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Abstract: The aim of this work is to investigate the main dominant terms of lunisolar perturbations
that affect the orbital eccentricity of a Molniya satellite in the long term. From a practical point of
view, these variations are important in the context of space situational awareness—for instance, to
model the long-term evolution of artificial debris in a highly elliptical orbit or to design a reentry
end-of-life strategy for a satellite in a highly elliptical orbit. The study assumes a doubly averaged
model including the Earth’s oblateness effect and the lunisolar perturbations up to the third-order
expansion. The work presents three important novelties with respect to the literature. First, the
perturbing terms are ranked according to their amplitudes and periods. Second, the perturbing bodies
are not assumed to move on circular orbits. Third, the lunisolar effect on the precession of the
argument of pericenter is analyzed and discussed. As an example of theoretical a application, we
depict the phase space description associated with each dominant term, taken as isolated, and we
show which terms can apply to the relevant dynamics in the same region.

Keywords: Molniya satellites; lunisolar perturbation; third-body effect; secular eccentricity variation;
perturbative models

1. Introduction

On 23 April 1965, the first Molniya-1 spacecraft was launched by the former Soviet
Union [1]. After this, many others were set in orbit until 2004 and, currently, an total of 36
Molniyas are still in orbit as non-cooperant satellites [2]—that is, space debris. The orbits
of these satellites were designed ad hoc for Russian communication needs and are now
considered a class of special orbits around the Earth: the Molniya orbits.

As a matter of fact, the Molniya orbits have inspired particular interest among the
scientific community for their dynamical features, namely the high eccentricity e ≥ 0.7, the
critical inclination i ≈ 63.4◦ and the orbital period of approximately 12 h. The reason for
this configuration can be ascribed to the need to cover the Russian territory, located at a
high latitude. The chosen inclination not only ensures coverage of the range of latitude of
interest, but also the removal of the effect of precession of the line of apsides induced by
the oblateness of the Earth. In this way, the perigee and the apogee of the satellite remain
almost frozen in time, according to the initial argument of pericenter ω = 270◦ chosen
due to the Russian latitude [3,4]. Moreover, a Molniya satellite revolves two times around
the Earth every day: its orbital period and the Earth’s rotation period are commensurable
and this fact produces a tesseral resonance, sometimes called inappropriately mean motion
resonance (e.g., [5]).

Because of its dynamical features, a Molniya satellite undergoes several orbital per-
turbations. The low value of the altitude of the perigee, approximately 500 km [6], gives a
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non-negligible effect due to the atmospheric drag, which deeply affects the evolution of
the semi-major axis, besides the tesseral resonance. Moreover, the satellite spends most
of the time at high altitudes; hence, the lunisolar effect plays a fundamental role in the
eccentricity evolution on a timescale larger than the satellite orbital period.

From this brief overview, it is evident that Molniya orbits are placed in a particularly
rich dynamical environment; therefore, caution is needed. Our intent is to provide a robust
analytical insight that allows us to better understand the nature of the eccentric motion.
Throughout the discussion, the semi-major axis will be assumed constant. Moreover, we
stress that we are not interested in the role played by geopotential harmonics beyond the
second zonal harmonics J2. For further details on their role, the interested reader can refer
to [7–9].

We will focus on a doubly averaged Hamiltonian model including the secular oblate-
ness effect and the expansion of the lunar and solar disturbing functions up to the third
order (Section 2.1), thus not considering the simplification of circular orbits for the perturb-
ing bodies.

By exploiting an analytical approach based on the Hamiltonian theory (Section 2.2),
it is possible to identify the lunisolar contributions that dominate the eccentricity (and
inclination) dynamics in the long term. The analysis provided can be especially useful
when perturbative models of different orders are built, particularly to estimate the possible
emergence of chaos. In the literature, the choice of the perturbative terms is generally
heuristic, based only on the amplitudes of the harmonic coefficients of the disturbing
potential. Here, the amplitudes of the harmonic coefficients, the corresponding periods
and the ratio between the amplitudes and the frequency are estimated for the specific case
of the Molniya orbital region (Section 3.1), following [10]. These quantities will be our
“observables”. The analysis is actually general and similar arguments can be applied to
other initial conditions.

By identifying the main perturbing terms and the regime in eccentricity and inclination
where they can play a role, we will be able to estimate a maximum overlapping region,
comprising more than two resonant effects. This could be the basis for a future analysis of
the possible chaotic evolution of the eccentricity.

Another novelty with respect to past works is that lunisolar effects are usually studied
with a second-order doubly averaged model but the geocentric orbits of the third bodies
are taken as circular. Under this assumption, the third-order disturbing function vanishes,
thanks to the analytical expressions of the eccentricity functions appearing in it [11], and
the argument of pericenter of the perturbing bodies is not well-defined; hence, they do not
appear in the power series development of the disturbing functions. Here, we will provide
the general treatment.

We also remark that most of the past literature on lunisolar perturbation effects
approximated the slow frequencies of the problem with the precession rate caused by
the Earth’s oblateness (see, e.g., [12]). Such approximation is generally both convenient
and accurate enough but, as shown later in this paper, it seems not appropriate for the
Molniya dynamics. Indeed, the lunisolar contribution on the slow frequencies is not
negligible for the dynamics of the argument of the perigee of the satellite, because of the
critical inclination.

Finally, this work is part of a wider project in which the goal is to analyze in depth
the relevant astrodynamical properties of the Molniya satellites’ orbits. Specifically, the
analysis presented here runs parallel to the one carried out in [2], whose numerical results
agree with our general conclusions, as long as the assumption of a constant semi-major axis
(i.e., outside the drag regime) holds. The interested reader can find there a more detailed
numerical analysis; here, we will focus on the analytical part.

2. Theoretical Background

The theoretical background of our investigation is collected here for the sake of
completeness, even if several concepts are well-known among the celestial mechanics
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community and the treatment may be long. In this way, the interested researcher has all the
necessary information to follow our approach and results, and to reproduce them, if needed.
In the following, the Keplerian orbital elements will be referred to as: the semi-major axis
a, the eccentricity e, the inclination i, the argument of the perigee ω, the longitude of the
ascending node Ω and the mean anomaly M. Moreover, the subscripts ⊕, $ and � will
denote the parameters of the Earth, the Moon and the Sun, respectively. The satellite’s
elements will be denoted by no subscript.

2.1. The Disturbing Functions

Following [12], the solar disturbing function can be written as:

R� = ∑∞
l=2 ∑l

m,p,q=0 ∑∞
j,r=−∞ µ�

( al

al+1
�

)
εm

(l−m)!
(l+m)! Flmp(i)Flmq(i�)Hlpj(e)Glqr(e�)×

cos
[
(l − 2p + j)M− (l − 2q + r)M� + (l − 2p)ω− (l − 2q)ω� + m(Ω−Ω�)

]
,

(1)

where µ� is the gravitational parameter of the Sun, the Keplerian elements of both the
satellite and the Sun are written with respect to the equatorial reference plane, Flmp and
Flmq are Kaula’s inclination functions, Hlpj and Glqr are Hansen coefficients and εm can be
found in [12].

