhppr´ ρqσq

´ 2p3 cosp2θq ` 5qpcosp2θqv2
s ´ v2

s ` 32q sec2p
θ

2
qq sec6p

θ

2
q

´ 16rσsech2
ppr´ ρqσq tan2p

θ

2
qp2r3v2

s σ3p3 cosp2θq ´ 1q tanh4
ppr´ ρqσq

` r2v2
s σ2p2rσ` p10rσ´ 9q cosp2θq ` 9q tanh3

ppr´ ρqσq

` rσpp4r2σ2 ` 5rσ´ 9qv2
s

` p4r2σ2 ´ 13rσ` 9q cosp2θqv2
s ´ 32r2σ2q tanh2

ppr´ ρqσq

` pp´4r2σ2 ´ 5rσ` 9qv2
s ´ p4r2σ2 ´ 13rσ´ 7q cosp2θqv2

s ` 96r2σ2q tanhppr´ ρqσq

` 9v2
s ` 4rv2

s σ´ 32rσ` 7v2
s cosp2θq ` 4rv2

s σ cosp2θqq

sec4p
θ

2
q `

1
4

r2σ2sech4
ppr´ ρqσqpp4r2σ2v2

s ` 16rσv2
s ´ p4r2σ2 ` 16rσ´ 3q cosp4θqv2

s

` 109v2
s ´ 64r2σ2 ´ 4pv2

s ´ 16r2σ2q cosp2θqq sec8p
θ

2
q

´ 416r2v2
s σ2pcosp2θq ´ 2q tan2p

θ

2
q tanh2

ppr´ ρqσq sec4p
θ

2
q

´ 64rv2
s σp2rσ` 2r cosp2θqσ` 17q tan2p

θ

2
q tanhppr´ ρqσq sec4p

θ

2
q

` 704r4v2
s σ4 tan4p

θ

2
q tanh4

ppr´ ρqσq ´ 2816r3v2
s σ3 tan4p

θ

2
q tanh3

ppr´ ρqσqq

¸

, (A7)
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r2 “ ´
1

32768r3 3v4
s σ3 cos12p

θ

2
qsech6

ppr´ ρqσqp
1
2
ptanhppr´ ρqσq ` 1q

ˆ p512r5v2
s σ5 cos4pθq tan2p

θ

2
q tanh7

ppr´ ρqσq ` 32r4v2
s σ4p4rσ`

ˆ p4rσ´ 3q cosp2θq ´ 5q sec2p
θ

2
qpsinp

θ

2
q ´ sinp

3θ

2
qq2 tanh6

ppr´ ρqσq

` 4r3σ3p2r2σ2v2
s ´ 10rσv2

s ´ 2pr2σ2 ´ 5rσ´ 4q cosp4θqv2
s ´ r2σ2 cosp6θqv2

s

` 3rσ cosp6θqv2
s ` 4 cosp6θqv2

s ` 24v2
s ´ 64r2σ2

` ppr2σ2 ´ 3rσ` 28qv2
s ` 64r2σ2q cosp2θqq sec4p

θ

2
q tanh5

ppr´ ρqσq

` 2r2σ2p´10r2σ2v2
s ` 96rσv2

s ` 3r2σ2 cosp6θqv2
s ` 16rσ cosp6θqv2

s

` 4 cosp6θqv2
s ´ 20v2

s ` 816r2σ2 ` pv2
s p´3r2σ2 ` 112rσ` 12q ´ 832r2σ2q cosp2θq

` 2pp5r2σ2 ` 16rσ` 2qv2
s ` 8r2σ2q cosp4θqq sec4p

θ

2
q tanh4

ppr´ ρqσq

` rσp96r2σ2v2
s ´ 80rσv2

s ` 16r2σ2 cosp6θqv2
s ` 16rσ cosp6θqv2

s ´ 3 cosp6θqv2
s

` 22v2
s ´ 3968r2σ2 ` pp112r2σ2 ` 48rσ´ 13qv2

s ` 3072r2σ2q cosp2θq

` 2pv2
s p16r2σ2 ` 8rσ´ 3q ´ 64r2σ2q cosp4θqq sec4p

θ

2
q tanh3

ppr´ ρqσq

` 2p´20r2σ2v2
s ` 22rσv2

s ` 4r2σ2 cosp6θqv2
s ´ 3rσ cosp6θqv2

s ´ cosp6θqv2
s

´ 2v2
s ` 2448r2σ2 ` pv2

s p12r2σ2 ´ 13rσ` 1q ´ 448r2σ2q cosp2θq

