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Abstract: About ten years ago, the use of standard functional manipulations was demonstrated to
imply an unexpected property satisfied by the fermionic Green’s functions of QCD and dubbed
Effective Locality. This feature of QCD is non-perturbative, as it results from a full gauge invariant
integration of the gluonic degrees of freedom. In this review article, a few salient theoretical aspects
and phenomenological applications of this property are summarized.
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1. Introduction

Over the past decade a number of articles has been devoted to the study of a new
property concerning the non-perturbative regime of QCD [1–5]. This property, of the
non-perturbative fermionic Green’s functions of QCD, has been named Effective Locality, or
EL for short. In words, the EL property can be phrased as follows.

For any fermionic 2n-point Green’s functions, the full gauge-fixed sum of cubic and quartic
gluonic interactions, fermionic loops included, results in a local contact–type interaction. This
local interaction is mediated by a tensorial field, which is antisymmetric both in Lorentz and colour
indices. Moreover, the resulting sum appears to be fully gauge-fixing independent.

Because the integrations of elementary degrees of freedom usually result in highly
non-local effective interactions, this resulting Effective Locality is rather surprising and is
suggestive of a form of duality.

In the pure euclidean Yang–Mills case in effect, and at first non trivial order of a semi-
classical expansion, this same phenomenon of a resulting local effective interaction has
been noticed in an attempt to find a formulation dual to the original Yang–Mills theory [6,7].
The case of QCD is different, though. Apart from a supersymmetric extension [8], QCD is
not known to admit any dual formulation and Effective Locality calculations themselves
also attest to this situation. It remains that Effective Locality calculations proceed from first
principles and offer a useful means to learn about non-perturbative physics in QCD.

The current paper aims at offering a concise review of the EL outputs both at theoret-
ical and phenomenological levels. In the next Section, the basics of the EL property will
accordingly be recalled, while Section 3 will summarise its theoretical aspects. The phe-
nomenological calculations which have been achieved out of the EL property are presented
in Section 4, and a concise conclusion about these ongoing analyses is given in Section 5.
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2. Effective Locality in Short
2.1. The 4–Point Fermionic Green’s Function

Effective Locality is derived in the context of QCD, with the help of standard functional
techniques. Thus, one starts with the QCD Lagrangian, to which is added and subtracted
one and the same covariant density of (1/2ζ) (∂µ Aa

µ)
2,

LQCD = ψ̄ (i /∂−m)ψ− 1
4

Fa
µνFµνa − 1

2ζ
(∂µ Aa

µ)
2 +

1
2ζ

(∂µ Aa
µ)

2 + g ψ̄ /Aa λa

2
ψ (1)

In order to keep things as simple as possible, one flavour of quark is considered only.
The eight λas are the SUc(3) Lie algebra generators taken in the fundamental representa-

tion : [
λa

2
,

λb

2
] = i f abc λc

2
, where the totally antisymmetric structure constants f abc will

play a key role in what follows. The gluon field tensor is Fa
µν ≡ ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν.

Concerning the apparent ‘gauge fixing term’
1

2ζ
(∂µ Aµ)2, one will choose the Feynman

gauge at ζ = 1 for the sake of illustration.
The metric used in this article is the usual gµν = (+,−,−,− ). There can result a few

sign discrepancies, of no consequences, with the original papers [1–5], where the so-called
West Coast metric was employed.

In the articles [1–5], the EL property shows up at the level of fermionic Green’s
functions, given by functional differentiations of the subsequent QCD generating functional
ZQCD[ j, η̄, η ], taken with respect to the quark sources η̄, η, thereafter sent to zero. For
configuration–space amplitudes, one has,

M(x1, y1; x2, y2) =
δ

δη̄(x1)

δ

δη̄(x2)

δ

δη(y1)

δ

δη(y2)
ZQCD[ j, η̄, η ]

∣∣∣∣
η = η̄ = 0; j = 0

(2)

where (see [1]):

ZQCD[ j, η̄, η ] = N e
− i

2

∫
d4x d4y ja

µ(x) D(0)ab
Fµν (x− y) jb

ν(y)

× e

i
2

∫
d4x d4y

δ

δAa
µ(x)

D(0)ab
Fµν (x− y)

δ

δAb
ν(y) (3)

× e
− i

4

∫
dx Fa

µν(x)Fµνa(x)− i
2

∫
dx Aa

µ(x) ∂2 Aa
µ(x)

e
−i
∫

d4x d4y η̄(x) GF(x, y|A) η(y)
e L[A]

with Aa
µ(x) =

∫
d4y D(0)ab

Fµν (x− y) jb
ν(y), and where D(0)ab

Fµν is the free gauge field propagator

in the Feynman gauge, ∂2D(0)ab
Fµν = δab gµν1l. The normalisation factor N is such that

ZQCD[ 0, 0, 0 ] = 1, and for the quark propagator GF(x, y|A), a Fradkin representation can be
used to make explicit the non-abelian gauge–field dependences ([9] Chapter 3):

GF(x, y|A) = −iN
∫ ∞

0
ds e−ism2 ∫

d[uµ] e
− i

4

∫∫ s

0
ds1ds2 uµ(s1) h−1(s1, s2) uµ(s2)

×
(

iγµ
δ

δu′µ(s)
+ m

)
δ(4)(x− y + u(s)) (4)

× Ts′ e
−ig

∫ s

0
ds′ u′µ(s

′) Aa
µ(y− u(s′))

λa

2
+ ig

∫ s

0
ds′ σµν Fa

µν(y− u(s′))
λa

2
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In (4), uµ(s) stands for the Fradkin field variable, Ts′ indicates a prescription of s′

proper-time ordering [10], the σµν =
i
4
[γµ, γν] are the usual Lorentz group generators

for spinors.

One has also, h−1(s1, s2) =

−→
∂

∂s1
δ(s1 − s2)

←−
∂

∂s2
, so that,

∫∫ s

0
ds1ds2 uµ(s1) h−1(s1, s2) uµ(s2) =

∫ s

0
ds′ (u ′(s′))2

The constant N is such that N−1 =
∫

d[u] e
− i

4

∫
u h−1 u

=
∫

d[u] e
− i

4

∫
u ′ 2

The fermionic closed loop functional L[A] = Tr ln( 1I− e /Aa λa

2
SF) appearing in (3),

with SF the free fermion propagator, can also be endowed with a Fradkin representation
similar to the propagator GF[A], ([9] Chapter 3),

L[A] = −1
2

∫ ∞

0

ds
s

e−ism2
N
∫

d[u] δ(4)(u(s)) e
−

i
4

∫ s

0
ds′ (u′(s′))2

×
∫

d4y tr
(

Ts′ e
−ig

∫ s

0
ds′ u′µ(s

′) Aa
µ(y− u(s′))

λa

2
+ ig

∫ s

0
ds′ σµν Fa

µν(y− u(s′))
λa

2
)

(5)

−{g = 0}

To be able to compute M and carry out EL calculations one introduces for the
∫

F2

term which appears in the right hand sides of (3) an auxiliary χ–field [6,7,11,12]:

e
− i

4

∫
d4x Fa

µν(x) Faµν(x)
= N ′

∫
d[χ] e

i
4

∫
d4x (χa

µν(x))2 +
i
2

∫
d4x χa

µν(x) Faµν(x)
(6)

where χa
µν(x) is antisymmetric in µ and ν, like Fa

µν(x), and where the measure is,∫
d[χ] = ∏

z
∏

a
∏
µ<ν

∫
d[χa

µν(z)] (7)