On the other hand, the motion of the Moon around the Earth is significantly perturbed
by the gravitational attraction of the Sun; hence, the lunar inclination, node and argument
of the perigee with respect to the celestial equator evolve as nonlinear functions of time. To
overcome this issue, usually, a mixed reference plane is adopted, where the elements of the
satellite are written with respect to the equatorial plane, while the elements of the Moon
are referred to as the ecliptic, so that i$ is approximately constant and ω$ and Ω$ are
approximately linear functions of time [12]. In this way, the lunar disturbing function reads

R$ = ∑∞
l=2 ∑l

m,p,s,q=0 ∑+∞
j,r=−∞(−1)m+s(−1)k1

µ$εmεs

2a$
(l−s)!
(l+m)! (

a
a$

)l Flmp(i)Flsq(i$)×

Hlpj(e)Glqr(e$)
{
(−1)k2Um,−s

l (ε) cos[(l − 2p + j)M + (l − 2q + r)M$+

(l − 2p)ω + (l − 2q)ω$ + mΩ + s(Ω$ − π
2 )− ysπ]

+(−1)k3Um,s
l (ε) cos[(l − 2p + j)M− (l − 2q + r)M$+

(l − 2p)ω− (l − 2q)ω$ + mΩ− s(Ω$ − π
2 )− ysπ]

}
,

(2)

where µ$ is the gravitational parameter of the Moon, ε is the obliquity of the ecliptic,
ys = 0 for s even while ys =

1
2 for s odd. The analytical expansions of the Kaula inclination

functions and of Ul,±s
m , the Hansen coefficients and the coefficients εm, εs, k1, k2, k3 can be

found in [12–14].
We are interested in a model including the oblateness effect and the third-body per-

turbation up to the third order, i.e., including the harmonics in Equations (1) and (2) with
l = 2, 3. In order to investigate the long-term evolution, a doubly averaged model is used,
i.e., the disturbing potential is averaged over the mean motion of the satellite and over the
mean motion of the third body. The disturbing potential R can be written as the sum of
the contribution due to the second zonal harmonics, say R̄J2 , and the one due to Moon and
Sun, say ¯̄R$ and ¯̄R�, respectively. We have

R = R̄J2 +
¯̄R$ + ¯̄R�, (3)

where the first term in Equation (3) is the singly averaged secular oblateness effect [15]

R̄J2 =
1
4

J2
µ⊕R2

⊕

a3(1− e2)
3
2

(
1− 3 cos2 i

)
, (4)
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where J2 is the second-order zonal coefficient of the Earth’s gravity field harmonic expan-
sion, µ⊕ is the Earth’s gravitational parameter and R⊕ represents the equatorial mean
radius of the Earth. On the other hand, the terms ¯̄R$ and ¯̄R� in Equation (3) are, respec-
tively, the lunar and solar doubly averaged disturbing functions.They can be obtained as
the collections of all the terms in Equations (1) and (2), respectively, such that:

l = 2, 3;
l − 2p + j = 0;
l − 2q + r = 0.

(5)

We recall that the averaging procedure is allowed whenever no mean motion reso-
nance and no semi-secular lunisolar resonance occur, the latter arising from a commen-
surability between the slow frequencies of the satellite and the mean anomalies of Moon
and Sun.

2.2. Hamiltonian Dynamics

In order to highlight the Hamiltonian structure of the problem, a coordinate change is
required, by considering the Delaunay canonical variables (L, G, H, `, g, h) defined as [16]

L =
√

µ⊕a, G = L
√

1− e2, H = G cos i,

` = M, g = ω, h = Ω.
(6)

In this way, the Hamiltonian describing the long-term lunisolar effect on a Molniya
satellite can be written as

H(L, G, H, `, g, h) = Hkep(L) +HJ2(G, H; L) +H$(G, H, g, h; L) +H⊕(G, H, g, h; L), (7)

where

Hkep = −
µ2
⊕

2L2 , (8)

and
HJ2 = −R̄J2 , H$ = − ¯̄R$, H� = − ¯̄R�, (9)

written in terms of Delaunay variables. It has to be pointed out that in Equation (2), the
harmonic argument vanishes for l = 2, p = 1 and m, s = 0. Since the corresponding term
inH$ only depends on the actions (L, G, H), we will call this special harmonic the lunar
mean term. As for the lunar case, for l = 2, p = 1 and m = 0, the solar harmonic argument
in Equation (1) disappears and thus we will refer to the corresponding harmonic term as
the solar mean term.

Let us introduce the following notation:

H$(G, H, g, h; L) = C$
0 A

$
0 (G, H; L) + ∑

α

C$
α A$α (G, H; L) cos(ϕ$α ),

H�(G, H, g, h; L) = C�0 A
�
0 (G, H; L) + ∑

γ

C�γ A�γ (G, H; L) cos(φ�γ ),
(10)

where:

• α and γ index the finite number of lunar and solar, respectively, harmonics retained in
the model;

• C$
α A$α (G, H; L) is the α-th lunar harmonic coefficient, and the constant term C$

α

includes the lunar orbital parameters;
• C�γ A�γ (G, H; L) is the γ-th solar harmonic coefficient and C�γ includes the solar orbital

parameters;
• α = 0 and γ = 0 denote the mean terms, i.e., C$

0 A
$
0 (G, H; L) is the lunar mean term

and C�0 A
�
0 (G, H; L) is the solar mean term;

• ϕ$α is the α-th lunar argument and φ�γ is the γ-th solar argument.
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Generally, both sine and cosine trigonometric functions appear in the development of
the lunar disturbing function. However, in our case, only cosine harmonics persist because
of the values that s and ys in Equation (2) assume when l = 2, 3. The mean anomaly is
cyclic in the doubly averaged Hamiltonian Equation (10); hence, the action L is a first
integral, i.e., the semi-major axis is constant in the long term.

Given the above considerations, the dynamics of the G, H, g and h are given by the
following Hamilton equations:

Ġ = ∑
α

[
C$

α A$α (G, H; L)
]

∂ϕ$α
∂g

sin(ϕ$α ) + ∑
γ

[
C�γ A�γ (G, H; L)

]
∂φ�γ
∂g

sin(φ�γ ),

Ḣ = ∑
α

[
C$

α A$α (G, H; L)
]

∂ϕ$α
∂h

sin(ϕ$α ) + ∑
γ

[
C�γ A�γ (G, H; L)

]
∂φ�γ
∂h

sin(φ�γ ),

ġ =
∂HJ2

∂G
(G, H; L) + C$

0
∂A$0 (G, H; L)

∂G
+ C�0

∂A�0 (G, H; L)
∂G

+

∑
α

[
C$

α
∂A$α
∂G

(G, H; L)
]

cos(ϕ$α ) + ∑
γ

[
C�γ

∂A�γ
∂G

(G, H; L)
]

cos(φ�γ ),

ḣ =
∂HJ2

∂H
(G, H; L) + C$

0
∂A$0 (G, H; L)

∂H
+ C�0

∂A�0 (G, H; L)
∂H

+

∑
α

[
C$

α
∂A$α
∂H

(G, H; L)
]

cos(ϕ$α ) + ∑
γ

[
C�γ

∂A�γ
∂H

(G, H; L)
]

cos(φ�γ ).

