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Abstract: Exceptional generalised geometry is a reformulation of eleven/ten-dimensional supergrav-
ity that unifies ordinary diffeomorphisms and gauge transformations of the higher-rank potentials of
the theory in an extended notion of diffeormorphisms. These features make exceptional generalised
geometry a very powerful tool to study consistent truncations of eleven/ten-dimensional super-
gravities. In this article, we review how the notion of generalised G-structure allows us to derive
consistent truncations to supergravity theories in various dimensions and with different amounts of
supersymmetry. We discuss in detail the truncations of eleven-dimensional supergravity to N = 4
and N = 2 supergravity in five dimensions.
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1. Introduction

A central problem in string theory is how to derive lower-dimensional effective
theories describing the universe we observe.

String theory is our best candidate for a unified description of all fundamental forces,
but at the price of a universe with ten (or eleven) space-time dimensions. To make contact
with observations, one considers solutions of string theory where the space-time is the
product of a non-compact space-time X and a compact manifold M, which is too small to
be observed.

The fluctuations around such solutions can be organised as particles in X whose
properties depend on the geometry of the internal manifold M. In the same way as
the Fourier expansion on a circle gives an infinite set of modes, the expansion of string
fluctuations on the internal manifold M gives an effective low energy theory with an
infinite set of modes in X, the Kaluza–Klein towers.

The question is then how to truncate the theory to a finite set of modes so that there
is no coupling between the modes that are kept and those that are discarded. In some
cases, such as compactifications on special holonomy manifolds, there is a clear notion of
light (massless) and heavy modes, and the effective theory is obtained by keeping only the
massless ones. In other cases, such as Anti de Sitter compactifications, there is no natural
separation between light and heavy modes, and a truncation procedure is required.

A consistent truncation is a procedure to truncate the Kaluza–Klein states to a finite
set in such a way that the dependence of the higher-dimensional fields on the internal
manifold factorises out once the truncation ansatz is plugged in the equations of motion.
This condition is what makes consistent truncations relatively rare and hard to prove (see,
for instance [1,2]).

Typically, a consistent truncation relies on the geometrical properties of the compacti-
fication manifold. The best known examples are Scherk–Schwarz reductions, where the
internal space is a group manifold G (or a quotient G/Γ by a freely acting discrete group
Γ) [3], and consistency is a consequence of keeping only modes invariant under the group
action. However, there are examples, such as the reductions of eleven-dimensional super-
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gravity on S7 [4] and on S4 [5], where the consistency is not a consequence of any manifest
symmetry.

In the last few years, reformulations of ten/eleven-dimensional supergravities such as
exceptional generalised geometry and exceptional field theory have considerably improved
the situation, and now we have a framework to systematically study consistent truncations
in different dimensions and with different amounts of supersymmetry. For instance, all
maximally supersymmetric truncations, conventional Scherk–Schwarz reductions as well
as sphere truncations, are interpreted as generalised Scherk–Schwarz reductions [6–11].
Thanks to this interpretation, it was possible to prove the long-standing conjecture of the
consistency of type IIB supergravity on S5 [6,10,12] and to reproduce [13,14] maximally
supersymmetric truncations of massive type IIA supergravity [15–17].

Truncations to half-maximal supergravities have also been explored rather exten-
sively [18–23], while N = 2 truncations have been studied in [24]. This approach also
allows one to give a proof [23] of the conjecture in [25] that given any supersymmetric
solution of ten/eleven-dimensional supergravity of the form AdSD ×M, one can construct
a consistent truncation to pure gauged supergravity in D dimensions containing that
solution and having the same supersymmetry.

In this article, we will review the exceptional generalised geometry approach to
consistent truncations. Exceptional generalised geometry provides a unified geometrical
interpretation of ordinary diffeomorphisms and gauge transformations of the higher-
rank potentials of eleven/ten-dimensional supergravities as generalised diffeomorphisms.
This is achieved by replacing the tangent bundle to a manifold M with a larger one, the
generalised tangent bundle, whose fibres transform as representations of the U-duality
group. In this language, the key notion to study consistent truncations is that of the
generalised GS-structure, namely the reduction of the structure group of the generalised
tangent bundle by nowhere vanishing generalised tensors on M. In [23], it was proved that
given a manifold M admitting a generalised GS-structure with singlet intrinsic torsion, a
consistent truncation of any field theory on M is obtained by expanding all the fields on
the GS invariant tensors and keeping only those transforming as singlets.

In this language, all maximally supersymmetric truncations correspond to generalised
parallelisable manifolds, namely to a generalised identity structure, while truncations
preserving less supersymmetry are based on generalised structures larger than the identity.
In all cases, the data of the generalised GS-structure are enough to determine all the features
of the lower-dimensional gauged supergravity: amount of supersymmetry, field content,
and the gaugings.

As a generalised GS-structure does not always correspond to an ordinary one, this
approach considerably enlarges the space of consistent truncations. In fact, all consistent
truncations of higher-dimensional supergravities around solutions of the type X × M,
where M is a Riemannian manifold of dimension d ≤ 7, should be described by generalised
GS-structures.

This paper is organised as follows. In Section 2, we will recall the basic notions of
ordinary GS-structures and how they are related to consistent truncations, while Section 3
contains the extension of these ideas to exceptional geometry. We will briefly discuss the
example of the generalised Scherk–Schwarz reduction and then show how this approach
allows us to prove the conjecture of [25] that any supersymmetric solution to ten/eleven-
dimensional supergravity that is a warped product of AdSD × M admits a consistent
truncation to pure gauged supergravity in D dimensions containing that solution and
having the same amount of supersymmetry.

Since the formalism is based on the exceptional U-duality groups, the details of the
truncation depend on the dimension of the internal manifold M. In Section 4, we focus
on truncations of eleven-dimensional supergravity giving rise to N = 4 and N = 2
five-dimensional theories. Rather than describing explicit examples of truncations, which
can be found in [23,24], we will discuss the general procedure and how the data of the
GS-structure on the internal manifold are mapped onto those of the truncated theory.
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2. Conventional G-Structures and Consistent Truncations

Before moving to generalised geometry, it is instructive to review what a conventional
GS-structure is and how it is related to consistent truncations.

A d-dimensional manifold M has a GS-structure if its structure group is reduced to
GS ⊂ GL(d,R). The GS-structure is defined by a set of GS-invariants, nowhere vanishing
tensors {Ξi}1. For example, an invariant metric tensor g or, equivalently, a subset of
orthonormal frames on M defines a GS = O(d) structure. This also implies that for
Riemannian manifolds, the possible GS-structures are all subgroups of O(d).

Any GS-structure is characterised by its intrinsic torsion. For Riemannian manifolds,
the intrinsic torsion can be defined via the action of the Levi–Civita connection on the
invariant tensors Ξi :

∇mΞi
n1 ...nr p1 ...ps = Km

n1 qΞi
q...nr p1 ...ps + · · ·+ Km

nr qΞi
n1 ...q

p1 ...ps

− Km
q

p1 Ξi
n1 ...nr q...ps + · · · − Km

q
ps Ξi

n1 ...nr p1 ...q.
(1)

The tensor Km
n

p is a section of T∗M ⊗ Λ2T∗M, where the indices m and n, p span
T∗M and Λ2T∗M, respectively. Decomposing Λ2T∗M ' SO(d) = g⊕ g⊥, where g is the
Lie algebra of GS, and using the fact that Ξi are GS-invariant, we see that K is actually a
section of T∗M⊗ g⊥.