Spacetime is taken as a collection of cells of infinitesimal size δ4 about each point z [13],

and N ′ is a normalisation constant N ′
∫

d[χ] e
i
4

∫
χ2

= 1. The generating functional (3)

can therefore be rewritten as (N ′ · N = N ′′ ≡ N ):

ZQCD[j, η̄, η] = N e
− i

2

∫
d4x d4y ja

µ(x) D(0)ab
Fµν (x− y) jb

ν(y)

×
∫

d[χ] e
i
4

∫
d4x (χa

µν(x))2

eD
(0)
A e

i
2

∫
d4x χa

µν(x) Faµν(x)
(8)

× e
− i

2

∫
dx Aa

µ(x) ∂2 Aa
µ(x)

e
−i
∫

d4x d4y η̄(x) GF(x, y|A) η(y)
e L[A]

∣∣∣∣
A =

∫
D(0)

F j

by using the shorthand notation,

D
(0)
A =

i
2

∫
d4x d4y

δ

δAa
µ(x)

D(0)ab
Fµν (x− y)

δ

δAb
ν(y)

(9)
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and where the functional integration on χ and the functional differentiations operated by
the so-called linkage operator, exp D

(0)
A , can be permuted without prejudice.

One will deal with a 4-point fermionic Green’s function (2) as, through more cum-
bersome expressions, the following structures easily extend to the 2n-point general case
(see [14]’s Appendix D, and [15]). Then, two propagators G1

F(x1, y1|A) and G2
F(x2, y2|A)

appear, represented by (4):

M(x1, y1; x2, y2) = N
∫

d[χ] e
i
4

∫
χ2

eD
(0)
A e

i
2

∫
χ F− i

2

∫
A ∂2 A

(10)

× G1
F(x1, y1|A) G2

F(x2, y2|A) e L[A]
∣∣∣
A = 0

In (8), note that a direct replacement of GF[A] by the expression (4) would result in an
involved structure of an exponential of an exponential. Functional differentiations with
respect to the Grassmannian sources η̄, η allow us to circumvent this complication and it is
therefore on fermionic Green’s functions that the EL property has been first disclosed. Of
course, thanks to the reconstruction theorem [16], there is no loss of information as compared
to a property which would bear directly on the generating functional itself, from which the
EL property can be obtained also [17].

2.2. Effective Locality at Eikonal and Quenched Approximation. The Gluon Bundle

The reduction formula being applied to (10), in order to obtain an S-matrix element,
one is led to the following eikonal and quenched scattering amplitude,

M(p1, p′1; p2, p′2) ' M(p1; p2) = N
∫

d[χ] e
i
4

∫
χ2

eD
(0)
A e

i
2

∫
χ F− i

2

∫
A ∂2 A

× G1
eik(p1|A) G2

eik(p2|A)
∣∣∣
A = 0

(11)

describing the collision of two quarks with their respective 4-momenta p1 and p2 being
unchanged before and after the collision, p′1 ' p1; p′2 ' p2, neglecting the spin effects (the
eikonal approximation) and the fermionic loop L[A] being set equal to 0 (the quenched ap-
proximation).

In this frame, the last line of Equation (4) simplifies to ([9] Chapters 7 and 8, [18]
Chapter 5):

Geik(p|A) ∝ Ts e
−ig pµ

∫ +∞

−∞
ds Aa

µ(y− sp)
λa

2 (12)

The Aa
µ field of (12) belongs to a time-ordered exponential. This difficulty can be dealt

with by introducing extra field variables, writing for example, with N , another constant
of normalization ,

Ts e
−ig pµ

∫ +∞

−∞
ds Aa

µ(y− sp)
λa

2 = N
∫

d[α]
∫

d[Ω] e
i
∫ +∞

−∞
ds Ωa(s) αa(s)

× e
−ig pµ

∫ +∞

−∞
ds Ωa(s) Aa

µ(y− sp)
Ts e
−i
∫ +∞

−∞
ds αa(s)

λa

2 (13)

so that finally, one can write for the exponential involving the Aa
µ field,

e
−ig pµ

∫ +∞

−∞
ds Ωa(s) Aa

µ(y− sp)
= e
−i
∫ +∞

−∞
d4z Ra

µ(z) Aa
µ(z)

(14)

with,

Ra
µ(z) = g pµ

∫ +∞

−∞
ds Ωa(s) δ(4)(z− y + s p) (15)
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In this quark-current expression (15), the eikonal approximation for the Fradkin field
variable uµ(s) consists of a straight line relation connecting the points z and y, uµ(s) = s pµ.

The purpose of expressions (12)–(15) is to offer as simple as possible a derivation of
the EL property. As exact integrations on the auxiliary field variables αa and Ωa and on z
are achieved, one is insured to deal with the proper Fradkin representation of GF[A] in the
eikonal approximation physically relevant to the EL regime.

The result obtained in this way, together with the quenched approximation L[A] = 0,
has the following form:

M(p1; p2) =
2

∏
i=1

∫
dui(si)

∫
dαi(si)

∫
dΩi(si) (. . .) (16)

×
∫

d[χ] e
i
4

∫
χ2

eD
(0)
A e

i
2

∫
Aa

µ Kµν
ab Ab

ν e
−i
∫

Qa
µ Aµ

a
∣∣∣∣
A = 0

where in order to avoid too big an expression, the symbol (...) is used to summarize for
i = 1 and i = 2, the two first lines on the right hand side of (4) and, in a similar fashion, the
right hand sides of (13) for i = 1 and i = 2 as well. In (16), the terms Kµν

ab and Qa
µ factorize

the quadratic and linear Aa
µ field dependences, respectively,

Kab
µν = g f abcχc

µν − gµν δab ∂2 = (g f ·χ)ab
µν − (D(0)−1

F )ab
µν , Qa

µ = ∂νχa
νµ + (Ra

1,µ + Ra
2,µ) (17)

and where the Ra
i,µ are the leading parts of Qa

µ in the strong coupling regime, g�1. The link-
age operation can operate easily now, and setting the sources ja

µs to zero afterwards yields:

e
i
2

∫
δ

δA
D(0)

F
δ

δA e
i
2

∫
A K A− i

∫
Q A ∣∣∣∣

A→0
(18)

= e
− i

2

∫
Q
(

D(0)
F

(
1 + K D(0)

F

)−1
)

Q
e
−1

2
Tr ln

(
1 + D(0)

F K
)

The kernel of the quadratic term in Qa
µ in the right hand side of (18) is:

D(0)
F

(
1 + K D(0)

F

)−1
= D(0)

F

(
1 +

(
g f ·χ− D(0)

F

−1
)

D(0)
F

)−1
(19)

= (g f ·χ)−1

and in all, the last line of (16) reads:

∫
d[χ] e

i
4

∫
χ2

e
i
2

∫
δ

δA
D(0)

F
δ

δA e
i
2

∫
A K A− i

∫
Q A ∣∣∣∣

A = 0
(20)

= e
−1

2
Tr ln

(
gD(0)

F
) ∫ d[χ]√

det( f ·χ)
e

i
4

∫
χ2

e
− i

2

∫
d4z Q(z) (g f ·χ)−1(z) Q(z)

On the right hand side, the first term is a (possibly infinite) constant to be absorbed
into a redefinition of the overall normalization N , and it is in the last term of (20) that the
Effective Locality phenomenon is finally seen. In effect, the D(0)

F -pieces entering (17)–(19)
are non-local, but disappear from the final result leaving a structure, which turns out to
be local, 〈z|(g f ·χ)−1|z′〉 = (g f ·χ)−1(z) δ(4)(z− z′), and which mediates an effectively local
interaction between “gluonic”and quark currents, in the form: Q(z) (g f ·χ)−1(z) Q(z).