` 2pp2r2σ2 ´ 3rσ` 1qv2
s ` 24r2σ2q cosp4θqq sec4p

θ

2
q tanh2

ppr´ ρqσq

´ p´22rσv2
s ` 3rσ cosp6θqv2

s ` 4 cosp6θqv2
s ` 8v2

s ` 3136rσ` pp13rσ´ 4qv2
s

` 1024rσq cosp2θq ` pv2
s p6rσ´ 8q ´ 64rσq cosp4θqq sec4p

θ

2
q tanhppr´ ρqσq

` 32pcosp4θqv2
s ´ v2

s ` 112 cosp2θq ` 144q tan2p
θ

2
qq sec8p

θ

2
q

` 2r2σ2sech4
ppr´ ρqσq tan2p

θ

2
qp´32r5v2

s σ5pcosp2θq ´ 3q tan2p
θ

2
q tanh6

ppr´ ρqσq

´ 16r4v2
s σ4p´2rσ` p6rσ´ 7q cosp2θq ` 31q tan2p

θ

2
q tanh5

ppr´ ρqσq

` r3σ3p´4r2σ2v2
s ´ 57rσv2

s ` p4r2σ2 ´ 19rσ´ 9q cosp4θqv2
s ` 141v2

s ` 64r2σ2

` 4pv2
s p19rσ´ 37q ´ 16r2σ2q cosp2θqq sec4p

θ

2
q tanh4

ppr´ ρqσq

´ r2σ2p´12r2σ2v2
s ´ 69rσv2

s ` p12r2σ2 ` 17rσ´ 15q cosp4θqv2
s ` 215v2

s ` 320r2σ2

` 4p3v2
s p19rσ´ 6q ´ 80r2σ2q cosp2θqq sec4p

θ

2
q tanh3

ppr´ ρqσq

´ rσp60r2σ2v2
s ` 119rσv2

s ` p4r2σ2 ´ 31rσ` 29q cosp4θqv2
s ´ 157v2

s ´ 512r2σ2

` 8rσpp8rσ´ 23qv2
s ` 64rσq cosp2θqq sec4p

θ

2
q tanh2

ppr´ ρqσq

` p´128r3σ3 ` 12r3v2
s σ3 ´ 416r2σ2 ` 94r2v2

s σ2 ` 113rv2
s σ´ 98v2

s

` 4pp4r3σ3 ` 28r2σ2 ´ 12rσ´ 19qv2
s ` 136r2σ2q cosp2θq

` v2
s p4r3σ3 ` 18r2σ2 ´ 33rσ´ 18q cosp4θqq sec4p

θ

2
q tanhppr´ ρqσq

` 2p´r2σ2v2
s ´ 22rσv2

s ` pr
2σ2 ´ 2rσ´ 9q cosp4θqv2

s ´ 49v2
s ` 144r2σ2 ` 224rσ

` p16rσp7rσ` 6q ´ 2v2
s p12rσ` 19qq cosp2θqq sec4p

θ

2
qq sec4p

θ

2
q
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`
1
8

rσsech2
ppr´ ρqσqpr2σ2p72r2σ2v2

s ´ 664rσv2
s ` 44r2σ2 cosp6θqv2

s

` 44rσ cosp6θqv2
s ` 69 cosp6θqv2

s ` 750v2
s ´ 3904r2σ2

` pp´108r2σ2 ` 532rσ` 139qv2
s ` 5376r2σ2q cosp2θq

´ 2pp4r2σ2 ´ 44rσ´ 97qv2
s ` 736r2σ2q cosp4θqq tanh4

ppr´ ρqσq sec8p
θ

2
q

` 2rσp512r3σ3 ´ 16r3v2
s σ3 ` 8r3v2

s cosp6θqσ3 ` 2240r2σ2 ´ 130r2v2
s σ2

` 5r2v2
s cosp6θqσ2 ` 726rv2

s σ` 73rv2
s cosp6θqσ´ 186v2

s

` pv2
s p´8r3σ3 ` 139r2σ2 ` 135rσ` 137q ´ 256r2σ2p2rσ` 13qq cosp2θq

` 2pp8r3σ3 ´ 7r2σ2 ` 109rσ` 13qv2
s ` 544r2σ2q cosp4θq

` 23v2
s cosp6θqq tanh3

ppr´ ρqσq sec8p
θ

2
q

` p´3968r3σ3 ` 48r3v2
s σ3 ´ 8r3v2