(11)

Following, e.g., [15], the oblateness of the Earth does not produce any effect on the
actions G and H, but it causes a precession, or regression, of g and h, which is usually
used to approximate the evolution of the angles, as already mentioned before. From
the last two equations of the system, Equation (11), we notice that the angles undergo
secular drifts, caused by both the oblateness and the lunar and solar mean terms, and
periodic effects, given by integrating the oscillating terms whose amplitude is proportional
to the partial derivatives of the harmonic coefficients. Since the Laplace radius is around
7.7 R⊕ [17], higher than the Molniya one, and is the geocentric distance at which the order
of magnitude of the precession caused by the lunisolar perturbation is equivalent to the
one caused by the Earth’s oblateness, the following approximation ġ ≈ ∂HJ2

∂G ,

ḣ ≈ ∂HJ2
∂H ,

(12)

is usually both convenient and accurate enough. However, in the particular case of the
Molniya dynamics, the orbits are critically inclined; thus, the third-body perturbation
might not be necessarily negligible at least for ġ, as confirmed by numerical experiments
that will be presented in Section 3.1.

From Equation (11), it is noteworthy that Ġ, and thus the mean eccentricity, only
depends on the harmonics showing ġ in the argument. On the other hand, only harmonics
depending on h affect Ḣ; therefore, the orbital inclination depends on the harmonics having
g or h in the argument.

Furthermore, the first two equations of the system (11) suggest that the larger the
harmonic coefficient, the deeper the resulting fluctuations in Ġ and Ḣ. Following the
approach presented in [10] for the dynamics in the main asteroid belt, we will analyze the
role in the evolution of G and H also of the harmonic frequency.
Let us consider a first approximation of the system (11) such that:

• the actions are assumed as a constant, namely

A$α (G, H; L) = A$α , A�γ (G, H; L) = A�γ ,



Universe 2021, 7, 482 6 of 21

• the angles evolve linearly in time, namely

ϕ$α (t) = ϕ$α,0 + ϕ̇$α t, φ�γ (t) = φ�γ,0 + φ̇�γ t,

being ϕ$α,0 and φ�γ,0 generic initial conditions and ϕ̇$α and φ̇�γ constants.

Note that the last assumption holds especially in the neighborhood of a resonance.
In this way, from (11), we obtain

Ġ = ∑
α

C$
α A$α

∂ϕ$α
∂g

sin(ϕ$α,0 + ϕ̇$α t) + ∑
γ

C�γ A�γ
∂φ�γ
∂g

sin(φ�γ,0 + φ̇�γ t),

Ḣ = ∑
α

C$
α A$α

∂ϕ$α
∂h

sin(ϕ$α,0 + ϕ̇$α t) + ∑
γ

C�γ A�γ
∂φ�γ
∂h

sin(φ�γ,0 + φ̇�γ t).

(13)

By integration, defining ∆G = G(T)− G(0) and ∆H = H(T)− H(0), we obtain

∆G = ∑
α

C$
α A$α
ϕ̇$α

∂ϕ$α
∂g

[
cos(ϕ$α,0)− cos(ϕ$α (T))

]
+ ∑

γ

C�γ A�γ
φ̇�γ

∂φ�γ
∂g

[
cos(φ�γ,0)− cos(φ�γ (T))

]
,

∆H = ∑
α

C$
α A$α
ϕ̇$α

∂ϕ$α
∂h

[
cos(ϕ$α,0)− cos(ϕ$α (T))

]
+ ∑

γ

C�γ A�γ
φ̇�γ

∂φ�γ
∂h

[
cos(φ�γ,0)− cos(φ�γ (T))

]
.

(14)

In other words, the long-term variation of G and H depends on the ratio between the
amplitude of the harmonic coefficients and the corresponding frequency. In the following,
this ratio will be denoted as R. The larger the ratio, the deeper the long-term effects.
Roughly speaking, a large ratio R, that identifies a strong perturbing term, is due to a
large amplitude or to a small frequency. In the first case, the term produces deep periodic
oscillations of G and H; in the latter, we are dealing with a resonant or near-resonant term
leading to significant variation over the time. Consideration of the ratio gives an indication
of the perturbation when the distinction between the two types of dynamics is not so sharp.
To identify the contributions that govern the dynamics of G and H, and thus of e and i, it
is thereby interesting to evaluate the amplitudes, the periods and the ratio of all the terms
involved in the model. An in-depth analysis of these terms will be presented in Section 3.1.

3. Numerical Evaluation of the Dominant Terms of the Doubly Averaged
Lunisolar Perturbation

In the following, we will assume the values

amoln = 26,554.3 km, emoln = 0.72, imoln = 63.43◦

and definitions

Lmoln =
√

µ⊕amoln, Gmoln = Lmoln

√
1− e2

moln, Hmoln = Gmoln cos imoln.

We will refer to the above parameters as the Molniya parameters. For the sake of consistency,
we also use the Delaunay angles for both the Moon and the Sun, namely{

ω$ = g$
Ω$ = h$

,
{

ω� = g�
Ω� = h�

(15)

Important results will be translated in terms of Keplerian elements in order to be more
understandable.

3.1. The Dominant Terms in the Long-Term Dynamics

According to the theoretical considerations exposed in Section 2.2 and taking as
a reference system (11), we evaluate the amplitudes of the harmonic coefficients (see
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Tables 1 and 2), their partial derivatives with respect to the actions (see Table 3) and the
periods of the harmonic arguments (see Tables 5 and 6) at the Molniya parameters. Since
the functions involved are sufficiently regular, the results provide an accurate estimate of
the perturbing terms affecting a satellite in a Molniya regime.

Table 1. Largest amplitudes (in km2/s2), in absolute value, of the solar harmonic coefficients, together
with the corresponding argument (left column). The values are computed by evaluating the harmonic
coefficients at the Molniya parameters, i.e., |C�γ A�γ (Lmoln, Gmoln, Hmoln)|.

φ�γ , l = 2 |C�γ A�γ |

2g 8.29× 10−6

2g + (h− h�) 6.42× 10−6

h− h� 5.44× 10−6

2g− (h− h�) 2.45× 10−6

Mean Term 1.89× 10−6

2(h− h�) 1.18× 10−6

2g + 2(h− h�) 1.13× 10−6

2g− 2(h− h�) 1.64× 10−7

Table 2. Largest amplitudes (in km2/s2), in absolute value, of the lunar harmonic coefficients,
together with the corresponding argument. The values are computed by evaluating the harmonic
coefficients at the Molniya parameters.

ϕ$α , l = 2 |C$
α A$

α |

2g 1.79× 10−5

2g + h 1.39× 10−5

h 1.18× 10−5

2g− h 5.30× 10−6

Mean Term 4.09× 10−6

2g + h− h$ 2.75× 10−6

2h 2.55× 10−6

2g + 2h 2.43× 10−6

h− h$ 2.33× 10−6

2g + h$ 1.16× 10−6

2g− h$ 1.16× 10−6

2h− h$ 1.11× 10−6

2g + 2h− h$ 1.06× 10−6

2g− h + h$ 1.05× 10−6

h$ 5.31× 10−7

2g + h + h$ 4.02× 10−7

2g− 2h 3.55× 10−7

h + h$ 3.41× 10−7

2g− 2h + h$ 1.55× 10−7

2g− h− h$ 1.54× 10−7

2h− 2h$ 1.20× 10−7

2g + 2h− 2h$ 1.15× 10−7

2g + h− 2h$ 5.90× 10−8

h− 2h$ 5.00× 10−8

2h + h$ 4.78× 10−8

2g + 2h + h$ 4.56× 10−8

2g− h + 2h$ 2.25× 10−8

2g− 2h + 2h$ 1.68× 10−8

2g− 2h$ 1.13× 10−8

2g + 2h$ 1.13× 10−8
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Table 2. Cont.