This (g f ·χ)−1(z) term stands now for the original gluon propagator DF(z− z′) and
has been called a gluon bundle [2]. The R1(z) (g f ·χ)−1(z) R2(z) amplitude can accord-
ingly be represented by the diagram of Figure 1. A convenient expression deduced from
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Q(z) (g f ·χ)−1(z) Q(z), and its relation to Figure 1, is given in Equation (49) and its subse-
quent paragraph.

To sum up, Equations (16)–(20) display the EL property at quenched and eikonal
approximation.

Figure 1. A gluon bundle(shaded oval) exchanged between two quarks (solid lines).

2.3. Effective Locality as General, Still Formal a Statement

Remarkably enough, the EL property extends to the full non-approximate QCD
theory [2], at least in a formal way. On the basis of the same 4-point function, the expression
equivalent to (20) reads in this case:

R.H.S (20) −→ e
−1

2
Tr ln

(
D(0)

F
) ∫

d[χ] e
i
4

∫
χ2

e
− i

2

∫
Q̄ K̂−1 Q̄− 1

2
Tr ln K̂

× e
i
2

∫
δ

δA
K̂−1 δ

δA
+
∫

Q̄ K̂−1 δ

δA e L[A]
∣∣∣∣

A→0
(21)

with the new definitions of ‘kernel’ and ‘currents’:

〈z|K̂ab
µν|z′〉 =

(
Kab

µν(z) + g f abcχc
µν(z)

)
δ(4)(z− z′) (22)

Q̄a
µ(z) = ∂νχa

νµ(z) + 2g ∂νΦa
I,νµ(z) + g

∫ s1

0
ds′1 δ(4)(z− y1 + u1(s′1)) u′1,µ(s

′
1)Ωa

1(s
′
1)

+ 2g ∂νΦa
2,νµ(z) + g

∫ s2

0
ds′2 δ(4)(z− y2 + u2(s′2)) u′2,µ(s

′
2)Ωa

2(s
′
2) (23)

Previously absent from the eikonal and quenched case, spin contributions show up
now, and in (23), the new spin-related terms read:

Φa
i,µν(z; yi) ≡ Φa

i,µν(z) ≡
∫ si

0
ds′i δ(4)(z− yi + ui(s′i))Φa

i,µν(s
′
i), i = 1, 2 (24)
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while, for the kernel, the new spin–related term is:

Kab
µν(z) = 2g2

∫ s1

0
ds′1 δ(4)(z− y1 + u1(s′1)) f abc Φc

1,µν(s
′
1)

+ 2g2
∫ s2

0
ds′2 δ(4)(z− y2 + u2(s′2)) f abc Φc

2,µν(s
′
2) (25)

Because of spins, in effect, extra fields, Φa
1,µν(s1) and Φa

2,µν(s2) are necessary to extract
the Aa

µ(y− u(s′)) potentials from under the full ordered exponential of (4). This can be
achieved by introducing extra functional integrations:

Ts′ e
−ig

∫ si

0
ds′i u′µi (s

′
i) Aa

µ(yi − ui(s′i))
λa

2
+ ig

∫ si

0
ds′i σµν Fa

µν(yi − ui(s′i))
λa

2

= NΩNΦ

∫
d[αa

i ]
∫

d[Ξa
iµν] Ts′ e

−i
∫ si

0
ds′i
(

αa
i (s
′
i)− σµν Ξi

a
µν(s

′
i)
) λa

2

×
∫

d[Ωa
i ]
∫

d[Φa
iµν] e

i
∫ si

0
ds′i Ωa

i (s
′
i) αa

i (s
′
i)− i

∫ si

0
ds′i Φi

aµν(s′i)Ξi
a
µν(s

′
i)

(26)

× e
−ig

∫ si

0
ds′i u′µ(s′i)Ωa

i (s
′
i) Aa

µ(yi − ui(s′i)) + ig
∫ si

0
ds′i Φi

a
µν(s

′
i) Fµν

a (yi − ui(s′i))

and as shown in the Appendix, the closed loop functional L[A] can be endowed with similar
functional integrations so as to take linear and quadratic Aa

µ–gauge field dependences
outside of the ordered exponentials.

Dropping L[A], the second and fourth terms on the right hand sides of (23), and
proceeding to the eikonal replacement of ui(si) by si pi, one immediately recovers the
eikonal and quenched results of (17) to (20). In the case of higher number of points
fermionic Green’s functions, additional terms will of course complete the Q̄a

µ and K̂ab
µν

functionals in exactly the same way [2,14,15].
In (21), nothing ever more refers to D(0)

F , that is to any initial gauge-fixing condition,

as exactly the same result is reached whatever the gauge-field function in use, D(0)
F , D(ζ)

F ,

D(n)
F , etc. [19]. Assuming, as in the previous quenched situation, that integrating over the

extra fields Ξ and Φ can be carried through, this conclusion is non-trivial.
The striking aspect of (21) is that, because the kernel K̂ = K + (g f ·χ), so as the

corresponding linear and quadratic parts coming from L[A], are all local functions, with
non-zero matrix elements 〈z|K|z′〉 = K(z) δ(4)(z− z′), the contributions of (21) will depend
on Fradkin, Halpern and subsidiary field variables in a specific, but local way.

That is, again, the peculiar aspect of (21) is its locality even though (21) doesn’t provide
the bases of a genuine dual formulation of the full QCD theory. In particular, it is easy
to see that the fundamental duality correspondence of g → 1/g cannot account for the
various g-scaling behaviours that can be exhibited out of (21).

3. Theoretical Aspects of Effective Locality

First of all, it is important to emphasize that the EL property is non–perturbative.
While for QCD in its perturbative regime, gluons are pertinent dynamical degrees of
freedom and are experimentally checked, in EL calculations of fermionic Green’s functions
gluons disappear to the exclusive benefit of the χa

µν–fields1. This will be shown to be even
more blatant in the pure Minkowskian Yang–Mills case [17].

3.1. Fradkin’s Representation Independence

In all these derivations, approximate or not, it would seem that the EL property is
heavily dependent on the Fradkin’s expressions (4) being used to represent the quark field
propagators GF(x, y|A) in a given background gauge field.



Universe 2021, 7, 481 8 of 24

Now, it can be shown that provided the χa
µν–field integrations are carried through, the

EL property turns out to be gauge invariant and independent of any representation used for
the quark field functions GF(x, y|A) and would appear, thus, as a sound non-perturbative
property of QCD [17,19].

3.2. An Odd Term: δ(2)(~b)

Now, as Fradkin’s representations (4), which are exact, are implemented, then the EL
property comes along with a mass scale. For fermionic Green’s functions to be sensitive,
a mass scale must be introduced. This fate is related to the occurrence of Dirac deltas
in (4) and (23): In the interaction term of (20), second line, they lead to a δ(2)(~b), where
~b ≡ y1⊥ − y2⊥ is the impact parameter of the two quark scattering process in their centre of
mass system.

It is important to stress that this δ(2)(~b) term is not related to any sort of approximation.
First discovered in an eikonal approximation giving the Fradkin fields u(s) the simple
straight line form of ui(si) = pisi, it is possible to prove that in the much enlarged context
of Fradkin’s fields taken as elements of a Wiener functional space, the same odd δ(2)(~b) term
comes about [4].

In Ref. [1], a physical argument has been suggested to account for this situation: This
factor of δ(2)(~b) may be a remnant of the implicit existence of asymptotic quark states, an
assumption which, beyond the stage of perturbation theory cannot be maintained in QCD,
neither theoretically nor experimentally [20], while it is contained in (4)2.