s cosp6θqσ3 ´ 3328r2σ2 ` 654r2v2
s σ2

` 85r2v2
s cosp6θqσ2 ´ 728rv2

s σ` 100rv2
s cosp6θqσ` 112v2

s

` pp8r3σ3 ` 123r2σ2 ` 540rσ´ 82qv2
s ` 3584r2σ2prσ` 2qq cosp2θq

` pp´48r3σ3 ` 290r2σ2 ` 88rσ´ 32qv2
s ` 384r2σ2prσ´ 6qq cosp4θq

` 2v2
s cosp6θqq tanh2

ppr´ ρqσq sec8p
θ

2
q ` 2p8rσv2

s ` 4rσ cosp6θqv2
s

` cosp6θqv2
s ` 56v2

s ´ 704rσ` p256prσ` 7q ´ v2
s p4rσ` 41qq cosp2θq

´ 8pv2
s prσ` 2q ´ 4p14rσ` 3qq cosp4θq ` 1184q sec8p

θ

2
q

` 2p´24r2σ2v2
s ´ 170rσv2

s ` 4r2σ2 cosp6θqv2
s

` 31rσ cosp6θqv2
s ` 2 cosp6θqv2

s ` 112v2
s ` 2112r2σ2 ´ 192rσ

´ pp4r2σ2 ´ 129rσ` 82qv2
s ` 256rσp5rσ` 12qq cosp2θq ` 2pp12r2σ2 ` 5rσ´ 16qv2

s

` 32rσp3´ 13rσqq cosp4θqq tanhppr´ ρqσq sec8p
θ

2
q

´ 64r4σ4p´r2σ2v2
s ` 8rσv2

s ` pr
2σ2 ´ 8rσ` 3q cosp4θqv2

s ´ 23v2
s ` 16r2σ2

´ 4p3v2
s ` 4r2σ2q cosp2θqq tan2p

θ

2
q tanh6

ppr´ ρqσq sec4p
θ

2
q

` 32r3σ3p´8r2σ2v2
s ` 68rσv2

s ` p8r2σ2 ´ 20rσ´ 13q cosp4θqv2
s ´ 119v2

s ` 256r2σ2

` 4pv2
s p4rσ´ 15q ´ 64r2σ2q cosp2θqq tan2p

θ

2
q tanh5

ppr´ ρqσq sec4p
θ

2
q

` 2048r6v2
s σ6 cos2pθq tan4p

θ

2
q tanh8

ppr´ ρqσq

` 4096r5v2
s σ5prσ´ 2q cos2pθq tan4p

θ

2
q tanh7

ppr´ ρqσqq sec4p
θ

2
q

` r3σ3sech6
ppr´ ρqσqp´

1
16
p´p3p2r2σ2 ` 8rσ´ 69qv2

s ` 256r2σ2q cosp2θq

` 4p3pr2σ2 ` 4rσ` 11qv2
s ` 40r2σ2q cosp4θq ` 3pv2

s p2r2σ2 ` 8rσ` 3q cosp6θq

´ 4pv2
s pr

2σ2 ` 4rσ´ 7q ´ 8r2σ2qqq sec12p
θ

2
q ´

1
2

r2σ2p´4r2σ2v2
s ´ 32rσv2

s

` p4r2σ2 ` 32rσ` 45q cosp4θqv2
s ´ 201v2

s ` 64r2σ2

` 4p69v2
s ´ 16r2σ2q cosp2θqq tan2p

θ

2
q tanh2

ppr´ ρqσq sec8p
θ

2
q

` rσp´4r2σ2v2
s ´ 52rσv2

s ` p4r2σ2 ` 4rσ` 33q cosp4θqv2
s ´ 61v2

s ` 64r2σ2
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` pv2
s p52´ 48rσq ´ 64r2σ2q cosp2θqq tan2p

θ

2
q tanhppr´ ρqσq sec8p

θ

2
q

´ 16r4v2
s σ4p20 cosp2θq ´ 27q tan4p

θ

2
q tanh4

ppr´ ρqσq sec4p
θ

2
q

´ 64r3v2
s σ3prσ` prσ´ 4q cosp2θq ` 13q tan4p

θ

2
q tanh3

ppr´ ρqσq sec4p
θ

2
q

` 192r6v2
s σ6 tan6p

θ

2
q tanh6

ppr´ ρqσq ´ 1152r5v2
s σ5 tan6p

θ

2
q tanh5

ppr´ ρqσqqq, (A8)