ϕ$α , l = 3 |C$
α A$

α |

3g− g$ + h− h$ 5.92× 10−8

g + g$ − h + h$ 5.60× 10−8

g− g$ + h− h$ 5.60× 10−8

3g− g$ + 2h− h$ 5.45× 10−8

g + g$ − 2h + h$ 5.15× 10−8

3g + g$ + h$ 3.97× 10−8

3g− g$ − h$ 3.97× 10−8

3g + g$ − h + h$ 2.26× 10−8

3g + g$ + h + h$ 2.16× 10−8

g− g$ − h− h$ 2.05× 10−8

g + g$ + h + h$ 2.05× 10−8

g− g$ + 2h− h$ 1.97× 10−8

g− g$ + 3h− h$ 1.75× 10−8

3g− g$ + 2h− 2h$ 1.03× 10−8

3g− g$ + 3h− h$ 1.00× 10−8

Table 3. Largest amplitudes (in rad/s), in absolute value, of the partial derivatives of the harmonic
coefficients with respect to the actions, together with the corresponding argument. The values are
computed by evaluating the terms at the Molniya parameters.

ϕ$α

∣∣∣∣C$
α

∂A$α
∂G

∣∣∣∣ ϕ$α

∣∣∣∣C$
α

∂A$α
∂H

∣∣∣∣
Mean Term 1.25× 10−10 Mean Term 3.85× 10−10

2g + h 3.72× 10−10 2g 2.80× 10−10

2g 3.41× 10−10 h 2.76× 10−10

h 2.57× 10−10 2g− h 1.76× 10−10

φ�γ

∣∣∣∣C�γ ∂A�γ
∂G

∣∣∣∣ φ�γ

∣∣∣∣C�γ ∂A�γ
∂H

∣∣∣∣
2g + h− h� 1.72× 10−10 Mean Term 1.78× 10−10

2g 1.58× 10−10 2g 1.30× 10−10

h− h� 1.19× 10−10 h− h� 1.28× 10−10

Mean Term 5.81× 10−11

Table 1 shows all the amplitudes of the second-order solar harmonics. The number
of the third-order solar harmonics computed is 28, but the corresponding coefficients are
too small to be displayed: the largest values are of the order of 10−11 km2/s2. In the lunar
case, the number of the second-order harmonics evaluated is 38, ranging from values of
approximately 10−5 km2/s2 to 10−11 km2/s2. Instead, the third-order contribution consists
of 196 harmonics, ranging from approximately 10−8 km2/s2 to 10−17 km2/s2. Of all these
estimates, the largest amplitudes of both the second- and the third-order lunar potential
are listed in Table 2.

We notice that the largest lunar amplitudes in Table 2 are only one order of magnitude
lower than the HJ2 contribution in Equation (7), which is of order 10−4 km2/s2 when
evaluated at the Molniya parameter. This is due to the fact that a Molniya satellite attains
high altitudes.

Moreover, from the table, it is clear that, although considering the geocentric orbits
of the Moon and of the Sun with their actual eccentricity (e$ = 0.0549, e� = 0.0167), the
third-order contribution in the Hamiltonian given by a third body is quite small, even if
Molniya are highly eccentric and high-altitude orbits.

In Table 3, we give the estimates of the largest values of the partial derivatives of
the harmonic coefficients with respect to the actions, computed in the Molniya region.
This analysis would indicate the dominant terms in the angular dynamics defined by the
last two equations in Equation (11). Table 3 on the left shows the lunisolar contribution
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to ġ, while, on the right, we report the terms determining the dynamics of h. Only the
second-order lunisolar contribution was taken into account.

The precession caused by the lunar and solar mean terms (Table 3 on the left) is cer-
tainly larger than the secular drift of the argument of perigee due to the Earth’s oblateness,
which cancels out, by definition, at the critical inclination.

Moreover, the amplitudes of the oscillations seem to be quite large. These facts imply
that the third-body effects on the dynamics of the argument of perigee are small but not
negligible if compared with the oblateness effect. If we change slightly the inclination—for
example, i ≈ 63.43± 2◦—the oblateness drift becomes only one order of magnitude larger
than the ones produced by the third-body mean terms. For practical applications, because
of the unavoidable errors in spacecraft maneuvering, the conclusion is that the gravitational
attraction exerted by the Moon and the Sun is essential to study in depth the periods and
the perigee resonance that characterize Molniya-like orbits (Sections 4.1 and 4).

On the contrary, the partial derivatives of both the lunar and the solar mean terms in
Table 3 on the right ensure that the oblateness effect is still the dominant perturbation for ḣ,
as it usually happens in the case of a no frozen condition. Indeed,

ḣJ2 =
∂HJ2

∂H
∣∣
(Lmoln ,Gmoln ,Hmoln)

≈ −2.63× 10−8. (16)

Hence, to better capture how the lunisolar perturbation might affect the dynamics of the
angular terms, the periods of the arguments involved in the doubly averaged model are
computed assuming ḣ ≈ ḣJ2 and different approximations of ġ taking into account also the
the lunisolar terms listed in Table 3.

To handle the periodic effects, we need to set initial conditions also for the argument of
pericenter and for the longitude of the ascending node of the satellite. An initial argument
of perigee at 270◦ is the best initial condition to allow the largest coverage of the Russian
territory by a Molniya satellite [3,4]; thus, we focus only on how lunisolar effects on the
angles vary with respect to the initial ascending node of the satellite. This choice is dictated
by the fact highlighted, for instance, by Anselmo and Pardini in [18]: the initial ascending
node is crucial for the satellite’s lifetime. Moreover, we can always fix h� = 0. The notation
adopted to represent the different approximations of ġ and the details are arranged in
Table 4.

In Table 5, we list the largest second-order periods obtained, while Table 6 shows the
third-order ones. We remark that the arguments that do not depend on ġ are also shown for
the sake of completeness. As we will see in the second part of the work, to each resonant
term including g, one can associate an integral of motion that comprises the value of the
semi-major axis, eccentricity and inclination. Thus, the terms in the disturbing potential
that explicitly cause the inclination to evolve implicitly change the long-term picture when
combined with the eccentricity resonances.

Table 4. Notation and details of the various approximations of ġ considered in the work. The first
column is the notation; the second to the fourth columns show whether a perturbing effect is taken
into account (X) or not (−). The last column reports, where relevant, the fixed value (in degrees) of
the initial longitude of the ascending node hIC chosen to compute the approximation of ġ.

Notation J2-Term Mean Terms Periodic Terms in Table 3 hIC

ġJ2 X − − Not relevant
ġ0 X X − Not relevant
ġ1 X X X 90
ġ2 X X X 180
ġ3 X X X 0
ġ4 X X X 270
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Table 5. Largest periods (>7 years) for the lunar and solar arguments appearing in the second-order
doubly averaged disturbing potential. The first column helps to identify which third body the
arguments belong to. The periods (in years) are computed assuming ḣ ≈ ḣJ2 and following the
assumptions listed in Table 4 for ġ, as specified at the top of each column.