In QCD, where both confinement and chiral symmetry breaking are realized, it is
known that the inter-quark separation fluctuates and cannot be zero [21,22]. That is, from
this point of view also, the odd δ(2)(~b) cannot make sense and must be modelled into a
more pertinent impact parameter distribution. Compelling reasons exist to motivate the
following substitution [23]:

δ(2)(~b) −→ ϕ(b) =
µ2

π

1 + ξ/2

Γ(
1

1 + ξ/2
)

e−(µb)2+ξ
, ξ ∈ R, |ξ| � 1 (27)

where µ is the EL property mass scale and ξ a small deformation parameter. They both will
be given a value in Section 4.

As illustrated, when it comes to chiral symmetry breaking, in a limit process, the EL
mass scale or equivalent distance will prevent the two points x and y to be taken arbitrarily
close to each other, and, not to be lead back to the short distance behaviour of QCD where
gluons, instead of χa

µν-fields, are the relevant dynamical degrees of freedom.

3.3. Integration Measures

In (20) and (21), a functional measure of integration remains, on χa
µν–fields, and reads:

∫
d[χ] = ∏

wi∈M

N2
c−1

∏
a=1

3

∏
0=µ<ν

∫
d[χa

µν(wi)] (28)

but is here meant in a somewhat symbolic form so long as the measure on the infinite
dimensional functional space of χa

µν–configurations is not properly defined. In the very
case of fermionic Green’s functions, though, it turns out that, besides the already discussed
δ(2)(~b), products of Dirac deltas single out a unique point of interaction wi in M [1,4];
typically in the second line of (20) one would have (wi = yi − ui(si), i = 1, 2):∫

d4z R(z; y1, y2)· (g f ·χ(z))−1 · R(z; y1, y2) −→ R(wi) · (g f ·χ(wi))
−1 · R(wi) (29)
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This has the most favourable consequence that the measure image theorem3 [24] can
be invoked to translate the original and formal functional space measure (28) into a well
defined measure of integration on the finite dimensional space of skew–symmetric matrices

M ≡ −i
N2

c−1

∑
a=1

χa
µν ⊗ Ta:

−i d(
N2

c−1

∑
a=1

χa
µν ⊗ Ta) ≡ dM = dM11 dM12 · · ·dMNN

=

∣∣∣∣∣ ∂(M11, · · · , MNN)

∂(ξ1, · · · , ξN , p1, · · · , pN(N−1)/2)

∣∣∣∣∣dξ1 · · ·dξN dp1 · · ·dpN(N−1)/2

=
N

∏
i=1

dξi

N

∏
1≤i<j

|ξi − ξ j|κ dp1 .. dpN(N−1)/2 f (p) (30)

where the ξis are the eigenvalues of M and where κ = 1 and where the very last factors of
(30), define a Haar measure of integration on the orthogonal group ON(R).

To sum up, the EL property allows one to rely on the measure image theorem, to
transform the initial functional measure of integration d[χ] into the product of an integra-
tion on the spectrum of M, Sp(M), times an integration on the orthogonal group ON(R);
symbolically, one has:

d[χ] −→ d Sp(M)× d ON(R) (31)

3.4. Effective Locality and Meijer Special Functions

In eikonal and quenched approximations, it is remarkable that the strong coupling
fermionic QCD Green’s functions can be calculated without further approximations. This
is due to the peculiar EL property (29) and achieved by means of a standard analytical
continuation of the Random Matrix treatment [4].

Inserting (30) in (20) and integrating on Sp(M) only, fermionic Green’s functions show
up as finite sums of finite products of Meijer special functions [25]. One finds effectively:

M(x1, y1; x2, y2) = N (−16π2m2

E2 )N ∑
monomials {q1,...,qi,...,qN}

〈 N

∏
i=1

[1− i(−1)qi ]

×
(√

2iNc
√

ŝ(ŝ− 4m2)

m2

)
((OT )i)

−2

gϕ(b)

×G30
03

((
gϕ(b)√
32iNc

m2√
ŝ(ŝ− 4m2)

)2(
(OT )i

)4
∣∣∣∣12 ,

3 + 2qi
4

, 1

)〉
ON(R)

(32)

in the same example of a 4–point Green’s function such as (10), and where G30
03 is the Meijer

special function [26]

∫ ∞

0
dξ ξ p e

−ξ2 − b
ξ =

1
2
√

π
G30

03

(
b2

4

∣∣∣∣ p + 1
2

,
1
2

, 0
)

(33)

Equality holds for p > 0 and b > 0, whereas the point is that the right hand side,
the Meijer function, is analytic in its argument, b2/4, [26]. In (32), one has also N ≡
D× (N2

c − 1) = 32, at D = 4 spacetime dimensions, while ŝ = (p1 + p2)
2 and E = ŝ/2 in

the centre of mass system of the scattering quarks of 4-momenta p1 and p2.
In the expression (32), O is an orthogonal matrix and integration on ON(R) remains

to be done, as meant by the overall average’s brackets.
Letting aside momentarily the various elements entering (32), the point here is that, in

full generality, Green’s functions and/or their generating functionals have been proven
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to be expressible in terms of Fox special functions, which are but mere generalisations of
Meijer’s special functions.

Within the above approximations at least, EL calculations can be seen to comply with
this general statement [27].

3.5. Colour Algebraic Structure of Fermionic Green’s Functions

As observed in non relativistic quark models [28] and in a non-abelian generaliza-
tion of the Schwinger mechanism [29], an additional dependence on the SUc(3) cubic
Casimir operator C3 f shows up, in contradistinction with perturbation theory and other
non-perturbative approaches, which only display quadratic Casimir operator, C2 f depen-
dences. Though numerically sub-leading, these extra C3 f dependences account for the
full algebraic content of the rank-2 Lie algebra of SUc(3) and there are a priori no super
selection arguments to discard them.

With zi the argument of G30
03 in (32), one has zi = λ

(
(OT )i

)4 where T is the 32-vector
of components made out of 4 copies of the full set of Gell–Mann generators, the {λa/2}.
The parameter λ can be read off (32) and turns out to be a very small parameter even
at large enough coupling constant g ∼ 15, so that an analytic expansion of G30

03 can be
devised. The average on the orthogonal group ON(R) can be carried out to get a leading
contribution of:

〈
√

zi〉ON(R) =

√
λ

N
DC2 f 13×3 (34)

and on the fundamental representation the quadratic Casimir eigenvalue is C2 f = 4/3
At next to leading order now, the result reads [19]:

〈zi〉ON(R) = (

√
λ

N
)2
(
(DC2 f )

2 + (DC3 f )
)

13×3 (35)

and an extra C3 f dependence shows up which extends presumably to all of the next to
leading orders; for example:

〈zi
√

zi〉ON(R) = (

√
λ

N
)3
(
(2 + (

5
6
)2)(DC2 f )

2 + (DC2 f )(DC3 f ) + 3(DC3 f )

)
13×3 (36)

These averages are independent of the index i = 1, 2, . . . , 32. On the fundamental
representation where it must be evaluated the cubic Casimir operator has eigenvalue
C3 f = 10/9. Numerically, the result of (35) shows that at order (

√
λ/N)2, the trilinear

Casimir operator C3 f enhances the pure C2 f contribution a non-negligible amount of 15.6%,
whereas at sub-leading order (

√
λ/N)3, C2 f and C3 f contributions to (36) are identical

with a precision of 0.2%.
Here and elsewhere [28–30], C3 f dependences may be sub-leading effects, but are

proposed to be viewed as hallmarks of the QCD non-perturbative fermionic sector. Within
the above approximations at least, C3 f dependences are clear outputs of EL calculations.