The intrinsic torsion is defined as

(Tint)mn
p = Kn

p
m − Km

p
n (2)

and gives the part of the torsion that does not depend on the choice of connection. Tint can
be decomposed into GS representations, known as the “torsion classes” of the structure.
For consistent truncations, we are interested in GS-structures whose non-zero torsion
components are constant singlets under GS.

A series of papers showed that G-structures are powerful tools to study consistent
truncations [26–32].

Suppose a d-dimensional manifold M admits a GS-structure defining a set of invariant
tensors Ξi, with GS ⊃ O(d) and only constant, singlet intrinsic torsion. Then, a field
theory can be consistently truncated on M by expanding all the fields on the basis of
tensors Ξi, which encode the dependence on the internal space, and only keeping the fields
that are GS singlets. Since the intrinsic torsion has only singlet components, (1) implies
that the derivatives of the singlet fields can only contain singlets. Thus, the truncation
is necessarily consistent, since products of singlet representations can never source the
non-singlet representations that were truncated away.

If the theory includes spinors, the GS-structure lifts to a G̃S ⊂ Spin(d) structure, and
we simply have to expand the spinor fields in terms of the spinors invariant under G̃S.

The data of the GS-structure also determine the field content and gauge interactions
of the truncated theory.

For instance, we can easily determine the scalar and vector fields coming from the
reduction of the higher-dimensional metric. The scalars are the GS singlet components of
the metric. Since the metric parameterises the coset GL(d,R)/O(d), these are given by the
GL(d,R) deformations of a reference metric that commute with the GS modulo, the O(d)
deformations that commute with GS:

metric scalars ⇔ H ∈
ComGL(d,R)(GS)

ComO(d)(GS)
, (3)

where ComB(A) denotes the commutant of the subgroup A of B inside B.
The vectors coming from the metric are given by the GS-invariant one-forms ηa ∈ {Ξi}.

If we call η̂a the singlet vectors dual to ηa, we have

metric gauge fields ⇔ Aa
µ η̂a . (4)
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The components of the singlet intrinsic torsion are completely determined by the Lie
derivatives of the invariant tensors

Lη̂a Ξi = fai
j Ξj , (5)

where fai
j are constants. They also give the gauge algebra of the metric gauge fields via the

Lie bracket
[η̂a, η̂b] = fab

c η̂c . (6)

Conventional Scherk–Schwarz reductions on a group manifold M = G can be re-
interpreted in this language. The group manifold admits a basis of globally defined
(left-invariant) one-forms, {ea} ∈ T∗M, which reduce the structure group to GS = I.

The scalar fields of the truncated theory parameterise the coset

ComGL(d)(I)
ComSO(d)(I)

=
GL(d,R)

SO(d)
. (7)

The Maurer–Cartan equations

dea = fbc
aeb ∧ ec , (8)

with fbc
a structure constants of the Lie algebra g, imply that the identity structure has

singlet, constant intrinsic torsion since the exterior derivative of the invariant one-forms
are also expressed on the ea basis, and the coefficients of the expansion are constant.

The one-forms define d gauge fields with a Lie algebra given by the Lie bracket (6).
The consistent truncation ansatz for the metric is

ds2 = gµνdxµdxν + hab
(
ea + Aa)(eb + Ab) , (9)

where hab(x) is a matrix of scalar fields, and Aa
µ(x) are gauge fields in the adjoint of GS.

Another interesting example is the reduction of M-theory and type IIB on a Sasaki–
Einstein manifold M of dimension d = 2n+ 1 [26,29,30]. The manifold admits a GS = SU(n)
structure defined by a real one-form η, a real two-form ω, and a complex n-form Ω,
satisfying

dη = 2ω, dΩ = i (n + 1) η ∧Ω . (10)

Since only invariant tensors appear on the right-hand side of the differential condi-
tions (10), the intrinsic torsion has only constant singlet components. In this case, the metric
scalar manifold is

ComGL(2n+1,R)(SU(n))
ComSO(2n+1)(SU(n))

=
R+ ×C

U(1)
= R+ ×R+. (11)

As there is a single invariant one-form η, the truncated theory will contain only one
gauge field Aµ(x) coming from the metric. The ansatz for the metric is

ds2 = gµνdxµdxν + e2Uds2
2n + e2V(η + A)2, (12)

where ds2
2n is the (local) 2n-dimensional Kähler–Einstein metric defined by (ω, Ω). The

scalar fields U(x) and V(x) parametrise the scalar manifold.

3. Generalised G-Structures and Consistent Truncations

The approach based on conventional GS-structures have allowed several examples of
consistent truncations to be constructed [26–32], but there are other well-known examples
that do not admit such a description. This is the case, for instance, of maximally super-
symmetric consistent truncations on spheres, such as eleven-dimensional supergravity on
S7 [4] and S4 [5].
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By extending the notion of the GS-structure, exceptional generalised geometry [33,34]
allows these examples to be treated on the same footing as the conventional Scherk–
Schwarz reductions, and more generally, it provides a new systematic way to study consis-
tent truncations with a generic amount of supersymmetry: reducing a supergravity theory
on any manifold M admitting a generalised GS-structure with constant singlet intrinsic
torsion gives a consistent truncation [23].

In this section, we will give the main ideas without entering into the details of a
specific theory or compactification. If the discussion is too vague, the reader can skip to the
next section where truncations of M-theory to five dimensions are described in more detail.

Exceptional generalised geometry replaces the tangent bundle TM with a larger
bundle E on M, whose fibres transform in a representation of the exceptional group
Ed(d). In this way, the diffeomorphisms and gauge symmetries of higher-dimensional
supergravity are unified as generalised diffeomorphisms on E. Then, one can generalise
all conventional notions of differential geometry such as tensors, connections, and Lie
derivatives.

The bundle E is called the generalised tangent bundle, and its sections are generalised
vectors. The dual generalised vectors are sections of the bundle E∗, and generalised tensors
are obtained by tensoring E and/or E∗. For example, we will need the dual vectors bundle
Z[, which are sections of the bundle2 N ∼ det T∗M⊗ E∗, and the generalised metric, which
is a section of the symmetric product S2(E∗). In analogy with an ordinary metric on M, a
generalised metric G parameterises, at each point on M, the coset

G ∈
Ed(d)

Hd
, (13)

where Hd is the maximally compact subgroup of Ed(d). Spinors can also be introduced as
sections of the spinor bundle S , transforming in the spinorial representation of H̃d, the
double cover of the group Hd.

The action of an infinitesimal generalised diffeomorphism is generated by the gen-
eralised Lie derivative along a generalised vector. We denote by adjF the adjoint bundle,
namely the bundle whose fibres transform in the adjoint of Ed(d). Then, in analogy with the
conventional Lie derivative, we define the generalised one as an adjoint Ed(d) action [35],

(LVV′)M = VN∂NV′M − (∂×adj V)M
NV′N , (14)

where VM are the components of the generalised vector V in a standard coordinate basis,
∂M = ∂m are viewed as sections of the dual tangent bundle, and the projection onto the
adjoint bundle is ×adj : E∗ ⊗ E→ adjF.

The definition of a generalised GS-structure is a natural extension of the conventional
one. A generalised GS-structure on M is the reduction of the generalised structure group
Ed(d) to a subgroup GS, and it is defined by a set of nowhere vanishing GS-invariant
generalised tensors {Qi}. For instance, the generalised metric defines a GS = Hd structure
on M [35,36]. In what follows, we will always assume that M admits an Hd structure, and
we will always consider generalised structures GS ⊂ Hd.