Argument ġ ≈ ġJ2 ġ ≈ ġ0 ġ ≈ ġ1 ġ ≈ ġ2 ġ ≈ ġ3 ġ ≈ ġ4

$,� 2g 9777.54 513.68 196.72 163.76 150.31 130.27

$ 2h$ − h− 2g 40.25 43.47 50.34 53.07 54.65 57.89
$ 2h$ − h 40.08 40.08 40.08 40.08 40.08 40.08
$ 2h$ − h + 2g 39.92 37.18 33.30 32.20 31.64 30.65

$ h$ + 2g 18.65 19.31 20.56 21.00 21.24 21.71
$ h$ 18.61 18.61 18.61 18.61 18.61 18.61
$ h$ − 2g 18.58 17.96 17.00 16.71 16.56 16.28

$ h$ − h− 2g 12.73 13.03 13.58 13.78 13.88 14.08
$ h$ − h 12.71 12.71 12.71 12.71 12.71 12.71
$ h$ − h + 2g 12.69 12.40 11.94 11.79 11.72 11.58

$ 2h$ + 2g 9.31 9.47 9.77 9.87 9.92 10.02
$ 2h$ 9.31 9.31 9.31 9.31 9.31 9.31
$ 2h$ − 2g 9.30 9.14 8.89 8.81 8.76 8.68

$,� 2g + h 7.56 7.66 7.85 7.92 7.95 8.01
$,� h 7.55 7.55 7.55 7.55 7.55 7.55
$,� 2g− h 7.55 7.55 7.27 7.21 7.19 7.13

Table 6. Largest periods for the lunar and solar arguments appearing in the third-order doubly
averaged disturbing potential. The first column helps to identify the third body. The periods (in
years) are computed assuming the approximations of ġ listed in Table 4 and ḣ = ḣJ2 .

Argument ġ ≈ ġJ2 ġ ≈ ġ0 ġ ≈ ġ1 ġ ≈ ġ2 ġ ≈ ġ3 ġ ≈ ġ4

� g− g� 23,669.36 1036.82 394.83 328.48 301.43 261.16
� g− g� 16,659.31 1018.06 392.08 326.57 299.83 259.95

� 3g− g� 6919.27 343.50 131.30 109.28 100.30 86.91
� 3g + g� 6161.37 341.41 131.00 109.07 100.12 86.78

$ 3g− g$ − 3h$ 184.42 367.55 488.04 279.03 227.11 168.40
$ g− g$ − 3h$ 181.00 217.27 329.57 396.41 444.55 575.42
$ g + g$ + 3h$ 177.71 152.69 123.19 115.89 112.33 106.23
$ 3g + g$ + 3h$ 174.54 117.70 75.75 67.86 64.29 58.51

$ 3g− g$ − 2h + 2h$ 108.11 154.24 562.28 4104.67 1736.91 473.80
$ g− g$ − 2h + 2h$ 106.93 118.62 145.73 157.48 164.55 179.68
$ g + g$ + 2h− 2h$ 105.77 96.37 83.72 80.28 78.55 75.52
$ 3g + g$ + 2h− 2h$ 104.64 81.15 58.72 53.87 51.59 47.80

$ 3g + g$ + h + h$ 52.03 60.78 85.12 97.91 106.45 127.23
$ g + g$ + h + h$ 51.75 54.35 59.41 61.27 62.32 64.37
$ g− g$ − h− h$ 51.48 49.15 45.63 44.59 44.05 43.08
$ 3g− g$ − h− h$ 51.21 44.86 34.07 37.03 35.04 32.37

In both tables, the arguments are grouped with respect to the associated periods to
make the reading easier. In Table 5, macro periods of the order 40.08 years, 18.61 years,
12.71 years, 9.30 years and 7.55 years are highlighted, consistent with the frequency analy-
sis [2]. The argument 2g represents the main resonant angle, because of the critical inclination,
and thus we compute a very large period, for any assumptions we take for ġ. Moreover,
we find the well-known value 18.61 years in correspondence with the period of the lunar
ascending node. Small periods are related to high frequencies that are not very sensitive
to the value of ġ. On the contrary, the largest periods strongly depend on the approxima-
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tion chosen. The same feature also emerges from Table 6, where the groups are of four
arguments in the lunar case and of two arguments in the solar case. The solar third-order
critical arguments g± g� and 3g± g� (top of Table 6) behave as the main resonant angle.
Conversely, the third-order lunar arguments 3g− g$ − 2h + 2h$ and 3g + g$ + h + h$
behave in the opposite way: by increasing the lunisolar perturbation, the arguments may
even become critical.

In Table 7, all the harmonics whose R > 1 km2/s are shown, from the highest to the
lowest, taking as reference the assumption of the fourth column. At the top of the table, we
find clearly the main resonant argument 2g, which is the lunisolar term dominating the
dynamics of the eccentricity for Molniya orbits, as is well known.

Table 7. Lunisolar harmonics with R > 1 km2/s. The first column helps to identify the third body; the second one indicates
whether the corresponding argument appears in the second- or in the third-order lunisolar potential. The ratio R (in km2/s)
is computed by assuming the approximations of ġ listed in Table 4 and ḣ = ḣJ2 .

l Argument ġ ≈ ġJ2 ġ ≈ ġ0 ġ ≈ ġ1 ġ ≈ ġ2 ġ ≈ ġ3 ġ ≈ ġ4

$ 2 2g 879,496.40 46,205.55 17,695.51 14,730.36 13,520.88 11,718.5
� 2 2g 407,137.87 21,389.55 8191.64 6819.00 6259.11 5424.75
$ 2 2g + h 526.48 533.92 547.08 551.51 553.90 558.45
$ 2 h 446.00 446.00 446.004 446.00 446.00 446.00
� 2 2g + h 243.72 247.16 253.25 255.30 256.41 258.52
� 2 h 206.46 206.46 206.46 206.46 206.46 206.46
$ 2 2g− h 200.75 197.99 193.47 192.05 191.29 189.89
$ 2 2g + h− h$ 175.79 180.01 187.69 190.33 191.78 194.54
$ 2 h− h$ 148.84 148.84 148.84 148.84 148.84 148.84
$ 2 2g + h$ 108.85 112.73 120.00 122.58 124.00 126.75
$ 2 2g− h$ 108.44 104.85 99.25 97.56 96.67 95.06
� 2 2g− h 92.93 91.65 89.56 88.90 88.55 87.90
$ 2 2g− h + h$ 66.96 65.43 62.97 62.22 61.82 61.08
$ 2 h$ 49.65 49.65 49.65 49.65 49.65 49.65
$ 2 2h 48.33 48.33 48.33 48.33 48.33 48.33
$ 2 2(g + h) 46.15 46.48 47.04 47.22 47.32 47.51
$ 2 2h− h$ 26.42 26.42 26.42 26.42 26.42 26.42
$ 2 2(g + h)− h$ 25.23 25.46 25.84 25.97 26.04 26.17
� 2 2h 22.37 22.3 22.37 22.37 22.37 22.37
� 2 2(g + h) 21.36 21.51 21.77 21.86 21.91 21.99
$ 2 2h$ − 2g− h 11.92 12.88 14.91 15.72 16.19 17.15
$ 2 h$ + 2g + h 10.85 10.96 11.15 11.21 11.24 11.31
$ 2 2h$ − h 10.07 10.07 10.07 10.07 10.07 10.07
$ 2 h$ + h 9.19 9.19 9.19 9.19 9.19 9.19
$ 2 2g− 2h 6.72 6.68 6.60 6.58 6.56 6.54
$ 3 3g + g$ + h + h$ 5.65 6.60 9.24 10.63 11.56 13.82
$ 3 g + g$ + h + h$ 5.32 5.58 6.10 6.29 6.40 6.61
$ 3 g− g$ − h− h$ 5.29 5.05 4.69 4.58 4.53 4.43
$ 2 2h$ + 2g− h 4.51 4.21 3.77 3.64 3.58 3.47
$ 2 h$ − 2g + h 4.14 4.10 4.03 4.01 4.00 3.98
$ 2 2h$ − 2h 3.85 3.85 3.85 3.85 3.85 3.85
$ 2 h$ + 2g− 2h 3.68 3.64 3.59 3.57 3.57 3.56
$ 2 2(h$ − g− h) 3.67 3.72 3.79 3.82 3.83 3.86
� 2 2(g− h) 3.11 3.09 3.06 3.04 3.04 3.03
$ 3 3g− g$ − h− h$ 2.12 1.86 1.53 1.45 1.41 1.34
$ 3 3g− g$ − h$ 1.77 1.81 1.89 1.92 1.94 1.97
$ 3 3g + g$ + h$ 1.76 1.18 1.65 1.63 1.62 1.60
$ 3 3g + g$ + h 1.27 1.18 1.05 1.01 0.99 0.96
$ 3 g− g$ − h 1.21 1.25 1.31 1.33 1.34 1.36
$ 3 3g− g$ + h− h$ 1.21 1.23 1.25 1.26 1.26 1.27
$ 3 g + g$ + h 1.21 1.18 1.13 1.11 1.10 1.09
$ 3 g− g$ + h− h$ 1.15 1.15 1.16 1.16 1.16 1.16
$ 3 g + g$ − h + h$ 1.15 1.14 1.13 1.13 1.13 1.13