3.6. EL Calculations: Non–Perturbative and Gauge Invariant

EL calculations are gauge invariant [17,19,31]. Attempts at trading an Aa
µ potential

formulation of QCD for an Fa
µν field strength formulation exist already [6,7], relying on the

same ‘linearization’ trick as (6). In the quantization process though, covariant gauge condi-
tions were chosen, ultimately transferred to the χa

µν–field. That is, in the non-perturbative
strong coupling/strong field limits, the famous Gribov copy problem is met again with, so
far, no envisageable solutions and no sound control of gauge invariance.

The reason why EL calculations escape this dead end is that in the EL context, quanti-
sation is achieved by functional differentiations, with the help of (9), rather than functional
integrations with gauge-fixing terms. Both quantisations are equivalent whenever the Wick
theorem holds true for time ordered products of field operators [32].
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Now, as written in the introduction for the EL statement, and as can be stared at in
(19) and (20), no gauge condition has ever been fixed in an EL calculation, and to give
things the more concise of all possible expression, it must be stated that there is no Gribov
copy to cope with because there is no gauge-fixing condition to be copied.

By adding and subtracting adequate Lagrangian densities, any gauge-free field propa-
gator can be generated, Feynman, general covariant, axial planar, D(0)

F , D(ζ)
F , D(n)

F , etc4 This is
a mandatory step in order to make well defined an intermediate step5 of an EL calculation.
Though this procedure generates, by construction, any possible gauge field propagator, it is
important to realise that the propagators so obtained are not related to the insertions of cor-
responding gauge fixing conditions, δ

(
F [Aa

µ]
)

, in the context of functional integration; and

that the theory quantized in this way6 preserves, thereby, its original full gauge invariance.

3.7. An Effective Perturbative Expansion for the Strong Coupling Regime

Renormalization has been forced upon QFTs by the short distance ultra-violet singu-
larities which are met in perturbative expansions. Since EL is a priori relevant to larger
distances, ultra-violet singularities should not be met in EL calculations.

This expectation is correct at quenched approximation, taking the closed quark loop
functional L[A] to zero. In this case in effect, the effective perturbative expansions defined
out of the Meijer function analyticity can be checked to be non trivial and to entail neither
infrared nor any ultra-violet singularities [33].

However, as soon as the quenched approximation is relaxed and the fermionic loop
functional L[A] of Equation (5) is restored, then usual ultra-violet singularities show up
the usual way by the s lower integration boundary, at s = 0. This is because in the
closed quark loop functional L[A], the EL mass scale µ doesn’t show up to prevent short
distances contributions.

For example this is obtained out of the second line of (21), as the functional translation
operator has replaced the A field by the −Q̄ · K̂−1-combination, after the prescription of
sending A to zero is taken into account. At order g2 of an expansion of L[−Q̄ · K̂−1], one
finds expressions like [5]:

g2(q2; Λ2) = g2 ln
(

Λ2

m2 + q2 |zI II| (1− |zI II|)

)
(37)

where the variable zI II ≡ zI − zII, is introduced and where 0 ≤ zI, zII ≤ 1, whereas Λ stands
for an ultra-violet cut-off. This expression displays the customary steps and features of the
renormalization procedure, including a form of asymptotic freedom appropriate to the EL
context [5]. This should not come as too big a surprise, as asymptotic freedom has been
recognised to extend beyond the very perturbative regime of QCD [34].

For the purpose of phenomenological applications relying on the eikonal and quenched
approximations, this has the interesting consequence that the Lagrangian density one
should start from is the renormalised one [5], with the most favourable circumstance
also, that no infrared nor any ultra-violet singularities will be met in the course of EL–
perturbative expansions of fermionic amplitudes [33].

3.8. EL and Dynamical Chiral Symmetry Breaking

Effective locality could thus exhibit the very way non-abelian gauge invariance is
realized in the non-perturbative regime of QCD, avoiding the intractable and never ending
issue of Gribov’s copies [35]. Now, if this property is really relevant to QCD, it should also
shed some light on the fundamental issue of dynamical chiral symmetry breaking.

Calculations are involved, and to simplify them somewhat, the quenched approxi-
mation is used: while it modifies the effect’s magnitude, both theoretical and numerical
analyses have long shown that the quenched approximation preserves the dynamical chiral
symmetry breaking phenomenon, if any [36]. An eikonal approximation is used also, but
in a mild way so as to preserve chirality7 and in order to allow for controlled calculations.
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In the chiral limit of m→ 0 where the phenomenon is non-trivial, the order parameter
of the chiral symmetry, < Ψ̄(x)Ψ(x) >, can be obtained out of < Ψ̄(x)Ψ(y) > in the limit
of x → y [37]:

< Ψ̄(x)Ψ(x) > = lim
x→y

iN δ(4)(x− y) Tr
∫

d[α̂] e
−i

δs
2

α̂·λ̂∫
d[V] e

−i
δs
4Σ

α̂ ·V

Ni δ

δVi

∫
dM e

i
8Nc

TrM2(y)√
det(M(y))

e
− i

2
g

µ2
√

∆
πEp

V ·M−1(y)·V
(38)

However, this expression is zero for two reasons: once for a purely algebraic fact,
similar to the algebraic identity Tr γµ = 0, while a second ‘trivialization’ occurs as the
average on ON(R) is performed.

Fortunately, copying the massive QED2 case [38], both trivializations are circumvented
by one and the same procedure, which consists in calculating the appropriate x1, y1, x2, y2

limits of a 4-point calculation8. For the 2–point function, one gets:

Cst

N
(0 × 0) (39)

while the relevant 4–point result reads,

(
Cst

N
)2
(

Cst ′ 6= 0
)

(40)

allowing us to identify the order parameter of the chiral symmetry as 〈Ψ̄Ψ(x)〉partial '
Cst/N,

where the sign of an approximate equality is to remind that approximations have
been used. The subscript partial means that (39) and (40) are the contribution to 〈Ψ̄Ψ(x)〉
of a given monomial among 2120 possible ones, alternate in signs, and coming from
the Vandermonde determinant expansion of (30). Accordingly, the full result appears
unattainable.

Fortunately again, Wigner’s semi-circle law can be used to circumvent the intractable
task of evaluating the sum of so many monomials [39]. Within the following standard
definitions of Random Matrix theory [39],

PNκ(ξ1, . . . , ξN) ≡ CNκ

N

∏
i<j
|ξl − ξ j|κ e

−
N

∑
1

ξ2
i

(41)

( N

∏
j=2

∫ +∞

−∞
dξ j

)
PN2(ξ1, . . . , ξN) ≡ N−1 σN(ξ1) (42)

the large N limit of σN(ξ) turns out to be simply given by:

σN(ξ) −→
√

2N − ξ2 , for −
√

2N ≤ ξ ≤ +
√

2N , σN(ξ) = 0 otherwise (43)

while sub-leading corrections can be calculated in a systematic way. From (43), long but
rigorous calculations can be carried out and the chiral symmetry order parameter results as:

lim
y=x
〈Ψ̄(x)Ψ(y)〉 ' − g2 µ3 µ√

Ep

√
E2 − p2

Ep

3
45(Nc − 1)√

π5N3

I(N)

vol(ON(R)
(44)
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where vol(ON(R) is the volume of the orthogonal group ON(R), and:

I(N) =
∫ +
√

2N

−
√

2N

dξ

ξ

√
2N − ξ2 Φ(ξ

√
N) (45)

entails the probability integral Φ(x) [25].
Thus, most importantly, EL involves dynamical chiral symmetry breaking out of QCD

first principles, and the chiral condensate goes like the third power of the Effective Locality
mass scale µ.