w2 “
1

2415919104
v4

s σ3sech6
ppr´ ρqσqp´32v2

s σ3prvsσ sinpθqsech2
ppr´ ρqσq

` 2pvs cospθq ` vs sinpθq ` vspcospθq ` sinpθqq tanhppr´ ρqσq ` 4qq3

ˆ psech2
ppr´ ρqσqp6 cos2pθq ` 7 sin2pθq ` 4r2σ2 sin2pθq tanh2

ppr´ ρqσq

´ 8rσ sin2pθq tanhppr´ ρqσqq

´ 3p3 cosp2θq ` 1q tanhppr´ ρqσqptanhppr´ ρqσq ` 1qq3

`
27i
r3 sech8

ppr´ ρqσq sin4pθqpcoshp2pr´ ρqσqp4` 4iq ` p4` 4iq ` p1` iqvs cospθq

` ivs cospθ ` 2ipr´ ρqσq ` vs cospθ ´ 2ipr´ ρqσq ` p1` iqvs sinpθq

` p1` iqrvsσ sinpθq ` vs sinpθ ` 2ipr´ ρqσq

` ivs sinpθ ´ 2ipr´ ρqσqq2p´r2σ2v2
s ´ 2rσv2

s ` r2σ2 cosp2θqv2
s

` 2rσ cosp2θqv2
s ´ 2i cosp2θ ` 2ipr´ ρqσqv2

s ` p1´ iqrσ cosp2θ ` 2ipr´ ρqσqv2
s

´ i cosp2θ ` 4ipr´ ρqσqv2
s ` 2i cosp2θ ´ 2ipr´ ρqσqv2

s

` p1` iqrσ cosp2θ ´ 2ipr´ ρqσqv2
s ` i cosp2θ ´ 4ipr´ ρqσqv2

s ´ 2rσ sinp2θqv2
s

´ 2 sinp2θqv2
s ´ p1` iqrσ sinp2θ ` 2ipr´ ρqσqv2

s ´ 2 sinp2θ ` 2ipr´ ρqσqv2
s

´ sinp2θ ` 4ipr´ ρqσqv2
s ´ p1´ iqrσ sinp2θ ´ 2ipr´ ρqσqv2

s

´ 2 sinp2θ ´ 2ipr´ ρqσqv2
s ´ sinp2θ ´ 4ipr´ ρqσqv2

s ´ 2rσ sinhp2pr´ ρqσqv2
s

´ 4 sinhp2pr´ ρqσqv2
s ´ 2 sinhp4pr´ ρqσqv2

s ´ 2v2
s ´ 12 cospθqvs

´ p8` 4iq cospθ ` 2ipr´ ρqσqvs ´ p2` 2iq cospθ ` 4ipr´ ρqσqvs

´ p8´ 4iq cospθ ´ 2ipr´ ρqσqvs ´ p2´ 2iq cospθ ´ 4ipr´ ρqσqvs ´ 8rσ sinpθqvs

´ 12 sinpθqvs ´ p8´ 4iq sinpθ ` 2ipr´ ρqσqvs ´ 4rσ sinpθ ` 2ipr´ ρqσqvs

´ p2´ 2iq sinpθ ` 4ipr´ ρqσqvs ´ p8` 4iq sinpθ ´ 2ipr´ ρqσqvs

´ 4rσ sinpθ ´ 2ipr´ ρqσqvs ´ p2` 2iq sinpθ ´ 4ipr´ ρqσqvs

´ 2pprσ` 2qv2
s ` 16q coshp2pr´ ρqσq

´ 2pv2
s ` 4q coshp4pr´ ρqσq ´ 24qptanhppr´ ρqσq ` 1q

ˆ prσ tanhppr´ ρqσq ´ 1qpp4rσ´ vspr2σ2 ´ rσ` 1q cospθqq tanh3
ppr´ ρqσq

´ 3p2r2σ2 ` vspr2σ2 ´ rσ` 1q cospθq ´ 2q tanh2
ppr´ ρqσq

´ 3pvspr2σ2 ´ rσ` 1q cospθq ´ 4rσq tanhppr´ ρqσq ´ 2r2σ2 ´ r2vsσ2 cospθq

´ vs cospθq ` rvsσ cospθq ` sech2
ppr´ ρqσqp6r2σ2 ` vsp3r2σ2 ` rσ´ 3q cospθq

` p4rσ` vsp3r2σ2 ` rσ´ 1q cospθqq tanhppr´ ρqσq ` 6q ` 2q2
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`
2304