Given a generalised GS-structure, with GS ⊆ Hd, defined by a set of GS-invariant
generalised tensors {Qi}, we can define its intrinsic torsion from the Lie derivative of a
generalised tensor α along a generalised vector V [37]:(

LD̃
V − LV

)
α = T(V) · α . (15)

Here, LV is the generalised Lie derivative defined in (14), and LD̃
V is the generalised

Lie derivative calculated using a GS-compatible connection3 D̃. The torsion can be seen as
a map from the generalised tangent bundle into the adjoint one, T : Γ(E) → Γ(adjF), so
that T(V) acts on α via the adjoint action.
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The intrinsic torsion Tint is then the component of T that is independent of the choice
of compatible connection D̃ and can be decomposed into representations of GS.

Consider now eleven-dimensional or type II supergravity on a product space X×M,
where X is a D-dimensional Lorentzian space, and M is an internal manifold of dimension
d in M-theory and d− 1 in type II supergravity. We assume d ≤ 7.

As we discussed above, the GL(d,R) or GL(d− 1,R) structure groups of conventional
geometry on M are extended to Ed(d). The idea is then to rearrange the supergravity fields
into generalised tensors transforming as representations of GL(D,R)× Ed(d) and to inter-
pret the theory as a D-dimensional theory on X with an infinite number of fields. The fields
in X will be scalar, vectors, and two-forms according to their GL(D,R) representation4.

The scalar degrees of freedom on X are given by the components of all supergravity
fields (metric and higher-rank potentials) with all internal indices and are repackaged into
a generalised metric. The GL(D,R) one-forms and vectors are sections of the generalised
tangent space E, while the two-forms are sections of the bundle N. In summary, we have

scalars: GMN(x, y) ∈ Γ(S2E∗) ,

vectors: Aµ
M(x, y) ∈ Γ(T∗X⊗ E) ,

two-forms: Bµν
MN(x, y) ∈ Γ(Λ2T∗X⊗ N) ,

(16)

where x and y are coordinates on X and M, respectively, and the capital index M denotes
components of vectors in E or E∗.

In Table 1, we list the exceptional group and the representations for the generalised
vectors (E), their weighted duals (N), the adjoint, and the spinor bundle S, in which the
supersymmetry parameter lies [36], for different dimensions of the non-compact space X.

Table 1. Generalised geometry groups, bundles, and representations.

D Ed(d) E adF N H̃d S

4 E7(7) 56 133 133 SU(8) 8⊕ 8̄
5 E6(6) 27 78 27′ Usp(8) 8
6 Spin(5, 5) 16s 45 10 Usp(4)×Usp(4) (4, 1)⊕ (1, 4)
7 SL(5,R) 10 24 5′ Usp(4) 4

The equations of motion and the supersymmetry variations are also organised ac-
cording to the representations above, and the dynamics of the supergravity is completely
determined by the Levi–Civita connection on the external space X and a generalised
connection on M.

If the manifold M has a generalised GS-structure, GS ⊂ Hd, with only constant, singlet
intrinsic torsion, we can construct a consistent truncation in the following way. Expand
all bosonic fields in terms of the GS invariant tensors {Qi} defining the structure, and
keep only those transforming as singlets under the structure group. The coefficient of the
expansion will depend on the external coordinates x, while the dependence on the internal
space is only in the tensors {Qi} .

Since there are only singlet representations in the intrinsic torsion, the generalised
Levi–Civita connection acts on any invariant generalised tensor Qi as

DMQi = ΣM ·Qi , (17)

where ΣM is a section of E∗ ⊗ adj(Hd) that is completely determined in terms of the
constant singlet torsion. Here, adj(Hd) denotes the bundle of tensors transforming in the
adjoint representation of Hd. This means the derivatives of all the truncated fields are also
expanded in terms of singlets only. Since products of singlet representations cannot source
non-singlet representations, keeping only all possible singlets gives a consistent truncation.
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To extend the truncation to the fermionic sector of the supergravity theory, it is enough
to lift the structure group GS to G̃S ⊂ H̃d and to expand all the fermionic fields in terms of
G̃S singlets.

From the data of the GS-structure, we can determine the number of scalars, vectors,
one-forms, and two-forms of the truncated theory, as well as the possible gaugings.

All scalars of the truncated theory are given by the GS singlets in the generalised metric
GMN . These are singlet deformations of the structure modulo, those singlet deformations
that do not deform the metric

scalars: hI(x) ∈ M =
ComEd(d)

(GS)

ComHd(GS)
=
G
H . (18)

Consider now the vectors of the truncated theory. Being sections of T∗X⊗ E, they are
determined by the number of GS invariant generalised vectors {KI}:

vectors: AM
µ (x, y) = Aµ

I(x)KM
I ∈ Γ(T∗M⊗ V) , (19)

where V ⊂ Γ(E) is the vector space spanned by the {KI}.
Similarly the two-forms are determined by the GS singlets in the bundle N:

two-forms: Bµν
MN(x, y) = Bµν I(x)K IMN

[ ∈ Γ(Λ2T∗X⊗B) , (20)

where {K I
[} is a basis generating the GS-invariant vector space B ⊂ Γ(N).

Let us stress again that the representations above determine the full content of the
theory, namely the fields coming from the reduction of the metric and the higher-rank
potentials of the supergravity theory. In particular, this means that the vectors KI generate
all symmetries of the reduced theories, coming both from the metric and the higher-rank
potentials. This is an important difference with respect to the reductions based on the
conventional GS-structure.

The GS-structure also determines the embedding tensor (see [40,41] for a review of this
formalism) and hence the gaugings of the reduced theory in terms of the singlet intrinsic
torsion.

Since the GS-structure has only singlet intrinsic torsion, in analogy with (5), the
generalised Lie derivative of the GS-invariant generalised tensors along any invariant
generalised vector KI can be written as

LKI Qi = −Tint(KI) ·Qi , (21)

where Tint now maps the space V of the GS invariant vector to the GS singlets in the adjoint
bundle. This means that Tint(KI) must correspond to the elements in the adjoint that
commute with GS, namely the Lie algebra of the commutant group G = ComEd(d)

(GS). G is
the subgroup of the isometry group of the scalar manifold that can a priori be gauged in
the truncated theory.

Since Tint defines a linear map from the space of GS singlet vectors to the Lie algebra
LieG, we can identify −Tint with the embedding tensor of the truncated theory

Θ : V → LieG . (22)

The generalised Lie derivative among the GS-invariant vectors gives

LKI KJ = ΘI · KJ = ΘI
α̂(tα̂)J

KKK := XI J
KKK , (23)

where (tα̂)J
K are the representations of the generators of LieG acting on V . The Leibniz

property of the generalised Lie derivative [6,35] translates into the quadratic condition on
the embedding tensor

[XI , XJ ] = −XI J
KXK , (24)
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with (XI)J
K = XI J

K a matrix.
Thus, the generalised vectors KI generate a Lie algebra with structure constants X[I J]

K.
This is the gauge algebra of the truncated theory. Then, the gauge group is

gauge group: Ggauge ⊆ G (25)

Notice that since the image of the map Θ may not be the whole of LieG, the gauge
group generated by the vectors can be a subgroup of G. The matrices XI then define the
adjoint representation, and Θ defines how the gauge action embeds as an action in G.

The scalar covariant derivatives are

D̂µhI = ∂µhI − kI
µ ΘI

α̂kα̂
I , (26)

where kα̂ are the Killing vectors onM generating the action of the LieG.
The GS-structure also determines the fermionic sector of the truncated theory and in

particular the number of preserved supersymmetries. Given a lift G̃s ⊆ H̃d, the number of
supersymmetries preserved by the truncated theory is given by the number of G̃S-singlets
in the generalised spinor bundle S . Depending on the choice of structure group GS, one
can construct truncations with different amounts of supersymmetry.