Then, something like a partonic depleting function appears, here expressed in the center
of mass system of a two quark scattering processs, i.e., identified out of a 4–point Green’s
function [4,37], the function:

f (E, p; µ) ≡ µ√
Ep

√
E2 − p2

Ep

3

If E and p are in a range of magnitude corresponding to the perturbative regime of
QCD, i.e., E, p > ΛQCD, then the particle-like character of quarks would allow E2 − p2

to be replaced by m2, the squared quark mass. But the interesting point is that the chiral
condensate magnitude is modulated by this non–trivial function of quarks energy and
momentum variables E and p, in such a way that as E and p increase, the chiral condensate
magnitude is depleted down to zero. This is in agreement with the fact that chiral symmetry
breaking cannot be the result of a perturbative mechanism. Not innocuous also, the
necessity of a 4-point calculation: this could be related to physical peculiarities of the
non-perturbative fermionic sector of QCD [37].

A lot of theoretical considerations should be envisaged in order to test the reliability of
this EL non-abelian and non-perturbative property of QCD, like for example, its persistence
in Θ-vacua9. For Dyson-Schwinger equations approaches, a direct comparison is rendered
difficult by the fact that the EL property shows up once gauge fields integrations are carried
out. However, it is worth noting that properties derived out of an interesting truncation-free
Dyson-Schwinger approach [34], have their translations into the EL context [4].

4. Phenomenological Applications

In this section, one goes through a number of phenomenological predictions obtained
by using Formula (20) and its generalisations deduced from (21).

4.1. Quark–Quark Binding Potential

In the eikonal approximation, the quark–quark scattering amplitude reads ([18],
Chapter 8),

M(p1; p2) ≡ T(s,~q) =
is

2m2

∫
d2b e i~q ·~b (1− eiX(s,~b) ) (46)

where X(s,~b) is the eikonal function, written below, appropriate to the scattering when
s = (p1 + p2)

2, ~b is the impact parameter of the collision in the center of mass frame
introduced in section III.B,~q is the momentum transfer in that frame: ~q 2 = −(p1− p′1)

2 � s,
and m the mass of the quark/antiquark.

Starting from (16) and (20), the non trivial part of (46) reads, in the eikonal and
quenched approximation:

eiX(s,~b) = N
∫ d[χ]√

det( f ·χ)
e

i
4

∫
χ2

e
− i

2

∫
d4z Q(z) (g f ·χ)−1(z) Q(z)

(47)
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In the centre of mass frame and in the large g regime, where only the Ra
µ part of Qa

µ is
kept, this amplitude becomes,

eiX(s,~b) = N
∫ d8χ√

det( f ·χ)
e

i
4

δ4χ2

e ig ϕ(b)Ω ( f ·χ)−1 Ω (48)

thanks to the Dirac 4-delta contained in each R. As a result, one can replace the functional

d[χ] integral by an ordinary d8χ, replace the integral
∫

d4x χ2(x) by δ4χ2 where δ4 is an

infinitesimal 4-volume, use Equation (29) in the last exponential and finally replace the
δ(2)(~b) by ϕ(b).

Making the substitution δ2χ → χ so that the new χ is dimensionless, calling R the
magnitude of f ·χ and averaging over the angular variables [1,2,4], one obtains for (48):

eiX(s,~b) = N
∫ ∞

0

R7dR√
R8

e
i
4
R2

e ig δ2
q ϕ(b)R−1

= N
∫ ∞

0
R3dR e

i
4
R2

e ig δ2
q ϕ(b)R−1

(49)

where the δ parameter is now called δq ([5] Section 4) and the normalization constant N is

such that eiX(s,~b) = 1 when g = 0.
The exponent g δ2

q ϕ(b)R−1 can be associated to the graph of Figure 1. There is a g δq

attached at each quark–gluon bundle vertex, a g−1 coming from the gluon bundle (gR)−1,
and a ϕ(b) linked with this gluon bundle.

The binding potential V(~r) between two quarks/antiquarks is related to the eikonal
function by the formula ([18], Chapter 8):

X(s,~b) = −
∫ +∞

−∞
dz V(~b + z p̂L) (50)

where p̂L is a unit vector in the direction of longitudinal motion.
For small ϕ(b),

iX(b) = ln(ϕ(b)) + · · · (51)

The part of the eikonal function one is interested in is purely imaginary, as it should
be, in order to obtain a binding potential, which itself is the imaginary part of the total
potential : V = VS − iVB where VS is the scattering potential. And here, V = VB.

Using (27), that is ϕ(b) = ϕ(0) e−(µb)2+ξ
, one obtains,

iX(b) = −(µb)2+ξ + · · · (52)

The binding potential can be recovered from (50) by taking the Fourier transform of X. For
small enough ξ, one gets ([2], Section 7):

V(r) ' ξ µ (µr)1+ξ (53)

which justifies the presence of this small ξ parameter in the definition of ϕ(b), so as to
obtain a non zero potential. It can be shown ([2] (72)–(77)) that this binding potential has
the same form for baryons. For negative ζ-values, interesting relations of (53) to Lowest
Landau Levels [35], to a non-commutative geometrical aspect of the transverse scattering
plane, and to a Levy-flight mode of propagation of confined quarks, seem to show up.

4.2. Estimation of the Light Quark Mass

Using the confining potential V(r) (53), one can give an order of magnitude of the
nucleon quark mass by finding the ground state energy of a “model pion” first quantized
Hamiltonian ([2] Section 8) relying on Heisenberg inequality and classical arguments. The
result being of course: E0 = mπ .
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The Hamiltonian of this q–q̄ system at rest is:

Hπ = 2m +
p2

m
+ V(r) (54)

where m is the mass of the quark/antiquark, and r and p the canonical pair defining the
relative position and momentum of the system. One finds the minimal eigenvalue ofHπ

by using the Heisenberg inequality p ≥ 1/r, followed by
dHπ

dr

∣∣∣∣
r=r0

= 0. Replacing this r0

value in the Hamiltonian and assuming ξ � 1, one has:

E0 = 2m + 3µ

(
ξ2µ

4m

)1/3

(55)

E0 can be minimized again when considered as a function of x =
µ

m
:

E0 = µ
( 2

x
+ 3

( ξ

2

)2/3
x1/3

)
(56)

The minimal value is obtained for x =
25/4
√

ξ
· and one then simply gets,

E0 ' 8m (57)

It follows that m ' mπ

8
' 15 MeV/c2 to be compared to the “current” mass [40],

mu ' md ' 4− 5 MeV/c2.
One can now give a more precise meaning to the EL-µ parameter by assuming it is

related to the pion mass, µ ' mπ . This value, used in the following sections, leads to a
small value of the deformation parameter, ξ = 0.088.

4.3. Nucleon–Nucleon Binding Potential

One can’t expect to find a nucleon–nucleon binding potential using the same eikonal
as in the previous section. First, the distance between nucleons in a nucleus must be
larger than that of quarks within a hadron, which means that ϕ(b) must be replaced by
a function with a larger b range. Secondly, one would expect to find a link between this
nuclear potential and the pion exchange mechanism inside nucleus, which a single gluon
bundle exchange between quarks can’t achieve. Taking the fermionic determinant L[A]
into account, (21), will lead to a potential satisfying these two requirements.