r2 v2
s pσ sin4pθqptanhppr´ ρqσq ` 1q2prσ tanhppr´ ρqσq ´ 1q2

ˆ prvsσ sinpθqsech2
ppr´ ρqσq

` 2pvs cospθq ` vs sinpθq ` vspcospθq ` sinpθqq tanhppr´ ρqσq ` 4qq

ˆ psech2
ppr´ ρqσqp6 cos2pθq ` 7 sin2pθq ` 4r2σ2 sin2pθq tanh2

ppr´ ρqσq

´ 8rσ sin2pθq tanhppr´ ρqσqq

´ 3p3 cosp2θq ` 1q tanhppr´ ρqσqptanhppr´ ρqσq ` 1qq

ˆ pr2v2
s σ2 sin2pθqsech4

ppr´ ρqσq

` 2rvsσp2 sinpθqpvs cospθq ` vs sinpθq ` 2q ` vsp2 sin2pθq ` sinp2θqq

ˆ tanhppr´ ρqσqqsech2
ppr´ ρqσq

` 2p´sech2
ppr´ ρqσqpcospθq ` sinpθqq2v2

s ` pcospθq ` sinpθqq2 tanh2
ppr´ ρqσqv2

s

` 6 cospθq sinpθqv2
s ` 3v2

s ` 8 cospθqvs ` 8 sinpθqvs

` 4pcospθq ` sinpθqqpvs cospθq ` vs sinpθq ` 2q tanhppr´ ρqσqvs ` 16qqq

´
144σ sin2pθq

r2 prvsσ sinpθqsech2
ppr´ ρqσq ` 2pvs cospθq ` vs sinpθq

` vspcospθq ` sinpθqq tanhppr´ ρqσq ` 4qq3psech2
ppr´ ρqσqp6 cos2pθq ` 7 sin2pθq

` 4r2σ2 sin2pθq tanh2
ppr´ ρqσq ´ 8rσ sin2pθq tanhppr´ ρqσqq

´ 3p3 cosp2θq ` 1q tanhppr´ ρqσqptanhppr´ ρqσq ` 1qq

ˆ prσp2rσ` vsprσ` 1q cospθqqsech2
ppr´ ρqσq

´ 2pr2vsσ2 cospθq tanh3
ppr´ ρqσq ` rσp2rσ` vsprσ´ 1q cospθqq tanh2

ppr´ ρqσq

` ppvs ´ rvsσq cospθq ´ 4rσq tanhppr´ ρqσq ` vs cospθq ´ 2qq

ˆ p
1
2

r2v2
s σ2prσ` 1q sinp2θqsech4

ppr´ ρqσq ` rσp´r2v2
s σ2 sinp2θq tanh3

ppr´ ρqσq

´ rv2
s σprσ´ 1q sinp2θq tanh2

ppr´ ρqσq ` 2v2
s cospθqprσ cospθq ` cospθq

` 2rσ sinpθqq tanhppr´ ρqσq ` 2v2