As an example, consider maximally supersymmetric truncations. These are all associ-
ated to a generalised identity structure, or generalised parallelisation on the generalised
tangent bundle E, and can be seen as generalised Scherk–Schwarz reductions [6].

A manifold M is generalised (Leibniz) parallelisable if there exists a globally-defined
frame {EA} for the generalised tangent bundle E satisfying the algebra

LEA EB = XAB
CEC , (27)

with constant coefficients XAB
C. Notice that the generalised Lie derivative L is not antisym-

metric, and therefore the algebra (27) is a Leibniz algebra and not necessarily a Lie algebra.
Hence the name Leibniz parallelisation.

Combining (27) and the Leibniz property of the generalised Lie derivative, we see that
the constants XC

AB realise the gauge algebra

[XA, XB] = −XAB
CXC , (28)

where, again, we see (XA)B
C as matrices. Thus, the constants XAB

C are the generators of
the gauge group.

Starting from a generalised Leibniz parallelisation, one can define a generalised Scherk–
Schwarz reduction. We define a twisted generalised frame by acting on {EA} with an Ed(d)

matrix UA
B(x) that depends on the external coordinates x,

ÊM
A (x, y) = UA

B(x)EM
B (y) , (29)

with M denoting the generalised vector components, and then use it to define a generalised
(inverse) metric

GMN(x, y) = δABÊM
A (x, y)ÊM

B (x, y) =MAB(x)EM
A (y)EM

B (y) . (30)

The matrix MAB = δCDUC
AUD

B parameterises the coset Ed(d)/Hd and contains all
the scalars of the lower-dimensional theory.

The frame {EA} also provides the full set of vector fields of the truncated theory

AM
µ (x, y) = AA

µ (x)EM
A (y) , (31)

and the two-forms are given by

BMN
µν (x, y) =

1
2

BAB
µν (x)(EA ⊗N EB)

MN(y) (32)
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where ⊗N denotes the projection onto the bundle N.
The notion of Leibniz parallelisation allows us to go beyond ordinary Scherk–Schwarz re-

ductions to encompass all reductions on coset manifolds.5In particular, as shown in [6,10,12],
the consistent truncations of eleven-dimensional supergravity on S7 and S4 and type IIB
supergravity on S5 can all be interpreted as generalised Scherk–Schwarz reductions. The
crucial observation was that in all these cases, the solutions contain a higher-rank form on
the internal sphere that makes it possible to define a nowhere vanishing generalised frame.
A similar analysis [14] for massless type IIA allowed for recovering all known maximally su-
persymmetric truncations on Sd with d = 2, 3, 4, 6, while for massive IIA, one can reproduce
the truncation on S6 of [15–17] and prove that no maximally supersymmetric truncations are
possible for d = 2, 3, 4.

We conclude this section with another application of a generalised GS-structure to
consistent truncation. In [25], it was conjectured that for any solution of a supergravity
theory that is a warped product of a D-dimensional AdS (or Minkowski) space-time with
internal manifold M and preserves N supersymmetries, there is a consistent truncation
to a pure supergravity in D dimension with the same amount of supersymmetry. Using
generalised GS-structures, the proof of the conjecture is very simple. It was observed
in [37,42,43] that solutions with an AdS factor and N supersymmetries are associated
to generalised GS structures with singlet intrinsic torsion. This is exactly the condition
for a solution to admit a consistent truncation, and the truncated theory is pure gauged
supergravity [23] (see also [20] for half-maximal truncations). The same argument holds
for solutions with a Minkowski factor, the only difference being that the truncated theory
is ungauged.

4. M-Theory Truncations to Five Dimensions

The construction described in the previous section applies to truncations of supergrav-
ity in eleven or ten dimensions on manifolds with dimensions d ≤ 7 and with any amount
of supersymmetry. The exceptional group and, hence, the details of the truncations depend
on the dimension d of the internal manifold.

In this section, we focus on compactifications of eleven-dimensional supergravity
to five dimensions and N = 2 supergravity to five dimensions. Even if we specify, for
simplicity, eleven-dimensional reductions to five dimensions, the generalised structures
also describe the reduction of type IIB supergravity to five dimensions. The only difference
will be in the identification of the generalised tensors with the supergravity fields.

The discussion of this section is based on [23,24,44].

4.1. E6(6) Generalised Geometry

We start with a brief review of the generalised geometry describing these compactifi-
cations. For more details, see [45].

Compactifications of eleven-dimensional supergravity on a six-dimensional manifold
M are described by E6(6) ×R+ generalised geometry.

The tangent bundle TM is extended to the generalised tangent bundle E on M whose
sections transform in the representation 27 of the generalised structure group E6(6). The
structure group of TM, GL(6,R), embeds as the geometrical subgroup of E6(6). The
generalised tangent bundle can be written in terms of GL(6,R) representations as

E ' TM⊕Λ2T∗M⊕Λ5T∗M , (33)

and its sections, the generalised vectors, consist, locally, of the sum of a vector, a two-form,
and a five-form on M,

V = v + ω + σ . (34)

Other generalised tensors are defined as bundles whose fibres transform in different
representations of E6(6). The dual generalised vectors are sections of the bundle transform-
ing in the 27 of E6(6),
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E∗ ' T∗M⊕Λ2TM⊕Λ5TM , (35)

and are locally sums of a one-form v̂, a two-vector ω̂, and a five-vector σ̂:

Z = v̂ + ω̂ + σ̂ . (36)

Generalised vectors and dual generalised vectors have a natural pairing,

〈Z, V〉 = v̂mvm + 1
2 ω̂mnωmn +

1
5! σ̂mnpqrσmnpqr . (37)

The E6(6) cubic invariant is defined on E and E∗ as

c(V, V, V) = − 6 ιv ω ∧ σ−ω ∧ω ∧ω ,

c∗(Z, Z, Z) = − 6 ιv̂ ω̂ ∧ σ̂− ω̂ ∧ ω̂ ∧ ω̂ , (38)

where the symbol ιv denotes the contraction by the vector v.
We will also need the weighted dual vectors. These are elements of the bundle

N ' det T∗M⊗ E∗. In terms of GL(6) tensors, N decomposes as

N ' T∗M⊕Λ4T∗M⊕ (T∗M⊗Λ6T∗M) , (39)

with sections Z[ = λ + ρ + τ. The bundle N is obtained from the symmetric product of
two generalised vectors via the map ⊗N : E⊗ E→ N with

λ = v yω′ + v′ yω ,

ρ = v y σ′ + v′ y σ−ω ∧ω′ ,

τ = jω ∧ σ′ + jω′ ∧ σ .