Due to the relative complexity of the computations for arriving at useful formulas, the
results are given without details, those details being supplied in [3,5] and [41] Chapter 12,
and [42].

To begin with, the nucleon–nucleon binding process will be described as a two body
interaction as can be shown in [3], Equations (5) to (12).

Then, one assumes that the eikonal amplitude leading to the nuclear potential relies
on the L[A] contribution only. Writing (21) in the eikonal approximation and neglecting
the action of the linkage operator on the fermionic determinant, one obtains:

eiX(s,~b) = N
∫ d[χ]√

det( f ·χ)
e

i
4

∫
χ2

e L[(g f ·χ)−1(R1 + R2)] (58)
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where R1,2 are the quark-currents (15) involved in the binding and where L[A] is given by
(5), its ordered exponential being coped with the help of (26). Neglecting spin effects, it
follows that the “useful” part of L[A] is:

e
−ig

∫ s

0
ds′ u′µ(s)Ωa

i (s) Aa
µ(yi − ui(s)) − 1 (59)

Keeping only the first term of the exponential (one fermion loop) in the eikonal
approximation, and integrating over the angular variables, one finds ([3], Equations (40),
and [42] Equation (19)),

eiX(s,~b) = N
∫ ∞

0
R3

1 dR1 e
i
4
R2

1
∫ ∞

0
R3

2 dR2 e
i
4
R2

2 e i C(s,~b)R−1
1 R

−1
2 (60)

with:
C(s,~b) = g2 δ2

q
( κ

µ̄2

)
∆ϕ̄(b) (61)

A few words of explanation are appropriate:
The C R−1

1 R
−1
2 factor can be diagrammatically depicted by Figure 2. There is a g δq

attached to each “physical” quark–gluon bundle vertex, a g δ attached to each end of the
“loop ” quark–gluon bundle vertex, this δ tending to 0, together with a logarithmically

divergent quantity l associated to the quark loop diagram, such that δ2 l =
κ

µ̄2 is finite ([5],

Section 4) and each of the two gluon bundles gives a (gRi)
−1 whereRi is the magnitude of

f ·χi. Concerning the transverse fluctuation function ϕ̄(b), it is obtained as the convolution
product of the two ϕ(b), one for each gluon bundle, the result being a function with a
larger dispersion ([3], Equation (26)). The µ̄ mass needs not be the same as in ϕ. The last
ingredient in (61) is the Laplacian in front of ϕ̄, induced by the quark loop ([3], Equations
(30) to (40)).

As a last comment, Figure 2 can be seen as the exchange of a virtual π between the
nucleons, via two gluon bundles.

From this, one can compute a (very qualitative) binding potential following a similar
path as in Section 4.1 above. The difference being that one expands to first order the
left hand side of Equation (49) and in its right hand side the exponential factor contain-
ing C(s,~b), as X and C are both small quantities in this binding process; moreover, and
the small ξ parameter of ϕ is no longer essential and can be neglected. One finds ([3],
Equation (48)),

V(r) ' g2 µ̄ (2− µ̄2 r2) e
− µ̄2r2

2 (62)

This potential can not be expected to be reliable at small µ̄ r values, where the approxi-
mation of one quark loop exchange is no more valid.
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Figure 2. A quark loop exchange through two gluon bundles (shaded ovals) between two quarks of
two nucleons (solid lines).

4.4. Estimation of the Size of the Deuteron

Using the potential (62), a deuteron model can be built, starting from the classical two
equal-mass nucleon Hamiltonian:

HD =
p2

mN
+ V0 (1−

µ̄2 r2

2
) e
− µ̄2r2

2 (63)

With the help of the Heisenberg inequality p ≥ 1
r

, one can infer the size of the deuteron
in its fundamental state.

Defining the dimensionless variable x = µ̄r, the Hamiltonian can be rewritten:

HD =
µ̄2

mN x2 + V0 (1−
x2

2
) e
− x2

2 (64)

If µ̄ can be taken as the pion mass mπ ' 140 MeV/c2. With mN ' 1 GeV/c2, that leads

to M =
µ̄2

mN
' 20 MeV/c2.

The minimum ofHD is found by solving:
dHD

dx

∣∣∣∣
x=x0

= 0

That leads to the equation:

0 = −2M
x3

0
+

V0

2
(x3

0 − 4x0) e
−

x2
0

2 (65)

Taking out the exponential and bringing it back inHD, one finds:

E0 =
x4

0 − 6x2
0 + 4

x4
0 (x2

0 − 4)
M (66)

Solving this equation for x0 using E0 ' −2 MeV, one finds x0 ' 0.85 that leads to
an unphysical negative V0 and x0 ' 2.2 that leads to a size for the deuteron of r0 ' 3 fm,
which is a correct order of magnitude.
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4.5. Application to pp Elastic Scattering

The two physical ingredients of our eikonal non-perturbative QCD theory, the ex-
change of gluon bundles, schematized in Figure 1 for one bundle exchange and the ex-
change of quark loop chains schematized in Figure 2 for one quark loop chain exchange,
that have been used in binding contexts, can also be employed for the description of
proton–proton elastic scattering, where the eikonal approximation is justified.

Before putting forward a theoretical cross-section for these processes, one has to recall
a major result of these Effective Locality induced dynamics: only a few amplitudes—in
the eikonal context—involving quarks, gluon bundles and linear quark loop chains (see
Figure 3) are non-zero. Only exchanges between two different quarks are allowed. They
take the shape of ladders if several of these “building blocks” are involved (see Figure 4).
In particular, no exchanges of bundles and chains can occur on a single quark line: there are
no self-energy graphs for quarks in this non-perturbative QCD regime, all of these features
established in Ref. [5].

...

Figure 3. A linear chain of gluon bundles and quark loops exchange between two quarks of two
nucleons. No more than two bundles can be attached to a quark loop [42].

Figure 4. One and two gluon bundles exchange between two quarks of two nucleons.

Turning to the elastic scattering between nucleons, the aim is to produce QCD curves
to compare to the old ISR [43–46] and the recent LHC TOTEM [47–52] pp elastic scatter-
ing data.

The appropriate starting point is again the eikonal amplitude (46):

M(p1; p2) ≡ Tpp(s,~q) =
is

2M2

∫
d2b e i~q ·~b (1− eiXpp(s,~b) ) (67)

with s = 4 E2, where E is the centre of mass energy of each proton, M the proton mass and
~q the momentum transfer in that frame: ~q2 = |t|.

A description of the elastic data involves exchanges of both gluon bundles and quark
loop chains. Obviously, this description will be crude, due to all the approximations made
along the computations, the neglect of spin effects being one of them. Still, one will get
curves whose shapes qualitively reproduce the data features. Needless to recall that this
approach is strictly based on the QCD lagangian (1), from which Pomerons are absent.
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Recalling the gluon bundle exchange amplitude (49),

eiX(GB)(s,~b) = N
∫ ∞

0
R3dR e

i
4
R2

e ig δ2
q ϕ(b)R−1

(68)

and the quark loop chain exchange amplitude, Equations (60) and (61),

eiX(QLC)(s,~b) = N
∫ ∞

0
R3

1 dR1 e
i
4
R2

1
∫ ∞

0
R3

2 dR2 e
i
4
R2

2 e
i g2 δ2

q
( κ

µ̄2

)
∆ϕ̄(b)R−1

1 R
−1
2

(69)

and integrating over theRs ([42], Equations (20)–(23)), one obtains:

eiX(GB)(s,~b) = e

√
i

2
g δ2

q ϕ(b)
(70)

and

eiX(QLC)(s,~b) = e

1
4

g2 δ2
q
( κ

µ̄2

)
∆ϕ̄(b)