s prσ` 1q cos2pθq ` 4vsprσ` 1q cospθq

` rσpv2
s sinp2θq ´ 8qqsech2

ppr´ ρqσq

´ 2pr2v2
s σ2pcosp2θq ` sinp2θq ` 1q tanh4

ppr´ ρqσq

` 2rvsσ cospθqp2rσ` vsp2rσ´ 1q cospθq ` vsp2rσ´ 1q sinpθqq tanh3
ppr´ ρqσq

` p´8r2σ2 ` 4rvsprσ´ 1q cospθqσ` 2v2
s prσ´ 1q2 cos2pθq

` v2
s prσ´ 1q2 sinp2θqq tanh2

ppr´ ρqσq ` p´2prσ´ 2q cos2pθqv2
s

´ prσ´ 2q sinp2θqv2
s ´ 4prσ´ 1q cospθqvs ` 16rσq tanhppr´ ρqσq ` 2v2

s cos2pθq

` 4vs cospθq ` v2
s sinp2θq ` 8qq

`
864
r3 sin4pθqptanhppr´ ρqσq ` 1qprσ tanhppr´ ρqσq ´ 1qprvsσ sinpθqsech2

ppr´ ρqσq

` 2pvs cospθq ` vs sinpθq ` vspcospθq ` sinpθqq tanhppr´ ρqσq ` 4qq2

ˆ p
1
2

r2v2
s σ2prσ` 1q sinp2θqsech4

ppr´ ρqσq ` rσp´r2v2
s σ2 sinp2θq tanh3

ppr´ ρqσq

´ rv2
s σprσ´ 1q sinp2θq tanh2

ppr´ ρqσq ` 2v2
s cospθqprσ cospθq ` cospθq ` 2rσ sinpθqq

ˆ tanhppr´ ρqσq ` 2v2
s prσ` 1q cos2pθq ` 4vsprσ` 1q cospθq
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` rσpv2
s sinp2θq ´ 8qqsech2

ppr´ ρqσq

´ 2pr2v2
s σ2pcosp2θq ` sinp2θq ` 1q tanh4

ppr´ ρqσq

` 2rvsσ cospθqp2rσ` vsp2rσ´ 1q cospθq ` vsp2rσ´ 1q sinpθqq tanh3
ppr´ ρqσq

` p´8r2σ2 ` 4rvsprσ´ 1q cospθqσ` 2v2
s prσ´ 1q2 cos2pθq

` v2
s prσ´ 1q2 sinp2θqq tanh2

ppr´ ρqσq

` p´2prσ´ 2q cos2pθqv2
s ´ prσ´ 2q sinp2θqv2

s ´ 4prσ´ 1q cospθqvs

` 16rσq tanhppr´ ρqσq ` 2v2
s cos2pθq ` 4vs cospθq ` v2

s sinp2θq ` 8qq2q. (A9)