(40)

The three-form and six-form gauge potentials of eleven-dimensional supergravity
embed in the adjoint bundle adjF, which transforms in the 1 ⊕ 78 of E6(6). In terms of
GL(6) tensors, adjF is defined as

adjF ' R⊕ (TM⊗ T∗M)⊕Λ3T∗M⊕Λ6T∗M⊕Λ3TM⊕Λ6TM , (41)

so that its sections are local sums

R = l + r + a + ã + α + α̃ , (42)

with l ∈ R, r ∈ End(TM), a ∈ Λ3T∗M a three-form, ã ∈ Λ6T∗M a six-form, α a three
vector, and α̃ a six vector. The e6(6) Killing form on two elements of the adjoint bundle is
given by

tr(R, R′) = 1
2

(
1
3 tr(r)tr(r′) + tr(rr′) + α y a′ + α′ y a− α̃ y ã′ − α̃′ y ã

)
. (43)

The action of an adjoint element R on a generalised vector V ∈ Γ(E) is defined as

V′ = R ·V
v′ = lv + r · v + α yω− α̃ y σ ,

ω′ = lω + r ·ω + v y a + α y σ ,

σ′ = lσ + r · σ + v y ã + a ∧ω ,

(44)

and on a dual generalised vector Z as

Z′ = R · Z
v̂′ = −lv̂ + r · v̂− ω̂ y a + σ̂ y ã ,

ω̂′ = −lω̂ + r · ω̂− α y v̂− σ̂ y a ,

σ̂′ = −lσ̂ + r · σ̂− α̃ y v̂− α ∧ ω̂ .

(45)
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The action of an adjoint element R on another adjoint element R′ is the commutator,
R′′ = [R, R′], which in components reads

l′′ = 1
3 (α y a′ − α′ y a) + 2

3 (α̃
′ y ã− α̃ y ã′) ,

r′′ = [r, r′] + jα y ja′ − jα′ y ja− 1
3 (α y a′ − α′ y a) I ,

+ jα̃′ y jã− jα̃ y jã′ − 2
3 (α̃
′ y ã− α̃ y ã′) I ,

a′′ = r · a′ − r′ · a + α′ y ã− α y ã′ ,

ã′′ = r · ã′ − r′ · ã− a ∧ a′ ,

α′′ = r · α′ − r′ · α + α̃′ y a− α̃ y a′ ,

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ ,

(46)

where · denotes the gl(6) action.
We conclude this section with the explicit expression of the generalised metric in

terms of the supergravity fields. Recall that the generalised metric is a positive-definite,
symmetric rank-2 tensor on the generalised tangent bundle,

G : E⊗ E→ R+

(V, V′)→ G(V, V′) = GMNVMV′N ,
(47)

where V and V′ are generalised vectors, and encodes the degrees of freedom of eleven-
dimensional supergravity with components only in the internal manifold. It is more
convenient to use the inverse generalised metric. This acts on the dual generalised vectors
and in terms of supergravity fields is given by

(G−1)mn = e2∆gmn

(G−1)m
n1n2 = e2∆gmp Apn1n2

(G−1)m
n1 ...n5 = e2∆gmp(Ap[n1n2

An3n4n5] + Ãpn1 ...n5 )

(G−1)m1m2 n1n2 = e2∆(gm1m2,n1n2 + gpq Apm1m2 Aqn1n2])

(G−1)m1m2 n1 ...n5 = e2∆[gm1m2,[n1n2
An3n4n5]

+ gpq(Apm1m2 (Aq[n1n2
An3n4n5] + Ãqn1 ...n5 )]

(G−1)m1 ...m5 n1 ...n5 = e2∆[gm1 ...m5, n1 ...n5

+ gpq(Ap[m1m2
Am3m4m5] + Ãpm1 ...m5 )(Aq[n1n2

An3n4n5] + Ãqn1 ...n5 )] ,

(48)

where ∆ is the warp factor, g the internal, A and Ã the components of the three- and
six-form potentials on the internal manifold M. Moreover, gm1m2, n1n2 = gm1[n1

g|m2|n2]
, and

similarly for gm1 ...m5, n1 ...n5 .

4.2. Generalised Structures for N = 4 and N = 2 Truncations

The number of supersymmetries of the truncated theory is determined by the num-
ber of GS singlets in the generalised spinor bundle S . For compactifications of eleven-
dimensional supergravity to five dimensions, S transforms in the 8 of Usp(8), the double
cover of the maximal compact subgroup Usp(8)/Z2 of E6(6).

For maximally supersymmetric truncations, the generalised structure group is the
identity, and all higher dimensional supercharges are preserved, giving eight supercharges
in the truncated theory. In this case, the R-symmetry group is Usp(8). To construct
truncations with reduced supersymmetry, we need to break Usp(8) by considering larger
structure groups. For half-maximal truncations, the lower-dimensional R-symmetry is
Usp(4), which embeds in Usp(8) as

Usp(8) ⊃ Usp(4)R ×Usp(4) (49)
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so that the largest possible structure group must be GS = Usp(4)S. Similarly, for N = 2
truncations, the R-symmetry is SU(2), giving as the largest structure group Usp(6).

These two cases lead to minimal five-dimensional supergravities. To have theories
with extra matter fields, the structure groups must be broken into smaller ones to allow for
extra GS invariant generalised tensors. However, the possibilities are severely constrained
by the condition that no extra singlet spinors appear. In what follows, we always consider
continuous structure groups, so we do not exclude the existence of other truncations with
discrete structure groups.

4.3. N = 4 Truncations

Half-maximal truncations of eleven-dimensional supergravity to five dimensions
correspond to the structure groups

GS = SO(5− n) n = 0, . . . 3 . (50)

The structure GS is defined by a set of 6 + n invariant generalised vectors, K0 and Ki ,
with i = 1, . . . , 5 + n satisfying

c(K0,Ki,Ki) = ηijvol6
c(K0,K0, V) = 0, ∀V ∈ Γ(E),
c(Ki,Kj,Kk) = 0

(51)

where ηij = diag(−1,−1,−1,−1,−1,+1, . . . ,+1) is the flat SO(5, n) metric, vol6 is the
volume of the manifold M, and c(V, V′, V′′) is the E6(6) cubic invariant. The invariant
vectors Ki are normalised as

η(Ki,Kj) = ηij . (52)

To see how the GS-structure is obtained, recall that the R-symmetry group of half-
maximal supergravities in five dimensions is Usp(4)R. This means that Usp(8) must be
broken into

Usp(8) ⊃ Usp(4)R ×Usp(4)S (53)

where the factor Usp(4)R is identified with the R-symmetry, while the other Usp(4)S
is the (double cover) of the GS-structure group. The spinorial representation of Usp(8)
decomposes as

8 = (4, 1)⊕ (1, 4) , (54)

and we see that there are indeed four G̃S singlets that transform in the 4 of Usp(4)R and can
therefore be identified with the supersymmetry parameters of half-maximal supergravity.

The structure group Usp(4)S ∼ SO(5) embeds in E6(6) as

E6(6) ⊃ SO(1, 1)× SO(5)× SO(5) . (55)

The decomposition of the generalised bundle under (55)

27 = (5, 1)⊕ (4, 4)⊕ (1, 5)⊕ (1, 1) (56)

contains six invariant generalised vectors K0 and Ki, i = 1, . . . , 5. The decomposition of
the adjoint bundle

78 = (10, 1)0 ⊕ (5, 5)0 ⊕ (1, 10)0 ⊕ (4, 4)−3 ⊕ (4, 4)3 ⊕ (1, 1)0 (57)

gives ten plus one singlets corresponding to the generators of the commutant G =
SO(1, 1) × SO(5) of the structure group in E6(6). Notice, however, that these adjoint
singlets can be constructed as tensor products of the invariant vectors and their duals,
K∗ ×adj K, and therefore do not play a role in the definition of the structure group. The
GS-structure is completely determined by the generalised vectors.
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According to the dictionary of the previous section, the six invariant generalised
vectors K0 and Ki give six vectors in the truncated theory, while the scalar manifold is
(see (18))

M =
ComE6(6)

(SO(5)S)

ComUsp(8)(SO(5)S)
= SO(1, 1) (58)

so that there is only one scalar. This is the field content of the gravity multiplet of half-
maximal supergravity in five dimensions. Thus, a GS = SO(5) gives a truncation to pure
supergravity.