Subsequently, the harmonics corresponding to 2g± h and h show R > 200 km2/s;
thus, they produce a significant contribution to the dynamics; precisely, 2g± h affects both
e and i, while h only perturbs i. These arguments are far from being critical; the periods are
around 7.55 years, but their amplitudes are quite large (see Tables 1 and 2).
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In [5], the role played by 2g± h was analyzed by means of a double resonance model,
even though the resonance 2g + h does not produce any resonances overlapping. Moreover,
in [2], the authors proved that the terms corresponding to 2g, 2g± h and h capture the
main features of the long-term eccentricity variation, by comparing the pseudo-observation
data given by the Two-Line Element (TLE) with ad hoc numerical propagations. Following
the results in [2], in this work, the dominant terms are chosen as the ones associated with
R > 100 km2/s. Indeed, as long as the hypothesis of a constant semi-major axis holds true,
a model including the lunar harmonics with l = 2, m = 0, 1 and s = 0, 1 in Equation (2)
and the solar harmonics with l = 2, m = 0, 1 in Equation (1) seems to be the “poorest”
model capable of representing the third-body effect in the actual mean eccentricity of many
Molniya spacecraft. Such terms of the quadrupolar expansion occupy the first 14 lines of
Table 7, having only 2 of them R < 100 km2/s significantly.

4. The Phase Space Structure of the Main Terms

As an example of a possible application of the analysis carried out so far, we show
the phase space corresponding to the dominant terms that have been identified in the
previous section. As mentioned above, we focus on the terms whose ratio R, as lunar or
solar harmonics, is larger than 100 km2/s, except for the contribution corresponding to h
and h− h$, and we aim to identify the neighborhood in eccentricity and inclination where
they play a role for the long-term dynamics. As before, for the sake of completeness, we
introduce the investigation by recalling the basic concepts.

4.1. The Resonant Dynamics

A non-autonomous dynamical system can be converted into an autonomous one
by adding one dimension to the phase space. Therefore, without loss of generality, in
what follows, we assume to have an autonomous 3-degree-of-freedom nearly integrable
Hamiltonian system. Referring to the classical theory presented in [16], let us take into
account as a concrete example, useful to our purpose, the resonant Hamiltonian:

Hres(I, ψ) = H0(I) + ε f (I) cos(k ·ψ), (17)

where ε is the small parameter, I ∈ R3 and ψ ∈ T3 are the action-angle variables 1 for
the unperturbed Hamiltonian H0, and k · ψ̇ = 0 in some region of the phase space. The
Hamilton equations arising fromHres are:{

İ = εk · f (I) sin(k ·ψ),
ψ̇ = ∂H0

∂I (I) + ε
∂ f
∂I (I) cos(k ·ψ),

(18)

where ∂H0
∂I (I) is the vector of the main frequencies. From the classical theory, by resonance,

we mean a commensurability between the main frequencies for some value of I = I∗. In
this case:

k · ∂H0

∂I
(I∗) = 0. (19)

We refer to the relation in Equation (19) as an exact resonance, while we talk of real
resonance, or simply resonance, by referring to the following relation:

k · ψ̇(I) = k · ∂H0

∂I
(I) + εk · ∂ f

∂I
(I) cos(k ·ψ) = 0. (20)

If the perturbation is sufficiently small with respect to the unperturbed dynamics, then
k · ψ̇(I∗) ≈ 0 and the exact resonance may well approximate the real resonance at least up to
the first order in ε. There always exists a canonical transformation Φ such that the critical
argument k ·ψ is a new angle, i.e.,

(I, ψ)
Φ7→ (J, θ), θ1 = e1

T · θ = k ·ψ. (21)
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After performing a coordinate change Φ, the new one-degree-of-freedom (1-DOF)
Hamiltonian

H′res(J1, θ1) = H′0(J) + ε f ′(J) cos θ1, (22)

describes a two-dimensional motion taking place along the level curves J2 = J∗2 and J3 = J∗3
in the (J1, θ1) plane, where J1 is the action conjugate to the critical angle θ1 and J∗ = Φ(I∗).

According to the Standard Resonance Model (SRM), also known as integrable approx-
imation in [16], the Hamiltonian H′res can be developed in Taylor series of J1 around J∗1 ,
which, as a first approximation, represents a pendulum-like dynamics in the neighborhood
of the exact resonance.

Following [16], the resonant region is the libration region around the elliptic equi-
librium point and its maximum libration width measured at the apex of the separatrix is
given by

|J1 − J∗1 | ≤ 2

√∣∣∣∣ c
β

∣∣∣∣. (23)

If there are two or more resonances, then we can separately study the dynamics corre-
sponding to each one, making the assumption that they are isolated. The resulting motion
is pendulum-like with an appropriate coordinate change for every single resonance and
the pendulum-like model may give a good approximation as long as the libration regions
remain isolated. If any resonance overlap occurs, then the pendulum-like model breaks
down. The separatrices of different resonances are connected if two or more resonances
overlap; therefore, an initial condition in this region may produce jumps from one libration
region to one other, showing chaotic diffusion [16].

Another scenario in which the classical approach does not provide a reliable de-
scription of the real resonant dynamics occurs when the exact resonance is not a good
approximation of the real resonance. The real equilibria arising from the suitable Hamilto-
nianH′res are solutions of: {

J̇1 = ε f ′(J) sin θ1 = 0,

θ̇1 =
∂H′0
∂J1

(J) + ε
∂ f ′
∂J1

(J) cos θ1 = 0.
(24)

As in the pendulum case, the condition J̇1 = 0 implies θ1 = nπ with n ∈ Z. By
replacing this solution in the second equation of (24), then the latter splits into two different
equations, namely 

∂H′0
∂J1

(J) + ε
∂ f ′
∂J1

(J) = 0,

∂H′0
∂J1

(J)− ε
∂ f ′
∂J1

(J) = 0.
(25)

Hence, the solutions of (25) are not necessarily the same: the stronger the perturbing
effects, controlled by ε, the more the solutions of the system (25) are separated in the phase
space. In such a case, the Taylor approximation, which characterizes the classical approach,
fails to capture a deep asymmetry.