Appendix C. Invariant Plots for the Alcubierre Warp Drive

(a) Plot of Alcubierre r1 with and vs “ 0 c
(b) Plot of Alcubierre r1 with vs “ 1 c

(c) Plot of Alcubierre r1 with vs “ 2 c
(d) Plot of Alcubierre r1 with vs “ 3 c

(e) Plot of Alcubierre r1 with vs “ 4 c
(f) Plot of Alcubierre r1 with vs “ 5 c

Figure A1. Plots of the r1 invariants for the Alcubierre warp drive while varying velocity. The other parameters were
chosen as σ “ 8 m´1 and ρ “ 1 m to match the parameters Alcubierre originally suggested in his paper [1]. Equation (8) is
in natural units, so the speed of light was normalized out of the equation. The factor of c was included in these captions to
stress that the plots are of multiples of the speed of light. Their units are ms´1.
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(a) Plot of Alcubierre w2 with vs “ 0 c (b) Plot of Alcubierre w2 with vs “ 1 c

(c) Plot of Alcubierre w2 with vs “ 2 c (d) Plot of Alcubierre w2 with vs “ 3 c

(e) Plot of Alcubierre w2 with vs “ 4 c (f) Plot of Alcubierre w2 with vs “ 5 c

Figure A2. Plots of the w2 invariants for the Alcubierre warp drive while varying velocity. The radius was chosen as
ρ “ 1 m to match the parameters Alcubierre originally suggested in his paper [1]. The skin depth was chosen as σ = 2 m´1

to keep the plots as machine size numbers. Equation (8) is in natural units, so the speed of light was normalized out of the
equation. The factor of c was included in these captions to stress that the plots are of multiples of the speed of light. Their
units are ms´1.
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(a) Plot of Alcubierre r1 with σ “ 1 m´1 (b) Plot of Alcubierre r1 with σ “ 2 m´1

(c) Plot of Alcubierre r1 with σ “ 4 m´1 (d) Plot of Alcubierre r1 with σ “ 6 m´1

(e) Plot of Alcubierre r1 with σ “ 8 m´1 (f) Plot of Alcubierre r1 with σ “ 10 m´1

Figure A3. Plots of the r1 invariants for the Alcubierre warp drive while varying skin depth. The other parameters were
chosen as vs “ 1 c and ρ “ 1 m to match the parameters Alcubierre originally suggested in his paper [1].
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(a) Plot of Alcubierre w2 with σ “ 1 m´1 (b) Plot of Alcubierre w2 with σ “ 2 m´1

(c) Plot of Alcubierre w2 with σ “ 4 m´1 (d) Plot of Alcubierre w2 with σ “ 6 m´1

(e) Plot of Alcubierre w2 with σ “ 8 m´1 (f) Plot of Alcubierre w2 with σ “ 10 m´1

Figure A4. Plots of the w2 invariants for the Alcubierre warp drive while varying skin-depth. The radius and velocity were
chosen as ρ “ 1 m and vs “ 1 c to match the parameters Alcubierre originally suggested in his paper [1].
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(a) Plot of Alcubierre r1 with ρ “ 0.1 m (b) Plot of Alcubierre r1 with ρ “ 1 m