To have an extra matter field, we need to further break the structure group in such a
way that there are no extra singlets in the decomposition of the spinor representation of
Usp(8). This requirement restricts the possible structure groups to the following subgroups
of SO(5)S:

GS = SO(5− n) GS = SU(2)×U(1) GS = U(1)×U(1) , (59)

with n = 0, . . . , 3. It is easy to verify that the last two groups above have the same
commutant in E6(6) and the same GS-singlets as the case of GS = SO(5− n) with n = 1.
This means that they give rise to the same truncations as GS = SO(4), and we can then
focus on the family of GS = SO(5− n) structures.

From the embedding E6(6) ⊃ SO(1, 1)× SO(5, n)× SO(5− n), the generalised tangent
bundle decomposes as

27 = (5 + n, 1)2 ⊕ (1, 5− n)2 ⊕ (4, 4)−1 ⊕ (1, 1)−4 , (60)

where the subscripts denote the SO(1, 1) weights. Thus, we obtain 6+ n singlets transform-
ing in the 1−4 ⊕ (5 + n)2 of the commutant G = O(1, 1)× SO(5, n):

{KI} = {K0,Ki} , I = 0, 1, . . . , 5 + n . (61)

The KI are in one-to-one correspondence with the vectors of the half-maximal super-
gravity: six of them come from the gravity multiplet, and n from the additional vector
multiplets.

The scalars of the truncated theory now parameterise the coset

Mscal = O(1, 1)× SO(5, n)
SO(5)× SO(n)

, (62)

which matches the standard structure of the scalar manifold for half-maximal supergravity
coupled to n vector multiplets [46]. The single scalar in the gravity multiplet parameterises
the O(1, 1) factor6, while the scalars in the vector multiplets parameterise the SO(5,n)

SO(5)×SO(n)
coset space.

The two-form fields of the truncated theory are determined by the SO(5− n) singlets
in the bundle N. In the decomposition under SO(1, 1)× SO(5, n)× SO(5− n) ⊂ E6(6), we
find again 6 + n singlets, Z0

[
, Zi

[
with i = 1, . . . , 5 + n. It is natural to normalise them via

the pairing (37)
〈ZI

[ ,KJ〉 = δI
Jvol6 . (63)

Let us consider now the gauging of the truncated theory. This is determined by the
intrinsic torsion of the structure, which encodes the embedding tensor of the reduced
theory. Since in this case, the GS-structure is defined by generalised vectors only, all the
information about the intrinsic torsion is encoded in (101):

LKIKJ = XI J
KKK , (64)

where the matrices (XI)J
K = XI J

K are the generators of the algebra
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[XI , XJ ] = −XI J
KXK . (65)

The gaugings of half-maximal supergravity in five dimensions have been analysed
in [46]. The embedding tensor has components

fijk = fijk], ξij = ξ[ij] , ξi , (66)

satisfying
3 f[ij

k flm]k = 2 f[lmiξ j] , ξm
i fmjk = ξiξ jk − ξ[jξk]i , (67)

and
3 fijkξk = 0 , ξijξ

j = 0 , ξiξ
i = 0 , (68)

where the indices are raised/lowered using the SO(5, n) metric ηij.
The components of the embedding tensor are identified with the components of the

gauge group generators (XI)J
K in (65). Using the composite index I = {0, i}, we can

assemble (66) as
Xij

k = − fij
k , X0i

j = −ξi
j , X0i

0 = −ξi . (69)

Note that in generalised geometry, the algebraic conditions fABC = f[ABC] and ξAB =
ξ[AB] follow from consistency of the generalised algebra (64) with the conditions (51)
and (52).

The GS = SO(5− n) structure completely determines the number n of vector multi-
plets and the embedding tensor from the generalised SO(5− n) structure and therefore
fully characterises the five-dimensional half-maximal supergravity theory that is obtained
after truncation. To complete the truncation procedure, we need to discuss how the lower-
dimensional fields embed into the higher-dimensional ones. The general ideas about the
truncation ansatz were discussed in Section 3. Here, we will specify them to the truncations
of eleven-dimensional supergravity to half-maximal supergravities in five dimensions.

We can organise the eleven-dimensional supergravity fields into E6(6) representations
as in Section 3. The fields with only legs on M are organised into the inverse generalised
metric

GMN(x, y) ↔ {∆, gmn, Am1m2m3 , Ãm1 ...m6} , (70)

those with one external leg into generalised vectors

Aµ
M(x, y) = {hµ

m, Aµmn, Ãµm1 ...m5 } , (71)

and those with two external legs into weighted dual vectors

Bµν MN(x, y) = {Aµνm, Ãµνm1 ...m4 , g̃µνm1 ...m6,n} , (72)

where we will not need the last term, related to the dual graviton. In all the above
expressions, M, N label indices in the 27 or 27.

Then, the bosonic truncation ansatz is obtained by expanding these fields on the GS
invariant tensors. For the vector fields and the two-forms, we have

AM
µ (x, y) =

5+n

∑
I=0
AI

µ(x)KM
I (y) ,

Bµν MN(x, y) =
5+n

∑
I=0
Bµν I(x)ZI

[MN(y) ,

(73)

where AI
µ and Bµν I are the five-dimensional supergravity vector fields and two-forms,

respectively.
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The ansatz for the scalar fields is more involved as it requires the explicit expression
for the generalised metric GMN in terms of the GS invariant tensors KI [23]. The inverse
metric acting on two dual generalised vectors is

G−1(Z, Z) = G−1
0 (Z, Z) + G−1

10 (Z, Z) + G−1
16 (Z, Z) , (74)

where the subscripts denote SO(5, 5) representations7 and

G−1
0 (Z, Z) = 〈Z,K0〉〈Z,K0〉 ,

G−1
10 (Z, Z) = 2δij〈Z,Ki〉〈Z,Kj〉+ η−1(Z, Z) ,

G−1
16 (Z, Z) = −4

√
2 〈Z,K1 · · · K5 · Z〉 ,

with η−1(Z, Z) being the inverse of the SO(5, 5) metric.
The generalised metric entering the scalar ansatz is then constructed by plugging into

the expressions above the “dressed” invariant vectors, which are obtained by multiplying
the KI with a representative of the scalar coset (62)

K̃0 = Σ2K0 , K̃a = Σ−1 Va
iKi , K̃a = Σ−1 Va

iKi . (75)

Here, Σ is a scalar parameterising the O(1, 1) factor in (62), while (Va
i,Va

i)T ∈ SO(5, n)
is the inverse of the coset representative of SO(5,n)

SO(5)×SO(n) , with a = 1, . . . , 5 and a = 1, . . . , n
local SO(5) and SO(n) indices, respectively.

The expression for the inverse generalised metric is then

G−1(Z, Z) = G−1
0 (Z, Z) + G−1

10 (Z, Z) + G−1
10 (Z, Z)

= Σ4 〈Z, K0〉〈Z, K0〉+ Σ−2
(

2 δabVa
iVb

j〈Z, Ki〉〈Z, Kj〉+ η−1(Z, Z)
)

− 4
√

2
5! Σ εabcdeVa

iVb
jVc

kVd
lVe

m 〈Z, Ki · · ·Km · Z〉 .

(76)

and the scalar ansatz is obtained by equating (76) with the expression (48), which encodes
all supergravity fields with purely internal indices. By separating the different tensorial
structures on the internal manifold M, we obtain the scalar ansatz for the individual
higher-dimensional supergravity fields8.