In the case of deep asymmetry, the maximum libration width can be computed by
taking advantage of the invariant condition associated with the Hamiltonian function,
namely

H′res(J1, θ1s) = H′res(J1u, θ1u), (26)

where (J1s, θ1s) is the stable equilibrium of the system and (J1u, θ1u) is the unstable one,
such that J1s 6= J1u. In what follows, we will refer to this as the non-standard approach (NSA),
only to distinguish it from the pendulum-like case.
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4.2. Single Resonance Hypothesis Description

If we apply the above description to the Hamiltonian Equation (7), the actions are
I = (L, G, H), the angles ψ = (`, g, h) and the unperturbed termH0 is given by the J2-term
and both the lunar and solar mean terms, namely

H0 = HJ2(G, H; L) + C$
0 A

$
0 (G, H; L) + C�0 A

�
0 (G, H; L). (27)

The resonant perturbation is given by the Hamiltonian contribution of a lunisolar dominant
harmonic related to the resonant angle, considered on a case-by-case basis. This is to say
that, in order to start from a simplified analysis, we assume that only one lunisolar term
affects the dynamics at a time. Under the hypothesis of isolated resonance, the dynamics in
a small enough neighborhood are described by a resonant Hamiltonian of the form given
in Equation (17).

For each case that we will show, after performing a coordinate change of the form
shown in Equation (21), the motion evolves in the (J1, θ1) plane. The first integral of motion
is Kozai-like, i.e., the evolution of e and i is coupled (recalling that the semi-major axis is
constant in our assumptions). Thus, the phase portraits are computed assuming L = Lmoln
and they correspond to the given integral of motion computed at the Molniya parameters.

The resonant dominant harmonics for which the SRM gives a reliable description
of the phase plane structure are listed in Table 8, while the resonances associated with
the arguments in Table 9 exhibit a non-standard behavior. In Table 8, we show the center
of libration related to each resonant harmonic and the corresponding maximum width,
as computed with the standard approach (SRM) through Equation (23). The maximum
real excursion in eccentricity and in inclination, computed by using Equation (26), gives
substantially the same width obtained with the SRM. These facts can be appreciated by
looking at the phase portraits from Figures 1–4. The dynamical structure arising from
the pendulum-like Hamiltonian is depicted on the left, while, on the right, we show the
results obtained from the resonant Hamiltonian not developed in Taylor series; the Y-axis
is always converted in eccentricity or in inclination.

Table 8. Resonances whose dynamics are well described by the SRM. The first column identifies
the resonances through the critical argument associated with it; the second column shows the first
integral arising from the resonant Hamiltonian. Γ is the dummy momentum introduced to add
one dimension to the phase space in case of resonances involving the lunar ascending node. The
center of libration is given in terms of Keplerian elements: (e∗, i∗) identifies the libration center of the
exact resonance while (es, is) gives the center of libration related to the real resonance. |J1s − J1u| (in
km2/s) gives information about the asymmetry of the resonant region. The last two columns show
the libration width in terms of e and i; the same values are obtained with the SRM Equation (23) and
with NSA Equation (26). The values in inclination are reported in degrees.

Critical Argument First Integral e∗ es i∗ is |J1s− J1u| ∆e ∆i

2g− h
√

a(1− e2)(cos i + 1
2 ) 0.64 0.64 69.14 69.03 114.41 0.13 7.3

2g + h
√

a(1− e2)( 1
2 − cos i) 0.98 0.98 56.06 56.06 1.20 0.004 0.55

2g + h− h$
Γ− 1

2

√
a(1− e2)√

a(1− e2) cos i
0.52 0.52 62.79 62.80 337.35 0.15 0.29

2g + h$
Γ +

1
2

√
a(1− e2)√

a(1− e2) cos i
0.76 0.76 61.56 61.55 10.27 0.03 1.63
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Table 9. Resonances whose dynamics are not appropriately described by the SRM. The first column identifies the resonance
through the associated argument; the second column shows the first integral arising from the resonant Hamiltonian. The
equilibria are given in terms of eccentricity and inclination: (es, is) stable ones, (eu, iu) unstable ones. |J1s − J1u| (in km2/s)
gives information about the asymmetry of the resonant region. The last two columns show the maximum excursion, in
terms of e and i, that may be attained in the libration region as computed with NSA through Equation (26). The values in
inclination are reported in degrees. N.E. means “not evaluated”.

Critical Argument First Integral es eu is iu |J1s− J1u| [emin, emax] [imin, imax]

2g
√

a(1− e2) cos i 0.72 0.71 63.29 63.69 625.10 [0.55, 0.79] [59.30, 68.11]

2g− h$

√
a(1− e2) cos i

Γ +
1
2

√
a(1− e2)

0.62

0.57

0.60

0.54

67.97

68.95

68.48

69.57
N.E. [0.44, 0.68] [66.28, 70.83]

We note that the phase portraits for the cases where the angle does not include the
lunar node have been computed considering the contribution of both Sun and Moon.
Moreover, since the harmonic argument depending on the lunar ascending node leads to a
non-autonomous resonant Hamiltonian, it is necessary to introduce a dummy momentum
Γ and a new conjugate angle depending on the lunar node in order to eliminate the explicit
linear time dependency. For this reason, there are two first integrals in correspondence of
2g± h$, 2g + h− h$ in Tables 8 and 9.

Figure 1. Phase space associated with the 2ġ dynamics. Contour plot of the pendulum-like ap-
proximation (plot title SRM on the left) and of the resonant Hamiltonian not developed in Taylor
series (plot title NSA on the right). The X-axis always shows the critical angle 2g in degrees. The
Y-axis is converted in inclination (on the top), and measured in degrees, or in eccentricity (on the
bottom). Green lines denote the librating curves around the stable equilibrium, purple lines denote
the circulation region, while the separatrices are depicted in red.
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Figure 2. Phase space associated with the 2ġ + ḣ dynamics. Contour plot of the pendulum-like
approximation (SRM on the left) and of the resonant Hamiltonian not developed in Taylor series
(NSA on the right). The X-axis always shows the critical angle 2g + h in degrees. The Y-axis is
converted in i (on the top), and measured in degrees, or in e (on the bottom). Green lines denote the
librating curves around the stable equilibrium, purple lines denote the circulation region, while the
separatrices are depicted in red.

Figure 3. Cont.
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Figure 3. Phase space associated with the 2ġ + ḣ$ dynamics. Contour plot of the pendulum-like
approximation (plot title SRM on the left) and of the resonant Hamiltonian not developed in Taylor
series (plot title NSA on the right). The X-axis always shows the critical angle 2g + h$ in degrees.
The Y-axis is converted in inclination (on the top), and measured in degrees, or in eccentricity (on the
bottom). Green lines denote the librating curves around the stable equilibrium, purple lines denote
the circulation region, while the separatrices are depicted in red.

Figure 4. Phase space associated with the 2ġ − ḣ and 2ġ + ḣ − ḣ$ (right) dynamics. The X-axis
always shows the critical angle in degrees. The Y-axis is converted in i (on the top), and measured in
degrees, or in e (on the bottom). Green lines denote the librating curves around the stable equilibrium,
purple lines denote the circulation region, while the separatrices are depicted in red.