(71)

That leads to,

Tpp(s,~q) =
is

2M2

∫
d2b e i~q ·~b (1− eiX(GB)(s,~b) eiX(QLC)(s,~b) )

=
is

2M2

∫
d2b e i~q ·~b (1− e

√
i

2
g δ2

q ϕ(b)
e

1
4

g2 δ2
q
( κ

µ̄2

)
∆ϕ̄(b) )

(72)

The elastic differential cross-section is given by ([18], Chaps. 8 and 10),

dσpp

dt
=

M4

πs2 |T
pp|2 (73)

Before computing |Tpp|2, one has to specify first the transverse fluctuation functions:

ϕ(b) =
m2

π
e−m2b2

, ϕ̄(b) =
m̄2

2π
e
− m̄2

2
b2

(74)

where ϕ and ϕ̄ are normalized, second the values of m and m̄ that depend on the energy of
the reaction, but should be close to the pion mass, and finally give a physical definition of
δq that was not necessary in the previous sub-sections but is now, in this scattering frame
where the energy of the reaction is a fundamental parameter:

δq =
( λ

m
) (m

E
)p (75)

with E the energy of each quark involved in the scattering, E = E/3, p is a small positive
parameter accounting for the decrease of the cross-section with increasing energy, and λ
dimensionless and small. All these quantities depend smoothly on E.

If one considers an amplitude where one gluon bundle and one quark loop chain is
exchanged between quarks, then one has to expand each exponential to first order only
and from (70)–(72) one obtains,

Tpp
1 (s,~q) = − is

2M2

∫
d2b e i~q ·~b ( √i

2
g δ2

q ϕ(b) +
1
4

g2 δ2
q
( κ

µ̄2

)
∆ϕ̄(b)

)
(76)

Adding to this T1 amplitude a two gluon bundle exchange (see Figure 4) by expanding
X(GB) to second order, one gets:

Tpp
1 (s,~q) = − is

2M2

∫
d2b e i~q ·~b ( √i

2
g δ2

q ϕ(b) +
1
2

i
4

g2δ4
q ϕ2(b) +

1
4

g2 δ2
q
( κ

µ̄2

)
∆ϕ̄(b)

)
(77)
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That leads to two cross-sections,
dσ

pp
1

dt
and

dσ
pp
2

dt
, whose expressions are not too

illuminating, and are given in [42] Equation (35) and (36).
Two examples of the curves obtained using (76) and (77) are given in Figure 5 for the

ISR data and Figure 6 for TOTEM data.
A necessary comment on those QCD results is that the gluon bundle contribution to

the cross-section (one or two exchanges) comes out as an e
− q2

4m2 that gives the low q2

part of the curves, below the “dip” shown by the data, while the one quark loop chain,

thanks to the laplacian in front of ϕ̄(b) leads to a term proportionnal to q2 e
− q2

4m2 that
gives the major contribution for the cross-section for larger q2, above the “dip”, the sum
of the two (bundles and loop) qualitatively accounting for this experimental dip. It is
remarkable that just the two or three first terms of the eikonal exponential are sufficient to
give a qualitatively fair description of data covering a range of energy between 30 GeV to
10 TeV.

0 1 2 3 4 5 6 7
q 2 [GeV 2]

10 9

10 7

10 5

10 3

10 1

101

103

d
/d

t
[m

b/
G

eV
2 ]

s = 44.7GeV
 Equation 35 (1GB + 1CQL)
 Equation 36 (1GB + 2GBs + 1CQL)

Figure 5. Elastic pp scattering differential cross-section at
√

s = 44.7 GeV. Black dots are experimental
data, dashed line is the result of [42], Equation (35), solid line comes from [42] Equation (36).
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q 2 [GeV 2]

10 5

10 3

10 1

101

103

d
/d
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b/
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 Equation 35 (1GB + 1CQL)
 Equation 36 (1GB + 2GBs + 1CQL)

Figure 6. Elastic pp scattering differential cross-section at
√

s = 8 TeV. Black dots are experimental
data, dashed line is the result of [42] Equation (35), solid line comes from [42], Equation (36).

5. Conclusions

Effective Locality has been derived some years ago in the context of Lagrangian
quantum field theory for the sake of exploring the non-perturbative sector of QCD. Its
fundamental step consists in ‘integrating out’ the gluonic degrees of freedom of the orig-
inal generating functional of QCD. Quantization is carried out by relying on functional
differentiations rather than functional integrations, the two procedures of quantization
being equivalent whenever the Wick theorem applies to time-ordered products of quantum
field operators.

By adding and subtracting Lagrangian density terms ordinarily used as gauge-fixing
conditions in the functional integration context, invertible gauge field-functions (i.e., prop-
agators) of any sort are generated which render perfectly well-defined all of the standard
operations of functional differentiation which complete the quantization procedure.

In the end, it is really remarkable that gluonic degrees disappear to the exclusive
benefit of rank 2 covariant tensor fields endowed with colour indices, the χa

µν-terms, which
are introduced in order to ‘linearize’ the original F2-non abelian field-strength tensor of the
QCD Lagrangian density.

Somewhat similar in form, an astounding result was derived 30 years ago in the pure
Yang–Mills theory through an instanton calculation, that is, in the euclidean case. At leading
order of a semi-classical expansion, the χa

µν-fields could consistently be understood as
the original field strength tensors evaluated on instanton Aa

µ-gauge field configurations,
χa

µν = Fa
µν(Ab

inst.). Now, besides the euclidean framework of this derivation, functional
integration was used to quantize the Yang–Mills generating functional, with, as a conse-
quence gauge-fixing conditions transferred from the original Aa

µ-gauge fields to the new
χa

µν-field variables, with ultimately, a Gribov’s copies issue met again.
On the contrary, effective locality calculations take place in Minkowski spacetime

right from the onset, avoid any gauge-fixing procedure and related Gribov’s copy problem,
and by construction, preserve the full original non-abelian gauge invariance of QCD. This
certainly stands for the most striking and physically interesting aspect of Effective Locality.
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In this article, a summarized review of eight among the theoretical aspects and conse-
quences of the Effective Locality property have been presented out of an ongoing list, and
likewise, five phenomenological applications are also given. If the latter are often obtained
on the bases of rough approximations to the exact expressions, it remains that most of
them can be motivated and that they are found in line with the expected features of the
non-perturbative regime of QCD. If, as Wisdom claims, it is true that When an idea is a good
one, it is fecund at tree-level, then these first results could be considered as encouraging.
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Notes
1 In Euclidean pure Yang–Mills theory, and at leading order of a semi classical expansion, the χa

µν-fields are the usual strength field
tensors evaluated over instanton field configurations [6,7], i.e., χa

µν = Fa
µν(Ab

inst.).
2 This is because the QCD Lagrangian is written out of the short distance dynamical degrees of freedom.
3 When passing from an infinite dimensional functional space to a finite dimensional one (where Random Matrix Theory is used),

this theorem can be viewed as generalizing the more customary notion of a Jacobian.
4 Including forms which would correspond to any choice of non linear gauge fixing conditions.
5 That is, inverting a previously non invertible quadratic form on the Aa

µ fields.
6 The details of this quantization are given in [1].
7 A strict eikonal approximation would devoid chirality of any meaning.
8 Contrary to the massive QED2 case in effect, in QCD one cannot rely on the property of cluster decomposition [37], taking the

limits of x1(= y1) and x2(= y2) separated by an infinite spatial distance.
9 We thank the unknown Referee who has drawn our attention to this important issue
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