4.4. N = 2 Truncations

In N = 2 supergravity in five dimensions, the R-symmetry group is SU(2). This
embeds in E6(6) as

Usp(8) ⊃ SU(2)R ×Usp(6) , (77)

where the factor Usp(6) corresponds to the structure group. Under the embedding (77),
the spinorial representation of Usp(8) decomposes as

8 = (6, 1)⊕ (1, 2) (78)

where the two Usp(6) singlets give the SU(2)R doublet of supersymmetry parameters of
N = 2 supersymmetry.

Decomposing the 27 and 78 representations of E6(6) under (77), we find one singlet
generalised vector K of positive norm with respect to the E6(6) cubic invariant,

c(K, K, K) = 6 κ2 > 0 , (79)

where κ is a section of (det T∗M)1/2, and an SU(2) triplet of adjoint tensors Jα ∈ Γ(adjF),
with α = 1, 2, 3, satisfying

[Jα, Jβ] = 2εαβγ Jγ , Tr(Jα Jβ) = −δαβ . (80)
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The globally defined vector K ∈ Γ(E) with positive norm is called a vector-multiplet
structure, or V structure. A triplet of Jα ∈ Γ(adjF) that defines the highest root su2
subalgebra of e6(6) and satisfies the conditions (80) is called a hypermultiplet structure, or
H structure. Together, when they satisfy the compatibility conditions

Jα · K = 0 , c(K, K, K) =
1
6

κ2Tr(Jα Jβ) . (81)

K and Jα define an HV structure or Usp(6) structure.
An HV structure corresponds to truncations to minimal N = 2 supergravity in five

dimensions. Indeed, the vector K is in one-to-one correspondence with the five-dimensional
graviphoton, while the three Js in the adjoint give the generators of the SU(2)R R-symmetry.
This is also confirmed by looking at the scalar manifold, which from (18) is trivial:

M =
ComE6(6)

(Usp(6))

ComUsp(8)(Usp(6))
= R+ (82)

as ComE6(6)
(Usp(6)) = ComUsp(8)(Usp(6)) = SU(2).

To have extra matter multiplets, as for the half-maximal case, the structure group must
be reduced to a GS ⊂ Usp(6) in order to have an extra singlet in the 27 and 78. As before,
the allowed breakings are restricted by the condition that there are no new singlets in the
decomposition of the spinorial representation of Usp(8).

Thus, a generic GS ⊂ Usp(6) corresponding to N = 2 supersymmetry in five dimen-
sions is defined by the set

{KI , JA} (83)

of GS-invariant independent generalised vectors

KI , I = 0, . . . , nV , (84)

and GS-invariant elements of the 78

JA , A = 1, . . . , dimH , (85)

that also satisfy the condition

JA · KI = 0 ∀ I and ∀ A . (86)

Note that a priori, there can be other singlets in the adjoint bundle that do not sat-
isfy (86). These are given by KI ×adj K∗J , where K∗J is the dual of the generalised vector
KJ , and ×adj is the projection onto the adjoint bundle. These extra singlets generate the
isometries of the vector scalar manifold in five dimensions, while the JA generate the
isometry group of the hyper-multiplet scalar manifoldH ⊂ ComE6(6)

(GS), so that

[JA, JB] = fAB
C JC , (87)

with fAB
C being the structure constants ofH.

We can always normalise the KI to satisfy

c(KI , KJ , KK) = 6 κ2CI JK , (88)

with CI JK a symmetric, constant tensor, and normalise the adjoint singlets to

Tr(JA JB) = ηAB , (89)

where ηAB is a diagonal matrix with −1 and +1 entries in correspondence with compact
and non-compact generators ofH, respectively.
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The generalised metric is given in terms of the GS invariant tensors as [24]

G(V, V) = 3
(

3
c(K, K, V)2

c(K, K, K)2 − 2
c(K, V, V)

c(K, K, K)
+ 4

c(K, J3 ·V, J3 ·V)

c(K, K, K)

)
. (90)

The GS-structure determines the field content of the truncated theory. The singlet
generalised vectors are in one-to-one correspondence with the vector of the truncated
theory, namely the graviphoton and the vectors in the vector multiplets. The scalar manifold
is given by

M =
ComE6(6)

(GS)

ComUsp(8)/Z2
(GS)

. (91)

The expression above can be interpreted in the following way. Given the GS ⊂ Usp(6)
structure, one defines a Usp(6) structure where the K and Jα are combinations of the KI and
JA and then builds a generalised metric as in (90). Clearly, there are many ways to define
such a Usp(6) structure, depending on the way K and Jα are expressed in terms of KI and
JA. The parameterisation of K and Jα in terms of KI and JA provides a set of deformations
of a reference Usp(6)-invariant metric that corresponds to acting on the structure with
elements of E6(6) that commute with GS, modulo elements of Usp(8)/Z2 that commute
with GS, thus giving (91).

The requirement (86) implies that, as expected from N = 2 supergravity, the spaceM
splits in the product

M = MV ×MH (92)

of the V structure moduli spaceMV and the H structure one,MH. Notice that by construc-
tion, these are always symmetric spaces.

The vector moduli spaceMV corresponds to deformations of K that leave Jα invariant
and is obtained by expressing the generalised vector K as a linear combination of the
invariant vectors KI :

K = hIKI , I = 0, . . . , nV , (93)

where hI are nV + 1 real scalars. Because of the condition (79), the parameters hI must
satisfy

CI JKhIhJhK = 1 , (94)

and therefore define an nV-dimensional hypersurface,

MV = { hI : CI JKhIhJhK = 1 } . (95)

This is the V structure moduli space, which gives the vector multiplet scalar manifold
in five-dimensional supergravity. Using the generalised metric, we can also derive the
metric onMV as

aI J =
1
3 G(KI , KJ) . (96)

The H structure moduli space describes deformations of Jα that leave K invariant and
corresponds to the space of choices of highest root su(2) algebrae in the algebra spanned
by the JA. Concretely, we can start from a reference j ' su(2) algebra and then act on a
basis ja of j by the group elements h ∈ H:

Jα = adjH jα = h jα h−1 . (97)

Clearly, h ∈ SU(2)R = exp j and h ∈ ComH(SU(2)R) act trivially on the ja and have
to be modded out. We obtain the coset

MH =
H

SU(2)R ×ComH(SU(2)R)
. (98)
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whereMH are “Wolf spaces” and are all quaternionic–Kähler, as expected from the hyper-
scalar manifold in five-dimensional supergravity.

By analysing the possible breakings of Usp(6) that only give two singlets in the
decomposition of the spinorial representation of Usp(8), it is possible to classify all allowed
truncations of eleven-dimensional supergravity to five dimensions that are truly N = 2
supersymmetric [44]. In Table 2 below, we list all the possible truncations that correspond
to a continuous GS ⊆ Usp(6) structure group.

Table 2. Allowed N = 2 truncations of 11-d supergravity.

nV
nH 0 1 2

0 GS = Usp(6)
M = 1

GS = SU(3)
M = SU(2,1)

SU(2)×U(1)

GS = SO(3)

M =
G2(2)

SO(4)

1 GS = SU(2)× SO(5)
M = R+

GS = SU(2)×U(1)
M = R+ × SU(2,1)

SU(2)×U(1)
-

2 GS = SU(2)× SO(4)
M = R+ × SO(1, 1) - -

3
GS = SU(2)× SO(3)
M = R+ × SO(2,1)

SO(2)
- -

4
GS = SU(2)× SO(2)
M = R+ × SO(3,1)

SO(3)

GS = U(1)
M =

R+ × SO(3,1)
SO(3) ×

SU(2,1)
SU(2)×U(1)

-

5

GS = SU(2)
M = SL(3)

SO(3)
GS = SU(2)×Z2

M = R+ × SO(4,1)
SO4

- -

6
GS = SU(2)×Z2

M = R+ × SO(5,1)
SO5

- -

8
GS = U(1)
M = SL(3,C)

SU(3)
- -

14
GS = Z2

M = SU∗(6)
Usp(6)

- -

In Table 2, we recover the fields content of some well-known truncations with only
vectors or only hypermultiplets [47,48]. Surprisingly, we find a very limited number of
truncations with both vectors and hypermultiplets.