(c) Plot of Alcubierre r1 with ρ “ 2 m (d) Plot of Alcubierre r1 with ρ “ 3 m

(e) Plot of Alcubierre r1 with ρ “ 4 m (f) Plot of Alcubierre r1 with ρ “ 5 m

Figure A5. Plots of the r1 invariants for the Alcubierre warp drive while varying the radius. The other parameters were
chosen as σ “ 8 m´1 and vs “ 1 c to match the parameters Alcubierre originally suggested in his paper [1].
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(a) Plot of Alcubierre w2 with ρ “ 0.1 m (b) Plot of Alcubierre w2 with ρ “ 1 m

(c) Plot of Alcubierre w2 with ρ “ 2 m (d) Plot of Alcubierre w2 with ρ “ 3 m

(e) Plot of Alcubierre w2 with ρ “ 4 m (f) Plot of Alcubierre w2 with ρ “ 5 m

Figure A6. Plots of the w2 invariants for the Alcubierre warp drive while varying radius. The other parameters were chosen
as σ “ 8 m´1 and vs “ 1 c to match the parameters Alcubierre originally suggested in his paper [1].
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Appendix D. Invariant Plots for the Natário Warp Drive

(a) v “ 0.0 c (b) v “ 0.01 c

(c) v “ 0.1 c (d) v “ 1 c

(e) v “ 10 c (f) v “ 100 c

Figure A7. The velocity evolution of the r1 invariant for the Natário warp drive at a constant velocity. The other parameters
are set to σ = 50,000 1

m and ρ = 100 m. Equation (11) is in natural units, so the speed of light was normalized out of the
equation. The factor of c was included in these captions to stress that the plots are of multiples of the speed of light. Their
units are ms´1.
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(a) v “ 0.0 c (b) v “ 0.01 c

(c) v “ 0.1 c (d) v “ 1 c

(e) v “ 10 c (f) v “ 100 c

Figure A8. The velocity Evolution of the r2 invariant for the Natário warp drive at a constant velocity. The other parameters
are set to σ = 50,000 1

m and ρ = 100 m. Equation (11) is in natural units, so the speed of light was normalized out of the
equation. The factor of c was included in these captions to stress that the plots are of multiples of the speed of light. Their
units are ms´1.
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(a) v “ 0.0 c (b) v “ 0.01 c

(c) v “ 0.1 c (d) v “ 1 c

(e) v “ 10 c (f) v “ 100 c

Figure A9. The velocity evolution of the w2 invariant for the Natário warp drive at a constant velocity. The other parameters
are set to σ = 50,000 1

m and ρ = 100 m. Equation (11) is in natural units, so the speed of light was normalized out of the
equation. The factor of c was included in these captions to stress that the plots are of multiples of the speed of light. Their
units are ms´1.
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(a) The invariant R with σ = 50,000 1
m (b) The invariant R with σ = 100,000 1

m

(c) The invariant r1 with σ = 50,000 1
m (d) The invariant r1 with σ = 100,000 1

m

(e) The invariant r2 with σ = 50,000 1
m (f) The invariant r2 with σ = 100,000 1

m

(g) The invariant w2 with σ = 50,000 1
m (h) The invariant w2 with σ = 100,000 1

m

Figure A10. The warp bubble skin depth for R, r1, r2 and w2 for the Natário warp drive at a constant velocity. The other
parameters were chosen to be v “ 1 c, and ρ = 100 m in natural units.
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(a) The invariant R with ρ = 50 m (b) The invariant R with ρ = 100 m

(c) The invariant r1 with ρ = 50 m (d) The invariant r1 with ρ = 100 m

(e) The invariant r2 with ρ = 50 m (f) The invariant r2 with ρ = 100 m

(g) The invariant w2 with ρ = 50 m (h) The invariant w2 with ρ = 100 m

Figure A11. The warp bubble radius for the R, r1, r2, and w2 for the Natário warp drive at a constant velocity. The other
parameters were chosen to be v “ 1 c, and σ = 50, 000 m´1 in natural units.
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