The lunisolar periodic component with argument 2g produces a non-negligible contri-
bution to the dynamics of the argument of the pericenter, if compared with the oblateness
effect and with the precession due to the lunisolar mean terms. Therefore, the ideal model
SRM does not give a reliable estimate of the resonant region, in accordance with [5]. Figure 1
depicts the dynamics in the (e, 2g) plane and in the (i, 2g) plane around the main resonance.
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The maximum excursion in inclination, as computed with SRM, is [58.03 , 67.36◦] and it is
rather similar to the one obtained with NSA in Table 9, the difference being around one
degree both for the minimum and the maximum inclination. The excursions in eccentricity
given by the two models are instead quite different: the minimum value of the eccentricity
reached in the libration region of the pendulum-like approximation is approximately 0.59
and is quite different from emin = 0.55. The maximum values are both above the threshold
of e = 0.76 2.

The second dominant term, namely 2ġ + ḣ, is not resonant by definition at the critical
inclination. By using the Molniya parameters as initial conditions, the equilibrium point
lies in the retrograde orbit region, at i = 110.99◦ (see Figure 2).

This means that for a Molniya satellite with (amoln, emoln, imoln), the argument 2g + h
always circulates with a period of approximately 7.6 years (see Table 5). In any case, the
libration region of 2ġ + ḣ is quite narrow and does not overlap with the other dynamics
taken into account, especially with the main resonance and with 2ġ− ḣ, as already pointed
out in [5].

In general, also for the other dominant terms identified (see Figures 3 and 4), the
dynamics corresponding to (amoln, emoln, imoln) are of circulation, except for the case 2ġ+ ḣ$
(Figure 3) if we consider a certain tolerance in the inclination, which is reasonable for
practical applications [2].

Finally, this analysis shows that initial conditions corresponding to the Molniya
parameters allow for a motion in which the width associated with the arguments 2g, 2g− h,
2g + h− h$ and 2g + h$ intersects. By putting together the maximum and the minimum
i and e (see Tables 8 and 9) that may be attained in the libration region of every single
resonance, we obtain a maximum overlapping region defined as

e ∈ [0.44, 0.79], i ∈ [59.30◦, 72.8◦] (28)

that is widely extended both in eccentricity and in inclination. This is depicted in Figure 5,
where we display also the resonance ḣ− h$, because it takes place in the same domain. In
turn, it is not possible to encapsulate the complexity of the Molniya dynamics in a simple
way—for instance, with a single-resonance model or a double-resonance model.

Only three third-order resonances show a ratio larger than a few second-order terms.
From Figure 6, which depicts the location of such resonances, we expect that 3g + g$ +
h + h$, g + g$ + h + h$ and g− g$ − h− h$ occur in the maximum overlapping region
found in Equation (28).

Figure 5. Cont.
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Figure 5. Phase space associated with the 2ġ − ḣ$ dynamics. Contour plot of the Hamiltonian
obtained after performing the suitable coordinate change. The pictures show how the phase structure
changes by using different initial conditions to evaluate the first integral; e = emoln is the initial
eccentricity, while the initial inclination varies: i = 64.3◦ (top left), i = 64.7◦ (top right), i = 64.9◦

(bottom left), i = 66 (bottom right). Equilibria emerge by increasing the orbital inclination. Purple
lines identify the circulation orbits. The separatrices arising from the different unstable equilibria are
drawn in red and black, while the corresponding librating curves are denoted in magenta and orange,
respectively. Cyan lines appear only on the bottom left, where there is no clear distinction between
the libration region associated with different pairs of recently emerged equilibria.
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Figure 6. Left: in the (e, i) plane, the second-order resonances that correspond to the dominant terms
of Table 7 and that can occur in the maximum overlapping region identified (black box). Purple:
ḣ− ḣ$; green: 2ġ; cyan: 2ġ− ḣ; orange: 2ġ + ḣ− ḣ$; yellow: 2ġ + ḣ$; blue: 2ġ− ḣ$. Right: the
third-order resonances with largest ratio (see Table 7) that can occur in the same neighborhood.
In both plots, the red circle denotes the Molniya parameters. Purple: 3ġ + ġ$ + ḣ + ḣ$; green:
ġ + ġ$ + ḣ + ḣ$; cyan: ġ− ġ$ − ḣ− ḣ$.

5. Conclusions

In this work, we have considered a doubly averaged Hamiltonian model accounting
for the Earth’s oblateness effect and the octupolar lunisolar perturbation to estimate the per-
turbing contribution caused by each term in the specific case of the Molniya satellites’ orbit.

Concerning the evolution of the mean eccentricity and inclination, the role played
by the ratio between the harmonic amplitude and the harmonic frequency is crucial to
set a “hierarchy” on the large amount of terms that we are dealing with. The analysis
provided is general and can be exploited to approach the long-term evolution in other
orbital regions. In the case considered here, in addition to the harmonics corresponding to
2g and 2g± h, considered in the past to be the most important, our investigation shows that
the long-term behavior in eccentricity is influenced, at the same level, also by perturbing
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terms associated with the satellite and the lunar ascending nodes. The amplitude of the
second-order dominant terms (beyond 2ġ) is at least 1.89 × 10−6 for the Sun and at least
1.16 × 10−6 for the Moon. The periods of the most relevant terms are instead: 7.21, 7.55,
7.92, 11.79, 12.71, 16.71 and 21 years. In particular, the terms that exhibit a large ratio are
also those identified as the dominant contributors through the numerical experiments
given in [2], at least as long as the hypothesis of a constant mean semi-major axis holds.
Moreover, we have shown that the third-body effect is crucial also for the evolution of the
argument of the pericenter, because of the critical inclination.

Besides providing a robust basis for the choice of the terms to consider in an analytical
modeling, a possible application of the analysis is to explain observational data or to
estimate the maximum eccentricity growth in the long term due to lunisolar perturbations,
as done in [19,20] in the case of solar radiation pressure.

Moreover, in the second part of the paper, we have described the phase space associ-
ated with the most important resonant terms causing explicitly an eccentricity variation. We
have highlighted in particular when the pendulum-like approach does not give a reliable
estimate of the resonance extension. In these cases, the critical inclination characterizing
Molniya orbits deforms the lobe of the libration region.

The identification of a maximum overlapping region defined by the main resonant
contributions, following the phase space investigation, could be a starting point for the
further investigation of a possible chaotic behavior. Finally, the third-order lunisolar
perturbation does not seem to be particularly significant as regards the dynamics, but it
could play a more important role in relation to chaotic phenomena.

Author Contributions: Conceptualization, T.T., E.M.A. and G.T.; methodology, T.T., E.M.A. and G.T.;
software, T.T.; validation, T.T.; formal analysis, T.T.; investigation, T.T.; resources, T.T.; data curation,
T.T.; writing—original draft preparation, T.T.; writing—review and editing, E.M.A.; visualization,
T.T.; supervision, E.M.A. and G.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: E.M. Alessi acknowledges the support received from Fondazione Cariplo
through the program Promozione dell’attrattività e competitività dei ricercatori su strumenti dell’European
Research Council—Sottomisura rafforzamento.

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 We use the following notation to denote the components of a generic vector v ∈ R3: vi = eT

i · v where {e1, e2, e3} is the canonical
basis of R3.

2 Molniya orbits with a semi-major axis a ≈ amoln cannot have an eccentricity larger than 0.76 because the corresponding perigee
altitude would be smaller than the radius of the Earth.
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