Let us stress that the list above is not a list of actual consistent truncations. These
are the truncations that are a priori allowed from an algebraic point of view, namely the
list of GS ⊇ Usp(6) that have the right features to give N = 2 truncations. Here, we
assumed that the intrinsic torsion only contains singlet representations of GS. Verifying
this condition implies analysing the differential properties of the structure, and for this, we
need the explicit knowledge of the compactification manifold.

Under the assumption that the GS-structure has only singlet intrinsic torsion, we can
give the details of how this is related to the embedding tensor of the truncated theory. For
N = 2 supersymmetry, the embedding tensor splits into two parts [49,50],

(Θ Ĩ
a, Θ Ĩ

A) , (99)

with a = 1, . . . , dim gV and A = 1, . . . , dim gH, reflecting the split of the isometry algebra

g = gV ⊕ gH (100)
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into the Lie algebrae of isometries of the vector and hypermultiplet moduli spaces, respec-
tively.

For N = 2 truncations, the intrinsic torsion (101) is given by the action of the gener-
alised Lie derivative along the invariant vectors KI on the GS-invariant tensor KI and JA:

LKI KJ = ΘI · KJ = ΘI
a(ta)J

LKL := f I J
LKL ,

LKI JA = ΘI · JA = [J(KI)
, JA] = ΘI

B fBA
C JC := pIA

B JB .
(101)

Here, (ta)J
L are the representations of the generators of LieG acting on V , J(KI)

:=
ΘI

A JA is an element of the adjoint, and f[I J]
L are the structure constants of the gauge

algebra, while fAB
C are the structure constants of the algebra H acting on the hypers.

Demanding that the GS-structure has only singlet intrinsic torsion implies that f I J
K

and pIA
B in (101) are indeed constants and that the equation∫

M
κ2Tr(JA(LW JB)) = 0 , (102)

where the generalised vector W satisfies c(KI , KJ , W) = 0, is satisfied.
The last ingredient for a truncation is again the truncation ansatz. The logic is the same

as for half-maximal truncations. The embedding to the vectors of the truncated theory
Aµ

I(x) in the higher-dimensional fields is determined by equating (71) to the expansion

Aµ(x, y) = Aµ
I(x)KI(y) I = 0, 1, . . . , nV . (103)

Similarly, equating (72) to the expansion

Bµν(x, y) = Bµν I(x)K I
[ (104)

gives the embedding of the two-forms of the truncated theory.
Finally, the scalars are obtained by first defining the K and Jα parameterising a family

of HV structures
K(x, y) = hI(x)KI ,

Jα(x, y) = L(x)jαL(x)−1
(105)

where L is the representative of the cosetMH, and then plugging them into the generalised
metric (90). Comparing the expression for the generalised metric with its general form (48),
we obtain the truncation ansatz for the supergravity fields with only internal indices.

5. Conclusions

In this article, we reviewed the applications of exceptional generalised geometry to
the study of consistent truncations. In this approach, a central role is played by the notion
of the G-structure, namely the existence of nowhere-vanishing GS-invariant tensors on
the internal manifold M. We showed that in order to have a consistent truncation of a
given supergravity theory on a manifold M, this must admit a generalised GS-structure
with singlet intrinsic torsion. The GS structure completely determines the field content, the
amount of supersymmetry, and the gauging of the truncated theory,

Then, this approach provides a systematic way to study consistent truncations in
various dimensions and with different amounts of supersymmetry.

As a first example, we briefly recalled how the notion of the GS-structure allows one
to understand all maximally supersymmetric truncations as generalised Scherck–Schwarz
reductions on generalised parallelisable manifolds.

Then, we focussed on eleven-dimensional supergravity, and we studied in detail
the truncations to N = 4 and N = 2 five-dimensional supergravity. In this case, the
Eexceptional generalised geometry is based on the E6(6) exceptional group, and we showed
how, based on the properties of the GS-structure, it is possible to explicitly determine
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the scalar moduli spaces and the embedding tensor of the truncated theories. The same
analysis holds for truncations of type IIB supergravity to five dimensions. This means
that under the assumption that the GS-structure has singlet intrinsic torsion, it possible to
determine which five-dimensional supergravity theory can in principle be obtained from
the M-theory or type IIB.

It is important to stress that this analysis is not enough to guarantee that the consistent
truncation actually exists. To do so, we should be able to explicitly construct manifolds
that realise such GS structures with singlet intrinsic torsion. A very interesting direction to
explore is to see whether one could derive the differential conditions, such as those derived
for generalised Scherck–Schwarz reductions [11], that a manifold should satisfy in order to
have a given GS-structure with singlet intrinsic torsion.

As this approach has already, and can in the future, give new examples of consistent
truncations, it would be nice to study solutions of these theories, such as black holes, black
strings, and domain walls and their relevance for the AdS/CFT correspondence.

It would also be interesting to continue the programme of scanning through dimen-
sions and amounts of supersymmetry to have a full classification of the supergravity
theories that can be obtained from string or M-theory.

Finally, another direction to explore is how to include the open string sector in the trun-
cations, as this can have interesting applications to fuzz-ball constructions and AdS/CFT.
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Notes
1 Formally a GS-structure defines a GS-principal sub-bundle P of the GL(d,R) frame bundle. In most cases, the two definitions are

equivalent.
2 We consider only orientable manifolds. Then, det T∗M is trivial and we can define arbitrary powers (det T∗M)p for any real p.
3 A generalised connection D̃ is compatible with the GS-structure if D̃Qi = 0 for all Qi. The definition of a generalised connection is

the same as in conventional differential geometry. However, in generalised geometry, the conditions of being torsion free and metric
compatible do not uniquely determine the connection. However, only certain projections of the action of the connection appear in
the supergravity, and these are unique [35].

4 We do not consider higher form-field degrees of freedom, as in the tensor hierarchy [38,39], since they are dual to the scalar, vector,
and two-forms and therefore do not introduce new degrees of freedom. In particular, this means that for D = 4, Aµ

M contain both
the vectors and their duals, and in D = 6, Bµν

MN contain both the two-forms and their duals.
5 One can show [6] that a necessary condition for the existence of a generalised parallelisation satisfying (27) is that M is a coset

manifold.
6 We renamed the R+ O(1, 1) to match the standard supergravity literature.
7 The generalised vector K0 defines an SO(, 5, 5) structure that embeds in E6(6) as E6(6) ⊃ SO(5, 5)×O(1, 1).
8 Note that the coset representative (Vi

a,Vi
a) satisfies

ηij = −δab Vi
aVj

b + δab Vi
aVj

b Mij = δab Vi
aVj

b + δab Vi
aVj

b . (106)

Then, one can define the SO(5)× SO(n) invariant matrices 2 δabVa
AVb

j = Mij − ηij, Mijklm = εabcdeVa
iVb

jVc
kVd

lVe
m, which

appear in half-maximal supergravity in five dimensions [46].
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